
RAIRO-Inf. Theor. Appl. 39 (2005) 325-342

DOI: 10.1051/ita:2005021

HIERARCHIES OF WEAKLY MONOTONE RESTARTING
AUTOMATA ∗

Frantǐsek Mráz1 and Friedrich Otto2

Abstract. It is known that the weakly monotone restarting automata
accept exactly the growing context-sensitive languages. We introduce
a measure on the degree of weak monotonicity and show that the lan-
guage classes obtained in this way form strict hierarchies for the various
types of deterministic and nondeterministic restarting automata with-
out auxiliary symbols.

Mathematics Subject Classification. 68Q10, 68Q42, 68Q45.

1. Introduction

The motivation for introducing the restarting automaton in [2] was the desire
to model the so-called analysis by reduction of natural languages [10, 11]. This
analysis consists of a stepwise simplification of a sentence in such a way that the
syntactical correctness or incorrectness of the sentence is not affected. After a finite
number of steps either a correct simple sentence is obtained, or an error is detected.
It turned out that the restarting automaton thus obtained can handle a class of
languages that is much broader than the class CFL of context-free languages.

A restarting automaton, or RRWW-automaton, M is a device with a finite state
control and a read/write window of a fixed size. This window moves from left
to right along a tape containing a string delimited by sentinels until M ’s control
decides (nondeterministically) that the contents of the window should be rewritten

Keywords and phrases. Restarting automata, weak monotonicity, hierarchies.

∗ The first author was partially supported by the Grant Agency of the Czech Republic,
Grant-No. 201/02/1456 and Grant-No. 201/04/2102. The work of the second author was
supported by a grant from the Deutsche Forschungsgemeinschaft.
1 Department of Computer Science, Charles University, Malostranské nám. 25,
118 00 Praha 1, Czech Republic; mraz@ksvi.ms.mff.cuni.cz
2 Fachbereich Mathematik/Informatik, Universität Kassel, 34109 Kassel, Germany;
otto@theory.informatik.uni-kassel.de

c© EDP Sciences 2005

326 F. MRÁZ AND F. OTTO

by some shorter string. After a rewrite, M continues to move its window to the
right until it either halts and accepts, or halts and rejects, which means that it has
reached a configuration from which it cannot continue, or restarts, that is, it moves
its window to the leftmost position, enters the initial state, and continues with the
computation. Thus, each computation of M can be described by a sequence of
cycles.

Also some restricted variants of the restarting automaton have been considered.
There are those variants that only use the letters from the input alphabet, while
in general a restarting automaton can use a finite number of auxiliary symbols in
its rewrite steps. Further, a monotonicity property was introduced for RRWW-
automata, which is based on the idea that from one cycle to the next in a computa-
tion the actual place where a rewriting is performed must not increase its distance
from the right end of the tape. It turned out that the monotone RRWW-automata
(with auxiliary symbols) characterize the class CFL, and that various restricted
versions of deterministic monotone RRWW-automata (with or without auxiliary
symbols) characterize the class DCFL of deterministic context-free languages [3].

In [5,6] the class CRL of Church-Rosser languages was introduced motivated by
the fact that membership for these languages is decidable in linear time. In [9] it
was then shown that the deterministic RRWW-automata (with auxiliary symbols)
give another characterization of CRL. For the growing context-sensitive languages
GCSL [1], which can be seen as the nondeterministic variants of the Church-Rosser
languages [7], it was observed in [8] that they form a proper subclass of the class
L(RRWW) of languages that are accepted by RRWW-automata.

In order to obtain a characterization of GCSL in terms of restarting automata,
a relaxation of the monotonicity condition for RRWW-automata was introduced
in [4]. Let c be a non-negative integer. An RRWW-automaton M is called weakly
c-monotone if in any two consecutive rewrite steps of any computation of M the
places of rewriting can increase their distances from the right end of the tape by
at most c positions. An RRWW-automaton M is called weakly monotone if there
exists a non-negative integer c such that M is weakly c-monotone. The weakly
monotone RRWW-automata (with auxiliary symbols) recognize exactly GCSL [4].

Here we study the influence of the degree of weak monotonicity on the expressive
power of the various models of restarting automata. We focus on the restarting
automata with the most transparent computations – those without auxiliary sym-
bols. Further motivation for studying weak monotonicity comes from linguistics.
The degree of weak monotonicity is a measure of across how many symbols (words
of a sentence) already read before a reader must step back to the left during an
analysis of a sentence in a certain (natural) language.

In the next section we restate the main definitions in short, and we prove that
weak monotonicity is a decidable property of restarting automata. In Section 3 we
show that by increasing the degree of weak monotonicity the expressive power of all
considered variants of restarting automata without auxiliary symbols is increased.
Section 4 shows that all the hierarchies obtained differ from one another, and
Section 5 contains some concluding remarks.

HIERARCHIES OF WEAKLY MONOTONE RESTARTING AUTOMATA 327

2. Definitions

The following definition differs slightly from the one given in the literature
(cf., e.g., [3, 9]), but the two definitions are easily seen to be equivalent to each
other.

A restarting automaton, RRWW-automaton for short, is a one-tape machine
that is described by an 8-tuple M = (Q, Σ, Γ, c, $, q0, k, δ), where Q is the finite set
of states, Σ is the finite input alphabet, Γ is the finite tape alphabet containing Σ,
c, $ �∈ Γ are symbols that are used as delimiters for the left and right border of
the work space, respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of the
read/write window, and

δ : Q × PC(k) → P
((

Q ×
(
{MVR} ∪ PC≤(k−1)

))
∪ {Restart, Accept}

)

is the transition relation. Here P(S) denotes the powerset of the set S, and PC(k)

is the set of possible contents of the read/write window of M , where

PC(i) :=
(
c·Γi−1

) ∪ Γi ∪ (
Γ≤i−1·$) ∪ (

c·Γ≤i−2·$)
(i ≥ 0),

and

Γ≤n :=
n⋃

i=0

Γi and PC≤(k−1) :=
k−1⋃
i=0

PC(i).

The transition relation describes four different types of transition steps:
(1) A move-right step is of the form (q′, MVR) ∈ δ(q, u), where q, q′ ∈ Q and

u ∈ PC(k), u �= $. If M is in state q and sees the string u in its read/write
window, then this move-right step causes M to shift the read/write window
one position to the right and to enter state q′. However, if the contents u
of the read/write window is only the right border marker $, then no shift
to the right is possible.

