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Abstract. Among several alternative viewpoints for building soft-
ware quality metrics, evaluating the consistency between different mod-
els in a software specification or implementation appears to be fruitful.
An obvious difficulty is that different models are usually expressed by
means of different concepts, and then, confronting heterogeneous repre-
sentations is not straightforward. In this paper, we propose a solution
for measuring the consistency between the architecture and the commu-
nication models. After some sensible transformations, the information
about both models are captured trough hierarchical representations.
We define and discuss a similarity measure between hierarchies, that
eventually founds the software metric we propose. Lastly, we investi-
gate how to scale and interpret the metric values and give an application
example with SDL.
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1. Introduction

There actually is a large collection of software metrics [5–7, 21], that tend
to capture various features of quality as defined and classified by several au-
thors [8, 9, 16, 26]. Object oriented programming is a strong evolution within com-
puter science and even if the fundamental principles about software quality still
remain unchanged, metric definitions have had to be revised and extended: some
original propositions, specific to object oriented specification and design, have re-
cently been made, while former ones have been reviewed [3, 15, 22, 23].
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In this paper, we focus on consistency concerns. More precisely, a specification
or an implementation, more or less explicitly embodies various models (e.g.: data
and software architecture, communication or behaviour...). In fact, all of these
models have to be consistent with one another, and their consistency should be
evaluated and controlled. Added to plain syntactic and technical rules, there
should exist a semantic consistency that ensures all models are compatible and
express one underlying general knowledge which, in fact, is the backbone of the
application.

Syntactic correctness is taken into account by all CASE tools, and syntactic
consistency between models is addressed by the main ones (e.g.: objecteering,
Rational, SPIN for UML, and TAU and ObjectGeode for SDL).

Conversely, there are very few works dedicated to semantic consistency con-
cerns. However, “consistency” remains a key word in software quality matter.
It might refer to consistency between views in distributed software development,
which has been addressed for long in a large number of papers [11, 13]. In all
these papers, consistency is the basis for reasoning and formal proof using model
checking and various kinds of logic. The original information is captured from
pieces of a specification which can originally be written in a general specification
language, and is then translated into a suitable formalism before being processed
with ad hoc tools.

It might also refer to the wide scope of database systems design, where data
consistency is a major question, dealt for instance with static architecture issues,
constraint checking and dynamic trigger specification.

More specifically connected with our approach, consistency between some UML
models is addressed in [14]. The study is limited to the confrontation between
UML StateTransition Diagrams and UML Scenarios (or Object Collaboration Di-
agrams). Once again, model checking and Temporal Logic are used to ensure
consistency.

Whatever the context, consistency is mainly tackled as a matter of checking
invariant and pre-post conditions. The solutions are found in organisation (project
management, quality rules, coordination, use of CASE tools, controlled distributed
software design process...) or in a technical approach (State Transition Systems,
logical reasoning, model checking, graph theory, CASE tools again...).

Our point of view is different and complementary, and seems not to have been
yet studied much in the literature. We assume that the specification under analysis
is correct, and we are digging for awkward and inappropriate software architec-
tures. Our aim is to point out such inadequacies – despite of asserted technical
correctness – between two specification models. The goal is to increase the quality
level of such important external attributes as efficiency, readability, maintainabi-
lity, testability... So, it appears that our proposal should be applied from the
first steps of the specification. An improved architecture (according to our consis-
tency approach) – being easier to check – should be a better input for the general
verification methods mentioned above.

One might try to imagine metrics for evaluating the consistency of a whole spec-
ification, but we shall – for now – only deal with pair-wise comparisons of models.
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In this paper we only address the consistency between the software architecture
model and the communication model. So, according to Fenton’s classification [10],
the quality measures we propose can be considered as based on internal product
attributes, since architecture and communication models intimately constitute the
code under evaluation. Our proposition applies either to a specification or a pro-
gram, as soon as communicating modules can be identified and structured in both
a hierarchical way (with respect to architecture) and a net structure (with respect
to communication).

This is the case for SDL specifications [8] where a set of processes and procedures
is structured according to a hierarchical organisation, namely in systems, sub-
systems, blocks, and nested sub-blocks. A set of channels and signal routes convey
signals between processes and constitute the communication relationship.

The last section of this paper presents an example where the system specifica-
tion uses SDL. Our opinion is that – at the expense of some additional reflection
and work for adaptation – this could also be applied to UML specifications, where
the hierarchy of packages (Class-diagram) and the communication between ob-
jects (collaboration-diagrams / sequence diagrams) are analysed. Similarly, other
examples could be found in modular, object oriented or reactive programs that
involve communicating objects and a hierarchical architecture.

With such an approach, the main question is to find one operational common
representation that could apply to the two models under study. In Sections 2
and 3, we address this question and take advantage of graph theory [25] to advocate
for using a hierarchy of processes as a super-representation that can account for
both the genuine hierarchical process architecture and the net structure of the
communication relationship. Section 2 is dedicated to the architecture model,
which is rather straightforward, and Section 3 to the communication model which
is not.

We published a previous paper on the subject, that was based on rather similar
premises, but dealt with partitions of the set of processes instead of hierarchies [1].
So, the two approaches are complementary, the former is local (only one level in
the implicit hierarchy is taken into account) while the latter is global (the whole
hierarchy is explicitly considered).

In order to compare two hierarchies – the one for architecture an the other for
communication – we discuss, in Section 4, some similarity measures definitions
that are convenient for dealing with the semantics of each model. The basic
ideas for constructing these similarity measures are stemming from data analysis
techniques: clustering, relational and combinatorial analysis.

Of course, these rough software metrics have to be normalised and scaled in
order to allow efficient interpretations and bring significant meanings [9, 10]. Sec-
tion 5 specifies mathematical transformations that finally provide such an opera-
tional software metric, i.e. ranging within [0, 1], and being free from size effects.

Before a conclusion in Section 7, Section 6 presents with a short application
example using SDL.

Some important theorems that found our reasoning – especially about
Co-Graphs [25] and the underlying Euclidean distance upon vertices – are cited
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Figure 1. A first example: processes A, B, and D.

with references to our previous paper [1]. They could not be detailed here for
sake of conciseness, so these results must be admitted or otherwise read in the
references. In contrast, properties that are specific to the present approach are
exposed.

