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D0L SEQUENCE EQUIVALENCE IS IN P

FOR FIXED ALPHABETS

Keijo Ruohonen
1

Abstract. A new algorithm is presented for the D0L sequence equiv-
alence problem which, when the alphabets are fixed, works in time
polynomial in the rest of the input data. The algorithm uses a polyno-
mial encoding of words and certain well-known properties of Z-rational
sequences.

Mathematics Subject Classification. 68Q45.

1. Introduction

The D0L sequence equivalence problem is the following. Given a finite alphabet
Σ, endomorphisms δ1 and δ2 on Σ∗, and words ω1, ω2 ∈ Σ∗, decide whether or not
the sequences (δn

1 (ω1))∞n=0 and (δn
2 (ω2))∞n=0 are the same. While such sequences

have appeared here and there before, they became quite well-known in the 1970s as
sequences generated by certain Lindenmayer systems. (In L systems terminology
the relevant data is gathered as (Σ, δi, ωi) and called a D0L system. Theory of L
systems is widely discussed in [19,20].)

The first algorithm for solving the problem was given by Čulik II and
Frǐs [5]. Later several algorithms of different types have been presented, see
e.g. [6,7,11,21,22]. The complexity of all these algorithms is prohibitively high.
Ehrenfeucht and Rozenberg gave an upper bound in [8] and another upper bound
is obtained in [21] but these are both extremely large. An explicit upper bound
was recently obtained in [24], even for the more general HD0L sequence equiva-
lence problem. It is much smaller than the ones in [8,21] but still nonpolynomial
for fixed alphabets. Existence of even smaller bounds has been suspected long,
though. Indeed, the well-known “2n conjecture” says that to check the equiva-
lence it suffices to do this for the 2m first terms of the sequences where m is the
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cardinality of Σ. So far the conjecture has been proved only for the case m = 2
(see [16]). Obviously this conjecture — or any similar conjecture with a bound
depending on m only — would, if true, imply that the equivalence problem is in
P for any fixed m. Honkala has recently shown that in many special cases such
bounds do in fact exist, see [12–15].

If just existence of an algorithm is of interest, then it is perhaps fair to say
that it follows almost trivially from certain elementary properties of metabelian
groups (as pointed out in [22], following an idea in [1]). This remains true also
for the more general HDT0L sequence equivalence problem. It is even possible
to use this approach and well-known methods for finding Gröbner bases to get
an implementable algorithm for the problem (see [23]). Basically one then tests
initial terms of the sequences trying to find a basis, and stopping is quaranteed by
Hilbert’s Basissatz1. Worst-case complexity of this algorithm is thus difficult to
estimate and probably quite high. It does seem to work fairly well for small and
moderate size instances of the D0L sequence equivalence problem, though.

In view of all this, it is odd that no truly nontrivial examples of equivalent D0L
sequences seem to be known. Indeed, in all examples we have seen equivalence
can be shown by fairly simple ad hoc methods. This and the difficulty in getting
fast algorithms for the equivalence problem might be seen as indicating that such
nontrivial examples exist but they are very rare and very large.

We show here that an algorithm exists for the D0L sequence equivalence prob-
lem which is polynomial-time in any fixed alphabets. We use a polynomial repre-
sentation of words, as in [23,24]. As in [24] we derive a linear recurrence formula
for D0L sequences in this representation, but in a different way to obtain easier
complexity considerations. We do not give an explicit polynomial time bound as
it would be quite large and depend on the sizes of the alphabets in a complicated
way. Our algorithm is implementable in a computer algebra system but probably
inferior to the one in [23].

2. Z-rational sequences. A brief overview

We will need certain properties of Z-rational sequences. We give here a very
brief overview without proofs. Z-rational sequences — as coefficient sequences of
Z-rational formal power series — are widely discussed e.g. in [3,25].

A Z-rational sequence is a sequence (fn)∞n=0 satisfying a linear homogeneous
recurrence with constant coefficients (LHRCC in short)

fn = c1fn−1 + c2fn−2 + . . . + ckfn−k for n ≥ k

where the coefficients c1, c2, . . . , ck and the initial values f0, f1, . . . , fk−1 are inte-
gers. k is the order of the LHRCC. The characteristic polynomial of the LHRCC
is the monic polynomial

χ(r) = rk − c1r
k−1 − . . . − ck−1r − ck ∈ Z[r].