(2) A rewrite step is of the form (q′, v) ∈ δ(q, u), where q, q′ ∈ Q, u ∈ PC(k),
u �= $, and v ∈ PC≤(k−1) such that |v| < |u|. It causes M to replace the
contents u of the read/write window by the string v and to enter state q′.
Further, the read/write window is placed immediately to the right of the
string v. However, some additional restrictions apply in that the border
markers c and $ must not disappear from the tape nor that new occurrences
of these markers are created. Further, the read/write window must not
move across the right border marker $, that is, if v ends in $, then the
read/write window is placed on the $-symbol.

(3) A restart step is of the form Restart ∈ δ(q, u), where q ∈ Q and u ∈ PC(k).
It causes M to move its read/write window to the left end of the tape, so
that the first symbol it sees is the left border marker c, and to reenter the
initial state q0.

(4) An accept step is of the form Accept ∈ δ(q, u), where q ∈ Q and u ∈ PC(k).
It causes M to halt and accept.

328 F. MRÁZ AND F. OTTO

If δ(q, u) = ∅ for some q ∈ Q and u ∈ PC(k), then M necessarily halts, and we say
that M rejects in this situation.

A configuration of M is a string αqβ, where q ∈ Q∪{Accept}, and either α = ε
and β ∈ {c} · Γ∗ · {$} or α ∈ {c} · Γ∗ and β ∈ Γ∗ · {$}; here q ∈ Q represents
the current state, αβ is the current contents of the tape, and it is understood
that the read/write window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0cw$, where w ∈ Γ∗; if w ∈ Σ∗,
then q0cw$ is an initial configuration. A configuration containing the “command”
Accept is called an accepting configuration, and a configuration of the form αqβ,
where the read/write window contains the prefix β1 of β and δ(q, β1) = ∅, is called
a rejecting configuration. The accepting and the rejecting configurations together
are the halting configurations of M .

Obviously, each computation of M proceeds in cycles. Starting from an initial
configuration q0cw$, the head moves right, while move-right and rewrite steps are
executed, until finally a restart step takes M back into a restarting configuration
of the form q0cw1$. By q0cw$ �c

M q0cw1$ we denote the execution of a complete
cycle, and �c∗

M denotes the reflexive and transitive closure of this relation. It is
required that in each cycle exactly one rewrite step is executed. As by a rewrite
step the contents of the tape is shortened, only a linear number of cycles can be
executed within any computation. That part of a computation of M that follows
after the execution of the last restart is called the tail of the computation. It
contains at most a single application of a rewrite step.

An input w ∈ Σ∗ is accepted by M , if there exists a computation of M which
starts with the initial configuration q0cw$, and which finally ends with executing
an accept step. By L(M) we denote the language accepted by M , and L(RRWW)
will denote the class of languages that are accepted by RRWW-automata.

It is easily seen that each RRWW-automaton can be modified such that it
makes an accept or a restart step only when it sees the right border marker $ in
its read/write window. This means that in each cycle of each computation and
also during the tail of each accepting computation the read/write window moves
all the way to the right before a restart is made, respectively, before the machine
halts and accepts.

Based on this fact each cycle (and also the tail) of a computation of an RRWW-
automaton M consists of three phases. Accordingly, the transition relation of an
RRWW-automaton can be described through a finite sequence of so-called meta-
instructions [8] of the form (R1, u → v, R2), where R1 and R2 are regular lan-
guages, called the regular constraints of this instruction, and u and v are strings
such that |u| > |v|, where u → v stands for a rewrite step. On trying to execute
this meta-instruction M will get stuck (and so reject) starting from the configura-
tion q0cw$, if w does not admit a factorization of the form w = w1uw2 such that
cw1 ∈ R1 and w2$ ∈ R2. On the other hand, if w does have a factorization of
this form, then one such factorization is chosen nondeterministically, and q0cw$
is transformed into q0cw1vw2$. In order to be able to also describe the tails of
accepting computations we use meta-instructions containing accept instructions

HIERARCHIES OF WEAKLY MONOTONE RESTARTING AUTOMATA 329

of the form (c · R · $, Accept), where the strings from the regular language R are
accepted by M in tail computations.

We illustrate the above definition by an example.

Example 2.1. Let Lexp := { a2n | n ≥ 0 }. We present an RRWW-automaton
Mexp that accepts this language. It has input alphabet {a}, tape alphabet {a, A},
and a read/write window of size 3, and it is described through the following se-
quence of meta-instructions:

(1) (c · a∗, aa$ → A$, ε); (5) (c · a · $, Accept);
(2) (c · a∗, aaA → AA, A∗ · $); (6) (c · A · $, Accept).
(3) (c · A∗, AA$ → a$, ε);
(4) (c · A∗, AAa → aa, a∗ · $).

Given an input of the form w := a2n

(n ≥ 2), Mexp will execute the following
sequence of cycles:

q0ca2n

$ �c∗
Mexp

q0cA2n−1
$ �c∗

Mexp
q0ca2n−2

$.

This computation continues until the restarting configuration q0ca$ or q0cA$ is
reached, which then leads to acceptance. On the other hand, for an input of the
form w := am, where m = 2n0 ·(2n1+1) for some integers n0 ≥ 0 and n1 ≥ 1, Mexp

will reach the restarting configuration q0ca2n1+1$ or q0cA2n1+1$ after a number of
cycles, and then it will get stuck and therewith reject in the configuration q0caAn1$
or q0cAan1$, respectively. This shows that indeed L(Mexp) = Lexp holds.

A restarting automaton is called an RWW-automaton if it makes a restart imme-
diately after performing a rewrite operation. Hence, a cycle of a computation of an
RWW-automaton consists of two phases only. Accordingly, the transition relation
of an RWW-automaton can be described by a finite sequence of meta-instructions
of the forms (R, u → v) and (c · R · $, Accept).

An R(R)WW-automaton M = (Q, Σ, Γ, c, $, q0, k, δ) is deterministic if its tran-
sition relation is a (partial) function

δ : Q × PC(k) →
(
Q ×

(
{MVR} ∪ PC≤(k−1)

))
∪ {Restart, Accept}·

It is called an R(R)W-automaton if it is an R(R)WW-automaton for which the tape
alphabet Γ coincides with the input alphabet Σ, that is, if no auxiliary symbols are
available. Finally, it is an R(R)-automaton if it is an R(R)W-automaton for which
the right-hand side v of each rewrite step (q′, v) ∈ δ(q, u) is a scattered substring
of the left-hand side u.