Before going into the heart of the matter, it might not be pointless to sketch
a toy example in order to stimulate intuition about our final aim, our inputs and
outcome. The toy example below is taken from an SDL specification of a most
simple system with two blocks and five processes.

We first provide a rough SDL specification of processes that deliberately hides
the code of tasks, and focuses on signal exchange. Of course, code analysis will
later be essential for capturing the communication pattern when dealing with real
systems, but it is not in case of a toy example, where channels and routes analysis
is sufficient.

Then we specify two architecture models that may implement the common
process communication system. The whole specification is syntactically correct,
but one is evaluated as better than the other by our quality metric (architecture
and communication models consistency). We insist on the fact that the best of
the alternative architectures is not necessarily the one that will eventually be
implemented. In fact, in the paper we shall extensively detail in what sense and
on what criteria our metric is based; other criteria can quite reasonably be put
forth (for instance hardware constraints...), anyway, in case a “better” architecture
is rejected in favour of an other, the choice of the latter should – in our opinion –
be explicitly advocated for.

The diagrams in Figures 1 and 2 represent the specification of the five processes,
namely: A, B, C, D and E. We propose two candidate architectures, namely Sys-
tem 1 and System 2, to support communication and achieve process distribution.
Both are constituted of the same number of blocks, but this is not a constraint of
our approach.
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Figure 2. A first example: processes C and E.

The diagrams in Figure 3 specify the System 1 architecture. The architecture
model for System 1 directly comes from the SDL system and blocs structure, and
can be represented by a tree or a list as:

System_1 (
Block_ACD (Process_A, Process_C ,Process_D),
Block_BE (Process_B, Process_E)

)

Computing the quality metric for System 1 leads to a value of 0.25, which must
be read as the occurrence of a random variable uniformly distributed in [0, 1].
This proves to be a poor quality, showing a high discrepancy between System 1
architecture and the communication model between processes.

The diagrams in Figure 4 now present with the System 2 architecture which is
a far better specification according to the consistency criterion. System 2 archi-
tecture hierarchical model is:

System_2 (
Block_AB(Process_A, Process_B),
Block_CDE (Process_C, Process_D, Process_E)

)

The quality metric value now is 0.85. This proves to be satisfactory. As a
matter of fact, 0.85 actually is the best possible value for a two blocks architecture.
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Figure 3. A first example: the System 1 architecture.

Better quality values might be reached by specifying three blocks. The “ideal”
architecture, which is the best hierarchy of process according to our criterion (the
one closest to the communication graph) would be System *.

System_*(
Block_ABDE(

Block_AB(Process_1, Process_B),
Block_DE(Process_D, Process_E)

),
Block_C(Process_C)

)

It is clear that the various concepts and properties that have just been cited,
need proper and rigorous definitions, proofs and discussion. This is the subject of
the reminder of the paper.
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Figure 4. A first example: the System 2 architecture.

2. Architecture model representation

We assume that we deal with programs or specifications that are constituted
by modules being clearly identified. These modules must be liable to be organised
in a hierarchical way. In most cases, the architecture model is explicitly defined;
otherwise, it can generally be captured from the analysis of the source code or
specification. For instance, modules may be such entities as packages, classes and
sub-classes, or processes and procedures, or linear pieces of code and instructions...
The overall architecture is derived from the nesting relationship. When necessary,
in case the resulting hierarchy only is partial, a dummy root-module can be added
so as to obtain a total hierarchy.

A constraint is that no overlapping clusters are allowed, in order for the resulting
structure to actually be a hierarchy.

This does not mean that no other architectural organisation than a hierarchy
(e.g.: a net) can be found between modules (for instance, mutual visibility rules
could induce another relationship than the hierarchical embedding relationship
between packages in UML design). We simply assume here, that only a hierar-
chical architectural relationship is retained. The reasons for such a hierarchical
structure upon modules, may be either a conceptual decomposition, which means
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that modules are semantically coherent entities (with main effects on readability,
maintainability or testability...), or at an implementation level, a physical distri-
bution of modules (with main effects on costs, transmission delays or reliability...).
In both cases, complexity and efficiency are directly involved.

The hierarchy can be described in terms of the set of its leaves, and the set of
its clusters, accompanied by the various levels where the clusters are constituted.
Different classes may be constituted at a same level.

From now on, we shall refer to lower level modules as leaves, and to upper level
modules as nodes.

We denote by P the set of leaves (P might be for “process”) and assume that
n is the number of leaves (#P = n). Let HP be the function that associates each
level (indexed by a natural number) in the hierarchy to its corresponding partition.

Let’s define the following, with use of the Z Notation [24] (with a paraphrase in

natural language).

(POW is for PowerSet)

Partition(X) == {Y : POW(POW(X))|(∀A, B : Y •A∩B = {})∧
⋃

{C : Y } = X}.

(An element in partition(X) consists of a set of subsets of X that do not mutually
intersect and whose union is X.)
A hierarchy on P can be defined by means of a total function HP which fulfills
the following constraints. It is assumed there are h levels:

h : 1...(n − 1)
HP : 1...h → Partition(P ) (→ denotes a total function)

(each of the h levels in the hierarchy is associated – through HP – with one partition
of the set of leaves)
that make a hierarchy:

∀i, j : 1...h | i < j • (∀A : HP(i); B : HP(j) • A ⊆ B ∨ A ∩ B = {})

(any two clusters from distinct levels either are embedded or do not intersect)
with a unique root:

HP(h) = {P}·
Another (partial) function HC (which is a kind of HP inverse) associates each
cluster in the hierarchy to the level where it actually is constituted:

HC : POW(P ) �→ 1...h ( �→ denotes a partial function)

(some of the partitions of the set of leaves correspond – through HC – to one level
in the hierarchy).
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with the defining properties:

∀C : POW(P ); c : 1...h •
HC(C) = c ⇐⇒ (∀D : POW(P ); d : 1...h | D ∈ HP(d) ∧ C ⊆ D • d ≥ c)

(given cluster C, being constituted at level c in the hierarchy, any other cluster D
that contains C is constituted at level d higher than c)
and

dom(HC) =
⋃

{C : POW(P ) | ∃k : 1...h • C ∈ HP(k)}
(the domain of HC is made of those clusters that appear in one partition at some
level k in the hierarchy).

