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Abstract. We design algorithms of “optimal” data complexity for sev-
eral natural problems about first-order queries on structures of bounded
degree. For that purpose, we first introduce a framework to deal with
logical or combinatorial problems R ⊂ I × O whose instances x ∈ I
may admit of several solutions R(x) = {y ∈ O : (x, y) ∈ R}. One
associates to such a problem several specific tasks: compute a random
(for the uniform probability distribution) solution y ∈ R(x); enumer-
ate without repetition each solution yj in some specific linear order
y0 < y1 < . . . < yn−1 where R(x) = {y0, . . . , yn−1}; compute the solu-
tion yj of rank j in the linear order <. Algorithms of “minimal” data
complexity are presented for the following problems: given any first-
order formula ϕ(v) and any structure S of bounded degree: (1) com-
pute a random element of ϕ(S) = {a : (S, a) |= ϕ(v)}; (2) compute
the jth element of ϕ(S) for some linear order of ϕ(S); (3) enumerate
the elements of ϕ(S) in lexicographical order. More precisely, we prove
that, for any fixed formula ϕ, the above problem (1) (resp. (2), (3))
can be computed within average constant time (resp. within constant
time, with constant delay) after a linear (O(|S|)) precomputation. Our
essential tool for deriving those complexity results is a normalization
procedure of first-order formulas on bijective structures.
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1. Introduction

After the study of the complexity of the logical theories (see [9] for a nice
survey), the complexity of query evaluation is a natural and well-studied problem
of computer science. Several algorithmic questions may be considered. Classically,
given a structure S in some class C and a sentence ϕ in some logic L one wants
to know how hard it is to evaluate whether ϕ holds in S. The complexity can be
measured either in terms of the structure size (data complexity) or in terms of the
structure size and the formula size (combined complexity). When the formula has
free variables then the size of the output also serves in the complexity evaluation.
It is well known that the combined complexity of first-order query evaluation is
intractable in general [15]. Hence, finding restrictions on the structure or on the
class of formulas that admit efficient query evaluation is an important problem
and has deserved a lot of attention (see, for example, [6–8, 12, 14, 16, 17]).

In this article, we do not consider the global cost of computing the whole result
of a query. Instead, query evaluation is studied here from a dynamical point of
view. Three kinds of algorithmic tasks are considered: (i) the Random solution
problem which consists in computing a random tuple of the result (for the uniform
probability distribution); (ii) the Enumeration problem that aims at generating
successively each tuple of the result in some specific linear order <; (iii) the jth
solution problem which computes the tuple of rank j for the linear order <. In
other words, the objective is to compute a single or a new solution (tuple) of the
query result. A central notion in algorithms that solve these problems is that of
precomputation. Before starting each specific task, a (short) precomputation is
allowed, based on the structure and the formula only. Afterwards, the algorithm
must be able to compute efficiently a particular solution (for example, the jth one,
whatever j is, for some order<) or to enumerate all the solutions with a small delay
between two consecutive ones. Complexity bounds for tasks (ii) or (iii) obviously
provide complexity bounds for the classical query problem: e.g., the total num-
ber of steps to compute the entire result of the query is time(precomputation) +
(delay ∗ number of solutions). Of course, analyzing tasks (i–iii) gives additional
information on uniformity or regularity of the query evaluation process.

The complexity of the enumeration problem of (several classes of) logical queries
has begun to be studied in some recent articles: see [1,3,5] for first-order or monadic
second-order logic over structures of bounded tree-width and [2] for acyclic con-
junctive queries with disequalities over any structures. However, the present arti-
cle is the first one, to our knowledge, that studies the complexity of the random
solution and the jth solution problems of queries.

In this work that improves and completes the results of [4, 16], we consider
first-order queries on bounded degree structures and we give complexity results for
tasks (i–iii) above. Given a first-order formula ϕ(x1, . . . , xk) and a structure S of
bounded degree, ϕ(S) denotes the set of tuples {a : (S, a) |= ϕ(x)} that constitute
the result of query ϕ over S. We prove that, for a fixed formula ϕ, computing a
random tuple of ϕ(S) (resp. computing the jth element of ϕ(S) for some linear
order of ϕ(S)) can be done in average constant time (resp. in constant time)
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after a linear (O(|S|)) precomputation that depends on formula ϕ and structure
S only. In other words, the value of j is given only after the precomputation
step is completed. For the enumeration task, we prove that one can enumerate all
the elements of ϕ(S) in lexicographical order with a constant delay between two
consecutive solutions, again after a linear precomputation. On the one hand, it
seems necessary to read the whole input structure: this corresponds to the linear
time precomputation. On the other hand, the time required to compute one tuple
is at least its (constant) size. That means that our results are of optimal data
complexity.

In this article, we consider first-order logic over the so-called bijective structures
that consist of bijective unary functions and monadic predicates. First-order logic
over such structures is the analog of first-order logic over structures of bounded
degree when dealing with functions instead of relations. Our algorithmic results
will derive from a quantifier elimination and normalization procedure of first-order
formulas over bijective structures. More precisely, the notion of inductive descrip-
tion is introduced as a natural way to describe relationships between variables and
a new normal form for first-order logic on bijective structures is proved: every
first-order formula can be put in a quantifier-free form that is equivalent to an
exclusive disjunction of inductive descriptions.