We will often (implicitly) use the following properties [3].

Lemma 2.2 (The error preserving property). Let M = (Q, Σ, Γ, c, $, q0, k, δ) be
an RRWW-automaton, and let u, v be strings from Σ∗. If q0cu$ �c∗

M q0cv$ and
u /∈ L(M), then v /∈ L(M).

330 F. MRÁZ AND F. OTTO

Lemma 2.3 (The correctness preserving property). Let M = (Q, Σ, Γ, c, $, q0, k, δ)
be an RRWW-automaton, and let u, v be strings from Σ∗. If q0cu$ �c∗

M q0cv$ is
an initial segment of an accepting computation of M , then v ∈ L(M).

If M is a deterministic RRWW-automaton with input alphabet Σ, then the
correctness preserving property implies that, for strings u, v ∈ Σ∗, if u ∈ L(M)
and q0cu$ �c∗

M q0cv$, then also v ∈ L(M).
Obviously the RRWW-automaton Mexp above is deterministic. On the other

hand, based on Lemma 2.3 it is easily seen that the language Lexp cannot be
accepted by any RRW-automaton.

In [3] a notion of monotonicity is considered for restarting automata. Let M be
an RRWW-automaton. Each computation of M can be described by a sequence of
cycles C1, C2, . . . , Cn, where C1 starts with an initial configuration of M , and Cn

is the last cycle, which is followed by the tail of the computation. Each cycle Ci

contains a unique configuration of the form cxquy$ such that q is a state and
u → v is the rewrite step applied during this cycle. By Dr(Ci) we denote the
r-distance |y$| of this cycle. The sequence of cycles C1, C2, . . . , Cn is called mono-
tone if Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn) holds, and the RRWW-automaton M is
called monotone if all its computations are monotone.

In [3] it is shown that all variants of deterministic monotone restarting automata
accept exactly the deterministic context-free languages. For the nondeterministic
restarting automata it turned out that the use of auxiliary symbols is necessary
to obtain a characterization of the class of context-free languages.

In order to derive a characterization of the class GCSL of growing context-
sensitive languages in terms of restarting automata, the notion of weak mono-
tonicity was introduced in [4]. Let M be an RRWW-automaton, and let c ≥ 0
be an integer. We say that a sequence of cycles C1, C2, . . . , Cn of M is weakly
c-monotone, if Dr(Ci+1) ≤ Dr(Ci) + c holds for all i = 1, 2, . . . , n − 1. A compu-
tation of M is called weakly c-monotone if the corresponding sequence of cycles is
weakly c-monotone. Observe that the tail of the computation is not taken into ac-
count. Further, the RRWW-automaton M is called weakly c-monotone if, for each
restarting configuration q0cw$ of M , each computation of M starting with q0cw$
is weakly c-monotone. Note that here we do not only consider computations that
start with an initial configuration, but that we explicitly consider all computa-
tions that start with a restarting configuration. Finally, we say that M is weakly
monotone, if there exists a constant c ≥ 0 such that M is weakly c-monotone.
The prefixes w(c)mon- and wmon- are used to denote the corresponding classes of
restarting automata.

It is easily seen that the above RRWW-automaton Mexp is weakly 1-monotone.
Actually, for deterministic RRWW-automata the following general observation
holds.

Lemma 2.4. Each deterministic RRWW-automaton with window size k is weakly
c-monotone for some c ≤ k − 2.

HIERARCHIES OF WEAKLY MONOTONE RESTARTING AUTOMATA 331

Proof. Assume that the rewriting is done on the tape with contents cxuy$, where
u is the factor of size k that is being rewritten. Hence, the new tape contents
is cxvy$ for some v of length |v| ≤ k − 1. As the RRWW-automaton considered
is deterministic, the next rewrite operation cannot occur before the automaton
sees at least the first letter of vy$, that is, the distance from the right end of the
tape is increased by at most |v| − 1 ≤ k − 2. Hence, the deterministic restarting
automaton considered is weakly c-monotone for some c ≤ k − 2. �

Thus, for deterministic R(R)WW-automata the above weak monotonicity con-
dition is always satisfied, that is, the characterization of the class CRL of Church-
Rosser languages presented in [9] can be stated as

CRL = L(det-wmon-RWW) = L(det-wmon-RRWW).

Hence, it is only for the various nondeterministic restarting automata that these
additional restrictions make a difference. In [4] it is shown that

GCSL = L(wmon-RWW) = L(wmon-RRWW) ⊂ L(RWW),

where the inclusion is known to be proper.
In [3] it is shown that it is decidable whether an RRWW-automaton is mono-

tone. Actually we can generalize this result to weak monotonicity as follows.
Lemma 2.4 shows that, for a deterministic restarting automaton, the degree of
weak monotonicity is restricted by the size of the read/write window. For nonde-
terministic restarting automata we also obtain an upper bound for the degree of
weak monotonicity, albeit a much larger one.

Lemma 2.5. Let M = (Q, Σ, Γ, c, $, q0, k, δ) be a weakly monotone RRWW-auto-
maton. Then M is weakly c-monotone for some constant c < |Q|2 · |Γ|k + 2k.

Proof. Let C1, C2 be two successive cycles of a computation of M such that
Dr(C2) = Dr(C1) + c, that is, C1 contains a rewrite step cxq1uy$ �M cxvq′1y$,
and C2 contains a rewrite step cx′q2u

′y′$ �M cx′v′q′2y
′$, where q1, q

′
1, q2, q

′
2 ∈ Q,

xvy = x′u′y′, and |y$| + c = |y′$|.
Assume that c ≥ |Q|2 · |Γ|k + 2k. Then x = x1x2, where x′u′ = x1, x2vy = y′,

and |x2v| = c implying that |x2| > |Q|2 · |Γ|k + k. As we can assume that M
scans its tape completely from left to right during each cycle, we see that during
both cycles C1 and C2, the automaton M executes |x2| MVR-steps while moving
its read/write window across x2. Let x2 = a1a2 . . . an, where a1, . . . , an ∈ Γ and
n := |x2|. With each symbol ai of x2, we can associate a pair of states (pi