3. Communication model representation

We consider the communication relationship between modules. The communi-
cation model must deal with those modules that appear in the architecture model.
Communication corresponds to the occurrence of an event, and according to the
kind of analysis being done, communication may refer to such situations as signal
input/output, method invocation, procedure call or global variable sharing...

Our viewpoint is static, that is to say the communication relationship only
indicates potential communication. In fact, a static analysis of code does not
allow to capture the actual dynamic communication pattern. Then, we assume
that two modules “communicate” as soon as they can exchange data. Such a
point of view naturally leads to a symmetrical communication relationship (some
developments can be added to our proposal in order to cope with unsymmetrical
communication relationship, but this will not be addressed here). We also admit
some non determinism, which exists in various languages: when a sender module
does not precisely identify the receiver, then all possible candidates are supposed
to “communicate” and hence are in relation with the sender. The object of our
analysis is then an upper estimation of the actual communication model, in that
the actual communication relationship is included in our communication model.

Of course, our proposal remains valid for any more accurate communication
relationship, the underlying question being how and at what price the capture of
this more precise information could be achieved.

3.1. Graph representation of the communication model

According to our previous definition, the communication relationship is repre-
sented by a graph G(P, E). P is the set of leaves (modules) in the architecture
hierarchy. E is the set of edges (E : POW(P × P )). An edge exists between two
modules in P iff these two modules can communicate.

As said above, the communication is assumed to be symmetrical, hence G is
symmetrical too. We consider that reflexive edges do not make sense for our study,
then information about {x : P • G(x, x)} is considered as being irrelevant.
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The n×n incidence matrix of Graph G, will also be denoted by “G” (boldface
to avoid misinterpretation).

3.2. Hierarchical representation of the communication model

In order to allow a direct comparison between the architecture and the com-
munication model, we intend to represent Graph G by a tree. We shall first recall
some results about Co-Graphs which constitute a maximal class of graphs that
can exactly be represented by trees in a simple manner [25]. Then, we present
what we call the Canonical Decomposition of a graph. The Exact Canonical De-
composition (ECD) is a direct extension of the Co-Graph notion and does not
provide a tree representation, but the Approximated Canonical Tree Decomposi-
tion (ACTD) does. Defining the ACTD implies a previous reflection that results
in providing the set of leaves with a Euclidean structure.

We list below the main properties about Co-Graphs, ECD and ACTD. No
theoretical developments nor proofs are given, but illustrative examples are. See
the references for more information and proofs [1, 25].

3.2.1. Co-Graphs

The question of computing a maximal set of graphs that admit an accurate
tree representation has been studied during the 70’s. The study only considers
trees that can be built through algorithms with a polynomial complexity. Three
main families of solutions are known, namely Co-Graphs [25], TSP Graphs [18]
and Interval Graphs [4]. When graphs are symmetrical (which is the case), Co-
Graphs and TSP Graphs are equivalent. Our special interest in Co-Graph comes
from the very straightforward principle of their construction: it is based on vertex
grouping and edge factorisation. This proves to be most appropriate in the scope
of structured system design, since it amounts to a hierarchical decomposition of
the set of nodes, with similarity of communication pattern taken as the criterion
for grouping.

Property 1:
For any Co-Graph, there exists a tree representation (which is unique up to

simple syntactic rewriting rules). The tree representation allows a complete and
exact reconstruction of the original graph.

As an example, let’s consider three equivalent Co-Graph representations: a
graph, a tree with labeled nodes, and a formal expression (see Fig. 5). The follow-
ing definition indicates how the tree representation should be read, and then how
to re-build the original relationship from the tree or the formal expression.

Definition 1 (communication model tree representation). All elements in a clus-
ter have the same relationship (communication) with other elements out of the
cluster:

elements gathered at a node with label “+” are in relation (communicate with
one another).
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Figure 5. Equivalent Co-Graph representations.

Figure 6. Exact Canonical Decomposition (ECD).

Elements gathered at a node with label “−” are not in relation (do not com-
municate with one another).

These properties clearly indicate how the original graph may be rebuilt from its
Co-Graph.

The Co-Graph computation may also be viewed as a graph compression method.
For instance, the previous five vertices and five edges original graph reduces to a
graph with no edge and only one vertex labeled by: (((a + b) − d − e) + c).

3.2.2. Exact canonical decomposition

The Co-Graph definition can be extended to achieve an accurate compression
of any graph [1]. The result is the ECD which is a unique Exact Canonical De-
composition, that can no more be compressed and shows as a graph whose vertices
are Co-Graphs. The compressed graph edges account for mutual common inter-
communication between the vertices of the various Co-Graphs, while the inner
structure of the compressed graph vertices is interpreted according to the usual
Co-Graph semantics. So, the ECD computation appears as an optimal edge fac-
torisation (see Fig. 6).

3.2.3. Approximate canonical tree decomposition

Our ultimate purpose is to associate a hierarchy to any communication graph.
This not possible without going beyond the ECD. Further grouping of ECD ver-
tices is necessary to provide the tree structure we need, but consequently, an un-
avoidable loss of accuracy must be accepted. This loss is minimised. The grouping
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Figure 7. Approximated Canonical Tree Decomposition (ACTD).

process is based on clustering algorithms that exploit both a Euclidean and prob-
abilistic structure built on P (and then extended on POW(P ) in the natural way).

Let’s consider P as a set of n vectors in an n-dimensional space (say: F ). We
consider matrix G as the set of coordinates of P vectors onto the canonical basis
of F . Assuming that P is weighted by what we interpret as a probability measure
(say: {pi}(i = 1 : n)), there are strong arguments for using this probability to
build the Euclidean distance [1].

