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ON MAXIMAL QROBDD’S OF BOOLEAN FUNCTIONS ∗

Jean-Francis Michon1, Jean-Baptiste Yunès2

and Pierre Valarcher1

Abstract. We investigate the structure of “worst-case” quasi reduced
ordered decision diagrams and Boolean functions whose truth tables are
associated to: we suggest different ways to count and enumerate them.
We, then, introduce a notion of complexity which leads to the concept
of “hard” Boolean functions as functions whose QROBDD are “worst-
case” ones. So we exhibit the relation between hard functions and the
Storage Access function (also known as Multiplexer).

Mathematics Subject Classification. 06E30, 68Q15, 94C10,
94C15.

1. Introduction

The complexity of Boolean functions is a central subject of information theory.
In theoretical computer science, the term complexity usually refers to the size of a
chosen representation of an object (or even some part of this description). There is
a lot of representations for Boolean functions like: truth tables, Boolean circuits,
binary decision diagrams, normal disjunctive and conjonctive forms, etc. We focus
here on Quasi Reduced Ordered Binary Decision Diagrams.

The binary decision diagram (BDD) representation was introduced by Lee
in 1959 but the rise of its success began with Bryant’s thesis [1] giving theorems
and good algorithms to handle them. It’s now a widespread tool for Boolean func-
tion manipulation with many application areas such as verification or reliability
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studies and today the term BDD covers a large family of different representations:
QROBDD, ROBDD, FBDD, ZBDD, etc. We refer the reader to Bryant’s web site
and Wegener’s book [9] for exhaustive study.

We are concerned here with the most primitive BDD: the quasi reduced ordered
BDD (QROBDD). They are directed acyclic graphs canonically associated to a
given Boolean function and we quickly sketch the theoretical construction of the
QROBDD graph:

Starting from the truth table of f (canonically associated to f), we construct
the binary tree associated to f whose leaves are labeled by the values (0 or 1) of f ,
that is to say the data contained in the truth table of f . Then, identifying all the
isomorphic subgraphs of this tree (this process is sometimes called the merging
rule) we get a directed acyclic graph called the QROBDD of f . Bryant work (or
the minimal automata theorem) shows that the order in which the identifications
of subtrees are made have no impact on the final result: it’s a canonical graph
associated to f .

Now, let Bn the set of Boolean functions in n Boolean variables. The number
of vertices of the QROBDD of f ∈ Bn is called the QROBDD-complexity of the
function, and denoted cQROBDD(f) (or c(f) if the context is clear) in the following.
The reader will then find immediately the trivial bound:

n + 1 ≤ cQROBDD(f) ≤ 2n + 1.

The lower bound is obviously exact but the upper bound is not. The true upper
bound, say C(n), can be effectively computed and was studied by many people
until recently (see [2–4]).

Our goal is the description of the family Hn of Boolean functions in n variables
achieving this maximal QROBBD-complexity. We shall often use the term of
“hard” functions for them.

The main result is that Hn can be precisely described and enumerated for any n.
Functions in Hn are all related to the Storage Access (SA) function (see [7,8]). It
appears as the simplest among the hard functions and we are able to show that,
for some special values of n, Hn is exactly the family of “twisted” SA functions
by a whole symmetric group. We also study the effect of the ordering of variables
on Hn and give elementary properties.

2. Canonical reduced graphs of Boolean functions

Definition 2.1. A Boolean function (in n variables, n ≥ 0) is any:

f : {0, 1}n → {0, 1}.

We call their set Bn: it has 22n

elements.
We must immediately point out that the variables of a Boolean function have

an implicit natural ordering, say the order given in the definition of f(x0, ..., xn−1),
if n ≥ 1. Then the order xi ≺ xi+1 will be implicitly used in the rest of the paper.
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From the truth tree representation of f one can deduce another more compact
canonical graph representation:

Definition 2.2. A Boolean graph is a graph G satisfying the following properties:

(1) G is finite and directed.
(2) Any vertex is reachable from a unique one called the “root” of G.
(3) Each leaf (vertex with no successor) is labelled “0” or “1” (values).
(4) From each non-leaf vertex leaves exactly two edges labeled “0” (commonly

called the left edge) and “1” (right edge) (vertices of outdegree 2).
(5) All paths from the root to a vertex have the same length (the graph is

said to be complete).

As a consequence of these properties the graph is acyclic. The number of vertices
is called the size of the Boolean graph. The distance from a vertex to the root is
called the height of the vertex. The set of all the vertices of height d, (0 ≤ d ≤ n),
is called a level of the Boolean graph.