The article is organized as follows. In Section 2, the main definitions of our
problems and complexity classes are given. Section 3 presents the logical notions
and our main normalization result. They are used in Section 4 to prove our com-
plexity bounds for first-order queries over bijective structures. Finally, Section 5
derives similar results for queries over structures of bounded degree.

2. Preliminaries

2.1. Problems

We will deal with problems whose instances may admit of several solutions.
Given an instance, we can be interested in different actions: counting its solutions,
enumerating them all, choosing one of them randomly, and so on. In order to
handle this diversity of problems in a uniform way, we introduce the notion of
problem relation which is merely a binary relations R ⊆ I ×O over two sets I and
O respectively called space of instances (or input space) and space of solutions (or
output space). For each input x ∈ I, the set R(x) = {y : (x, y) ∈ R} is called the
set of solutions of R on x. We will demand this set to be finite for each x. Now,
the standard decision and evaluation problems associated with R can be defined
as follows:

decide(R)
Input: an instance x of R
Output: accept iff R(x) �= ∅

eval(R)
Input: an instance x of R
Output: R(x)
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We will deal with the counting and random problem associated with R:

count(R)
Input: an instance x of R
Output: card(R(x))

random(R)
Input: an instance x of R
Output: a random element of R(x)

But we will mainly focus on two other problems whose definition needs some
more notation: Let < be a strict linear order defined on the space of solutions
of R. For any input x, we denote by enum(R, x,<) the strictly increasing enu-
meration of R(x) according to < and by jth(R, x,<, j) the element of rank j in
this enumeration. That is: if R(x) = {y0, . . . , yn−1} with y0 < · · · < yn−1, then
enum(R, x,<) = y0y1 . . . yn−1 and jth(R, x,<, j) = yj . The enumeration and jth
solution problems related to R and < are respectively defined by:

enum(R,<)
Input: an instance x of R
Output: enum(R, x,<)

jth(R,<)
Input: an instance x of R and j ∈ N

Output: jth(R, x,<, j)

Notice that beside the ordering in which the solutions of R on x appear in
the final output, there is an important difference between the problems eval(R)
and enum(R,<) which is not quite explicit in our definitions: in the enumeration
problem, it is essential that the solutions are returned one after another, while it
is not required in the evaluation version of the problem. This will be made precise
in the forthcoming definition of enumeration algorithms.

2.2. Complexity classes

The computation model used in this article is a random access machine model
(RAM) with uniform cost measure, with addition and substraction as its basic
arithmetic operations (see [10]). It has read-only input registers (containing the
input x of the problem), read-write work registers and write-only output registers.
The size of an input (resp. output) x, denoted by |x|, is the number of registers it
occupies (in a “reasonable” representation). We suppose that in each computation
of the RAM, register values or memory addresses are bounded by c.|x|, for some
constant integer c. (Note that this bound applies to each register including input
and output registers.) Although this latter assumption may appear to restrict the
computational power of RAMs, it is in fact realistic and close to the intuition of
what linear time (or related small complexity measure) is. Moreover, one defines a
random RAM to be a RAM with an additional instruction RANDOM(reg) whose
semantics is: store in register reg a random integer in the interval [0, c.|x| − 1].

We say that a (RAM) algorithm A computes the enumeration problem
enum(R,<) if, for any input x, A computes one after one the elements of the
sequence enum(R, x,<) and stops immediately after writing the last one. For such
a procedure, we denote by timej(x) the moment when A has completed the writ-
ing of the jth solution (by convention, time0(x) = 0). We define delayj(x) =
timej(x)− timej−1(x).
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An enumeration algorithm A that computes a problem enum(R,<) is constant
delay if there is a constant c such that for, any input x, we have delayj(x) ≤ c for
any j < card(R(x)), and if, furthermore, A uses space less than c (i.e. at most c
memory registers) during its computation.

The problem jth(R,<) is computable in constant time if there is a constant time
and constant space RAM which, for each input x and each integer j, computes
card(R(x)) and jth(R, x,<, j) if j ≤ card(R(x)). Similarly, random(R) is com-
putable in average constant time if there is a random RAM which, for each input
x, computes a random element of R(x) in constant space and average constant
time.

These complexity classes of problems are not computationally robust. However,
their respective closures by linear reductions are.

Definition 2.1. We write enum(R,<) ∈ Constant-Delaylin if there is a func-
tion r : x �→ r(x) computable in linear time and a constant delay algorithm A
which, when applied to r(x) for any input x computes enum(R, x,<).

Similarly, we write jth(R,<) ∈ Constant-Timelin (resp. random(R) ∈
AVG−CONST−TIMElin) if there is a function r : x �→ r(x) computable in linear
time and a RAM (resp. random RAM) A which, when applied to (r(x), j) (resp.
r(x)), for any input x and any integer j (resp. for any input x), runs in constant
time (average constant time) and constant space and computes card(R(x)) and
jth(R, x,<, j) (resp. computes a random element of R(x))1.

2.3. Algorithms with precomputation

It is convenient to reformulate the above defined classes by using RAM algo-
rithms with precomputation: jth(R,<) belongs to Constant-Timelin if there is a
RAM algorithm A which, for any input x and any integer j, decomposes into the
following two successive phases:

(a) A.precomp(x) which performs linear time precomputation that computes
r(x) and card(R(x)) from x (and independently of j).