1, p
i
2)

by choosing pi
j as the state of M at the moment when ai is the first symbol in

the read/write window during the cycle Cj (j = 1, 2). As |x2| > |Q|2 · |Γ|k + k,
we see that x2 admits a factorization of the form x2 = z1az2az3, where a ∈ Γ,
z1, z2, z3 ∈ Γ∗, and |z3| ≥ k − 1, such that both distinguished occurrences of a
have the same associated pair of states (p, p′), and the read/write window has
the same contents when these occurrences of the letter a are in the first posi-
tion of the read/write window. Hence, for each m ≥ 0, the following is a valid

332 F. MRÁZ AND F. OTTO

computation of M :

q0cx1z1(az2)maz3uy$ �∗
M cx1z1p(az2)maz3uy$ �∗

M

cx1z1(az2)mpaz3uy$ �∗
M q0cx1z1(az2)maz3vy$ =

q0cx′u′z1(az2)maz3vy$ �∗
M cx′v′z1p

′(az2)maz3vy$ �∗
M

cx′v′z1(az2)mp′az3vy$ �∗
M q0cx′v′z1(az2)maz3vy$,

where the first rewrite step has r-distance |y| + 1, while the second rewrite step
has r-distance |z1| + (1 + |z2|) · m + |z3vy| + 2. As this holds for all m ≥ 0, we
conclude that M is not weakly j-monotone for any integer j, that is, M is not
weakly monotone. This contradiction proves the upper bound for the degree of
weak monotonicity of M . �

Further, we have the following decidability result.

Theorem 2.6. The following problem can be solved algorithmically:

INSTANCE : An RRWW-automaton M , and a constant c ∈ N.
QUESTION : Is M weakly c-monotone?

Proof. Given an RRWW-automaton M and a constant c ∈ N, a nondeterministic
finite-state acceptor AM,c can be constructed such that the language L(AM,c)
accepted by AM,c is non-empty if and only if M admits a computation C1 �c

M C2

satisfying Dr(C2) > Dr(C1)+c, that is, if and only if M is not weakly c-monotone.
This construction is a slight variant of the corresponding construction used in [3]
to show that monotonicity of RRWW-automata is decidable. �

Together with the above lemma bounding the degree of weak monotonicity, this
theorem has the following consequence.

Corollary 2.7. Given a restarting automaton M , it is decidable whether M is
weakly monotone. In the affirmative the smallest integer c can be determined for
which M is weakly c-monotone.

3. Hierarchies with respect to the degree of weak
monotonicity

In this section we present a sequence of sample languages

L
(i)
d ∈ L(det-w(i)mon-R) � L(w(i − 1)mon-RRW) (i ≥ 1).

This shows that by increasing the degree of weak monotonicity we increase the
expressive power of all deterministic and nondeterministic variants of restarting

HIERARCHIES OF WEAKLY MONOTONE RESTARTING AUTOMATA 333

automata without auxiliary symbols. We construct these languages in two steps.
First we give a sequence of languages

L(i)
c ∈ L(det-w(i)mon-R) � L(det-w(i − 1)mon-RRW) (i ≥ 1).

Then we modify these languages to get the languages L
(i)
d .

For each integer i ≥ 1, we define the language L
(i)
c ⊂ {a, b, c, d, e}∗ as

L(i)
c := L

(i)
c,1 ∪ L

(i)
c,2,

where

L
(i)
c,1 :=

{
an

(
bici

)n−k (
bi

)k
d | n ≥ k ≥ 0

}
, and

L
(i)
c,2 :=

{
an

(
bici

)m−k (
ci

)k
e | n ≥ 0, m > 2n and m ≥ k ≥ 0

}
·

Notice that, for each w ∈ L
(i)
c , if w contains a substring bi+1, then w ∈ L

(i)
c,1.

Similarly, if w contains a substring ci+1 or ac, then w ∈ L
(i)
c,2. Obviously, L

(i)
c is a

context-free language for each i ≥ 1.
The idea behind the languages L

(i)
c is as follows: the strings of each of these

languages can be cut in the middle by two types of operations depending on
whether w belongs to L

(i)
c,1 or to L

(i)
c,2. If w starts with an(bici)m for some m > 0,

and if it contains bi+1 as a substring or ends in d, or if it contains ci+1 as a substring
or ends in e, then this information, which tells the type of w, can be passed from
the right end of w to the rightmost a by a deterministic w(i)mon-computation.

Lemma 3.1. For each i ≥ 1, L
(i)
c ∈ L(det-w(i)mon-R).

Proof. Let i be a positive integer. We present an R-automaton M
(i)
c with a

read/write window of size 3i + 2 through a sequence of meta-instructions:

(1)
(
c·a+· (bici

)∗
, bici·d·$ → bi·d·$

)
; (7)

(
c, a·bi·d·$ → d·$)

;

(2)
(
c·a∗· (bici

)∗
, bici·e·$ → ci·e·$

)
; (8) (c·d·$, Accept) ;

(3)
(
c·a+· (bici

)∗
, bici·bi·d → bi·bi·d

)
; (9)

(
c·a∗· (bici

)∗
, bici·ci·e → ci·ci·e

)
;

(4)
(
c·a+· (bici

)∗
, bici·bi·b → bi·bi·b

)
; (10)

(
c·a∗· (bici

)∗
, bici·ci·c → ci·ci·c

)
;

(5)
(
c·a+, a·bi·bi·b → bi·b) ; (11)

(
c·a∗, a·ci·ci·c → c

)
;

(6)
(
c·a+, a·bi·bi·d·$ → bi·d·$)

; (12)
(
c· (ci

)+ ·e·$, Accept
)

.

To any tape contents from {a, b, c, d, e}∗, at most one meta-instruction is appli-
cable. Hence, M

(i)
c is a deterministic R-automaton. It is easily seen that each

334 F. MRÁZ AND F. OTTO

string w accepted by M
(i)
c is either of the form a∗ · (bici)∗ · (bi)∗ · d or of the form

a∗ · (bici)∗ · (ci)∗ · e. Just observe the following:

• The only strings that are accepted by M
(i)
c in a tail computation, that is,

without making a restart, are d (8) and (ci)ke, k ≥ 1 (12).
• The symbols b and c are deleted in blocks of length i only.
• Whenever M

(i)
c executes a rewrite step, then the maximal proper prefix

of the tape contents read is of the form a+ · (bici)∗ · (bi)∗ (3 – 5) or of the
form a∗ · (bici)∗ · (ci)∗ (9 – 11), or the tape contains a string of the form
a+ · (bici)+ · d (1), of the form a∗ · (bici)+ · e (2), of the form a+ · bi · bi · d
(6) or of the form a · bi · d (7).

