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ABOUT THE DOMINO PROBLEM IN THE HYPERBOLIC
PLANE FROM AN ALGORITHMIC POINT OF VIEW ∗

Maurice Margenstern
1

Abstract. This paper is a contribution to the general tiling problem
for the hyperbolic plane. It is an intermediary result between the result
obtained by R. Robinson [Invent. Math. 44 (1978) 259–264] and the
conjecture that the problem is undecidable.
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Introduction

The question, whether it is possible to tile the plane with copies of a fixed set of
tiles was raised by Wang [11] in the late 50’s of the previous century. Wang solved
the partial problem which consists in fixing an initial finite set of tiles: indeed,
fixing one tile is enough to entail the undecidability of the problem. The general
case, when no initial tile is fixed, was proved undecidable by Berger in 1966 [1].
Both Wang’s and Berger’s proofs deal with the problem in the Euclidean plane.
In 1971, Robinson found an alternative proof of the undecidability of the general
problem in the Euclidean plane, see [9]. In this 1971 paper, he raises the question
of the general problem for the hyperbolic plane. Seven years later, in 1978, he
proved that in the hyperbolic plane, the partial problem is undecidable, see [10].
Up to now, the general problem is still open in the hyperbolic plane.

In this paper, we sketch a proof that a generalized origin-constrained problem
is also undecidable in the hyperbolic plane.

The generalized origin-constrained problem is defined as follows. Con-
sider a given set of prototiles T . Say that a set Ω of prototiles with Ω ⊆ T is a set of

Keywords and phrases. Tilings, tiling problem, hyperbolic plane, origin-constrained problem.

∗ This paper is dedicated to my old friend Serge Grigorieff, at the occasion of his sixtieth
birthday.
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generalized origins, and its elements are simply called origins, if and only if:
(i) There is a positive number k such that in the ball of radius k around any

origin ω, there are at least two origins ω1 and ω2 with ω, ω1 and ω2 not
on the same line.

(ii) There are infinitely many rays each one containing infinitely many origins.
The generalized origin-constrained problem consists in finding whether there is an
algorithm which, for any finite set of prototiles T selects a subset Ω such that
there is a tiling consisting of copies of T which satisfies properties (i) and (ii) with
respect to Ω.

It turns out that, in the Euclidean plane, the proofs which we have of the
undecidability of the tiling problem with no restriction, also satisfy properties (i)
and (ii) with respect to the set of origins in the given set of tiles.

In this paper, we prove that the generalized origin-constrained problem is un-
decidable in the hyperbolic plane.

1. The tiling {7, 3} and the mantilla

Within the short room of this paper, it is not possible to give an introduction to
hyperbolic geometry. It is also not possible to introduce the tools which are used
in the paper in order to locate the tiles in the considered tiling. For both intro-
ductions, we refer the reader to [8] where the tools are described with full details.
In this book, there is also a substantial introduction to hyperbolic geometry. Also
there, the reader will find a precise description of Poincaré’s disc model which is
intensively used in [8], as well as in this paper.

1.1. The tiling {7, 3}
The tiling {7, 3} is a particular case in the infinite family of tilings of the hy-

perbolic plane denoted by {p, q}. The tiling {p, q} is generated from a regular
polygon with p sides and an interior angle 2π

q by reflection of the polygon in its
edges and, recursively, of the images in their edges. The tiling {7, 3} corresponds
to the case when p = 7 and q = 3. For this reason, we shall call it the ternary
heptagrid, for short, heptagrid.

The ternary heptagrid is illustrated by the left-hand side picture of Figure 1.
On the right-hand side of the same figure, the picture illustrates a situation

which will be intensively used in this paper. We can see two rays which delimit a
region with coloured tiles. A reader, familiar with [8], will recognize a Fibonacci
tree in the set of tiles defined in this way. From [8] and [3], we know that the
Fibonacci tree defines a bijection with this set of tiles. It also gives an efficient
way to locate the tiles of this set. At last, displaying seven Fibonacci trees around
a fixed tile allows to exactly cover the ternary heptagrid with no overlapping of
tiles.

