
RAIRO-Theor. Inf. Appl. 42 (2007) 309–322 Available online at:

DOI: 10.1051/ita:2007024 www.rairo-ita.org

CENSUS ALGORITHMS FOR CHINESE REMAINDER
PSEUDORANK

David Laing
1

and Bruce Litow
1

Abstract. We investigate the density and distribution behaviors of
the chinese remainder representation pseudorank. We give a very
strong approximation to density, and derive two efficient algorithms
to carry out an exact count (census) of the bad pseudorank integers.
One of these algorithms has been implemented, giving results in excel-
lent agreement with our density analysis out to 5189-bit integers.

Mathematics Subject Classification. 11Y99, 68R99.

1. Introduction

Motivation

CRR, chinese remainder representation, has been used as an important tool
in parallel arithmetic complexity research. CRRS, CRR systems, have been used
in studying parallel complexity of integer division, and also in connection with
certain arithmetic circuit complexity problems. See [2,3,10]. A key concept, the
CRR pseudorank, introduced in [3], has proved to be very useful in developing
NC1 algorithms for integer comparison. Unlike integer comparison using radix
notation, which can be implemented on a DFA (deterministic finite automaton),
comparison in CRR is difficult since there is no evident correspondence between
ordering and the notation.

Despite its importance in CRR-related research, there appears to be little in-
formation on how the pseudorank behaves over a given CRRS. The pseudorank of
integer x is known to be either equal to or one less than the rank of x. Rank is a
basic CRR function which we will define later on. Knowledge of the rank makes

Keywords and phrases. Chinese remainder representation, rank, pseudorank, pseudorank cen-
sus algorithms.

1 School of Information Technology, James Cook University, Townsville, Qld. 4811, Australia;
bruce@cs.jcu.edu.au, david.laing1@jcu.edu.au

Article published by EDP Sciences c© EDP Sciences 2007

http://dx.doi.org/10.1051/ita:2007024
http://www.rairo-ita.org
http://www.edpsciences.org

310 D. LAING AND B. LITOW

CRR-intrinsic comparison quite simple. Unfortunately, no efficient CRR-intrinsic
method of computing rank is known. This paper gives the first clear indication of
how pseudorank compares with rank over a CRRS. In particular, we give a sharp
estimate of the density of integers for which rank and pseudorank differ, and show
that there are subintervals of a CRRS where either all rank and pseudorank match,
or differ. This is the first step in determining how rank-pseudorank mismatches
are distributed in a CRRS. We also describe two efficient algorithms for exactly
counting the number of rank-pseudorank mismatches. One of these algorithms has
been implemented, and results on density based on running it are presented for
various CRRS, up to one capable of representing 5189-bit integers. These experi-
mental results are in excellent agreement with our density estimate. Interestingly,
our results and algorithms make no essential use of number theory. We hope that
the more difficult problem of characterizing the distribution of rank-pseudorank
mismatches, which is likely to require number theoretic and other deeper consid-
erations, will be taken up by others. The significance of distribution information
will be discussed in Section 2.

This work grows out of an earlier effort, the results of which are summarized
in [8]. The algorithm described in that earlier work only gives an estimate of
the number of rank-pseudorank msimatches, and although running in polynomial
time is more complex and much slower than the newer algorithms described in
this paper. However, elements of the original approach can still be found in the
implemented algorithm (Algorithm 2) of this paper. The convolution approach to
iterated polynomial multiplication that forms the basis of the original algorithm
may be of independent interest to some readers. The source for this original
implementation is available on request.

Structure of the paper

Section 2 defines CRR and pseudorank, and concludes with some results on
rank-pseudorank match and mismatch distribution and density. Section 3 contains
the descriptions and analysis of two new census algorithms, and includes tabulated
experimental results from an implementation of one of them.

2. CRR and pseudorank

2.1. CRR basic facts

A CRRS can be specified by a single positive integer P = p1 · · · pr, where
p1, . . . , pr are consecutive odd primes. We will fix p1 = 3. We will simply refer
to P as a CRRS, also using CRRS to mean the integers x < P . The CRR of an
integer x (integer will mean nonnegative integer) is the list |x|p1 , . . . , |x|pr , where
|x|z = y means that y is the least integer such that x ≡ y mod z. The weak chi-
nese remainder theorem asserts that each 0 ≤ x < P is uniquely identified by its
CRR. We write |x|P to indicate that the integer x is given in CRR, rather than
in radix notation. On the other hand, |x|pi indicates that radix notation is used.