More precisely, let M be the n × n diagonal matrix induced by the probability
measure:

M = [δi,j pi] (i, j = 1...n).
Then, M defines a scalar product, hence a Euclidean distance on F :

∀x, y : F × F • < x; y >M= x′My ∧ d2(x; y) = (x − y)′M(x − y) ∧ ‖x‖2 = x′Mx

(x′ denotes x transposed).
Any hierarchical clustering algorithm [2,19] can take benefit from the Euclidean

structure and achieve a wise grouping of ECD vertices, using inertia criteria, and
finally providing a complete tree structure.

The Approximate Canonical Tree Decomposition (ACTD) is the ultimate tree
structure; it is not an exact decomposition of the initial graph, in that it does
no allow an exact reconstruction of G. Nevertheless, the ACTD is optimal, and
this optimality is extensively discussed in [1]. (As a matter of fact, there is a
functional equivalence between the inertia criterion and the risk of error during
the reconstruction process.) We shall not recall here the algorithms nor the theory
which founds the hierarchy calculus, but simply illustrate the main points and
focus on the quality metric, once the hierarchy is obtained.

For instance, the example in Figure 6, would reduce to the structure (ACTD) in
Figure 7. Thick lines indicate the genuine Co-Graphs in the ECD, whilst thin ones
indicate the clusters that have been made to complete the ACTD. The principle
is that nodes being close with respect to the Euclidean distance, will be gathered
in a cluster at a lower level than nodes being more distant. This also means that
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clusters in the hierarchy almost have the same properties than CoGraphs have
(cf. Def. 1).

4. Distance between hierarchies

When building the quality metric, we retain the hierarchical structure and ig-
nore the set of node labels (i.e. “+” and “−”). This is a natural point of view, since
we are not interested in rebuilding the original communication model, but simply
aim at confronting two hierarchies. Within this scope, node labels are irrelevant.
What is important is whether elements in a node do have similar communication
patterns, whatever these patterns effectively are.

Then, at this point, both the architecture and the communication model actu-
ally are represented by hierarchies on the same set of leaves.

In order to define a distance between hierarchies, let us first consider the ul-
trametric preorder relationship which is equivalent to any given hierarchy. In a
second step, we shall define a Euclidean distance on preorders, that will conse-
quently apply to the corresponding hierarchies.

4.1. Hierarchies, ultrametric distances and ultrametric preorders

4.1.1. Ultrametric distance

Ultrametric preorders are based on ultrametric distances. We shall first discuss
ultrametric distances and then derive the preorder definition. A common manner
for representing hierarchies is to use an ultrametric distance on the set of leaves.
The distance (UM) between two leaves is the rank of the lowest level where these
two leaves happen to be gathered in one cluster. The knowledge of the distance is
equivalent to that of the hierarchy.

∀x, y : P ; d : 1...h • UM(x, y) = d ⇐⇒
d = min({t : 1...h | (∃C : dom(HC(C) ∧ {x, y} ⊆ C) }). (1)

The distance UM is said to be ultrametric since it verifies a stronger property than
the usual triangular inequality, namely:

∀x, y, z : P • d(x, y) ≤ max(d(x, z), d(z, y)).

There is an equivalence between the set of hierarchies on P and the set of ultra-
metric distances on P × P [19].

When the elements in P are conveniently ordered, the ultrametric distance
matrix comes with the special form that appears in Figure 8, i.e.:

− beyond the diagonal, all elements in a row are in a non descending order,
and

− this side of the diagonal, all elements in a column are in a non ascending
order.
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UM a b c d e
a 0 3 3 3 3
b 3 0 1 1 2
c 3 1 0 1 2
d 3 1 1 0 2
e 3 2 2 2 0 bc = bd = cd ≺ be = ce = de ≺ ab = ac = ad = ae

Figure 8. Hierarchy, ultrametric distance and ultrametric preorder.

4.1.2. Ultrametric preorder

A preorder is a binary relationship that proves to be both reflexive and transi-
tive but not necessarily anti-symmetric. So, orders are anti-symmetric preorders.
Consequently, a preorder is identical to a set of ordered equivalence clusters. Each
equivalence cluster is made of elements verifying both x ≺ y and y ≺ x (where “≺”
is the preorder symbol) [19].

The set of ultrametric preorder relationships on P × P is equivalent to the set
of hierarchies on P . In fact the preorder relationship definition is deduced from
the ultrametric distance definition:

∀x, y, z, t : P • (x, y) ≺ (z, t) ⇐⇒ UM(x, y) ≤ UM(z, t).

Any preorder relationship can be represented by its graph matrix. As an illus-
tration, consider the hierarchy with 5 leaves together with its corresponding ul-
trametric distance and preorder in Figure 8, and the corresponding matrix of the
preorder relationship in Figure 9.

4.2. A Euclidean distance on preorders

4.2.1. Distance definition

As announced above, we intend to derive a distance between hierarchies from
a distance on the corresponding preorders. There is a simple manner to quantify
the discrepancy between two preorders which is to compute the number of their
inversions. One inversion occurs when two pairs of elements are ordered differently
in one preorder and in the other. Then, the semantics of the discrepancy are quite
explicit. Let us give some formal definitions below.

Let H1 and H2 be two hierarchies on P , and let O1 and O2 be the two corre-
sponding preorders on P ×P . The preorder relationships respectively are denoted
by the following symbols: ≺O1 and ≺O2 .

A formal definition of the discrepancy – say “Inv” – between preorders is given
below:

Inv(O1, O2) = #{p, q : P × P | p ≺O1 q ∧ p �≺O2 q}·
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Figure 9. Matrix of the preorder relationship between pairs in P .

An algebraic equivalent definition can be given, which uses the matrices of the
preorders (here also denoted by bold face symbols O1 and O2):

Inv(O1, O2) =
n∑

i=1

n∑

j=1

O1(i, j)(1 − O2(i, j)) +
n∑

i=1

n∑

j=1

O2(i, j)(1 − O1(i, j))

=
n∑

i=1

n∑

j=1

(O1(i, j) − O2(i, j))2

=< O1 − O2,O1 − O2 >HS

= ‖O1 − O2‖2
HS

where 〈X, Y 〉HS denotes the Hilbert Schmidt scalar product upon bilinear Rn

operators (e.g.: n× n matrices) [12,17]. As a matter of fact, 〈X, Y 〉HS equals the
trace of the product of X and Y transposed: trace(X × Y ′).