Now, note that the rays which delimit the considered set of tiles, we call this an
angular sector, have a particular property. The supporting lines pass through the
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Figure 1. To the left: a representation of the ternary heptagrid
in the Poncaré’s disc model of the hyperbolic plane. To the right:
the definition of the mid-point lines and the sector which delimits
a Fibonacci tree.

mid-points of edges of the tiling. More precisely, the mid-points of two consecutive
edges of a tile uniquely define such a line which we call a mid-point line.

1.2. The mantilla

Now, let us introduce the mantilla, which is the basis of the construction which
we need for the proof of the theorem which we announced in the introduction.

The construction of the mantilla comes from a tentative implementation of
Robinson’s tiles in the hyperbolic plane.

Remember that Robinson’s tiles for his proof of the undecidability of the general
tiling problem in the Euclidean plane have the following aspect.

Figure 2. Basic patterns of Robinson’s tiles for the proof of the
undecidability of the general tiling problem in the Euclidean
plane.

The next picture indicates a possible attempt to transport these patterns to
the heptagrid. In fact, the direct translation of the patterns of Figure 2 are the
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patterns (i) and (ii) of Figure 3. It is not difficult to see that these patterns cannot
tile the hyperbolic plane. It is plain that the tile (ii) requires only tiles (i) around
itself. However, trying to put seven copies of (i) around (ii), we are faced with a
contradiction. Now, the contradiction is removed if we replace (ii) by (iii).

(i) (ii) (iii)

Figure 3. Transporting Robinson’s patterns into the ternary heptagrid.

Now, we would like to replace the patterns (i) and (iii) of Figure 3 by true à la
Wang tiles. This is not very difficult to achieve. Figure 4 gives a possible solution.

(a) (b)

Figure 4. Translation of the tiles (i) and (iii) of figure 3 into
true domino patterns.

This time, it is possible to assemble the tiles (a) and (b) in order to tile the
hyperbolic plane. However, now there is much more freedom than in the Euclidean
plane where Robinson’s tiles can be assembled in a unique way.

1.3. The flowers

It is immediate to see that seven tiles (a) can be put around a tile (b). But it
is possible to tile the whole hyperbolic plane with the tile (b) only. To prevent
this, we put colours, which we represent by numbers in [1...7], on the edges of the
tiles (b). We put the numbers in [1...7], starting from an edge with 1 and going on
counter-clockwise. With this numbering of the sides, it is no more possible to tile
the hyperbolic plane with the tiles (b) alone. This is due to the angle 2π

3 , as 3 is
odd. Note that if we take copies of the tile (b) with the numbering in the reverse
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order, it is still no more possible to tile the hyperbolic plane with the tiles (b) only,
even when some of them are numbered clockwise and the others counter-clockwise.

Now, the numbers on the tile (b) induce several types of tiles (a) as they each
one receive at least one number in [1...7].

From now on, call petals the tiles of type (a) and centres, the tiles of type (b).
We call flower, the figure obtained by assembling seven petals around a centre.
Note that a flowers represents a ball of radius 1 around its centre.

Now, it is not difficult to see that we have several kinds of flowers.
As an example, if we fix the numbering, we have the following possibilities.

(7) (8) (9f) (10)

Figure 5. Possible types of flowers. They are ordered according
to the number of flowers which can be put around them, contigu-
ously.

As proved in [8] and also in [5], balls of radius 1 tile the hyperbolic plane. Note
that petals always abut with three centres. This means that in our setting, flowers
merge. And so, we are interested in looking at possible ways to tile the hyperbolic
plane with flowers, while merging them in the way induced by the structure of the
petals.

It is not difficult to see that it is not possible to tile the hyperbolic plane with
7-flowers only. The same is true for 8-flowers only and also for 10-flowers only.
I don’t know whether the same also holds with 9-flowers only. The situation is
more difficult as there are two types of 9-flowers as will soon be seen. However,
we shall see that the tiling property holds if we allow to mix 9- and 8-flowers.
We shall do this in the next section.