• The form of the meta-instructions guarantees that there are not any c’s
to the right of a factor bi·b in w, and that there are no b’s to the right of
a factor ac or ci·c in w.

Now the following two results hold.

Claim 1. A string w ∈ a∗ · (bici)∗ · (bi)∗ · d is accepted by M
(i)
c iff w ∈ L

(i)
c,1, and

the computation of M
(i)
c on w is weakly i-monotone.

Proof. Let w = an(bici)m(bi)pd, where m, n, p ≥ 0. We distinguish between three
cases:

n = 0 : Then the only meta-instruction that may be applicable is (8), and
M

(i)
c accepts w iff w = d ∈ L

(i)
c,1.

n > 0 and m = 0 : if p = 0, then M
(i)
c has no applicable instruction, and

hence, w is not accepted. In case p > 1, M
(i)
c repeatedly deletes abi

using meta-instructions (5–7) until it either obtains d and accepts or until
it cannot proceed and rejects. Thus, w is accepted iff n = p, that is,
w ∈ L

(i)
c,1. Moreover, the corresponding part of the computation on w is

monotone.
n > 0 and m > 0 : if p = 0, then M

(i)
c applies instruction (1). If p = 1,

then M
(i)
c uses meta-instruction (3). For p > 1, M

(i)
c repeatedly uses

meta-instruction (4) until it rejects or until it obtains a string of the
form an(bi)p+md, which is one of the above cases. Each application of
meta-instruction (4) causes an increase of the r-distance by i. Thus, the
corresponding part of the computation is weakly i-monotone. �

Claim 2. A string w ∈ a∗ · (bici)∗ · (ci)∗ · e is accepted by M
(i)
c iff w ∈ L

(i)
c,2, and

the computation of M
(i)
c on w is weakly i-monotone.

Proof. We omit the detailed proof of this claim, as it closely follows the proof of
Claim 1. The differences are in

• deleting blocks of the form ci instead of bi for shifting the information
that w is a string from L

(i)
c,2 to the left;

• cutting “in the middle” deletes acici (meta-instruction (11));
• the strings directly accepted by M

(i)
c are of the form (ci)+ · e (12). �

HIERARCHIES OF WEAKLY MONOTONE RESTARTING AUTOMATA 335

If the input w is neither of the form described in Claim 1 nor of the form described
in Claim 2, then M

(i)
c will not accept, but it is easily seen that the corresponding

computation is still weakly i-monotone. It follows that M
(i)
c is a det-w(i)mon-R-

automaton for the language L
(i)
c . �

Next we will show that the degree i of weak monotonicity is necessary also for
a det-RRW-automaton accepting L

(i)
c .

Lemma 3.2. For each i ≥ 1, L
(i)
c �∈ L(det-w(i − 1)mon-RRW).

Proof. Let i be a positive integer. We will show that L
(i)
c is not accepted by

any det-w(i − 1)mon-RRW-automaton. Suppose that there were such an automa-
ton M ′. By Lemma 2.3 each cycle of an accepting computation of M ′ transforms
a string that belongs to the language L

(i)
c into another, shorter string that also

belongs to this language. Hence, it follows from the definition of L
(i)
c that M ′ can-

not rewrite less than i symbols in any cycle of an accepting computation, implying
that the size k of the read/write window of M ′ is at least i.

Let p be the number of states of M ′, let n := (p+k)!, and let w := an(bici)nd. It
is clear that M ′ cannot accept w in a tail computation, that is, without performing
any restart steps, as in tail computations only regular languages are accepted.
We consider the first cycle C of an accepting computation of M ′ on input w.
Through this cycle M ′ transforms w into a shorter string also belonging to L

(i)
c

(Lem. 2.3). Thus, during this cycle M ′ deletes m1 symbols a, i·m1 symbols b, and
i·m2 symbols c for some m1, m2 ≥ 0. We distinguish between two cases.

Case 1 (m1 > 0). Then w is cut at the border between the blocks an and (bici)n

and m1 = m2 follows. After a rewrite an RRW-automaton reads the remaining
part of the tape completely before it restarts. During this process it behaves
like a finite-state acceptor. Thus, as the exponent n is large, there will be two
occurrences of blocks bici in this part of the tape such that, while reading the first
b of these particular blocks, M ′ will be in the same internal state. Let the distance
between the first symbols of the closest such two blocks be 2i · m. Certainly,
p ≥ m ≥ 1, and n is divisible by m. Thus, M ′ will perform the same rewriting
on strings of the form an(bici)n+jme for all integers j ≥ 0. However, when it sees
the symbol e at the right end of the string, M ′ may behave differently than on w.
It may

(1) either reject – then M ′ will also reject the string an(bici)n+2nme ∈ L
(i)
c ,

which is a contradiction, or
(2) accept – then M ′ will also accept the string an(bici)n+0·me �∈ L

(i)
c , which

is a contradiction, or
(3) restart – then M ′ will also restart on an(bici)n+ n

m ·me = an(bici)2ne �∈ L
(i)
c ,

which yields an−m1(bici)2n−m1e ∈ L
(i)
c , contradicting the error preserving

property (Lem. 2.2).
Case 2 (m1 = 0). In this case m2 > 0 and the only option for M ′ is to delete
the m2 rightmost blocks of ci. The r-distance of the cycle C is at most 1 (the right

336 F. MRÁZ AND F. OTTO

sentinel need not be scanned). Let Cx (for x = 1, 2, . . .) denote the x-th cycle of
the computation of M ′ on w, and let wx denote the resulting string after Cx, that
is, C = C1 and Dr(C1) ≤ 1. Due to the weak (i− 1)-monotonicity of M ′, we have
an upper bound for the r-distance

Dr(Cx) ≤ (x − 1)(i − 1) + 1 = xi + 2 − (x + i). (1)

However, in these cycles only whole blocks ci (the rightmost ones in the current
string) can be deleted. In each of these cycles, M ′ deletes at least i symbols.
Hence, after x − 1 cycles the resulting string wx−1 contains at most n − x + 1
blocks of ci, and wx−1 has suffix (bi)x−1d. From this it follows that

Dr(Cx) ≥ i + (x − 1)i + 2 − k = xi + 2 − k. (2)

These two bounds contradict for x > k − i. �
Thus, we have the following result.