Hence comes the following:

Inv(O1, O2) = trace((O1 − O2) × (O1 − O2)′)

(where the prime denotes matrix transposition).
Consequently, counting the number of inversions between two preorders is equiv-

alent to defining a Euclidean distance.

Definition 2 (Euclidean distance between hierarchies). The discrepancy between
two hierarchies is defined as the square root of the number of inversions between
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the two corresponding preorders.

d(H1, H2) =
√

Inv(O1, O2) =
√

trace((O1 − O2) × (O1 − O2)′)

This discrepancy measure actually is a Euclidean distance upon the set of hierar-
chies.

The whole process leading to the metric definition is summed up in the following
section.

5. Quality metric, definition and scale

5.1. Quality metric definition

At this point, let us recall below the scheme of our reasoning, for providing a
rough quality metric to a modular system specification or implementation.

Definition 3 (Quality measurement process).
(i) We define the quality of a specification as the degree of coherence between

the architecture model (Arch) and the communication model (Comm).
(ii) Both architecture and communication models respectively are accurately

represented by hierarchies (H1,H2) and preorders (O1, O2).
(iii) The number of inversions (Inv) between two preorders is a Euclidean dis-

tance (d).
(iv) This Euclidean distance is the rough quality metric(Rgh QUAL) we pro-

pose between the architecture model and the communication model.

Rgh QUAL(Arch, Comm) = d(H1, H2) =
√

Inv(O1, O2)

As a matter of fact, a good quality level is indicated by a low value of the quality
metric Rgh QUAL. It would be straightforward to propose any decreasing function
to make things perhaps more natural (i.e. a good quality level denoted by a high
metric value). We shall not discuss this point, and prefer to focus on the issue of
scaling the rough metric. In fact, a rough metric is convenient for ranking several
systems, but is of poor use for making an absolute opinion about the quality level
of a particular specification.

A rough metric needs to be scaled before being of practical use. This scaling is
addressed in the next section.

5.2. Simulation for metric scaling – Stochastic approach

The scaling we propose is obtained by a study of the probability distribution of
the distance between two random hierarchies drawn from a given population.

The sampling process, the stochastic model, and possible constraints on the
type of the random hierarchies are specified hereafter.
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5.2.1. Stochastic model

The first obvious point when computing the distance between two hierarchies
in the way we propose, is that operators, matrices and preorders necessarily are to
be defined upon the same set of elements. Then the two hierarchies have identical
sets of leaves.

Secondly, the type of a hierarchy is characterised by its number of levels, and
also by the distribution of children among the nodes of each level.

The most simple stochastic model assumes a uniform distribution of the number
of levels (ranging in 2...(n− 1)), and a uniform distribution of the children among
the nodes. Under such conditions, stochastic arguments may advocate for assign-
ing an asymptotic Gaussian model to the square distance between two random
hierarchies having an identical set of leaves.

This stochastic model is made more precise below. We use it in two different
ways.

On the one hand, we refer to the stochastic model to simulate a set of random
hierarchies and then observe empirical estimates for the distribution of the quality
metric (empirical distribution model and its estimated parameters) between these
random hierarchies. These parameters and the empirical distribution provide us
with likelihood estimates that eventually allow to scale the rough metric. This
is a so-called distribution-free approach, since no assumptions are made upon the
random variables distribution.

On the other hand, we assume a Gaussian model for the metric distribution.
In this case, the simulation process only is of use for estimating the mean and
standard deviation of the Gaussian random variable, and then build confidence
intervals, critical regions or likelihood estimates that finally found the decision
process.

5.2.2. Simulating process

The simulating process embodies the stochastic model above. More precisely,
in order to detail the operational way for providing random hierarchies, we shall
proceed in two steps:

− generate a random binary hierarchy on the set of leaves;
− at each level, nodes are provided with the uniform probability distribution,

and the two elements that are to be joined are randomly drawn from the
set of candidate nodes;

− condense the binary tree at random levels.
A possibly constrained number of levels (according to the stochastic model the
analyst has chosen) is randomly selected, and the corresponding actual levels where
the hierarchy will be condensed also are randomly drawn from the set of existing
levels); from this process, results the final random hierarchy.

Let H(n, l1, l2) be the set of all hierarchies on n leaves, with a number of lev-
els ranging within l1...l2. Of course the following constraints must be verified:
1 < l1 < l2 < n. H(n, l1, l2) – as well as the l1...l2 interval – are provided with the
uniform distribution.
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5.2.3. Quality scaling – Normalised quality index

Let Harch (resp. Hcomm) be the hierarchy that embodies the actual architec-
ture model (resp. communication model) in the specification under analysis. Then
let us assume that the rough metric, i.e. the observed distance between Harch and
Hcomm effectively is d(Harch,Hcomm). Low values of d(Harch,Hcomm) indicate
a high quality level for the specification.

Let Hrand1 and Hrand2 be two non dependant random hierarchies
in H(n,Constr). Hierarchies on n leaves, with possible additional constraints
(Constr), for instance expressing that Hrand1 and Hrand2 respectively are of types
similar to those of Harch and Hcomm.

We shall assume here that the type of a hierarchy is the number of levels.
Stronger or weaker constraints could be imposed instead.

The Scaled Quality Metric: Scl QUAL(Harch, Hcomm) is defined as the prob-
ability that two such random hierarchies should not happen to be closer to one
another (with respect to the Euclidean distance d) than Harch and Hcomm actu-
ally are.

Definition 4 (Scaled quality metric). (Simulation approach.)

Scl QUAL(Harch, Hcomm) =
Prob( d(Hrand1, Hrand2) > Rgh QUAL(Harch,Hcomm) )

Once the formal definition of the Scaled Quality Metric is given, operational es-
timates and computational methods should be given too. This is done by analysing
simulation samples. A first approach is distribution-free, and another refers to the
Gaussian distribution.

Distribution-free approach: Scl QUALˆ

Let Dsim be the random variable that equals: d(Hrand1, Hrand2).
Let S = {dsimi

}(i : 1...s) be the sample of the s observations of Dsim, resulting
from a non exhaustive random drawing process from H(n, l1, l2). Where l1 and l2
are the constraints on the number of levels such that:

l1 = # dom HP(Harch) = # dom HP(Hrand1)

(we assume l1 is less than l2, otherwise indices should be permuted)

and l2 = # dom HP(Hcomm) = # dom HP(Hrand2).