To any Boolean function in n variables one can associate a unique graph whose
core structure is a binary tree and in which the label of a leaf is exactly the value
of the function at the point corresponding to the unique n-uple (respecting the
previously defined natural order of the variables) labelling the path from the root
to that leaf. This graph is exactly the truth tree of the function and its size
obviously is 2n+1 − 1.

Let G a Boolean graph, a Boolean subgraph of G is a subgraph of G which is
Boolean.

A morphism from the Boolean graph G to a Boolean graph G′ is a morphism
of graph from G to G′ respecting the labelling of edges and leaves. A (resp.
strict) reduction is a morphism from G to G′ with size(G′) ≤ size(G) (resp.
size(G′) < size(G)). We say that G′ is a reduction of G: one can think of a
reduction as identification of isomorphic subgraphs. It is known (see [1] and [9])
that the composition of reductions is a reduction and that operation is confluent.
A Boolean graph is called irreducible if no strict reduction can be defined on it.
By confluence, one can even say more: for any Boolean graph G there exists a
unique irreducible Boolean graph which is a reduction of G.

Definition 2.3. The reduced Boolean graph of a Boolean function f is the irre-
ducible Boolean graph associated to its truth tree. We call it the QROBDD of f .
Its size is called the (binary) complexity of f and written c(f).

It’s clear that we can recover the truth tree of f from its QROBDD. So QROBDD
of distinct Boolean functions are distinct.

The reduction process may identify only some of the vertices having same height.
For instance the 2n leaves of the binary tree will be identified in (at most) 2 leaves
labelled 0 and 1 in the reduced graph of f .
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Figure 1. A truth tree and its QROBDD.

Then we easily deduce:

Proposition 2.4. Let ri(f) be the number of vertices at level i (0 ≤ i ≤ n) of the
reduced Boolean graph of f , then:

(1) r0(f) = 1 and rn(f) = 1 or 2;
(2) ri+1(f) ≤ 2ri(f);
(3) ri(f) ≤ ri+1(f)2;
(4) c(f) =

∑n
i=0 ri(f).

We can then deduce that ri ≤ 2i and ri ≤ 22n−i

, which leads to the well known
property (see [2] or [5]):

Proposition 2.5. ∀i ∈ [0, n], ri(f) ≤ inf(2i, 22n−i

).

Figure 1 is a picture of a truth tree and its associated QROBDD of a Boolean
function in 4 variables (x0, x1, x2, x3).

3. Connecting consecutive levels

Counting the number of different ways to connect k vertices at level i to m
vertices at level i + 1 according to Definition 2.2 can be restated in the more
manageable following combinatorial problem:

Problem 3.1. Consider a grid of m×m checkable boxes. In how many ways can
we check off k different boxes so that, for any s so that 1 ≤ s ≤ m, a row or a
column of index s has at least a checked box?

We call any solution to that problem an (m, k)-correct configuration. For

example,
× ×

×
is (3, 3)-correct but

× ×
× is not.



ON MAXIMAL QROBDD’S OF BOOLEAN FUNCTIONS 681

Theorem 3.2. For all k, m ∈ N, let C(m, k) be the number of (m, k)-correct
configurations. It satisfies:

(1) C(0, 0) = 1;
(2) if k > m2 or k < m

2 then C(m, k) = 0;
(3) else

C(m, k) =
(

m2

k

)

−
m∑

j=1

(
m

j

)

C(m − j, k) > 0.

Proof. If m
2 ≤ k ≤ m2 then there exists at least one configuration, this proves the

inequality.
Then consider all possible k-checked configurations in the m × m grid and

subtract all incorrect configurations. First subtract those missing exactly one
index: the ones that are (m− 1, k)-correct when deleting the row and the column
of index 1 ≤ s ≤ m. Then subtract those missing exactly two indexes, etc. This
leads us to the equality. �

One can observe that if (m − 1)2 < k ≤ m2 then C(m, k) =
(
m2

k

)
.

We now give another formula for the C(m, k) computation as a kind of Pascal
triangle formula:

Theorem 3.3. For all m, k ∈ N, C(m, k) satisfies:
(1) C(0, 0) = 1, ∀ p > 0, C(0, p) = C(p, 0) = 0;
(2) C(1, 1) = 1, ∀ p > 1, C(1, p) = 0;
(3) ∀m > 1, ∀ k > 0, then

kC(k, m) = (m2 − k + 1)C(k − 1, m)

+ m(2m − 1)C(k − 1, m − 1)

+ m(m − 1) C(k − 1, m − 2).