1In fact, existence of an algorithm is also easily proved directly from the Basissatz, see [11].
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The roots of χ are the characteristic roots of the LHRCC. (We exclude the trivial
case where k = 0.)

Z-rational sequences (fn)∞n=0 can be identified with integer sequences having a
matrix representation, i.e., a representation of the form

fn = eMndT (n ≥ 0)

where, for some k, e and d are k-vectors with integer entries and M is a k × k-
matrix with integer entries. (Our vectors will be row vectors.) Indeed, a matrix
representation corresponding to the LHRCC is obtained using the companion ma-
trix of its characteristic polynomial. On the other hand, an LHRCC corresponding
to a matrix representation is obtained from the characteristic polynomial of the
matrix M via the Cayley–Hamilton theorem. Note that in the resulting LHRCC
the coefficients satisfy ck−n0+1 = . . . = ck = 0 and ck−n0 �= 0 where n0 is the
multiplicity of zero as an eigenvalue of M.

Using matrix representations it is easy to see that if (fn)∞n=0 and (gn)∞n=0 are
Z-rational sequences satisfying LHRCCs of orders k1 and k2 then (fn ± gn)∞n=0

and (fngn)∞n=0 are Z-rational sequences satisfying LHRCCs of orders k1 + k2 and
k1k2, respectively. (Just take the direct sums and the Kronecker products of the
matrices and the vectors.) Moreover, (fn)∞n=0 and (gn)∞n=0 both satisfy the same
LHRCC of order k1 + k2. Thus, to check whether the two sequences are the same,
it suffices to check the first k1 + k2 terms.

A p-decomposition of a Z-rational sequence (fn)∞n=0, satisfying an LHRCC of
order k, is the collection of sequences

(fpn+j)∞n=0 (j = k, . . . , k + p − 1).

(Note that the first k terms of (fn)∞n=0 are excluded in order to get rid of possible
initial values that do not affect later terms.) The sequences (fpn+j)∞n=0 are the
components of the p-decomposition and, as is easily seen using a matrix represen-
tation, they are Z-rational sequences satisfying the same LHRCC of order at most
k and not having zero as its characteristic root.

We then turn to properties concerning the zero terms in a Z-rational sequence
(fn)∞n=0. A fundamental result is

Theorem 2.1 (Skolem–Mahler–Lech). If the Z-rational sequence (fn)∞n=0 con-
tains zero terms, then there exist nonnegative integers a1, . . . , aN and b1, . . . , bN

such that
{n | fn = 0} = {ajn + bj | n ≥ 0 and j = 1, . . . , N}.

Moreover, each nonzero aj divides the lcm C of the orders of those primitive roots
of unity which can be expressed as ratios of two characteristic roots.

The theorem was first proved using p-adic methods (see e.g. [17]), an elementary
proof was later obtained by Hansel [10], see also [9]. The latter part of the theorem
is an easy consequence of the first part. Berstel and Mignotte [2] showed that

Lemma 2.2. C ≤ e2k
√

3 ln k.
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This of course implies that it is decidable whether or not a Z-rational sequence
has infinitely many zero terms. On the other hand, it is a famous open problem
whether it is decidable if a Z-rational sequence has a zero term. The problem is
known to be NP-hard (see [4]), and decidable in the special case k ≤ 5 (see [9]).

We say that a Z-rational sequence has the finite-zeros property if it either is
identically zero or has only finitely many zero terms. It may be noted that an
upper bound is known for the number of zero terms, if finite, which depends only
on k (and is triply exponential in k, see [26]).

Lemma 2.3. The components of a p-decomposition of (fn)∞n=0 where C divides p
have the finite-zeros property.

Proof. This follows from the Skolem–Mahler–Lech theorem. The components can-
not have only finitely many nonzero terms as is seen by applying the LHRCC
backwards. �

Suppose then that we have two doubly indexed collections of Z-rational se-
quences,

(f (l,i)
n )∞n=0 (l = 1, . . . L and i = 1, . . . , M)

and
(g(l,i)

n )∞n=0 (l = 1, . . . , L and i = 1, . . . , M),
all sequences satisfying the same LHRCC of order k. We denote

f (l)
n = (f (l,1)

n , . . . , f (l,M)
n ) and g(l)

n = (g(l,1)
n , . . . , g(l,M)

n ) (l = 1, . . . , L).