CENSUS ALGORITHMS FOR CHINESE REMAINDER PSEUDORANK 311

The reason for the difference is that by Lemma 2.1, |x|pi < log P , so its radix nota-
tion involves at most about log log P bits. Notice that log is the base 2 logarithm,
and ln the natural logarithm.

The following two results give some quantitative information about CRRS.

Lemma 2.1. If n > 2.89×107, and r is the largest integer such that pr < n, then
r = Θ(n/ logn), and exp(n + .001 × n) > P > 2n.

Proof. The claim on r follows from the prime number theorem. See [5]. The claim
for P follows from the bound (n > 2.89 × 107)

∣∣∣∣∣
r∑

i=1

ln pi − n

∣∣∣∣∣ ≤ .0068 · n/ lnn.

See [4]. From this bound we get

exp(n + .0068n/(1.44 · log n)) > P > exp(n − .0068n/(1.44 · log n)),

since log n > 1.44 · lnn. It is straightforward that exp(n+ .001×n) > P > 2n. �

From this point we take the view that we are interested in choosing a CRR
that can represent all integers below 2n. That is, we use n bits as the problem
size. By Lemma 2.1, we have that log P = Θn can be imposed, and Θ-notation
implies a small range for constants. We could actually obtain smaller values for r
yielding P > 2n, and while in practice this could be significant, for our study such
a savings is irrelevant. All of our computations are understood to be in the Turing
model. By polynomial time, then, we mean nO(1) time on a Turing machine, which
is equivalent by Lemma 2.1 to logO(1) P Turing machine time.

Lemma 2.2.
r∑

i=1

1/pi = O(log log n).

Proof. See exercise II.9.d in [11]. �

2.2. An observation about parity and comparison in CRR

We first note that given the CRR for x, y < P , it is trivial to obtain |x � y|P ,
where � is addition, subtraction or multiplication. This follows from noting that
|x � y|p1 , . . . , |x � y|pr is the CRR of |x � y|P . Indeed, this is the chief reason
why CRR plays an important role in analyzing parallel complexity of arithmetic
operations.

Observe that knowing |x|2 generally makes possible very efficient integer com-
parison algorithms. First, note that if x < y < P , then |x − y|P = x − y + P .
This is the “wrap” effect that complicates doing arithmetic in CRR. For example,

312 D. LAING AND B. LITOW

if x = 1 and y = 2, we have |1 − 2|P = P − 1. Of course, if y < x < P , then
|x − y|P = x − y. Next, we have that if x < y,

||x − y|P |2 ≡ |x − y + P |2 ≡ |x|2 + |y|2 + 1 mod 2,

since |P |2 = 1. This is why in our research, p1 = 3 and not p1 = 2. On the other
hand, if y < x,

||x − y|P |2 = |x − y|2 ≡ |x|2 + |y|2 mod 2.

Thus we can conclude for x, y < P , that x > y iff ||x − y|P |2 ≡ |x|2 + |y|2 mod 2.
If parity were easy to compute in CRR (i.e. without some conversion into radix),
CRR-intrinsic comparison would also be easy. There appear to be serious obstacles
to CRR-intrinsic comparison. For example, see Theorem S, p. 255 in [6].

The next theorem is a strong form of the chinese remainder theorem. Recently,
it has been rediscovered in [1]. It is the starting point for the parallel arithmetic
work in [2,3].

Theorem 2.3. There exists a unique integer, q(x) < r, such that

x + q(x) · P =
r∑

i=1

|x · (P/pi)pi−2|pi · P/pi . (1)

Proof. The RHS of equation (1) and x give equal residues modpi, for i = 1, . . . , r.
By the chinese remainder theorem we have that the RHS and x differ by a factor
of P . Dividing the RHS by P we see that each resulting summand is less than 1,
thus the RHS is less than r · P . We can conclude that the RHS can be written as
x + q · P , and letting q(x) = q, which is clearly unique, we have the theorem. �

The integer q(x) is called the rank of x. Given the rank, it is easy to compute
parity from CRR data. Observe that from equation (1) we have

|x|2 =

∣∣∣∣∣
r∑

i=1

xi + q(x)

∣∣∣∣∣
2

, (2)

where

xi = |x · (P/pi)pi−2|pi ,

and we have used |P |2 = 1. The integers xi are all available via CRR, so to compute
|x|2 it suffices to know |q(x)|2. However, there is no known way to efficiently
compute |q(x)|2 in a CRR intrinsic manner. This difficulty is the motivation for
introducing the pseudorank of x. Pseudorank will be defined in such a way that
it is easy to compure it directly from CRR data. In fact, pseudorank can be
computed by a finite automaton that can be constructed in polynomial time. This
will be brought out in Section 3.