Corollary 3.3. For each i ≥ 1,

L(i)
c ∈ L(det-w(i)mon-R) � L(det-w(i − 1)mon-RRW).

While L
(i)
c is not accepted by any deterministic weakly (i − 1)-monotone RRW-

automaton, it is accepted by a nondeterministic RR-automaton that is monotone.

Lemma 3.4. For each i ≥ 1, L
(i)
c ∈ L(mon-RR).

Proof. Let i ≥ 1, and let M
(i)

c be the RR-automaton that works as follows:

Case 1. On strings that do not have a prefix of the form ajbici (j > 0), M
(i)

c

works in the same way as M
(i)
c , which gives a monotone computation.

Case 2. On a string w with prefix ajbici (j > 0), M
(i)

c nondeterministically
guesses that w is from L

(i)
c,1 (that is, ends with d) or that w is from L

(i)
c,2 (that is,

ends with e). In the first case M
(i)

c deletes abici and verifies that the rest of the
string is of the form (bici)∗·(bi)∗ · d. In the affirmative it restarts, otherwise it
rejects; in the second case, M

(i)

c deletes abicibici or abicici (if neither is possible,
then M

(i)

c halts immediately without accepting) and verifies that the rest of the
string is of the form (bici)∗·(ci)∗ · e or (ci)∗ · e, respectively. In the affirmative it
restarts, otherwise it rejects.

In both cases the rewriting is performed on the border between the a-syllable
and the (bici)-syllable, and so also these computations of M

(i)

c are monotone.

Thus, M
(i)

c is a monotone RR-automaton that accepts the language L
(i)
c . �

This lemma shows that we need to modify the languages L
(i)
c in order to obtain

the intended example languages L
(i)
d . For each i ≥ 1, we define four auxiliary

HIERARCHIES OF WEAKLY MONOTONE RESTARTING AUTOMATA 337

languages as follows:

L
(i)
a1 :=

{
an

(
bici

)n | n ≥ 0
}

, Lde1 := { dres | r > s ≥ 0, r + s > 1 } ,

L
(i)
a2 :=

{
an

(
bici

)m | m > 2n ≥ 0
}

, Lde2 := { dres | 0 ≤ r < s, r + s > 1 } ·

Now the language L
(i)
d is defined as

L
(i)
d := L(i)

c ∪ L
(i)
a1 ·Lde1 ∪ L

(i)
a2 ·Lde2.

Clearly, for each i ≥ 1, the language L
(i)
d is context-free. Notice further that for

any w = uv ∈ L
(i)
d , where u ∈ {a, b, c}∗ and v ∈ {d, e}∗, an occurrence of the

substring bi+1 in u implies w ∈ L
(i)
c,1. Similarly, an occurrence of the substring ci+1

or ac implies w ∈ L
(i)
c,2. Moreover, L

(i)
a1 · {d} ⊂ L

(i)
c,1 and L

(i)
a2 · {e} ⊂ L

(i)
c,2.

Lemma 3.5. For each i ≥ 1, L
(i)
d ∈ L(det-w(i)mon-R).

Proof. By adding the meta-instructions

(d1) (c·a∗·(bici)∗·d∗, dee → e); (d3) (c·a∗·(bici)∗·d∗, dd$ → d$);

(d2) (c·a∗·(bici)∗·d∗, dde$ → d$); (d4) (c·a∗·(bici)∗, ee → e);

to those of M
(i)
c , an R-automaton M

(i)
d is obtained. These additional instructions

enable M
(i)
d to reduce any string from L

(i)
d �L

(i)
c to a member of a∗ ·(bici)∗ ·(d+e).

The meta-instructions of M
(i)
d are pairwise incompatible, which shows that M

(i)
d

is a deterministic R-automaton.
It is easily seen that M

(i)
d accepts exactly the strings accepted by M

(i)
c and those

strings that can be reduced to a string from L(M (i)
c) by the instructions (d1)–(d4).

These additional instructions can be applied only to strings of the form uv, where
u ∈ a∗ · (bici)∗, v ∈ {d, e}∗, and |v| > 1. Further, v ∈ Lde1 iff q0cuv$ �c∗

M
(i)
d

q0cud$,

and v ∈ Lde2 iff q0cuv$ �c∗

M
(i)
d

q0cue$.

Finally, a∗ · (bici)∗ · d ∩ L
(i)
c = La1·{d} and a∗ · (bici)∗ · e ∩ L

(i)
c = La2·{e}. It

follows that M
(i)
d is a det-w(i)mon-R-automaton for L

(i)
d . �

In fact, we have the following result.

Theorem 3.6. For each i ≥ 1, L
(i)
d ∈ L(det-w(i)mon-R) � L(w(i − 1)mon-RRW).

Proof. It remains to show that L
(i)
d is not accepted by any w(i − 1)mon-RRW-

automaton. So assume that there is a w(i − 1)mon-RRW-automaton M ′ for L
(i)
d

for some i ≥ 1. The size k of the read/write window of M ′ is at least i, because
in a cycle of an accepting computation on an input from L

(i)
c , M ′ cannot rewrite

less than i symbols.

338 F. MRÁZ AND F. OTTO

Let p be the number of states of M ′, let n := (p + k)!, and let

w := an
(
bici

)n
dn+1en ∈ La1·Lde1.

We consider the first cycle C of an accepting computation of M ′ on w.
In C, M ′ cannot rewrite on the border of an and (bici)n. Otherwise, it must

delete ar(bici)r for some r > 0. In the same way as in the proof of Lemma 3.2, we
can show that there exists m (p ≥ m ≥ 1, n is divisible by m) such that M ′ can
make the same rewriting on strings of the form an(bici)n+jmdn+1en for all integers
j ≥ 0. In a similar way we can show that M ′ can make the same rewriting on the
strings an(bici)n+jmdn+1en+j1m1 for all integers j1 ≥ 0 and some m1, p ≥ m1 ≥ 1.
In particular, an(bici)n+ n

m ·mdn+1en+2m1 = an(bici)2ndn+1en+2m1 �∈ L
(i)
d and the

‘pumped’ cycle yields an−r(bici)2n−rdn+1en+2m1 ∈ L
(i)
d , which contradicts the

error preserving property (Lem. 2.2).
Thus, M ′ can rewrite only on the border of d’s and e’s in C. Because M ′ is a

w(i − 1)mon-RRW-automaton, in any subsequent cycle the place of rewriting can
move to the left by at most i− 1 positions with respect to the previous cycle. M ′

must in any case check that the number of a’s equals the number of (bi)’s. This can
be done only by rewriting (deleting) on the border of a’s and bi. When the places
of rewriting move from the right end of the part containing bici we can apply the
same arguments as in the proof of Lemma 3.2 to show that w(i− 1)-monotonicity
is not sufficient. �

From this result we immediately obtain the following infinite hierarchies.