Figure 6 illustrates the flowers which we shall keep in the rest of the paper.
We just remark that the difference between 7-, 8-, 9- and 10-flowers is defined

by the number of red vertices which are directly at the distance of one edge from
the centre, we shall stay at distance 1 from the centre. It is 0, 1, 2 and 3
respectively. This classification allows us to note that for 9-flowers, we have two
cases, depending on the smallest number of petals which can be put around the
centre between two red vertices at distance 1. This smallest number can be 2
or 3 defining 9f - and 9g-flowers respectively. The corresponding petals define the
upper part of the flower. The other petals belong to its lower part which we
also call the non-parental petals.
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(9f) (9g) (8)

Figure 6. The flowers of the mantilla : from the left to the right,
F-flowers, G-flowers, both 9-flowers, and the 8-flowers.

In the next sub-section, we look at the splitting of the tiling {7, 3} into flowers
which are copies of those which we have selected. The resulting tiling in terms of
flowers is the mantilla. Later, in Section 1.5, we look at a set of tiles which forces
the construction of the mantilla.

1.4. Splitting the mantilla

We start with a 9f -flower which, from now on, we call F -flower. The leftmost
picture of Figure 7 shows us how to define a region for the splitting which we shall
call a sector. It is defined by taking the center and all the tiles delimited by this
centre and the rays which start from the red vertices which are at distance 1 from
the centre and which share an edge with a non-parental petal of the flower.
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Figure 7. Splitting the sector associated to each kind of flower
of the mantilla.

In the case of an 9g-flower, which we call a G-flower from now on, we proceed
to the splitting in the same way: the sector is defined by the rays issued from the
red vertices, at distance 1 from the centre and by the non-parental tiles.

Looking at the leftmost picture of Figure 7, we can see that the sector of an
F -flower F can be split into two similar sectors, associated to two F -flowers which
we can define as the sons of F. On each side of the sons of F, we have a sector
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defined by a G-flower which we can also consider as a son of F. On each side of
the sector, what remains is something which contains the half of an 8-flower.

We can formulate a similar conclusion for the sector of a G-flower. This time,
the centre has a single F -son and two G-sons, one of them on each side of the
F -son. As in the case of an F -centre, there is a remaining part which splits into
two halves of an 8-flower.

At last, looking at an 8-flower, the rightmost picture of Figure 7, we define
the sector of an 8-flower as the centre of the flower together with the four sectors
defined by its four F -sons.

Accordingly, arguing by induction on the number of flower we use, we can easily
prove the following result:

Lemma 1.1. The hyperbolic plane can be tiled by using copies of 8-, F - and G-
flowers, according to the rules induced from Figure 7. There are uncountably many
solutions.

1.5. Tiles for the mantilla

Now, we wish to devise a finite set of tiles which forces the construction of
the mantilla. In fact, we shall manage things in such a way that although the
set of tiles will force the construction of the mantilla, it will allow all the possible
solutions.

To this purpose, we fix the numbering of the centres as follows: F - and 8-centres
are numbered clockwise. Moreover, the edge 1 will be above the right-hand side
red vertex at distance 1 from the centre in an F -flower, on the right-hand side of
the single red vertex at distance 1 from the centre in an 8-flower.

For G-flowers, we shall number their centres counter-clockwise. Now, for a
reason which will later be clear, we distinguish two kinds of G-flowers: those
which are on the right-hand side of an F - or a G-sector, and those which are on
the left-hand side. They are respectively denoted G� and Gr, because the father
of the considered G-centre is on the opposite side with respect to the side of the
sector in which the considered G-centre stands. Now, in both cases, we define the
edges 1 and 7 of a G-centre G as the edges which share a common vertex with
the edge of the tiling which connects G with the F -centre of its father. Now, in
all cases, we define the parental petals of a flower as its petals which share the
edges 1 and 7 with the centre of the flower. It is easy to see that the parental
petals of an F -flower constitute its upper part, that those of an 8-flower share the
red vertex at distance 1 from the centre and that those of a G-flower are both in
contact with the G-centre and with the father of the flower.

At last, to reinforce the connection between the tiles, we append barred numbers
according to the following rules: even numbers in an 8-centre, the numbers 3, 4
and 5 in an F -centre, the numbers 5 and 6 in a G�-centre and the numbers 2
and 3 in a Gr-centre. In a given centre, the numbers which are not indicated by
the just formulated rules are not barred.