CENSUS ALGORITHMS FOR CHINESE REMAINDER PSEUDORANK 313

2.3. The pseudorank

Dividing through by P , from Theorem 2.3, we can write

x/P + q(x) =
r∑

i=1

xi/pi. (3)

Let g be the least integer such that 2g > 4r. We define integers α(x), β(x) by
α(x) < 2g such that

2g · β(x) + α(x) =
r∑

i=1

�2g · xi/pi�. (4)

Observe that
0 ≤ xi/pi − �2g · xi/pi�/2g < 1/2g.

Thus, to g bits precision, β(x) + α(x)/2g mimics q(x) + x/P . We call β(x) the
pseudorank of x.

The values �2g · xi/pi� can be precomputed, based solely on n, and the conse-
quent choice of P , and stored in a table of diemensions L×2g, where L =

∑r
i=1 pi.

We regard this table as indexed for each i = 1, . . . , r by xi. We will see in Section
3 that a polynomial time constructible finite automaton can use CRR as input,
and properly index into this table. Since L < r · pr < r · n, and 2g < 8r, our table
has size less than 8r2 · n · O(log n) = o(n3) by Lemma 2.1, and the fact that an
entry has size at most g = O(log r) = O(log n) bits. There is nothing remotely
like this economy of data known for computing the rank.

The next result is proved in [3,10].

Theorem 2.4. If x > P/4, then β(x) = q(x). If β(x) �= q(x), then β(x) =
q(x) − 1.

The integers below P/4 comprise the critical region of the CRRS. The integer x
is said to be good if q(x) = β(x), otherwise it is said to be bad. By Theorem 2.5,
all bad integers are in the critical region.

We point out that the choice of 4r < 2g < 8r is somewhat arbitrary, in that
similar results concerning good and bad integers and the corresponding critical
region could be obtained provided:

• 2g > 2r (if 2g < 2r the error in pseudorank compared to rank is too large
to be of use), and

• g = nO(1) (otherwise we lose the polynomial size of the table, and other
polynomial time bounds for our finite automaton constructions).

Theorem 2.6 shows that the concept of bad density makes sense for any choice
2� · r < 2g < 2�+1 · r, subject to the two items just mentioned. First, it is
straightforward to generalize Theorem 2.5 to show that if 2� · r < 2g < 2�+1 · r,
then all bad integers are below P/2�. Next, the proof of Theorem 2.6 tells us that
the ratio of census of bad integers to P is essentially r/2g+1. From this and the

314 D. LAING AND B. LITOW

upper bound of P/2� on bad integers it follows that bad density is always in the
range between 1/4 and 1/2.

Our choice 4r < 2g < 8r to leads to some technical simplifications over the
“minimal” choice of 2r < 2g < 4r in applications not covered in this paper. The
reader may want to consult [1] on the choice 2r < 2g < 4r.

To see the relationship between rank and pseudorank for our choice of g, con-
sider a small CRR given by P = 3 · 5 · 7 = 105. Here r = 3, so g = 4 will do since
24 = 16 > 4 · 3 = 12. First choose x = 14, by direct calculation of equation (1),
we get

3∑
i=1

(14)i · 105/pi = 17 = 14 + q(14) · 105.

From this we get q(14) = 1. Next, we compute β(14) via

3∑
i=1

�16 · (14)i/pi� = 16 · β(14) + α = 17.

It follows that β(14) = 1 = q(14), so 14 is good. On the other hand, we get
q(2) = 1, but

3∑
i=1

�16 · (2)i/pi� = 16 · β(2) + α = 15.

This means that β(2) = 0, so 2 is bad.
Let B denote the bad integers. We write

∑
x for

∑P−1
x=0 . The (bad) census is

just the indicator sum
∑

x∈B 1.

2.4. Distribution and density results

We can say something about the distribution of good and bad integers in ex-
treme parts of the critical region.