The rate of occurrence of the event [d(Hrand1, Hrand2) > d(Harch, Hcomm)] is
an estimate of Scl QUAL(Harch,Hcomm). This estimate will be denoted by:
Scl QUALˆ (Harch,Hcomm).

In order to judge of the significance of d(Harch,Hcomm), we shall also compare
it to characteristic values such as: min(S), mean(S) and max(S).

In addition to the previous point estimates, asymptotic confidence intervals may
be given for more precise information.
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Definition 5 (Scaled quality estimate).

Scl QUALˆ(Harch, Hcomm) =

Freq( d(Hrand1, Hrand2) > Rgh QUAL(Harch,Hcomm) )

Where Freq is for “observed frequency”, and where Scl QUALˆ is the estimate
for Scl QUAL.

Assuming that d2(Harc,Hrand) is Gaussian ): Scl QUAL*

When a Gaussian model is assumed for the square distance – say N(µ, σ) –
its parameters are estimated as usual, from the simulation sample of size s, and
Scl QUAL can then directly be computed with a reference to the Student law with
s − 3 degrees of freedom.

Definition 6 (Scaled quality metric). (Gaussian model.)

Scl QUAL*(Harch, Hcomm) = Prob(Ts−3 >(d2(Harch, Hcomm) −m)/S)

Where Ts−3 represents the Student distribution, and m (resp S) the empirical
estimates for µ (resp. σ). In case s is important (s > 50), the Student law can be
approximated by a standard Gaussian distribution N(0, 1).

Let us note that the metric Scl QUAL* exactly refers to the same event as
Scl QUALˆ does, namely [d(Hrand1, Hrand2) > d(Harch, Hcomm)], but in order
to use the Gaussian hypothesis, both terms in the inequality have been squared
and normalised, so that the final Student random variable appears in the LHS of
the inequality.

6. Application example: SDL

The following example is about the “Production Cell” case study, which is a
well known benchmark, among the formal specification community [20]. What is
presented below is a simplified version, since our aim only is to demonstrate our
proposal on an example, and in no way to achieve an actual and complete study
about the quality of the Production Cell specification.

The original SDL specification has been achieved using Verilog’s GEODE tool.
For our purpose, all information about the production Cell architecture and com-
munication models have been captured by use of a custom parser applied on SDL-
PR sources. SDL-PR is a textual counterpart of the usual graphical SDL-GR
specification. SDL-PR is generated on demand by both of the main SDL specifi-
cation environments: Verilog’s GEODE and Telelogic’s TAU.

For analysing the quality of the Production Cell specification, the analyst is
free to select a convenient granularity: he may deal with elementary processes
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Figure 10. Cell 0 and Cell 1 common System Overview Diagram.

and procedures or conversely choose to deal with prior aggregates (i.e. blocks or
sub-blocks). Here, for sake of simplicity, we chose to consider the processes as
elementary modules.

6.1. Case study: production cell

We thank Prof. Lindner [20] who provided us with a complete SDL specification
of the Production Cell.

There are two specifications: Cell 0 and Cell 1. Both do share the same archi-
tecture model, but the communication models are different. That is to say Cell 0
and Cell 1 are associated to a sole hierarchy (namely Cell.arc) that embodies the
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Figure 11. Cell 0 and Cell 1 common Architecture Model (Harch).

specification architecture. Figure 10 is a copy of the System Overview Diagram
(SOD) which is provided by the SDL design tools as a global architecture graphical
representation. The SOD is also described by its textual specification in SDL PR.
We have designed an analyser that computes our architecture model from the tex-
tual specification of the SOD. Figure 11 shows the resulting hierarchy, where the
processes are the leaves, and where the Cell 0 SDL System is the root node.

In contrast, Cell 0 and Cell 1 communication models are different. Here,
we shall present only Cell 0 communication model in detail (cf. Fig. 12 for
Cell 0.com). Information and results about Cell 1 will be mentioned as comple-
mentary examples.

6.2. Production cell architecture model

According to the System Overview Diagram (SOD), the Production Cell system
consists of 18 processes which are the leaves of Harch hierarchy in Figure 11. Both
SOD and Harch have 5 levels. The nodes of Harch correspond to blocks and sub-
blocks in the SDL specification. For instance: Block Robot, Block Press, Block
Crane, Blocks Deposit and Feed Belt, and Block Table Manager, that can easily
be identified in Figure 11 at level 3. The concrete semantics of the leaves and
nodes are not really important here, and only the node names are given.

There are in fact several options about the way to translate a SOD into an
architecture model (e.g.: which nodes to be selected as leaves? whether applying
a top-down or a bottom-up propping up of levels?). All this is not discussed here,
since it does not interfere with the grounds of the method.
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6.3. Cell communication model (ACTD)

Extracting the communication model from SDL sources is not as straightforward
as extracting the hierarchical structure from the SOD. We do not intend to give
the extensive formal definition of how communication is specified and captured in
this problem, but simply provide basic indications and rules to outline our point
of view. (The complete formal definitions are given in our tool user’s manual.)

− A communication between two blocks is acknowledged in case inner ele-
ments do communicate.

− Two processes communicate in case they are linked by a path through
channels and signal routes, with at least one signal exchanged.

− Procedures are taken out of their parent module to constitute isolated
modules.

− A procedure communicates with its parent.
− A process communicates with the procedures it calls.
− Procedures in a same process communicate if they share global variables.
− ...

All of these pieces of information, about communication between modules are
drawn from SDL-PR source, by parsing SDL channels and signal route declara-
tions, signal input and output, procedure calls and variables names within SDL
processes and procedures. However, it is clear that dynamic aspects such as pro-
cess creation and output with Pid expressions cannot be completely handled in a
deterministic manner. We propose several alternative choices according to what
effort is accepted to be paid for code analysis. An ultimate attitude would be to
scan traces of system behaviour for achieving a full capture of dynamic communi-
cation.