(b) A.output(r(x), j) which computes jth(R, x,<, j) (if j < card(R(x))) in con-
stant time and constant space.

By abuse of notation, phase (b) will be called A.output(x, j) in the next sections.

Remark 2.2.
• Note the crucial assumption that the precomputation phase A.precomp

does not use the part j of the input.

1Note that any of those three conditions implies that card(R(x)) is “polynomial”, that means,
is O(|x|k), for some fixed k. For random(R) ∈ AVG−CONST−TIMElin (for example), this can
be justified as follows: if we have card(R(x)) > (c.|x|)k, for some integer k, then most solutions
y ∈ R(x) have size |y| > k (that means, y should be stored in more than k registers) and, hence,
the average time required to compute and write a random element of R(x) is greater than k/2.
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• The phase A.output uses constant space, that is, a fixed number of reg-
isters. Those “work” registers are disjoint from the “input” registers that
contain (r(x), j) and are read-only.

An AVG−CONST−TIMElin algorithm A for random(R) is similarly defined by
replacing the phase A.output(r(x), j) by the new phase A.random(r(x)) which
computes a random element of R(x) in constant space and average constant time
by using the instruction RANDOM(reg).

Finally, a Constant-Delaylin algorithm A for enum(R,<) is defined in the
same way by replacing the phase A.output by a procedure A.enum(r(x)) which
computes enum(R, x,<) with constant delay and constant space2.

Remark 2.3. In some of the forthcoming algorithms (see COUNT(ϕ, S) and
JTH(ϕ, S) in the proof of Prop. 4.1) we fully use the robustness of the linear
time complexity and of the Constant-Timelin and Constant-Delaylin classes.
These classes are not affected by the enrichment by arithmetical operations (mul-
tiplication, exponentiation, . . . ) of the set of basic operations that equip our RAM
model. In particular, an algorithm A designed to prove the belonging to one of
these classes can freely refer to u div v or umod v, for some fixed v smaller than
the size of the input and for any u which is polynomial in this size (u = O(|x|k),
for some fixed k). This is because we can build and store the tables of those op-
erations in the precomputation phase of A, so that their results on any operand u
can be evaluated in constant time and constant space during the output phase.

The class AVG−CONST−TIMElin is also robust for similar reasons: observe
that any instruction of the form j ← RANDOM(0 . . . v − 1) (take an integer
randomly in the interval [0 . . . v−1]) where v is any integer such that v = O(|x|k),
for some fixed k, can be simulated in constant space and average constant time by
standard probabilistic techniques using the instruction RANDOM(reg) (see, for
example, Exercise 1.2 in [13]).

The following lemmas are consequences of our definitions.

Lemma 2.4. If jth(R,<) belongs to Constant-Timelin then enum(R,<) ∈
Constant-Delaylin and random(R) ∈ AVG−CONST−TIMElin.

Proof. The algorithms of both problems have the same precomputation phase as
jth(R,<), for each input x. Then, the enumeration phase consists in iterating,
for each j varying from 0 to card(R(x)) − 1, the output phase on input (r(x), j).
Similarly, the random phase is the sequence of instructions v ← card(R(x)); j ←
RANDOM(0 . . . v − 1); return jth(R, x,<, j). �

2Note that imposing constant space for enumeration algorithms is a very strong assumption.
From an algorithmic point of view, this corresponds to “oblivious” enumeration algorithms that
output new solutions without memorization of previously enumerated solutions (and without
repetition). A more liberal use of space (from linear to exponential restrictions) would define
seemingly larger complexity classes which are also worth to be studied.
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Lemma 2.5. Let R,R′ ⊆ I × O be two problem relations over the same input
and output spaces. Let furthermore < be a linear order on O. If both problems
enum(R,<) and enum(R′, <) belong to Constant-Delaylin, then so does the
union problem enum(R ∪R′, <).

Proof. Obvious and left to the reader. �

3. Logical framework

Basics of first-order logic for finite structures can be found, for example, in [11].
A signature σ is a finite set of relation and function symbols of given arities (0-
ary function symbols are constant symbols). A (finite) σ-structure consists of a
domain D together with an interpretation of each symbol of σ over D (we do not
distinguish between a symbol and its interpretation). We denote by fo the class
of first-order formulas, and by fo(qf ) its quantifier-free fragment.

3.1. Query problems

We are interested in the problems described in the previous section in the
context of first-order queries. For each σ-formula ϕ(x) with k free variables
x = (x1, . . . , xk) and for each σ-structure S of domain D, we denote by ϕ(S)
the set {a ∈ Dk : S |= ϕ(a)}. Moreover, we denote by enum(ϕ, S,<) the increas-
ing enumeration of ϕ(S) according to a given linear order < defined on Dk. The
jth element of such an enumeration is denoted by jth(ϕ, S,<, j). Given a set C of
structures and a linear order < over k-tuples, we define the following problems.

count(ϕ, C)
Input: S ∈ C
Output: card(ϕ(S))

random(ϕ, C)
Input: S ∈ C
Output: a random element of ϕ(S)

enum(ϕ, C, <)
Input: S ∈ C
Output: enum(ϕ, S,<)

jth(ϕ, C, <)
Input: S ∈ C and j ∈ N

Output: jth(ϕ, S,<, j)

The most natural linear order for the enumeration and jth solution problems is
the lexicographical order <lex onDk associated with the natural linear order of the
domain D = {0, . . . , n− 1} of the input structure S. It will also happen that the
linear order involved in these problems depends on the formula ϕ. We will make
this dependence explicit in our notation. Typically, we will later enumerate ϕ(S)
according to some special lexicographical order denoted by <ϕ

lex that depends on
ϕ(S) and we will study the corresponding problem jth(ϕ, C, <ϕ

lex) (see Def. 4.4).
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3.2. Logical definitions

A central notion studied in this article as in [4] is that of bijective structure.
It is defined as follows.