Theorem 2.5. If x < r·P
n·2g , and x and P are coprime, then x is bad. If x >

P/4 − P/2g, then x is good.

Proof. We treat the bad integer case. We derive a contradiction by assuming
x < r·P

n·2g and x is good. Let a be the integer for which x/P = a/2g + ε such that
0 ≤ ε < 1/2g. Since

x/P <
r

n · 2g
< 1/n < 1/2g,

we have that
ε = x/P <

r

n · 2g
,

and a = 0. Since x and P are coprime, xi �= 0 for i = 1, . . . , r. Let εi be

xi/pi − �2g · xi/pi�/2g.

CENSUS ALGORITHMS FOR CHINESE REMAINDER PSEUDORANK 315

Note that 0 ≤ εi. Also by the upper bound on ε and nonnegativity of the εi, for
at least one i,

εi <
1

n · 2g
. (5)

It is clear that xi �= 0 implies that

0 < εi · pi · 2g = xi · 2g − �2g · xi/pi� · pi.

On the other hand, if εi satisfies equation (5), then since pi ≤ pr < n by Lemma 2.1,

0 < xi · 2g − �2g · xi/pi� · pi < 1,

which is impossible.

We treat the good integer case, also by contradiction. This result is really a
slight refinement of Theorem 2.4. Since by Theorem 2.4, x > P/4 implies that
x is good, we can assume that P/4 > x > P/4 − P/2g, and that x is bad. By
equation (4), Theorem 2.4 and the fact that

0 ≤ εi = xi/pi − �2g · xi/pi�/2g < 1/2g,

we have

1 + x/P −
r∑

i=1

εi = α(x)/2g .

But, this is impossible because α(x) is an integer less than 2g while

r∑
i=1

εi < r/2g < 1/4,

and 1/4 − 1/2g < x/P < 1/4. �
The density of bad integers is defined to be the ratio of the number of bad

integers to P/4.

Theorem 2.6. The density of bad integers is

r/2g−1 − O(log2(n)/2g).

Proof. By Theorem 2.4, the bad integer census, written explicitly as the difference
of two sums is ∑

x

q(x) −
∑

x

β(x). (6)

We develop expressions for the two sums in equation (6). From equation (3),

∑
x

q(x) =
∑

x

r∑
i=1

xi/pi −
∑

x

x/P. (7)

316 D. LAING AND B. LITOW

We write, using twice that for integers a, b, �a/b� = a/b − |a|b/b,

β(x) =

(
r∑

i=1

(2g · xi − |2g · xi|pi)/pi − α(x)

)
/2g.

Since 2g and pi are coprime, multiplying each element of {0, 1, . . . , pi − 1} by 2g

and reducing modpi results in {0, 1, . . . , pi − 1}, we have

∑
x

β(x) =
∑

x

r∑
i=1

xi/pi − 1
2g

∑
x

r∑
i=1

xi/pi −
∑

x

α(x)/2g .

Thus, the census of bad integers can be written as

1
2g

∑
x

r∑
i=1

xi/pi +
1
2g

∑
x

α(x) −
∑

x

x/P. (8)

Let
2g · xi/pi = �2g · xi/pi� + δi(x).

We can then write

r∑
i=1

�2g · xi/pi� =
r∑

i=1

2g · xi/pi −
r∑

i=1

δi(x),

and using equation (3) we get

r∑
i=1

�2g · xi/pi� = 2g · x/P + 2g · q(x) −
r∑

i=1

δi(x).

Since

α(x) =

∣∣∣∣∣
r∑

i=1

�2g · xi/pi�
∣∣∣∣∣
2g

,

we get

α(x) = 2g · x/P −
r∑

i=1

δi(x). (9)

From equations (8) and (9) we can express the bad integer census as

1
2g

∑
x

r∑
i=1

xi/pi − 1
2g

∑
x

r∑
i=1

δi(x). (10)

We analyze the error term

∆ =
∑

x

r∑
i=1

δi(x)

CENSUS ALGORITHMS FOR CHINESE REMAINDER PSEUDORANK 317

by first estimating ∆i =
∑

x δi(x). The possible values for xi as x ranges from 0
to P − 1 are, of course, 0, . . . , pi − 1. Each value occurs P/pi times. Consider the
values k, k + 1, . . . , k + h such that

� < 2g · k/pi < · · · < 2g · (k + h)/pi < � + 1.