As said above, the whole SDL specification is necessary to build the commu-
nication model. So it is not feasible here to present with all the system, block,
sub-block and process diagrams in order to detail the correspondence between
the SDL specification and the resulting communication graph between processes,
which captures the communication model. So, only the final communication graph
Cell 0.com is presented in Figure 12.

The first step in the analysis of the communication model Cell 0.com is to
compute the Exact Canonical Decomposition (ECD) (Fig. 13) which allows to
recognise three non trivial Co-Graphs, with only one level and labeled by “−”.
The set of all Co-Graphs (i.e. including trivial singleton Co-Graphs) is of size 10.

Then, computing the Approximated Canonical Tree Decomposition (ACTD)
leads to an 8 level hierarchy. The Hcomm hierarchy in Figure 14 is the best one
for representing the communication model.

6.4. Results and discussion

The question is to estimate the quality of Cell 0 specification, and according to
our approach, the point is to determine whether the architecture model Cell 0.arc
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Figure 12. Cell 0.com: Process Communication Graph
(as captured from SDL PR source specification).

and the communication model Cell 0.com are consistent. Harch and Hcomm hi-
erarchies respectively account for Cell 0.arc and Cell 0.com

The following numerical results have been computed for Harch and Hcomm.

6.4.1. Rough metric

Rgh QUAL0 computes the Euclidean distance between the architectural and the
communication models. It is in fact the square root of the number of inversions
between the two preorder which are equivalent to Harch and Hcomm respectively.

Rgh QUAL 0 = Rgh QUAL (Cell.arc, Cell 0.com)

= d(Cell.arc, Cell 0.com)
= 70.35



384 J.-Y. LAFAYE AND G. LOUIS

Figure 13. Exact Canonical Decomposition (ECD) of the Com-
munication Graph for Cell 0.

Figure 14. Approximate Canonical Tree Decomposition
(ACTD) of the Communication Graph for Cell 0 (i.e.: Hcomm).
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I.e.: 4949 observed inversions out of at most the 46665 = 18×17×(18×17−1)/2
“possible” ones for hierarchies with 18 leaves. This leads to a 0.106 rough ratio.
As a matter of fact, there is no real convincing argument to discuss such a raw
value. Of course, the Rgh QUAL 0 ratio ranges within [0, 1], but the distribution
of expected ratio values for random hierarchies is not uniform, hence interpreting
the rough ratio value is not accurate. Scaling is the solution, and scaled metrics
examples are given hereafter.

6.4.2. Scaled metrics

Distribution free approach

The first scaling presupposes no assumption on underlying statistical models,
i.e. we adopt a distribution free approach. The following results have been ob-
tained by simulating 1000 occurrences of a random pair of hierarchies – namely
(Hrand1, Hrand2) – in H(18, 5, 5)× H(18, 8, 8), i.e.: 18 leaves, and respectively 5
and 8 levels according to the types of the architecture Harch and communication
HComm hierarchies. For all these random pairs, we computed the Rgh QUAL
metric, and so obtained the empirical Rgh QUAL(Hrand1, Hrand2) distribution.
We then computed the rate of occurrence of a simulated value exceeding the ob-
served one: Rgh QUAL 0.

This leads to the Scl QUALˆ scaled metric value:

Scl QUALˆ (Cell.arc, Cell 0.com) = 0.973
CI(95%): [0.963; 0.983]
(simulated sample size: s = 1000)

The computation of the empirical distribution of Rgh QUAL moreover allows
us to compute a – say 95% – confidence interval in addition of the point estimate
Scl QUAL.

Here we are provided with a most interesting information. In fact, we may
ensure that less than three times out of one hundred, two random non dependant
hierarchies happen to be closer to one another than the two hierarchies under
study: Harch and Hcomm.

That is to say Harch and Hcomm are very similar, and hence Cell 0.arc and
Cell 0.com are very consistent. The Cell 0 specification shows a very high quality
level as regards architectural and communication models consistency concerns.
It is obvious that the analyst has wisely and strongly worked in order to build
a consistent specification with no haphazard features. Such a precise piece of
information was hidden by the sole rough metric.

The minimal, mean and maximal values for the simulated Scl QUALˆ bring
some additional information: the observed Rgh QUAL 0 value is far under the
mean value for random hierarchies.
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min{d(Hrand1, Hrand2)} = 61.37

mean{d(Hrand1, Hrand2)} = 91.67

max{d(Hrand1, Hrand2)} = 107.67

Gaussian model assumption
The above simulating process can be lightened, provided a prior probabilistic

(e.g.: Gaussian) model is assumed for the squared Rgh QUAL random variable,
in case the two hierarchies in hand are themselves assumed random and non de-
pendant.

With such an approach, its only necessary to obtain estimates for the mean and
standard deviation of the Rgh QUAL variable for random hierarchies. The results
are the following:

mean estimate for d2(Hrand1,Hrand2) = 8469.2

standard deviation estimate for d2(Hrand1,Hrand2) = 1725.5

Scl QUAL*(Cell.arc, Cell 0.com) = Prob(T15 > −2.04) = 0.970

One can check that the two approaches above lead to scaled metrics values that are
very close to one another. More precisely, the Scl QUAL* value clearly lies within
the 95% confidence interval computed for Scl QUALˆ, so the observed discrepancy
between the two estimate actually is statistically not significant.

We carried out a similar analysis on the alternative Cell 1 specification. As
complementary information, we present the results we obtained without going
into the specification details.

Rgh QUAL 1 = Rgh QUAL(Cell.arc, Cell 1.com)

= d(Cell.arc, Cell 1.com) = 71.23

Scl QUALˆ (Cell.arc, Cell 1.com) = 0.969

with CI(95%): [0.958; 0.980]

Scl QUAL*(Cell.arc, Cell 1.com)

= Prob(T15 > −1.98) = 0.967

d(Cell 0.com,Cell 1.com) = 29.66
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It can be seen, (due to the wide intercept of confidence intervals for the qual-
ity level), that there is no significant difference between the quality of Cell 0 and
Cell 1, both are excellent. As a confirmation, the distance between the two commu-
nication models Cell 0.cm and Cell 1.com has been computed as the number of in-
versions between the preorders respectively associated to Hcomm 0 and Hcomm 1.
The observed result of 29.66 is extremely low. The probability for obtaining such
a pair of close hierarchies by chance is under 1/10 000. So, other quality items but
consistency, should be put forth in order to decide which is better , between Cell 0
and Cell 1 specifications.