This numbering of the centres induces a numbering of the petals which is unique.
Moreover, in many cases, the petal induces the centre. But this is not always
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Table 1. Table of the non-parental petals according to their par-
ent flower.

2 2 3 3 4 4 5 5 6 6
F 2◦77 1◦13 147◦ 57◦7 11◦6
G� 11◦2 37◦7 1◦14 5◦77 667◦
Gr 122◦ 11◦3 47◦7 1◦15 6◦77
8 122◦ 137◦ 147◦ 157◦ 667◦

the case. Now, the parental petals also define the centre. Accordingly, the set of
tiles induces a tiling which observes the rules defined by Figure 7. However, there
are uncountably many solutions, their cardinality being that of the continuum.

The tiles can be defined by Table 1. In the table, the petals are described by a
formula of the form αβγδ, where one symbol is ◦ and denotes the red vertex of the
petal. The other symbols are numbers, possibly barred. The formula starts with
the smallest possible number and the others follow by clockwise turning around
the petal. This fixes the red vertex with respect to the numbered sides.

We refer the reader to [4] for the details of the proof. We also mention that sev-
eral tables given in [4], especially the tables giving the possible couples of parental
tiles for all kind of centres, can be deduced from Table 1 by a kind of reverse
computation.

From this, we obtain the following result:

Lemma 1.2. There is a set of 21 prototiles which forces the construction of the
mantilla.

2. The harp

In this section, we describe the implementation of a space-time diagram of the
execution of a Turing machine.

We show how this implementation can be performed within a Fibonacci tree
defined by an angular sector, as introduced in Section 1.1.

In the Fibonacci tree, we introduce a new splitting of the sector. Define a black
Fibonacci tree as what we obtain by considering a tree rooted at a black node. We
can obtain the usual Fibonacci trees as a disjoint union of black Fibonacci trees,
applying the splitting suggested by the left-hand side picture of Figure 8. Indeed,
the first black tree is rooted at the tile 1, the root of the standard Fibonacci tree.
Now, if we look at the complement of the black tree in the standard Fibonacci tree,
we get an angular sector defined by the tile 4. And so, what we just have done for
the angular sector at the tile 1 can be repeated for the tile 4: we define a black
Fibonacci tree rooted at the tile 4 and, what remains in the angular sector at the
tile 4 is again a standard Fibonacci tree rooted at the tile 12. The sequence is
defined by the tiles with the numbers 1, 4, 12, . . ., f2n+2−1, . . ., for non-negative n.
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They constitute the right-hand side border of the standard Fibonacci tree rooted
at the tile 1.
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Figure 8. The implementation of the space-time diagram. On
the left-hand side, the stack of black trees. On the right-hand
side, the implementation of the chords.

Now, the chords are simply defined as the leftmost branch of each black
Fibonacci tree which we have just defined. The tiles of the rightmost branch of
the standard Fibonacci tree rooted at the tile 1 are the squares of the semi-infinite
tape of the Turing machine whose execution is simulated by the tiling restricted
to the Fibonacci tree. Each chord represents the evolution in time of the content
of the considered square.

The computing works as follows.
It starts from the tile 1 and it goes to the tile 4 through the tile 3. The tile 4 is

the next tile visited by the simulated Turing machine M , as M is assumed to work
on a semi-infinite tape which is initially empty. The computing signal contains the
current state of the machine head and the direction of the move it has to perform.
Next, each time the computing signals meets a chord, it knows the current content
of the square, represented by the chord. And so, the execution of the instruction
can be performed: the content of the square is changed and the signal takes the
new state. Now, the computing signal performs the required move. If the move
implies no change in the direction of the motion of the machine, the signal goes
on on the same level, until it meets the next chord. If it is already at the end of
the level or if it has to change the direction, the signal goes down by two steps
along the chord with the new information and, when it is on the new level of the
tree, it goes on the required direction to the nearest chord. Remind that a level of
the tree consists of the tiles which are inside the tree and which are at the same
distance from its root.
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Now, the computing signal halts if and only if M halts. If the computing signal
halts, it is not difficult to provide tiles which block the continuation of the tiling
process. See [4] and Figure 14 for an implementation of a halting instruction.