An upper bound on the sum of the fractional parts of these fractions is clearly

h+1∑
j=1

j/pi.

Thus, ∆i < P
pi

·∑h+1
j=1 j/pi. Also, we have that

h < pi/2g = O(log n).

It follows that
∆i = O(P · log2 n/p2

i).
From this we have

∆ =
r∑

i=1

∆i = O(P · log2(n)),

since
∑∞

k=1 1/k2 = Θ(1).
It is straightforward to show that∑

x

xi/pi = 1/2 · (P − P/pi).

Note that
∑r

i=1 P/pi = O(P · log log n) by Lemma 2.2. Combining this, equa-
tion (10), the upper bound on ∆ and dividing by P/4 to obtain a density, we have
the theorem. �

We make two observations about Theorem 2.6. First, the error bound goes to
zero rapidly since 2g = Θ(n/ logn). Second, asymptotically, the density of bad
integers oscillates in sawtooth fashion between 1/4 at r a power of 2, and 1/2 at
r one less than a power of 2.

3. Two pseudorank census algorithms

3.1. WFA preliminaries

We use weighted finite automata (WFA) to describe the algorithms of this
section. WFA is a huge topic. Examples of directions in WFA research are pre-
sented in [7,9]. The first general algebraic treatment of WFA appears to be due
to Schützenberger. We deal with only those aspects that are relevant to our algo-
rithms in this section.

318 D. LAING AND B. LITOW

We work over CRRS P as before. For our CRR oriented purposes a WFA,
F , is a tuple Σ, U, V, Xσ, where Σ is a finite alphabet, U is a 1 × h matrix, V is
a h × 1 matrix, and for each σ ∈ Σ, Xσ is a h × h matrix. All matrix entries
are rational coefficient polynomials in the variable t. We regard the indices of
these matrices as states. The integer h is the referred to as the number of states.
In all of our WFA, h will be bounded above as nO(1). It is sometimes useful to
think of the nonzero entries of U as “start” states, and the nonzero entries of V
as “final” states. Σ is partitioned as Σ1 ∪ · · · ∪ Σr, where the symbols of Σi are
in bijective correspondence with 0, 1, . . . pi − 1. The r-behavior of F , denoted by
〈F 〉r is defined to be

U ·
(∑

σ∈Σ

Xσ

)r

· V.

We can write 〈F 〉r as ∑
σi1 ···σir

U · Xσi1
· · ·Xσir

· V,

and a summand is denoted by 〈F 〉r(σi1 · · ·σir).
All of the square matrices Xσ will be structured so that unless j = i + 1, where

σi ∈ Σi and σj ∈ Σj , then Xσi ·Xσj = 0. That is we will enforce 〈F 〉r(σi1 · · ·σir) =
0 unless σij ∈ Σj for j = 1, . . . , r. This means that if σi1 · · ·σir does not correspond
to a CRR, any WFA that we construct will generate a zero summand for that
string. This structure will emerge naturally in each of our constructions.

3.2. Algorithm 1

Recall that all matrix entries are rational coefficient polynomials in the vari-
able t.

Lemma 3.1. A WFA, F , can be computed in nO(1) time such that

〈F 〉r =
∑

x

(1 − β(x) · t) ·
(

r∏
i=1

(1 + xi · t/pi)

)
.

Proof. The states are ordered pairs of integers (k, f), where k = 0, . . . , r, and
f = 0, . . . , 2g · r − 1. For σ ∈ Σi, a nonzero entry of Xσ is indexed by a row,
column pair of states

(i − 1, f), (i, f + �2g · |σ · (P/pi)pi−2|pi/pi)�).

The entry at this location is

1 + |σ · (P/pi)pi−2|pi · t/pi.

The only nonzero entry of U has index 1, (0, 0) and the entry there is 1. A nonzero
entry of V is indexed by (r, 2g · β + α), 1, and the entry there is 1 − β · t.

CENSUS ALGORITHMS FOR CHINESE REMAINDER PSEUDORANK 319

Recalling equation (4), it is clear that a nonzero entry of (
∑

σ∈Σ Xσ)k is in-
dexed by

(0, 0),

(
k,

k∑
i=1

�2g · σi · (P/pi)pi−2|pi/pi�
)

,

where σi ∈ Σi. The entry at this location is

k∏
i=1

1 + |σi · (P/pi)pi−2|pi · t.