Definition 3.1. The arity of a signature is the maximal arity of its symbols.
A unary signature has arity 1. Thus, a unary signature is made of constant,
monadic predicate and unary function symbols. By a unary structure we mean a
structure over a unary signature. A bijective structure is a unary structure in which
all the unary function symbols are interpreted as permutations of the domain.
We will assume that any bijective structure contains at least one unary function.
The class of all bijective structures is denoted by bij.

As in [4], we will focus on first-order logic over bijective structures. For conve-
nience, we will handle functions and their reciprocals directly in the syntax. This
suggests the following definition.

Definition 3.2. A bijective term τ(x) is of the form f ε1
1 . . . f εl

l (x) where l ≥ 0,
εi = ±1, x is a variable and each f εi

i is either the function symbol fi or its inverse
f−1

i .

The notions of bijective atomic formulas, bijective literals and bijective first-
order formulas are defined as usual from bijective terms.

We will often denote by τ or τ(x) a bijective term, according to our intention
to ignore or to specify its constitutive variable. We will also make an extensive use
of the intermediate notation τ(x), which indicates that the constitutive variable
of τ belongs to the tuple x. Alternatively, we will point up this fact through the
expression “τ is a bijective term on x”.

3.3. First-order formulas vs. inductive descriptions

Definition 3.3. Let ψ1(x), . . . , ψs(x) be first-order formulas with the same vari-
ables. The disjunction

∨s
i=1 ψi(x) is said exclusive if its disjuncts are mutually

exclusive, that is, if ψi(x) implies ¬ψj(x), for all 1 ≤ i < j ≤ s.

We will denote by
�s

i=1 ψi a disjunction to emphasize that it is exclusive. We
won’t argue for the use of such a writing when its justification is obvious from the
context. Clearly, the exclusive disjunction inherits the associativity and commu-
tativity properties from the usual disjunction. In particular, a formula of the form�

i∈I

�
j∈J ψ

j
i can be written

�
i∈I,j∈J ψ

j
i .

We will need a normalization of quantifier-free formulas (Prop. 3.5) in order
to prove that first-order formulas fulfil a kind of quantifier elimination result over
bijective structures (Cor. 3.6). This normalization involves the notion of induc-
tive description. Roughly speaking, an inductive description is a conjunction of
bijective literals in which a free variable y can be singled out in such a way that
the formula can be written ψ(x) ∧ θ(x, y) where ψ is an inductive description
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and where θ describes in a very simple way the connection between y and the
other variables. Let us detail this notion:

Definition 3.4. The set of inductive descriptions, denoted by id, is the smallest
set of quantifier-free conjunctive bijective formulas that contains:

(i) quantifier-free conjunctive bijective formulas δ(x) of arity 1;
(ii) formulas of arity d+ 1 (with d > 0) of the form

ϕ(x, y) ≡ ψ(x) ∧ y = τ(x),

where ψ(x) is an inductive description of arity d and τ(x) is a bijective term
built on one variable of x;

(iii) formulas of arity d+ 1 (with d > 0) of the form

ϕ(x, y) ≡ ψ(x) ∧ δ(y) ∧
∧

i≤m

y �= τi(x),

where δ and ψ are inductive descriptions of respective arity 1 and d, the
τi(x) are bijective terms, and ψ(x) logically implies both pwdi∈[m](τi(x))
and

∧
i∈[m] δ(τi(x)).

(We abbreviate by pwdi∈[k](ti) the formula
∧

i�=j∈[k] ti �= tj stating that the ti are
pairwise distinct.)

Given two sets L, L′ of formulas and a set C of structures, we write “L ⊆ L′ on
C” if for all ϕ ∈ L there exists ϕ′ ∈ L′ such that ϕ(S) = ϕ′(S) for all S ∈ C. We
write “L = L′ on C” when both L ⊆ L′ and L′ ⊆ L hold on C. Recall that fo(qf )
denotes the set of quantifier free first-order formulas. Besides, we denote by

�
id

the set of formulas that are exclusive disjunctions of inductive descriptions.

Proposition 3.5. On bijective structures, fo(qf ) =
�

id.