The tiles to implement the motion of such a signal are not difficult to devise,
see [4] for a possible implementation.

Note that this construction gives an easy proof of the undecidability of the
origin-constrained problem for the hyperbolic plane. Remember that this theorem
was first established in 1978 by Robinson, see [10].

3. The proof

Now, we have almost all ingredients needed for the proof. We have to see where
we can place the computing areas which we have defined in Section 2. Then, we
shall give some account on the set of tiles which will generate this positionment.

3.1. Threads and ultra-threads

To this purpose, we remark the following property. Take as a root of standard
Fibonacci tree the centre of an F -flower F . Assume that the rays which define the
tree meet on the mid-point of the edge which is shared by the parental tiles of F .
Then, it is not difficult to see that the whole tree is contained in the sector defined
by F . In fact, the borders of the tree do not meet the borders of the sector.

From the splitting of the mantilla by the flowers and their sectors, the just
remarked property also holds for trees which would be defined inside the tree
rooted at F . It is enough that the new trees are defined at an F -centre in the
same way as the tree defined at F .

Let us define the trees of the mantilla as standard Fibonacci trees rooted at
an F -son of a G-flower.

From what we have previously remarked, it is not difficult to prove the following
property.

Lemma 3.1. Consider T1 and T2 two trees of the mantilla. Let sect(Ti) define
the angular sector defined by Ti, i ∈ {1, 2}. Then, either sect(T1) ∩ sect(T2) = ∅,
or sect(T1) ⊂ sect(T2) or sect(T2) ⊂ sect(T1).

Note that, in the statement of the lemma, the indicated inclusions are strict
when they are realized.

This clearly follows from the fact that, as already noticed, the borders of a
tree do not meet the borders of the sector defined by the root of the trees. As a
consequence, the borders of two trees of the mantilla do not meet, which is enough
to entail the lemma.

From Lemma 3.1, we define the notion of thread as follows: it is a set F of
trees of the mantilla such that:

(i) if T1, T2 ∈ F , then either sect(T1) ⊂ sect(T2) or sect(T2) ⊂ sect(T1);
(ii) if T ∈ F , then there is B ∈ F with sect(B) ⊂ sect(T );
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(iii) if T1, T2 ∈ F with sect(T1) ⊂ sect(T2) and if T is a tree of the mantilla
with sect(T1) ⊂ sect(T ) and sect(T ) ⊂ sect(T2), then T ∈ F ,

here the indicated inclusions are strict.
Now, we say that a thread is an ultra-thread if it has no maximum with

respect to the inclusion. It is not difficult to see that, as shown in [4], when there
is an ultra-thread, it is indexed by ZZ. Also, the union of the angular sectors
belonging to an ultra-thread is the hyperbolic plane. From this, we can see that
an ultra-thread defines a unique direction in the following sense: if U1 and U2 are
ultra-threads, there is an index n1 for U1 and an index n2 for U2 such that the
corresponding trees are identical. Accordingly, the same property holds for the
trees indexed by ni+k, with i ∈ {1, 2} and positive k.

It is not difficult to see that there may be realizations of the mantilla with an
ultra-thread. There are also realizations without ultra-thread.

3.2. The computing areas

For our computation, we consider a realization of the mantilla without ultra-
thread. This means that each thread has a maximal element which is in fact a
maximum. We select this element M and we decide that the F -sons of a G-flower
which are inside sect(M) do not generate a tree of the mantilla. In the next
sub-section, we shall see that this condition is easy to be realized with a set of
tiles.

The implementation of the trees of the mantilla is indicated by the left-hand
side picture of Figure 9.
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Figure 9. The implementation of the computing areas in the
mantilla. On the left-hand side: the definition of the trees of
the mantilla. On the right-hand side: the organization of the
computing area inside a tree of the mantilla.
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The right-hand side picture of the figure indicates the implementation of the
harp within a selected tree of the mantilla.