The claim for 〈F 〉r follows from this, the chinese remainder theorem, and the
definition of V .
The time bound for computing F is clear from the description of its construction.

�

Let B = 〈F 〉r , where F is the WFA in Lemma 3.1, and B′ = dB
dt |t=0. Here is

algorithm 1: compute B′ − (P − 1)/2.

Theorem 3.2. Algorithm 1 computes the bad census in polynomial time.

Proof. By Lemma 3.1, equation (3), and calculus,

B′ =
∑

x

(
−β(x) +

r∑
i=1

xi/pi

)
=
∑

x

(x/P + q(x) − β(x)) .

By equation (6),
B′ =

∑
x bad

1 +
∑

x

x/P,

but
∑

x x/P = (P − 1)/2. The time bound follows from the fact that B is a
polynomial in t which is computable in polynomial time, so B′ is computable in
polynomial time. �

3.3. Algorithm 2

We have implemented and run Algorithm 2. Before describing the main steps
of the algorithm, which again counts the bad integers we need to cover some
preliminaries. We define a kind of polynomial multiplication, denoted by � as
follows. Let P, Q be polynomials in the variable z, then P � Q is the polynomial
obtained from P · Q (ordinary Cauchy product) by reducing all exponents of z
mod2g, and collecting like terms. Thus, P �Q has degree at most 2g − 1. The r-
fold � product of P1, . . . , Pr is denoted by

⊙r
i=1 Pi. The evaluation of a polynomial

P at z = a is denoted by P (a). For i = 1, . . . , r let

µi(x) = �2g · xi/pi�.

Here is Algorithm 2.

320 D. LAING AND B. LITOW

(1) For i = 1, . . . , r, construct the polynomial Ci in the variable z,

pi−1∑
j=0

zµi(j).

(2) Compute C =
⊙r

i=1 Ci.
(3) Compute C′ = d

dzC.
(4) Compute C′(1).
(5) Compute D = C′(1)/2g +(r/2g+1) ·P − (r/2g+1) ·∑r

i=1 P/pi − (P − 1)/2.
We claim that D =

∑
x∈B 1.

Lemma 3.3. Algorithm 2 computes the bad integer census.

Proof. Start from equation (8). Calculation shows that

r∑
i=1

∑
x

xi/pi = (1/2)

(
P −

r∑
i=1

P/pi

)
,

and
∑

x x/P = (P − 1)/2. It remains to show that C′(1) =
∑

x α(x).
Consider the WFA, F whose states are pairs of integers of the form (i,

∑i
j=1 µj(x))

for i = 1, . . . , r. The start state is (0, 0). We regard (0,
∑0

j=1 µj(x)) as (0, 0). The
only nonzero entries of X|x|pi

are indexed by the state transition pairs

⎛
⎝i − 1,

i−1∑
j=1

µj(x)

⎞
⎠,

⎛
⎝i,

i∑
j=1

µj(x)

⎞
⎠ .

The common nonzero entry value is 1. The only nonzero entry of matrix X|x|p1
· · ·

X|x|pr
will be indexed by

(0, 0),

⎛
⎝r,

r∑
j=1

µj(x)

⎞
⎠ .

Now,
∑r

j=1 µj(x) = a + 2gρ(x), where a < 2g is an integer. V has nonzero entries
at states (r, a + 2g · b), where b < r. The entry at such a state is a. We can see
that the r-output of F is α(x), and hence 〈F 〉r =

∑
x α(x).

We now show that C′(1) = 〈F 〉r. The idea here recasts the original census
approximation algorithm described in [8]. Write the polynomial C in step 2 of the
algorithm as C =

∑2g−1
i=0 ai · zi. In step 4 we obtain

∑2g−1
i=0 i · ai. We claim that

2g−1∑
i=0

ai · i =
∑

x

α(x).

CENSUS ALGORITHMS FOR CHINESE REMAINDER PSEUDORANK 321

The coefficient ai is just the number of x < P such that α(x) = i. Indeed, this is
just a partial summand computed in the r-behavior of the WFA F described in
the previous paragraph, and the lemma follows. �

Theorem 3.4. Algorithm 2 computes the census of bad integers in

O(n2 · log log(n) · A(n)/ log n)

bitwise arithmetic operations, where A(n) is the time to multiply two n-bit integers.