Proof. It is easily seen, by standard methods in logic, that each quantifier-free
formula is equivalent to an exclusive disjunction

�s
i=1 ϕi where each ϕi is a con-

junctive formula (that is, a conjunction of literals). Furthermore, since the logic�
id is closed under exclusive disjunction, we can consider without loss of general-

ity that the quantifier-free formula to be written in
�

id is conjunctive. So let ϕ be
a quantifier-free conjunctive formula. We prove that ϕ is equivalent to an exclusive
disjunction of inductive descriptions by induction on its arity. If arity(ϕ) = 1, the
result is clear. Otherwise, distinguish one (arbitrary) free variable y in ϕ and write
ϕ ≡ ϕ(x, y) with y /∈ x. Now ϕ has the shape:

ϕ ≡
∧
±αi(x, y) = βi(x, y) ∧

∧
±Ui(γi(x, y)) (1)

where all the αi, βi, γi’s are terms built on one variable of x, y and where the Ui’s
are unary relation symbols. By authorizing bijective terms, we can rewrite ϕ in
such a way that each equality (resp. unequality) involving y and x has the shape
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y = τ(x) (resp. y �= σ(x)), where τ and σ are now bijective terms on x. Moreover,
by sorting the atomic formulas of ϕ according to the variables involved in them,
we can finally write ϕ under the form:

ϕ ≡ θ(x) ∧ δ(y) ∧
∧
y = τi(x) ∧

∧
y �= σi(x) (2)

where both θ and δ are quantifier-free conjunctive bijective formulas. (The con-
juncts Ui(γi) occurring in (1) have been incorporated in θ or δ, according to the
fact that the term γi is built on x or on y.)

Two cases occur, according to the emptiness of the conjunction of equalities. If
it is not empty, it contains a conjunct y = τj(x). Thus, by substituting the
term τj(x) for each occurrence of y in ϕ, but that of the conjunct y = τj(x), we
get the equivalent form:

ϕ ≡ ψ(x) ∧ y = τj(x)

where ψ is a quantifier-free conjunctive bijective formula and τj(x) is a bijective
term. By induction hypothesis, ψ is equivalent to an exclusive disjunction of
inductive descriptions, say ψ ≡ �

i ψi(x). Thus

ϕ ≡
�

i

(ψi(x) ∧ y = τj(x))

and we are done, since each disjunct above is an inductive description, by item (ii)
of Definition 3.4.

If ϕ does not contain any conjunct of the form y = τ(x), equation (2)
has the form:

ϕ(x, y) ≡ θ(x) ∧ δ(y) ∧
m∧

i=1

y �= σi(x). (3)

Here, θ and δ are quantifier-free conjunctive bijective formulas and the σi(x) are
bijective terms. Let’s keep in mind this last formula, that has to be written in�

id. To carry on with the normalization of ϕ, we are going to concentrate for
a while on its subformula δ(y) ∧∧m

i=1 y �= σi(x). More precisely, we are going to
evaluate this subformula with respect to the number of distinct σi that satisfy δ.
Actually, in order to isolate the heart of our reasoning from minor features, we will
focus on formulas of the form δ(y) ∧∧m

i=1 y �= vi, where the vi are new first-order
variables. Let us first introduce some notations.

For m > 0, we denote by 2[m] the set of subsets of [m] = [1,m], by minP the
minimal element of a non empty P ∈ 2[m], and by

⋃P the union set
⋃

P∈P P of
any P ⊆ 2[m]. If the elements of some P ⊆ 2[m] are pairwise disjoint, we say that
P is a set of disjoint m-subsets and we note P ∈ sds[m]. Equivalently, P ∈ sds[m]
if {(P )P∈P , [m] \⋃P} is a partition of [m].
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Let δ be a first-order formula of arity 1 and v = v1, . . . , vm be a tuple of
first-order variables. A δ-type for v is a formula δm

P (v), associated with a given
P ⊆ 2[m], that comprehensively describes a particular behaviour of the variables
with respect to δ. Such a formula asserts that, for any i, j ∈ [m]:

(i) if i, j belong to a same P ∈ P , then vi, vj must be interpreted by a same
element;

(ii) if i, j belong to different components of P , then vi, vj must be interpreted
by distinct elements;

(iii) if i ∈ ⋃P , then vi must be interpreted by some elements that fulfil δ;
(iv) if i ∈ [m] \⋃P , then vi must be interpreted by some element that does not

fulfil δ.

For convenience, we formalize these assertions as follows:

(i)
∧

P∈P

∧
i∈P

vi = vmin P (ii)
∧

P �=Q∈P
vminP �= vmin Q

(iii)
∧

P∈P
δ(vmin P ) (iv)

∧
i∈[m]\⋃ P

¬δ(vi)

and we set: δm
P (v1, . . . , vm) ≡ (i) ∧ (ii) ∧ (iii) ∧ (iv). Now, the following remarks

follow from the definition of δm
P : First, the formula

∨
P∈sds[m] δ

m
P (v) is a tautol-

ogy and its disjuncts are mutually exclusive. Therefore, δ(y) ∧ ∧i∈[m] y �= vi is
equivalent to ⎛

⎝ �

P∈sds[m]

δm
P (v)

⎞
⎠ ∧ δ(y) ∧ ∧

i∈[m]

y �= vi,

and hence to

�

P∈sds[m]

⎛
⎝δm

P (v) ∧ δ(y) ∧
∧

i∈[m]

y �= vi

⎞
⎠.

Now, each disjunct of the above formula can be written

δm
P (v) ∧ δ(y) ∧

∧
P∈P

y �= vmin P .