Proof. We first multiply the two sides by (k − 1)! and get in the left handside the
number of correct configurations of k ordered checked boxes in the m × m grid.
If we then suppress the k-th checking of this (m, k)-correct configuration, we find
a (m, k − 1)-configuration of ordered checked boxes. But one can see that this
configuration has one of the following three exclusive types:

(1) (m, k − 1)-correct;
(2) not (m, k − 1)-correct but (m − 1, k − 1)-correct;
(3) not (m, k−1)-correct, not (m−1, k−1)-correct but (m−2, k−1)-correct.

In the first case, we can check an arbitrary k-th box in the remaining unchecked
boxes (there is m2 − (k − 1) such boxes) to obtain a (m, k)-correct configuration
of orderely checked boxes. The number of these configurations is (m2 − k +1)(k−
1)!C(m, k − 1).

In the second case, we just need to add one more arbitrarily chosen row and its
associated column (there is m such possible choices) and then check an arbitrary
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k-th box in one of those new boxes (there is 2m−1 such new boxes). The number
of these configurations is m(2m − 1)(k − 1)!C(m − 1, k − 1).

In the last case, we need to add one more arbitrarily chosen row (m possible
choices) and one more arbitrarily chosen column of a different index (m−1 possible
choices) and then check the box at the crossing (only one choice). The number of
these configurations is m(m − 1)(k − 1)!C(m − 2, k − 1). �

Explicit values of C(m, k) can be found in [6].

4. Hard Boolean functions

Definition 4.1. A Boolean function f in n variables is hard if c(f) is maximal
among the complexities of all functions in Bn. Let Hn be the set of all hard Boolean
functions in n variables and C(n) = maxf∈Bn c(f) the complexity of those hard
functions.

We define the height of inflexion (the “critical point” in [2]) the unique integer
h(n) < n so that:

2h(n)−1 < 22n−(h(n)−1)
and 2h(n) ≥ 22n−h(n)

.

We define h(0) = 0 and h(1) = 1.
It is known (see [2]) that:

∀n ≥ 0, C(n) = 2h(n) − 1 +
n−h(n)∑

i=0

22i

.

Definition 4.2. For all integer n ≥ 1 we call (rh(n)(f), rh(n)−1(f)) the inflexion
pair of a n variables hard Boolean function f .

When n varies, the inflexion pair evolves regularly:

Theorem 4.3. Let (m, k) be the inflexion pair of n, then, when n takes on all
values between a + 2a and a + 2a+1, i.e. n = a + 2a + b with 0 ≤ b ≤ 2a (a,b ∈ N),
we have:

(1) h(n) = 2a + b = n − a;
(2) m stays constantly equal to 22a

;
(3) k = 22a+b−1 = 2n−a−1;
(4) m

2 ≤ k < m2.

We can now conclude from these results:

Proposition 4.4. Card(Hn) = k!C(m, k) where (m, k) is the inflexion pair asso-
ciated to n.

Proof. The order with which we check the boxes must be considered as it is the
order used to connect vertices at level h(n)−1 with k pairs of vertices at level h(n).
There is k! possible such permutations. �
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0 1

Figure 2. A QROBDD of an hard Boolean function.

Figure 2 is an example of a reduced Boolean graph of a hard Boolean function
in 3 variables, f(x0, x1, x2) = x0 + x0x2 + x1x2 (symbol + denote the addition
modulo 2).

5. Some properties of hard functions and Hn

Proposition 5.1. A hard function depends on its n variables except when n is of
the form 1 + a + 2a. In this case, there exist hard functions in n variables which
essentially depend on only n − 1 variables. Their form is:

f(x0, . . . , xn−1) = g(x0, . . . , xh(n)−2, xh(n), . . . , xn−1)

where g ∈ Hn−1.

Proof. If n = 1+a+2a, h(n) = 2a +1 then the inflexion pair is (2h(n)−1, 2h(n)−1).
So we can choose to connect each vertex at h(n)− 1 to each corresponding vertex
at h(n) with double edges. This implies that the function does not depend on the
variable xh(n)−1.

Conversely, if the function does not depend on xj , edges between levels j − 1
and j are all double. From the structure of the reduced graphs of hard functions,
this may only occur in inflexion zone, then j = h(n) − 1. �
Corollary 5.2. There are 2a! hard functions in n = 1 + a + 2a variables which
depends in only n − 1 variables.

For example and using a polynomial representation of the Boolean functions
(symbol + denote the xor operation):

(1) g(x, y) = x is hard because f(x) = x is hard and 2 = 1 + 0 + 20.
(2) h(x, y, z, t) = x + yt + xt is hard because f(x, y, z) = x + yz + xz is hard

and 4 = 1 + 1 + 21.

Theorem 5.3. The number of hard functions in a + 2a variables is 22a

!