Corollary 3.7. For each i ≥ 0 and for each X ∈ {R, RR, RW, RRW},
(a) L(det-w(i)mon-X) ⊂ L(det-w(i + 1)mon-X).

(b) L(w(i)mon-X) ⊂ L(w(i + 1)mon-X).

4. Separating the various hierarchies

In this section we will see that the hierarchies of Corollary 3.7 differ pairwise
from each other. All the inclusion relations that we will prove are depicted in
Figure 1. The vertical arrows and the arrows originating from DCFL are conse-
quences of Corollary 3.7. The horizontal arrows will follow from Theorem 4.3, the
left slanted arrows will be derived in Theorems 4.5 and 4.1 (a,c), and the right
slanted arrows will be obtained from Theorems 4.7 and 4.1 (b,d).

In [3] Lemmas 4.1 and 4.2, it is shown that

L(mon-RR) � L(RW) �= ∅ and L(mon-RW) � L(RR) �= ∅,

which yields the following consequences.

HIERARCHIES OF WEAKLY MONOTONE RESTARTING AUTOMATA 339

DCFL =
det-w(0)mon-R = det-w(0)mon-RW =
det-w(0)mon-RR = det-w(0)mon-RRW

det-w(1)mon-R

det-w(2)mon-R

det-w(1)mon-RR

det-w(2)mon-RR

�

�

�

�

det-w(1)mon-RW

det-w(2)mon-RW

det-w(1)mon-RRW

det-w(2)mon-RRW

�

�

�

�

�������

�������

�������

�������

.

.

.
.
.
.

.

.

.
.
.
.

w(0)mon-R

w(0)mon-RR

w(1)mon-R

w(2)mon-R

w(1)mon-RR

w(2)mon-RR

�
�

�

�

�

�

w(0)mon-RW

w(0)mon-RRW

w(1)mon-RW

w(2)mon-RW

w(1)mon-RRW

w(2)mon-RRW

�
�

�

�

�

�

�������

�������

�������

�������

.

.

.
.
.
.

.

.

.
.
.
.

���������������

�
�
�
�

�
�
�
��

�
�

�
�

�
�
��

�

�
�
�

	

	

�

�

�

�

�

�

�

�

�

�

	

	

	

	

	

	

	

Figure 1. Hierarchies of language classes defined by the various
types of weakly monotone restarting automata without auxiliary
symbols. An arrow A −→ B indicates that the class L(A) is
strictly included in the class L(B). When there is no oriented path
between any two types of restarting automata in the diagram,
then the corresponding language classes are incomparable under
inclusion.

Theorem 4.1. For all i ≥ 0, (a) L(w(i)mon-RR) � L(R) �= ∅.
(b) L(w(i)mon-RW) � L(R) �= ∅.
(c) L(w(i)mon-RRW) � L(RW) �= ∅.
(d) L(w(i)mon-RRW) � L(RR) �= ∅.

The language Lcd := { cmdn | 0 ≤ m ≤ n ≤ 2m } is easily seen to be accepted by
the nondeterministic mon-R-automaton that is given through the following meta-
instructions:

1. (c·c+, cd·d → d); 2. (c·c+, cdd·d → d); 3. (c·{cd, cdd, ε}·$, Accept).

On the other hand, we have the following negative result.

Lemma 4.2. Lcd �∈ L(det-RRW).

Proof. In order to derive a contradiction, let us assume that Lcd is accepted by a
det-RRW-automaton M with read/write window of size k. Using pumping tech-
niques we can show that a sufficiently long string w = cmdm cannot be accepted

340 F. MRÁZ AND F. OTTO

without a restart. After the first cycle of the accepting computation of M on w, we
obtain a string w′ = cm1dm2 , where m1 = m−d1 and m2 = m−d2 for some d1, d2

satisfying k ≥ d1 + d2 > 0 and d1 ≥ d2, by the correctness preserving property
(Lem. 2.3).

Now M will rewrite in the same way when it starts on the string cmd2m. After
this rewriting it cannot reject, because M is deterministic and cmd2m ∈ Lcd. But
the resulting string cm−d1d2m−d2 is not in Lcd, as

2m − d2 ≥ 2m− d1 > 2(m − d1).

This violates the correctness preserving property. �
As Lcd ∈ L(mon-R) ⊆ L(w(i)mon-R) for all i ≥ 0, this yields the following.

Theorem 4.3. For all i ≥ 0 and all X ∈ {R, RW, RR, RRW},

L(det-w(i)mon-X) ⊂ L(w(i)mon-X).

It remains to verify the relations between the different hierarchies of deterministic
weakly monotone restarting automata in Figure 1. Recall from [3] that all the
considered variants of deterministic monotone restarting automata characterize
the language class DCFL.

To this aim we define still another example language L
(1)
b ⊂ {a, b, c, d, e, f}∗ as

L
(1)
b := L

(1)
b1 ∪ L

(1)
c,1 ∪ L

(1)
c,2, where

L
(1)
b1 :=

{
ai(bc)jf(bc)md | i, j, m ≥ 0, i = j + m

}
,

and L
(1)
c,1 and L

(1)
c,2 are the languages defined in Section 3. Thus, L

(1)
b differs from

the language L
(1)
c by the strings of L

(1)
b1 . These additional strings will ensure that,

in contrast to L
(1)
c , L

(1)
b is not accepted by any RW-automaton.

A det-w(1)mon-RR-automaton recognizing L
(1)
b is obtained by simply adding the

meta-instruction (c·a∗·(bc)∗, f → ε, (bc)∗·d$) to the instructions of M
(1)
c (together

with the insertion of appropriate regular languages as the third parts of these
meta-instructions). On the other hand, we have the following lemma.

Lemma 4.4. L
(1)
b �∈ L(RW).