This is because, under the hypothesis δm
P (v) ∧ δ(y), each vi such that i /∈ ⋃P

clearly differs from y, since it doesn’t satisfy δ while y does, and because for each
P ∈ P , the sets {vi, i ∈ P} and {vminP } coincide. Therefore we get:

δ(y) ∧
∧

i∈[m]

y �= vi ∼
�

P∈sds[m]

(
δm
P (v) ∧ δ(y) ∧

∧
P∈P

y �= vmin P

)
. (4)
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Notice that δm
P (v) implies pwdP∈P(vmin P )∧∧P∈P δ(vmin P ) (immediately follows

from the definition of δm
P ).

Let us now come back to the initial formula ϕ(x, y) described in (3), that we
aim to normalize. By (4), it can be written:

θ(x) ∧
�

P∈sds[m]

(
δm
P (σ1(x), . . . , σm(x)) ∧ δ(y) ∧

∧
P∈P

y �= σmin P (x)

)
,

or equivalently:

�

P∈sds[m]

(
θ(x) ∧ δm

P (σ1(x), . . . , σm(x)) ∧ δ(y) ∧
∧

P∈P
y �= σmin P (x)

)
.

Let us denote by ψP (x) the formula θ(x) ∧ δm
P (σ1(x), . . . , σm(x)). By induction

hypothesis, ψP can be written as an exclusive disjunction of inductive descriptions,
say

�
i≤k ψ

i
P . Of course, each ψi

P implies ψP , and hence δm
P (σ1(x), . . . , σm(x)).

Therefore, according to the remark that follows equation (4), each ψi
P implies

pwdP∈P(σmin P (x)) ∧ ∧P∈P δ(σmin P (x)). Finally, the initial formula (3) can be
written

�

P∈sds[m]

�

i≤k

(
ψi
P(x) ∧ δ(y) ∧

∧
P∈P

y �= σmin P (x)

)

where each ψi
P is an inductive description that implies both pwdP∈P(σmin P (x))

and
∧

P∈P δ(σmin P (x)). The conclusion follows from item (iii) of Definition 3.4.
�

Corollary 3.6. For each (ϕ, S) ∈ fo × bij, there exists ϕ′ ∈ �
id such that

ϕ′(S) = ϕ(S). Furthermore, there is some function f such that |ϕ′| ≤ f(|ϕ|)
(upper bound independent of S) and ϕ′ is computable from (ϕ, S) in time f(|ϕ|)|S|.
Proof. We can assume, without loss of generality, that the formula ϕ of the state-
ment has the form ∃zγ(x, z), where γ is a quantifier-free formula. By Proposi-
tion 3.5, such a γ can be written as a disjunction of inductive descriptions. Now,
recall the three forms that a formula of id can fit, according to Definition 3.4:

(i) δ(y) with arity(δ) = 1;
(ii) ψ(x) ∧ y = τ(x), where ψ(x) ∈ id;
(iii) ψ(x) ∧ δ(y) ∧∧i≤m y �= τi(x), where δ, ψ ∈ id and ψ(x) logically implies

pwdi∈[m](τi(x)) ∧∧i∈[m] δ(τi(x)).

Moreover, although it is not emphasized in the statement of Proposition 3.5, this
rewriting of γ in

�
id can be done in such a way that in each disjunct that fits

the form (ii) or (iii) above, the variable y singularized in both these forms can be
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arbitrarily chosen3. In particular, when we write ∃zγ(x, z) as ∃z∨i γi, with the
γi’s in id, we can ensure that in each γi of the form (ii) or (iii), the singularized
variable y coincides with z. Consequently, the formula ∃zγ(x, z) can be written∨

i ∃yγi(x, y), where each γi fits one of the forms (i), (ii) or (iii) of Definition 3.4,
with y as the singularized variable.

Given a bijective structure S, it is now easy to translate each formula ∃yγi(x, y)
into a quantifier-free formula γ̃i(x), equivalent on S. This is done according to the
form of γi:

(i) ∃yδ(y) becomes false if δ(S) = ∅, true otherwise;
(ii) ∃y (ψ(x) ∧ y = τ(x)) becomes ψ(x);
(iii) ∃y

(
ψ(x) ∧ δ(y) ∧∧i≤m y �= τi(x)

)
becomes false if δ(S) contains at most

m elements, ψ(x) otherwise.

The time complexity of this procedure amounts to that of computing card(δ(S))
for some first-order formula δ(y) of arity 1, which is O(|δ|.|S|). Hence, the time of
the transformation is O(|S|), for a fixed formula. So, ϕ can be transformed into a
quantifier-free formula ϕ′ so that ϕ(S) = ϕ′(S), and, clearly, one gets |ϕ′| ≤ g(|ϕ|),
for some function g. We conclude by applying again Proposition 3.5. �

4. Complexity results on bijective structures

The enumeration, counting and jth solution problems are very easy for queries
defined by inductive descriptions as the following proposition asserts.

Proposition 4.1. For each function ϕ ∈ ID,

1. count(ϕ,bij) is computable in linear time ;
2. jth(ϕ,bij, <lex) ∈ Constant-Timelin ;
3. enum(ϕ,bij, <lex) ∈ Constant-Delaylin.