Then the sequence (Fn)∞n=0 where

Fn =
L∑

l=1

‖f (l)
n − g(l)

n ‖2

satisfies an LHRCC of order k2. By Lemmas 2.2 and 2.3, components of the
K-decomposition of the sequence (Fn)∞n=0 where

K =
⌊
e2k2√6 lnk

⌋
!

will then have the finite-zeros property. Thus the finite-zeros property of (Fn)∞n=0

can be forced by a decomposition depending only on the order k.

Lemma 2.4. If, for the K-decomposition above and the jth components, there is
an infinite sequence σ1, σ2, . . . of L-permutations such that

f (l)
Kn+j = g(σn(l))

Kn+j (n ≥ 0 and l = 1, . . . , L)

then
f (l)
Kn+j = g(σ(l))

Kn+j (n ≥ 0 and l = 1, . . . , L)
for some (single) L-permutation σ.
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Proof. Assume there is such a sequence of L-permutations. Some L-permutation
σ must then occur infinitely many times in the sequence. The lemma now follows
because the sequence (Gn)∞n=0 where

Gn =
L∑

l=1

‖f (l)
n − g(σ(l))

n ‖2

also satisfies an LHRCC of order k2 and components of its K-decomposition have
the finite-zeros property by Lemma 2.3. �

3. Polynomial representation of words and morphisms

Consider an alphabet Σ = {a1, . . . , am}. We denote by [w] the canonical image
of a word w ∈ Σ∗ in the free commutative monoid generated by Σ, identified
with N

m.
The so-called Magnus representation µ for the word monoid Σ∗ is the faithful

polynomial-matrix-representation given by

ai � µ(ai) =
(

1 0
xi ui

)
(i = 1, . . . , m)

where x1, . . . , xm (collectively denoted by x) and u1, . . . , um (collectively denoted
by u) are different polynomial variates, see [18]2. Representation of a word w ∈ Σ∗

is then of the form

w � µ(w) =
(

1 0
p(x,u) uα

)
where α is the multi-index (α1, . . . , αm) = [w] and

p(x,u) =
m∑

i=1

pi(u)xi and uα = uα1
1 . . . uαm

m .

Here pi(u) and uα are polynomials with integer coefficients. Catenation of words
is represented by matrix multiplication:(

1 0
q(x,u) uβ

)(
1 0

r(x,u) uγ

)
=
(

1 0
q(x,u) + uβr(x,u) uβ+γ

)
.

The empty word is thus represented by the identity matrix.
The following properties of the representation µ(w) are easily proved by

induction.
• The total degree of each of the polynomials p1(u), . . . , pm(u) is less than

α1 + · · · + αm (the total degree of uα).
• Nonzero coefficients of the polynomials p1(u), . . . , pm(u) are all = 1.

2Originally Magnus representation was applied to finitely generated free metabelian groups.
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• The grand total number of terms in the polynomials p1(u), . . . , pm(u)
equals the length of the word w.

We will consider polynomials of the form
∑m

i=1 pi(u)xi, such as those appearing
as lower left elements in the matrices, as elements of the free Z[u]-module M gen-
erated by x1, . . . , xm or as elements of the vector space V over Z(u) (the quotient
field of Z[u]) generated by x1, . . . , xm. We will mostly use the customary vectorial
notation:

p(u) = (p1(u), . . . , pm(u)).

For a polynomial p(u) ∈ Z[u] we will need its representation in the so-called
unitary form

p(u) =
L+∑
l=1

uα+
l −

L−∑
l=1

uα−
l .

This representation is not unique, and p(u) is the zero polynomial exactly when,
for some L, L+ = L− = L and there is an L-permutation σ such that α+

l = α−
σ(l)

(l = 1, . . . , L). (On the other hand, unitary representation of a nonzero polynomial
with the least possible number of terms is unique.)