Proof. From theorem 4.3, we have h(n) = 2a, m = 22a

and k = 22a−1 then the
inflexion pair is (m, m

2 ).
From the construction of QROBDD we know that there are m

2 pairs of m
vertices to construct so that each vertex appear in at least one pair. The only way
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to obtain this is to permute the ordered set of the m vertices and then pair the
first vertex with the second, the third with the fourth and so on. There is m! such
permutations. �

Then from Stirling formula we deduce that:

Corollary 5.4. The asymptotic density of Ha+2a in Ba+2a , is 0 when a → ∞.

Proposition 5.5. For n = a + 2a + b, with 0 ≤ b ≤ 2a, Card(Hn) ≤ 22a+b!.

Proof. Permuting the multiset made of 2k/m copies of the m vertices, and pairing
those two by two, gives us at most 2k! = 22a+b! possibilities. �

6. Storage access functions SAk

Storage Access functions are well known in Boolean complexity theory (see [8]).
They are fundamental in hardware design where they are called multiplexers.
Let k = 2a, the SAk function is a function in n = a + 2a variables defined by:

SAk(x0, . . . , x2a−1, y0, . . . , ya−1) = xm

where m is the integer whose development in radix 2 is y0 . . . ya−1.

Proposition 6.1. The SAk functions are hard.

Proof. The truth table of SAk consists in successive 2k blocks of k bits. Each of
these blocks, from left to right, is the binary development of the successive integers
from 0 to 2k − 1. For example, the truth table of SA4 is the 64 bits string coded
0123456789ABCDEF, in hexadecimal. �

Then the SAk functions arise, in our theory, as the “simplest” hard functions
and the truth table of all the different hard functions are obtained as the 2k!
permutations of all blocks of k bits.

Let N = 2k and let Σ ∈ SN be a permutation on N elements. Σ naturally
induces a bijection on the set of all k-uples of bits representing all the integers
between 0 and N − 1.

Definition 6.2. We call Σ-twisted Storage Access function:

SAΣ
k (x0, . . . , xk−1, y0, . . . , ya−1) = SAk(Σ(X), y0, . . . , ya−1)

where X is the integer whose binary development is x0 . . . xk−1.

The index k will be omitted when the context is clear. Of course, if σ = Id
then SAΣ

k = SAk.
Then, from the structure of the reduced graph we deduce at once:

Theorem 6.3. Ha+2a is the set of all SAΣ
2a .



ON MAXIMAL QROBDD’S OF BOOLEAN FUNCTIONS 685

For non special values of n (i.e. a + 2a < n < (a + 1) + 2a+1), one can observe
that any hard Boolean function is built so that:

Theorem 6.4. A Boolean function f is in Hn if and only if it satisfies the fol-
lowing two properties:

(1) there is an injection φ : {0, 1}2a → {0, 1}2a+b so that:

f(φ(x0, . . . , x2a−1), xh(n), . . . , xn−1) = SA2a(x0, . . . , x2a−1, xh(n), . . . , xn−1);

(2) there is an injection Φ : {0, 1}2a+b−1 → {0, 1}2a+1
so that:

f(x0, . . . , xn−1) = SA2a+1(Φ(x0, . . . , xh(n)−2), xh(n)−1, . . . , xn−1).

Proof. Let f ∈ Hn and G its QROBDD. We suppose, for convenience, that the
vertices in the lower part of G are ordered by the “natural” order of the truth
tables. Then, selecting a path u = u0 · · ·u2a−1 in the graph of SA2a which lead to
a Boolean function fu, φ is easy to define: we associate to u the path v = φ(u) =
v0 . . . v2a+b−1 in G which leads to fu.

To define Φ, one can observe that level h(n) − 1 is the root of many (ex-
actly 2h(n)−1) different Boolean functions in a +1 variables but possibly not all of
them. There is only one path from the root to each of them (the upper part is a
binary tree). Then for each path u = u0 . . . uh(n)−2 in G which defines fu, we can
associate a path v = Φ(u) = v0 . . . v2a+1−1 in SA2a+1 which leads to fu.

Conversely, the first property implies that level h(n) contains 22a

distinct ver-
tices and the second that level h(n) − 1 is connected to the root using a binary
tree so it contains 2h(n)−1 vertices. Then f is hard. �

7. Directions for future investigations

We shall explore on forthcoming papers the generating series behind the scene
which are interesting to explicit and understand.

It would also be interesting to know the density of Hn in Bn (for any n).
Up to now, we based our investigations on truth tables, but different seman-

tics (OFDD for example, see [9]) may lead to different sets of “hard” functions,
studying them will certainly be interesting.
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