As can be seen from the right-hand side picture, the harp is not identical with
a tree of the mantilla, as delimited in the left-hand side figure. The harp is a
sub-tree of a tree of the mantilla whose angular sector is strictly embedded in
that of the tree of the mantilla. The reason is that the tiles used for the harp
may have computing marks. If such a tile is taken randomly, it may introduce a
perturbation, whatever the computation of the Turing machine M . In fact, the
tiling must force a beginning of the computation at the root of the harp which
plays the rôle of an origin. This is why we introduce a shield between the harp
and the tree of the mantilla which contains it. The shield forces the tiling to
append tiles until an origin occurs. It may happen that such an origin is never
found. But in this case, we have a half-plane where no computation happens but
in the complementary half-plane, infinitely many computations happen.

3.3. The tiles

Now, let us turn to the set of tiles.
In fact, we have three categories of tiles:

(i) the tiles for the mantilla itself;
(ii) the tiles for the shields;
(iii) the tiles for the harp.

The connection between the three groups of tiles is performed by the F -sons of a
G-flower which give rise to a tree of the mantilla.

Figure 10 displays the tiles for the mantilla itself. The last three rows of the
figure indicate the tiles which are at the border of a shield raised by and F -son of
a G-flower.

Figures 11 and 12 display the tiles for the shield. In Figure 11, we have the tile
for the root and the tiles which are inside the shield. Note that the tiles on the
first row of Figure 11 bear signs of the harp.

In Figure 12, we have the tiles of the shield which belong to the border of the
shield with the mantilla: on the first row, the tiles concerned by the left-hand side
border and, on the second row, those which belong to the right-hand side border.

Figures 13 and 14 give the tiles for the harp. In Figure 13, we have the tiles of
the harp which are on the border with the shield.

It is the point to note, here, that the tiles of the mantilla are no more involved
in the shield and in the harp. In these domains of a computing area, the back-
ground of the tiling consists of patterns which simply propagate the structure of
a Fibonacci tree. This is performed by the tiles black and white in Figure 11 for
the shield and by the two tiles labeled background in Figure 14.

Figure 14 bears the computing signals. We can see those which correspond
to the content of a square of the tape, labeled cell and right, without state
signal, those with the computing signal, labeled state, and those which perform
an instruction, labeled trans., cont. and halt. Note the two tiles associated
with the transfer to the halting state which block the construction of the tiling.
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Figure 10. The 29 tiles of the mantilla and the implementa-
tion of its trees. Note the tiles which start the construction of a
selected tree.



34 M. MARGENSTERN

5

7

57◦7

1

2

3
4

5

6

7

F

1

3

1◦13

black white left right

Figure 11. Tiles of the shield. Note the two tiles of the shield
which are on the border of the harp.
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Figure 12. The other tiles of the shield. First row: the 4 tiles of
the shield which belong to the border between the mantilla and
the left-hand part of the shield. Second row: the 4 tiles of the
shield which belong to the right-hand part of the shield.

Figure 13. The tiles of the borders between the shield and the
harp. Note that the marks of the mantilla disappeared on the two
right-hand side tiles.

They bear black numbers which can abut with themselves only. Now, the patterns
of the tiles make it impossible to turn them or to reflect them in a symmetry axis.
And so, if such a tile is put on the tiling, the construction is blocked.
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Figure 14. The tiles for the harp and its computation.

3.4. The proof

Now, the proof of the properties defining the generalized origin-constrained
problem is easy. Figure 8 shows that in a ball of radius 6 around an F -son of a
G-flower giving rise to a computing region, i.e. an origin ω, there are two origins:
each one on each side of the computing area defined by ω. It is plain that ω does
not belong to the line defined by these two origins. Now, this argument can be
repeated with each origin. If we always consider the right-hand side origin, we
get a ray, as the configuration is periodically repeated by the shift which joins an
origin to the next one.
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Now, on each origin, we can take the origin which is not on the ray which
we have just defined. In this way, it is easy to construct infinitely many rays
containing infinitely many origins.

Accordingly we proved:

Theorem 3.2. The generalized origin-constrained tiling problem is undecidable in
the hyperbolic plane.

Conclusion

At the moment of writing this paper, I have a proof of the undecidability of
the unconstrained tiling problem in the hyperbolic plane. However, this proof has
only been partially checked by another person than the author and it is presently
under refereeing. The proof was deposited on arXiv, see [6] and a short account
of it, also submitted, was recently deposited on arXiv, see [7].
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