Consider then an endomorphism δ on Σ∗. We denote by [δ] the endomorphism
on N

m induced by δ under the canonical morphism. We identify [δ] with an
m × m-matrix whence

[δ(w)] = [w][δ].

Further, we denote

µ(δ(ai)) =
(

1 0
ri(x,u) uαi

)
(i = 1, . . . , m).

The endomorphism δ thus induces two mappings. First, the endomorphism d on
Z[u] defined by

d(ui) = uαi = u[δ(ai)] (i = 1, . . . , m),

and second the additive mapping D : M −→ M given by

D

(
m∑

i=1

pi(u)xi

)
=

m∑
i=1

d(pi(u))ri(x,u) (i = 1, . . . , m).

Thus d(uα) = uα[δ]. The latter mapping can be given in a matrix-vector-form

D(p(u)) = d(p(u))R(u)

where R(u) = (rij(u)) is the m × m-matrix given by

ri(x,u) =
m∑

j=1

rij(u)xj (i = 1, . . . , m).
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Note that, while D is not a module morphism, it does behave in a similar way
because, for q(u) ∈ Z[u],

D(q(u)p(u)) = d(q(u))D(p(u)).

Note also that δ does not induce a mapping on Z(u) unless [δ] is nonsingular — a
rather restrictive assumption, implying e.g. that δ is injective — which is why we
need to work in both V and M.

4. Polynomial representation of D0L sequences

Take a D0L system G = (Σ, δ, ω) with alphabet Σ of cardinality m, endomor-
phism δ on Σ∗ and ω ∈ Σ∗. We will exclude the (simple) case where δn(ω) equals
the empty word for some n.

Magnus representation of the sequence (δn(ω))∞n=0 generated by the system
gives

µ(δn(ω)) =
(

1 0
sn(x,u) uβn

)
(n ≥ 0).

As the sequence (uβn)∞n=0 is easily handled (see the next section and note that
βn = [ω][δ]n) we will take a closer look at the sequence (sn(x,u))∞n=0 or, in
vectorial notation, (sn(u))∞n=0. (Note that we have sn(u) �= 0 for n ≥ 0.) We use
the notation in the previous section.

The following simple observation is crucial for our constructs:

Lemma 4.1. Let n0 be the multiplicity of zero as an eigenvalue of [δ]. If for a
polynomial p(u) ∈ Z[u] we have dn1(p(u)) = 0 for some n1 ≥ 0 then dn(p(u)) = 0
for all n ≥ min{n0, n1}.
Proof. Assume dn1(p(u)) = 0 for some n1 ≥ 0 and take a unitary representation
for p(u):

p(u) =
L+∑
l=1

uα+
l −

L−∑
l=1

uα−
l .

Since

dn(p(u)) =
L+∑
l=1

uα+
l [δ]n −

L−∑
l=1

uα−
l [δ]n

we must have L+ = L− = L and there is an L-permutation σ such that

(α+
l − α−

σ(l))[δ]
n1 = 0 (l = 1, . . . , L).

It follows immediately that

(α+
l − α−

σ(l))[δ]
n = 0 (n ≥ n1 and l = 1, . . . , L).
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Each sequence ((α+
l − α−

σ(l))[δ]
n)∞n=0 however satisfies the LHRCC given by the

Cayley–Hamilton theorem applied to [δ]. Applying this LHRCC backwards then
proves the claim. �

We note next that we have a recursion giving sn(u) in terms of sn−1(u):

sn(u) = D(sn−1(u)) = d(sn−1(u))R(u).

This is not very useful as such, and we will derive a linear homogeneous recurrence
with nonconstant coefficients for the sequence (sn(u))∞n=0 taking the terms as
elements of the vector space V , possibly ignoring a number of initial terms. For
this purpose, for n = 0, 1, . . . , define tn to be the largest number such that the
vectors sn(u), . . . , sn+tn−1(u) are linearly independent. Since sn(u) �= 0, we have
1 ≤ tn ≤ m. A basic property of these numbers is

Lemma 4.2. Either tn+1 = tn or tn+1 = tn − 1 (n ≥ 0).