However, it is important to understand that the small number of inversions
between the hierarchies associated with Cell 0.com and Cell 1.com does not nec-
essarily imply that the communication models are similar. This strictly means that
the hierarchies are close to one another. In fact the underlying architectures, that
organise and group together processes that have similar communication patterns
are nearly the same, but as we decided not to retain the labels (“+” and “−”)
in the communication models (since they have no architectural counterpart), it
should not be deduced that the communication patterns are equal in Cell 0 and
Cell 1 (and they actually are not). Direct equality between communication graphs
is out of concern for quality, the point actually is that, for a good quality level,
groups of processes that appear in an architectural hierarchy should have similar
communication patterns, whatever these patterns are, and this precisely is the case
in our approach. We eventually conclude that if communication models that are
similar, naturally have similar quality levels, on the other hand, distinct quality
models may be of equivalent quality, i.e. may be both consistent with a given
architecture.

7. Conclusion

All we have proposed in this paper treats of consistency, considered as an aspect
of the quality in software specifications. We addressed a special case of consistency,
which concerns the software architecture and the communication models. All items
necessary to carry on the quality analysis can be automatically captured from the
source documents (specification or code). The basic constraint is that a hierarchi-
cal architecture model makes sense. This is the case in modular specifications and
programs; this can also be the case in an object oriented approach, by means of
an embedded package organisation.

The rough quality metric is computed on mathematical representations (pre-
orders and hierarchies) that strictly are either equivalent to the initial information
(The ECD is equivalent to the communication graph) or else optimal estimates
(ACTD is the best tree approximation of the communication graph). The number
of inversions between preorders, which is the metric we propose, obviously is a
quality factor that directly accounts for the consistency between the architecture
and the communication model.



388 J.-Y. LAFAYE AND G. LOUIS

The simulation process which is founded on explicit stochastic hypothesis al-
lows scaling the rough metric. The result is an absolute metric, in that it depends
neither on the size factors nor on other contextual parameters. Its semantics
are expressed in terms of the probability that a given quality level could have
been obtained by a blind specification process. In the Production Cell example
where Scl QUALˆ is 0.973, this means that among 1000 random architectures,
the software engineer chose one among the 27 best (i.e. among the 27 closest
to the communication model, and hence among the 27 most consistent ). This
seems to appear as a convincing quality assessment. It might be objected that
the stochastic estimates we presented are in some sense subject to a bias, in
that we consider all possible hierarchies for drawing the random samples, and
do not limit ourselves to hierarchies that could actually be implemented. Anyway,
our strategy could easily be adapted in order to take any additional constraint
into account during the simulation process, as soon as this constraint is explicitly
formulated.

In case the quality is very high, the distribution-free estimates became not
precise enough, unless very important samples are used. In fact, very low prob-
abilities for rare events are to be estimated. Then referring to a Gaussian model
is a solution which only needs estimates of the mean and standard deviation of
the distance between random hierarchies. Under a Gaussian hypothesis, accurate
estimates can be obtained even on small samples.

The aim of this paper not only is to present with a particular metric and its
theoretical basis, but also to suggest that what we propose is not a stand alone
result. This is a part of an integrated strategy for quantifying and improving the
consistency of a specification. Let us give below three examples of such possible
developments.

− Here, only global aspects have been addressed. No attention has been
paid to possible improvements of the specification under analysis (one
must grant that the quality of the Production Cell specification example
already is high). It is clear that a local analysis can be achieved, in order
to point out what precise parts of the hierarchy are responsible for a high
number of inversions. Each level in the hierarchy provides with a partition
of the set of leaves, and analysing the quality of such partitions – in a
completely consistent way with the one presented here – was the subject
of our referenced previous works.

− We only discussed one stochastic model, for sake of simplicity (e.g.: ref-
erence to a pair of random hierarchies of given types). Alternative ap-
proaches could be attempted. For instance, one could assume that the
communication model and its hierarchy are given, and that only one hi-
erarchy is random among the set of hierarchies having the same type as
that of the architecture model. A homologous approach could set the ar-
chitecture model hierarchy while the communication model is assumed to
be random.
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Constraints on the types of partitions could be varied (either the number of levels
being assigned to a special value or ranging in an interval, setting several distri-
butions of the nodes among the levels). Hierarchies could be squashed, possibly
prohibiting gaps between consecutive node levels...

All such alternatives must not be seen as prejudicial to the method nor bringing
looseness or imprecision. On the contrary, since models can explicitly be specified,
they do increase the control by the analyst, and allow to judge of the robustness
of the results.

− The rough metric we propose proves to be equivalent to a Euclidean dis-
tance. This important point has not been exploited here. The matter is
that a Euclidean distance is liable to provide optimal planar layouts (mul-
tidimensional scaling), where the mutual distances between points on the
diagram are proportional to the actual distances between the items under
study. A motivating application for this, is that of analysing the quality
of a set of specifications. Since the metric is absolute, even heterogeneous
specifications can be confronted. Representing the set of specifications
with their mutual distances on one diagram, allows to reach synthetic
conclusions, by pointing out different clusters of specifications having a
similar quality level.

Moreover, analysing the set of mutual distances by means of factor analysis [12,17]
is a mean to exhibit underlying exogenous indirect quality factors which explain
that the within cluster quality is homogeneous while the between cluster quality
is heterogeneous.

At last, we believe that the way we defined our quality metric for comparing
the architecture and the communication model may be considered as a pattern for
creating quality metrics for other consistency aspects.

The whole process that founds the quality metrics Rgh QUAL and Scl QUAL
could be adapted in other contexts. A major difficulty is to find one mathematical
super-representation that accurately embodies both aspects of the specification,
the consistency of which is to be quantified. Another is to find a reasonable dis-
tance on elements of this super-representation that has clear semantics, and can
be easily computed. The final scaling process (through simulation) is straightfor-
ward and directly adaptable, as soon as the stochastic models have been clearly
specified and founded.
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