Proof. Lemma 3.3 establishes that the algorithm computes the bad census. We
proceed to the time complexity. Multiplication of the r polynomials Ci, with
reduction of all intermediate polynomial degrees modulo 2g can be done in time
dominated by the product of two degree 2g polynomials with integer coefficients
no larger than P . By Lemma 2.1, P < 22n, so coefficient multiplications involve
at most A(2n) bitwise arithmetic operations. Since multiplication is no worse
than quadratic time, we can express this cost as O(A(n)). Using FFT, or similar
convolution transform methods, the O(r) pairwise polynomial products can each
be done using 2g · g · log(g) ·A(n) operations. By Lemma 2.1, r = O(n/ log n), and
since 2g < 8r, this cost is bounded above by O(n · log log(n) · A(n)). The overall
time follows by multiplying this bound by r. �

3.4. Experimental results

We tabulate representative densities calculated from actual counts for the bad
integers over a range of values for r. We point out that on a dedicated 2.66 gHz
computer with a 3 gB real address space the running time for r = 511 is roughly
70 minutes. For r = 511, �log P � = 5189. In the interest of sanity, we illustrate
the actual output only for r = 127 at the end of the paper.

r density

8: .18753305742133311028
15: .40060892370174538968
16: .21566463134239888256
24: .33901848123361139064
31: .44741712193144528296
32: .23146403541827736960
40: .29357038284339453948
63: .47250524865958437592
64: .24014639429784329084
127: .48573776789735434444
128: .24481932239434431308
511: .49622202812798288372

322 D. LAING AND B. LITOW

The reader can check that as r increases, so does agreement with the asymp-
totic density expression r/2g−1. Ultimately, the graph of density versus r is a
“sawtooth” oscillating between 1/4 and 1/2.

For r = 127, P is
4962053072862893011815686085054943
99585766193441465439326955956110026846
84338790529969965791243468218008024643
047236404295031376012782904224099552731270
967628935551000702129260921471891048813
74461018100187690751198809547084086962840
1364260569885219872313936630092234781649
52125897464044412149392265

and the bad census is exactly
3012820729750787433881999941469665831
41174530307576420814353435762841884
36106719059952854371696497034820435136
048779247249249460753790090915599732905296
66167484995354199796344101320542934876274
257543746686243888871751462052779269103
8243410179034449537574861680566656774433
0205853398659922662687039

References

[1] D.J. Bernstein and J. Sorenson, Modular exponentiation via the explicit chinese remainder
theorem. Math. Comp. 76 (2007) 443–454.

[2] A. Chiu, G. Davida and B. Litow, Division in logspace-uniform NC1. RAIRO-Theor. Inf.
Appl. 35 (2001) 259–275.

[3] G. Davida and B. Litow, Fast parallel arithmetic via modular representation. SIAM J.
Comput. 20 (1991) 756–765.

[4] P. Dusart, The kth prime is greater than k(lnk − ln ln k − 1) for k ≥ 2. Math. Comp. 68
(1999) 411–415.

[5] G.H. Hardy and E.M.Wright, An Introduction to the Theory of Numbers. Oxford Press,
USA (1979).

[6] D. Knuth, The Art of Computer Programming, Vol. II. Addison-Wesley (1969).
[7] W. Kuich and A. Salomaa, Semirings, Automata, Languages. Springer-Verlag (1986).
[8] B. Litow and D. Laing, A census algorithm for chinese remainder pseudorank with experi-

mental results. Technical Report. http://www.it.jcu.edu.au/ftp/pub/techreports/2005-3.pdf
[9] A. Salomaa and S. Soittola, Automata Theoretic Aspects of Formal Power Series. Springer-

Verlag (1978).
[10] S.P. Tarasov and M.N. Vyalyi, Semidefinite programming and arithmetic circuit evaluation.

Technical report, arXiv:cs.CC/0512035 v1 9 Dec 2005 (2005).
[11] I.M. Vinogradov, Elements of Number Theory. Dover (1954).

Communicated by C. Choffrut.
Received February 17, 2006. Accepted June 18, 2007.

	Introduction
	Motivation
	Structure of the paper

	CRR and pseudorank
	CRR basic facts
	An observation about parity and comparison in CRR
	The pseudorank
	Distribution and density results

	Two pseudorank census algorithms
	WFA preliminaries
	Algorithm 1
	Algorithm 2
	Experimental results

	References