Proof. We show first that the sequence t0, t1, . . . is nonincreasing. If tn = m,
then obviously tn+1 ≤ tn. Consider then the case tn < m. Because the vectors
sn(u), . . . , sn+tn(u) are linearly dependent, for each (tn + 1)× (tn + 1)-submatrix
S(u) of the (tn + 1) × m-matrix

⎛
⎜⎝

sn(u)
...

sn+tn(u)

⎞
⎟⎠

we have det(S(u)) = 0. Since then also det(d(S(u))) = d(det(S(u))) = 0 it follows
that the same is true for the matrix⎛

⎜⎝
sn+1(u)

...
sn+tn+1(u)

⎞
⎟⎠ =

⎛
⎜⎝

d(sn(u))
...

d(sn+tn(u))

⎞
⎟⎠R(u)

whence tn+1 ≤ tn.
Since the vectors sn(u), . . . , sn+tn−1(u) are linearly independent, it is not pos-

sible that tn+1 < tn − 1. �

By the lemma, within the m(n0+m−1)+1 first terms of the sequence t0, t1, . . .
we must have at least n0 + m consecutive terms of equal value, say

tn1 = tn1+1 = . . . = tn1+n0+m−1 = t

where n1 is chosen to be the smallest possible. (As above, n0 denotes the multi-
plicity of zero as an eigenvalue of [δ].) Choice of the bound n0 + m will become
clear below. Note that

n1 ≤ (m − 1)(n0 + m − 1).
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The t × m-matrices⎛
⎜⎝

sn1+i(u)
...

sn+i+t−1(u)

⎞
⎟⎠ =

⎛
⎜⎝

di(sn1(u))
...

di(sn1+t−1(u))

⎞
⎟⎠ di−1(R(u)) · · · d(R(u))R(u)

(i = 0, . . . , n0) will thus all be of the full rank t. It follows that for at least one
t × t-submatrix S(u) of ⎛

⎜⎝
sn1(u)

...
sn1+t−1(u)

⎞
⎟⎠

we have
di(det(S(u))) = det(di(S(u))) �= 0 (i = 0, . . . , n0).

Applying Lemma 4.1 we see then that in fact

di(det(S(u))) �= 0 (i ≥ 0).

We are now ready to derive the desired linear homogeneous recurrence (with non-
constant coefficients) for the sequence (sn(u))∞n=0. Since the vectors sn1(u), . . . ,
sn1+t−1(u) are linearly independent while sn1(u), . . . , sn1+t(u) are linearly de-
pendent, sn1+t(u) is a unique linear combination of sn1(u), . . . , sn1+t−1(u) in V .
Solving the system

(c0(u), . . . , ct−1(u))

⎛
⎜⎝

sn1(u)
...

sn1+t−1(u)

⎞
⎟⎠ = sn1+t(u)

for c0(u), . . . , ct−1(u) in Z(u) using Cramer’s rule and the nonsingular submatrix
S(u) we get

ch(u) =
fh(u)

det(S(u))
(h = 0, . . . , t − 1)

for some polynomials f0(u), . . . , ft−1(u) ∈ Z[u]. (Note that these polynomials will
also be t × t-determinants, formed of elements of sn1(u), . . . , sn1+t(u).) Thus

det(S(u))sn1+t(u) = ft−1(u)sn1+t−1(u) + · · · + f0(u)sn1(u).

Applying now D repeatedly on both sides of the above equation we get the
recurrence

gn(u)sn+t(u) = gn,t−1(u)sn+t−1(u) + . . . + gn,0(u)sn(u) for n ≥ n1

where gn1(u) = det(S(u)) and gn1,h(u) = fh(u) and

gn+1(u) = d(gn(u)) and gn+1,h(u) = d(gn,h(u)).
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As noted, gn(u) �= 0 for n ≥ n1, meaning that the recurrence is well-defined in V .
Since sn(u) �= 0, it follows, by Lemma 4.1, that for at least one h the coefficient

polynomials gn,h(u) on the right hand side must be �= 0 for n ≥ n1. In fact,
especially

gn,0(u) �= 0 (n ≥ n1)
because otherwise, by Lemma 4.1, we have gn0+n1,0(u) = 0 and one the numbers
tn1+1, . . . , tn0+n1+t−1 will be less than t, contradicting the bound n0 + m above.