Proof. Thanks to Lemma 2.4, we just have to prove 1 and 2. The algorithms
described in this proof are recursive. Their behaviour on an input (ϕ, S) (resp.
(ϕ, S, j)) is directed by the shape of the inductive description ϕ. That is, the
algorithms operate according to modalities that depend on the form (i), (ii) or (iii)
of Definition 3.4 that ϕ matches.

1. count(ϕ,bij). The following recursive procedure computes card(ϕ(S)) in time
O(|S|) for any ϕ ∈ id and S ∈ bij. As mentioned above, it uses the inductive
definition of id.

3This possibility is explicitly mentioned in the first paragraph of the proof of Proposition 3.5:
when arity(ϕ) > 1, the normalization procedure “distinguishes one (arbitrary) free variable y
and writes ϕ ≡ ϕ(x, y) with y /∈ x”.
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procedure COUNT(ϕ, S)
if arity(ϕ) = 1 then

compute ϕ(S) ; return card(ϕ(S))
if ϕ ≡ ψ(x) ∧ y = τ(x) then

return COUNT(ψ, S)
if ϕ ≡ ψ(x) ∧ δ(y) ∧∧i<m y �= τi then

return COUNT(ψ, S) ∗ (COUNT(δ, S)−m)

The last instruction of this procedure is justified by the fact that ψ fulfils the
implication ψ(x)→ pwd(τi, i ≤ m) ∧∧i≤m δ(τi).

2. jth(ϕ,bij, <lex). We design an algorithm that, given ϕ ∈ id and S ∈ bij,
performs a preprocessing step in time O(|S|) in such a way that jth(ϕ, S,<lex, j)
can be afterwards computed in constant time for any j ∈ N. Both the preprocessing
and the output phase are recursive. The following easy considerations will make
the proof of the algorithm immediate.

(i) If arity(ϕ) = 1, then computing and sorting ϕ(S) can be done in time O(|S|).
Afterwards, jth(ϕ, S,<lex, j) can be returned in constant time for any j.

(ii) If ϕ(x, y) ≡ ψ(x) ∧ y = τ(x), then jth(ϕ, S,<lex, j) = (a, τ(a)) where a =
jth(ψ, S,<lex, j).

(iii) If ϕ(x, y) ≡ ψ(x) ∧ δ(y) ∧ ∧i≤m y �= τi(x), then the result rests on the two
following remarks:

• If (A,<A) and (B,<B) are two linear orders and <lex is the associated lexi-
cographic ordering for A×B, then for any j < card(A).card(B):

jth(A×B,<lex, j) = (jth(A,<A, q), jth(B,<B , r)),

where q = j div card(B) and r = jmod card(B).

• Let (A,<) be a linear order and F a subset of A. Denote by a0, . . . , ap−1

(resp. f0, . . . , fm−1) the strictly increasing enumeration of A (resp. F ) according
to <. Then for any r < p−m:

jth(A \ F,<, r) = jth(A,<, s),

where s is the result of the following procedure:

s← r; i← 0; while (fi ≤ as and i < m){i++; s++}; return s.

The precomputation and output steps of our algorithm, denoted JTH, for the
problem jth(ϕ,bij, <lex) are described below. We use some instruction of the
form T ← sortX . It means “sort the set X and store it in increasing order in
a table T [0, . . . , card(X) − 1]”. The soundness of JTH proceeds from the above
remarks. Besides, it is clearly a Constant-Timelin algorithm.
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procedure JTH.precomp(ϕ, S)
compute card(ϕ(S))
if ϕ is a formula δ of arity 1 then

compute δ(S) ; ∆← sort δ(S)
if ϕ ≡ ψ(x) ∧ y = τ(x) then

JTH.precomp(ψ, S)
if ϕ ≡ ψ(x) ∧ δ(y) ∧∧i<m y �= τi then

JTH.precomp(δ, S) ; JTH.precomp(ψ, S)

procedure JTH.output(ϕ, S, j)
if j ≥ card(ϕ(S)) then return error
else

if ϕ is a formula δ of arity 1 then return ∆[j]
if ϕ ≡ ψ(x) ∧ y = τ(x) then

a← JTH.output(ψ, S, j) ; return (a, τ(a))
if ϕ ≡ ψ(x) ∧ δ(y) ∧∧i<m y �= τi then

β ← card(δ(S)) −m
a← JTH.output(ψ, S, j div β)
Θ← sort {τ1(a), . . . , τm(a)}
i← 0 ; s← jmodβ ;
while Θ[i] ≤ ∆[s] and i < m do {i++, s++}
return (a,∆[s])

�
Corollary 4.2. For each ϕ ∈ fo, enum(ϕ,bij, <lex) ∈ Constant-Delaylin.

Proof. Derives from Corollary 3.6, Lemma 2.5 and Proposition 4.1. �
Remark 4.3. This corollary improves Theorem 7 of [4] which states a similar
result for some unspecified linear order < instead of <lex.

We are not able to prove that, for each ϕ ∈ fo, problem jth(ϕ,bij, <lex) belongs
to the class Constant-Timelin and we conjecture it does not. However, a similar
result holds for a less canonical linear order that depends on the input formula ϕ.