Proof. Assume to the contrary that some RW-automaton M with read/write win-
dow of size k accepts L

(1)
b . A sufficiently long string w = a2n(bc)nf(bc)nd cannot

be accepted directly in a tail computation. After the first cycle q0cw$ �c
M q0cw1$

of an accepting computation on w, where q0 denotes the initial state of M , M
must obtain a string w1 of the form w1 = a2n(bc)2nd or w1 = an+i(bc)if(bc)nd for
some i < n.

We can assume that i is larger than k and that M did not scan the final
symbol d during the cycle q0cw$ �c

M q0cw1$. In the former case let us take the

HIERARCHIES OF WEAKLY MONOTONE RESTARTING AUTOMATA 341

string w2 := a2n(bc)nf(bc)nfd �∈ L
(1)
b . Then q0cw2$ �c

M q0cw3$, where w3 =
a2n(bc)2nfd ∈ L

(1)
b , which contradicts the error preserving property (Lem. 2.2).

In the latter case let us take the string w2 := a2n(bc)4ne �∈ L
(1)
b . This time

q0cw2$ �c
M q0cw3$, where w3 = an+i(bc)i+3ne ∈ L

(1)
b , which yields the same

contradiction. �

Thus, based on the properties of the language L
(1)
b we obtain the following

result.

Theorem 4.5. For all i ≥ 1, (a) L(det-w(i)mon-RR) � L(R) �= ∅.
(b) L(det-w(i)mon-RRW) � L(RW) �= ∅.

Finally we consider the language Llr := Ll ∪ Lr ⊂ {a, l, r}∗, where

Ll :=
{

a2n−2ilai | n ≥ 1, 0 ≤ i < 2n−1
}

,

Lr :=
{

aira2n−2i | n ≥ 1, 0 ≤ i < 2n−1
} ·

Lemma 4.6. Llr ∈ L(det-w(1)mon-RW) � L(RR).

Proof. We define an RW-automaton Mlr through the following sequence of meta-
instructions:

(1) (c·(aa)+, aal$ → la$); (5) (c·a+, raa$ → al$);

(2) (c·(aa)+, aala → laa); (6) (c·aal·$, Accept);

(3) (c, aala → raa); (7) (c·raa·$, Accept).

(4) (c·a∗, raaa → ara);

It is easily seen that Mlr is a det-w(1)mon-RW-automaton that accepts the lan-
guage Llr. It remains to show that this language is not accepted by any RR-
automaton.

Assume to the contrary that there exists an RR-automaton M that accepts Llr,
and let k be the size of the read/write window of M . A sufficiently long string w =
a2n

l ∈ Llr cannot be accepted directly by a tail computation. As M cannot use
any auxiliary symbols, all the strings that appear on its tape during an accepting
computation are accepted by M . Notice further that M can only delete symbols.
After the first cycle of an accepting computation on w, M obtains a string w1

of the form w1 = a2n−il, where 0 < i ≤ k, or of the form w1 = a2n−i, where
0 ≤ i < k. As Llr does not contain any strings of either of these forms, this is the
intended contradiction. �

This yields the following theorem completing the results depicted in Figure 1.

Theorem 4.7. For all i ≥ 1, (a) L(det-w(i)mon-RW) � L(R) �= ∅,
(b) L(det-w(i)mon-RRW) � L(RR) �= ∅.

342 F. MRÁZ AND F. OTTO

5. Conclusions

By considering the degree of weak monotonicity we have obtained infinite hi-
erarchies that lie in the gap between DCFL and CRL in the deterministic case
and that lie in the gap between DCFL and GCSL in the nondeterministic case.
Naturally, the question arises whether the degree of weak monotonicity induces
corresponding hierarchies for the restarting automata with auxiliary symbols. We
would certainly expect that. The class L(det-w(1)mon-RWW) is strictly larger
than L(det-w(0)mon-RWW) = DCFL, and also L(w(1)mon-RWW) strictly contains
L(w(0)mon-RWW) = CFL, because L(det-w(1)mon-RWW) contains non-context-
free languages (for example, the language Llr above).

References

[1] E. Dahlhaus and M.K. Warmuth, Membership for growing context-sensitive grammars is
polynomial. J. Comput. Syst. Sci. 33 (1986) 456–472.

[2] P. Jančar, F. Mráz, M. Plátek and J. Vogel, Restarting automata, in Proc. FCT’95, edited
by H. Reichel. Springer, Berlin, Lect. Notes Comput. Sci. 965 (1995) 283–292.

[3] P. Jančar, F. Mráz, M. Plátek and J. Vogel, On monotonic automata with a restart opera-
tion. J. Autom. Lang. Comb. 4 (1999) 287–311.

[4] T. Jurdziński, K. Loryś, G. Niemann and F. Otto, Some results on RWW- and RRWW-
automata and their relationship to the class of growing context-sensitive languages. Tech.
Report 14/01, Fachbereich Mathematik/Informatik, Universität Kassel (2001). Also: To
appear in revised form in the J. Autom. Lang. Comb.

[5] R. McNaughton, P. Narendran and F. Otto, Church-Rosser Thue systems and formal lan-
guages. J. Assoc. Comput. Mach. 35 (1988) 324–344.

[6] P. Narendran, Church-Rosser and related Thue systems. Ph.D. Thesis, Rensselaer Polytech-
nic Institute, Troy, New York (1984).

[7] G. Niemann and F. Otto, The Church-Rosser languages are the deterministic variants of
the growing context-sensitive languages, in Proc. FoSSaCS’98, edited by M. Nivat. Springer,
Berlin, Lect. Notes Comput. Sci. 1378 (1998) 243–257.

[8] G. Niemann and F. Otto, On the power of RRWW-automata, in Words, Semigroups, and
Transductions, edited by M. Ito, G. Păun and S. Yu. World Scientific, Singapore (2001)
341–355.

[9] G. Niemann and F. Otto, Further results on restarting automata, in Words, Languages
and Combinatorics III, Proc., edited by M. Ito and T. Imaoka. World Scientific, Singapore
(2003) 352–369.

[10] M. Straňáková, Selected types of pg-ambiguity. The Prague Bulletin of Mathematical Lin-
guistics 72 (1999) 29–57.

[11] M. Straňáková, Selected types of pg-ambiguity: Processing based on analysis by reduction,
in Text, Speech and Dialogue, 3rd Int. Workshop, Proc., edited by P. Sojka, I. Kopeček and
K. Pala. Springer, Berlin, Lect. Notes Comput. Sci. 1902 (2000) 139–144.

Communicated by Z. Esik.
Received June 11, 2003. Accepted May 5, 2004.