The recurrence thus obtained is uniquely determined by the sequence (sn(u))∞n=0

in the sense that the rational functions

gn,h(u)
gn(u)

(n ≥ n1 and h = 0, . . . , t − 1)

are unique. This follows immediately from the following lemma since subtracting
two such recurrences, leading coefficients divided out and different in the sense
mentioned, will give rise to a linear dependence of t consecutive terms in the
sequence (sn(u))∞n=0.

Lemma 4.3. tn = t for all n ≥ n1.

Proof. We know that tn1 = t. Suppose, contrary to what is claimed, that for
some n ≥ n1 we have tn = t and tn+1 = t − 1 (cf. Lem. 4.2). Then the
vectors sn(u), . . . , sn+t−1(u) are linearly independent while sn+1(u), . . . , sn+t(u)
are linearly dependent. It follows that sn+t(u) is a linear combination of the
vectors sn+1(u), . . . , sn+t−1(u). However, the recurrence formula we obtained
implies that sn(u) is a linear combination of sn+1(u), . . . , sn+t(u), and thus of
sn+1(u), . . . , sn+t−1(u) as well, a contradiction. �

The recurrence we have derived is thus the unique recurrence of minimal order
for the sequence (sn(u))∞n=0, valid after ignoring n1 initial terms of the sequence.

Finally we want to point out that if we measure the size of the D0L system
G = (Σ, δ, ω) by, say,

|G| = max
a∈Σ

{|δ(a)|, |ω|}
where vertical bars denote length of word, then, for any fixed m, the above con-
structs are obviously in polynomial time with respect to |G|. Remember also that
the nonzero coefficients of the polynomials in sn(u) all equal 1, and that the to-
tal number of terms in sn(u) equals |δn(ω)|. Thus the coefficients as well as the
numbers of terms of the polynomials gn(u) and gn,h(u) are polynomially bounded
with respect to |G|.

5. The algorithm

As inputs, we have two D0L systems G1 = (Σ, δ1, ω1) and G2 = (Σ, δ2, ω2) where
the cardinality of Σ is denoted by m. If the sequences of words generated by G1

and G2 both contain the empty word, then their equivalence is easily determined
in polynomial time. Obviously, if only one of the sequences contains the empty
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word then they are not equivalent, and again this is easily detected in polynomial
time. We may thus assume that G1 and G2 do not generate the empty word. We
denote by n0 the larger of the multiplicities of zero as an eigenvalue of [δ1] and [δ2].
Then n0 ≤ m − 1 because otherwise at least one of the systems would generate
the empty word.

Our algorithm then proceeds as follows.
(1) The first step is to verify that the 2(m − 1)2 + m + 1 first terms of the

sequences generated by G1 and G2 are the same. (This clearly can be done
in polynomial time.) If not, then the systems do not generate the same
sequence, and we stop.

Equality of this many initial terms of the generated sequences makes
it possible to carry out the construct described in the previous section for
both D0L systems, taking care of ignored initial terms and guaranteeing
equality of initial values of the recurrences obtained. Note especially that
it also guarantees that the sequences ([ω1][δ1]n)∞n=0 and ([ω2][δ2]n)∞n=0 are
identical because they both satisfy the same LHRCC of order 2m and
2m ≤ 2(m − 1)2 + m + 1.

(2) We then apply the construct explained in the previous section to both D0L
systems. Since n0 ≤ m − 1, we have

(m − 1)(n0 + m − 1) ≤ 2(m − 1)2.

Sufficiently many initial terms of the D0L sequences being assumed the
same, the numbers n1 and t will therefore be the same for both systems,
and n1 ≤ 2(m−1)2. Thus, starting from the D0L systems, two recurrences
are derived for n ≥ n1, first

g(1)
n (u)s(1)

n+t(u) = g
(1)
n,t−1(u)s(1)

n+t−1(u) + . . . + g
(1)
n,0(u)s(1)

n (u)

for G1, and second

g(2)
n (u)s(2)

n+t(u) = g
(2)
n,t−1(u)s(2)

n+t−1(u) + . . . + g
(2)
n,0(u)s(2)

n (u)

for G2, such that none of the coefficients g
(1)
n (u), g(2)

n (u), g(1)
n,0(u), g(2)

n,0(u)
equals the zero polynomial. Furthermore, the recurrences are unique, in
the sense that the rational functions

g
(1)
n,h(u)

g
(1)
n (u)

and
g
(2)
n,h(u)

g
(2)
n (u)

are uniquely determined by the D0L sequences. Should the sequences be
equivalent then the above rational functions would have to be equal.