Definition 4.4. Let ϕ(x) ≡ �s
i=1 ϕi(x) be an exclusive disjunction of inductive

descriptions ϕi(x) of signature σ and let S be a σ-structure. Let <ϕ
lex denote the

“lexicographical” order on ϕ(S) defined as follows: for any a, b ∈ ϕ(S): a <ϕ
lex b, if

• either a ∈ ϕi(S) and b ∈ ϕj(S) for some i < j ≤ s,
• or a, b ∈ ϕi(S) for some i ≤ s and a <lex b.

Corollary 4.5. Let ϕ ∈ �
id. Then jth(ϕ,bij, <ϕ

lex) ∈ Constant-Timelin.

Proof. For any exclusive disjunction of inductive descriptions ϕ ≡ �s
i=1 ϕi and

any S ∈ bij, it holds: jth(ϕ, S,<ϕ
lex, j) = jth(ϕi, S,<lex, k), where i is the smallest

index such that j <
∑i

u=1 card(ϕu(S)) and where k = j −∑i−1
u=1 card(ϕu(S)).
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Together with the algorithm JTH for jth(ϕ,bij, <lex) described above (see p. 161)
for ϕ ∈ id , this remark justifies the following algorithm A for jth(ϕ,bij, <ϕ

lex)
with ϕ ∈ �

id:

procedure A.precomp(ϕ, S)
write ϕ under the form

�s
i=1 ϕi, with each ϕi ∈ id

for i = 1 to s do
JTH.precomp(ϕi, S)
compute vi =

∑i
j=1 card(ϕj(S))

procedure A.output(ϕ, S, j)
if j ≥ vs then return error
else

Find i ≤ s such that vi−1 ≤ j < vi

return JTH.output(ϕi, S, j − vi−1)

It is easily seen that A runs in Constant-Timelin. �
Corollary 4.6. For each ϕ ∈ fo, random(ϕ,bij) ∈ AVG−CONST−TIMElin.

Proof. Immediate, from Corollaries 3.6, 4.5 and Lemma 2.4. �

5. Complexity results on structures of bounded degree

Let S be a structure of domain D over a relational signature σ. We say that
the degree of S is bounded by d if, for each symbol R ∈ σ, each a ∈ D belongs
to at most d tuples of R. We denote by degd the class of relational structures of
degree bounded by d. The complexity results we obtain for our query problems on
bijective structures immediately imply the same results on structures of bounded
degree because of the following lemma of [4]:

Lemma 5.1 (Durand, Grandjean). Let d > 0 be a fixed integer. For each (ϕ, S) ∈
fo × degd, there exists (ϕ′, S′) ∈ fo × bij such that ϕ(S) = ϕ′(S′). Moreover,
the size |ϕ′|only depends on |ϕ| and d, and (ϕ′, S′) is computable from (ϕ, d, S) in
time O(|S|), that means, in time ≤ f(|ϕ|, d).|S|, for some function f .

Proof. See [4], Proposition 10 and Lemma 11. �
Corollary 5.2. For each d > 0 and each ϕ ∈ fo, we have:

(1) enum(ϕ,degd, <lex) ∈ Constant-Delaylin;
(2) jth(ϕ,degd, <

ϕ,d) ∈ Constant-Timelin, for some linear order <ϕ,d;
(3) random(ϕ,degd) ∈ AVG−CONST−TIMElin.

Let H = (VH , EH) be a fixed graph over the set VH = {1, . . . , k}. For any graph
G = (VG, EG), the H-subgraphs of G are the tuples (x1, . . . , xk) ∈ V k

G such that
∀i, j ∈ VH : ij ∈ EH → xixj ∈ EG. Similarly, the H-induced subgraphs of G are
the tuples (x1, . . . , xk) ∈ V k

G such that ij ∈ EH ↔ xixj ∈ EG. The results above
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can be applied to prove that the H-(induced) subgraphs of any graph G of degree
≤ d can be enumerated with constant delay after a linear precomputation. More
precisely, denote by graphd the class of graphs of degree bounded by d, and by
subgraph

H
d the problem relation (see p. 149) whose input space is graphd and

whose set of solutions on a given input G is the set of H-subgraphs of G. Define
similarly the counterpart problem ind-subgraph

H
d related to induced subgraphs.

Given H,G ∈ graphd, the set of tuples subgraph
H
d (G) and ind-subgraph

H
d (G)

are easily expressed by the respective first-order formulas:

ϕH(x1, . . . , xk) ≡ pwd(x1, . . . , xk) ∧
∧

ij∈EH

E(xi, xj) and

ψH(x1, . . . , xk) ≡ pwd(x1, . . . , xk) ∧
∧

ij∈EH

E(xi, xj) ∧
∧

ij /∈EH

¬E(xi, xj),

where k = card(VH ). Therefore, the results of Corollary 5.2 apply to the enu-
meration, jth solution and random solution problems associated with the problem
relations subgraph

H
d and ind-subgraph

H
d .

Corollary 5.3. For each fixed d > 0 and each fixed graph H of degree ≤ d,
we have:

(1) enum(subgraph
H
d , <lex) ∈ Constant-Delaylin,

(2) jth(subgraph
H
d , <

H,d) ∈ Constant-Timelin, for some linear order <H,d,
(3) random(subgraph

H
d ) ∈ AVG−CONST−TIMElin,

and the same results hold for ind-subgraph
H
d .
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