(3) Since now s(1)
n (u) = s(2)

n (u) (n = n1, . . . , n1 + t − 1), the initial values of
the recurrences obtained above are identical. What then remains to be
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checked is whether or not

g
(1)
n,h(u)

g
(1)
n (u)

=
g
(2)
n,h(u)

g
(2)
n (u)

i.e. g
(1)
n,h(u)g(2)

n (u) = g(1)
n (u)g(2)

n,h(u)

for n ≥ n1 and h = 0, . . . , t − 1. We first check whether this holds for
n = n1, . . . , n1 + 2m − 1. If that is not the case then G1 and G2 do not
generate the same sequence, and we stop. (Note that this could be included
in item (1) since, for any n2 ≥ n1, the above equalities will follow for
n = n1, . . . , n2 if the equality δn

1 (ω1) = δn
2 (ω2) holds for n = n1, . . . , n2+t.)

(4) To show how the remaining values n ≥ n1 + 2m are dealt with, consider
as an example the case h = 0. The other cases are of course quite similar,
note however the possibility that g

(1)
n,h(u) = 0 or g

(2)
n,h(u) = 0, easily dealt

with using Lemma 4.1.
We begin by writing the polynomials g

(1)
n (u), g(2)

n (u), g(1)
n,0(u), g(2)

n,0(u) in
their unitary forms. This is done first for n = n1 using the least possible
numbers of terms, and then applying [δ1] and [δ2] repeatedly to the multi-
indices. Multiplying these unitary representations we then get the unitary
representations

g
(1)
n,0(u)g(2)

n (u) − g(1)
n (u)g(2)

n,0(u) =
L+∑
l=1

uα+
l,n −

L−∑
l=1

uα−
l,n (n ≥ n1).

If L+ �= L−, the generated D0L sequences are not the same, and we stop.
So we may assume that L+ = L− = L.

(5) The sequences of the multi-indices above are of the form

α±
l,n = β±

1,l[δ1]n−n1 + β±
2,l[δ2]n−n1 (n ≥ n1)

for some integer vectors β±
1,l and β±

2,l, and thus they all satisfy the same
LHRCC of order 2m. We take the K-decompositions of these sequences
with k = 2m and

K =
⌊
e8m2√6 ln 2m

⌋
!

(see Sect. 2). Lemma 2.4 then becomes applicable (with M = m), and we
know that either the generated D0L sequences are not the same or then,
for each j = n1 + 2m, . . . , n1 + 2m + K − 1, there is an N -permutation σj

such that

α+
l,Kn+j = α−

σj(l),Kn+j (n ≥ 0 and l = 1, . . . , L).

(6) Finally we check existence of the permutations σj by searching through and
testing equivalence of polynomially many sequences satisfying the same
LHRCC of order at most 2m. If all permutations σj exist, then the D0L
sequences are equivalent, otherwise they are not.
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We have then proved

Theorem 5.1. There is an algorithm which, for any two given D0L systems
(Σ, δ1, ω) and (Σ, δ2, ω2) decides the equivalence of the sequences (δn

1 (ω1))∞n=0 and
(δn

2 (ω2))∞n=0 working in polynomial time with respect to

max
a∈Σ

{|δ1(a)|, |ω1|} and max
a∈Σ

{|δ2(a)|, |ω2|}

for any fixed Σ.

6. Discussion

It is immediate that if the size m of the alphabet is not kept fixed, the algorithm
described above will be multiply-exponential-time in m, and not that much better
than applying the bound obtained in [24]. It remains an open problem whether
or not there are algorithms for the D0L sequence equivalence problem singly-
exponential-time in m, or even polynomial-time in all input data. An algorithm
of the former type does follow from the 2n-conjecture. Existence of a polynomial-
time algorithm on the other hand might mean that there cannot be any “truly
nontrivially” equivalent D0L sequences, and sequence equivalence could be decided
by some simple testing of the input data.
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