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SOME RESULTS ON C-VARIETIES*

JEAN-ERIC PIN! AND HOWARD STRAUBING 2

Abstract. In an earlier paper, the second author generalized
Eilenberg’s variety theory by establishing a basic correspondence be-
tween certain classes of monoid morphisms and families of regular lan-
guages. We extend this theory in several directions. First, we prove
a version of Reiterman’s theorem concerning the definition of varieties
by identities, and illustrate this result by describing the identities asso-
ciated with languages of the form (aiasz - - -ak)+, where a1,...,ar are
distinct letters. Next, we generalize the notions of Mal’cev product,
positive varieties, and polynomial closure. Our results not only extend
those already known, but permit a unified approach of different cases
that previously required separate treatment.

Mathematics Subject Classification. 20M35, 68Q70.

INTRODUCTION

Work of Eilenberg and Schiitzenberger [3,4] in the 1970’s underscored the impor-
tance of warieties of finite semigroups and monoids (also called pseudovarieties)
in the study of the behavior of finite automata and the languages they accept.
Since that time, a rich research literature on varieties has arisen, treating both the
applications to automata theory and the fundamental underlying algebra. (We
refer the reader to [2, 8] for an account of recent progress and a comprehensive
bibliography.)

It was recognized very early on, particularly in the work of Brzozowski and
Simon [15,16] on locally testable languages, that in many instances one needs
to study the structure of the syntactic semigroup of a language, rather than the
syntactic monoid, and for this reason Eilenberg developed two parallel theories of
varieties, one for finite semigroups, and the other for finite monoids.
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In studying the circuit complexity of regular languages, Barrington et al. [1]
and Straubing [17] came across a curious phenomenon: Membership of a regular
language in the circuit complexity class AC?, as well as some related families,
is not determined by the syntactic monoid or semigroup of the language, and
therefore these language families do not correspond to varieties in the usual sense.
However the same families do admit succinct algebraic characterizations in terms
of the syntactic morphism, as well as characterizations in generalized first-order
logic that closely resemble the descriptions found for varieties in the usual sense.

Straubing [18] generalized the definition of variety so as to include these exam-
ples. The elements of these new varieties are not semigroups or monoids, but mor-
phisms from free finitely-generated monoids onto finite monoids, also called stamps.
Associated with each such variety V is a category C of admissible morphisms be-
tween free finitely-generated monoids with the property that if ¢ : A* — M is
inVand f: B* - A" isin C, then po f : B* — M is in V. When C is the family
of all morphisms between finitely generated free monoids, V includes all the mor-
phisms onto M, and becomes a variety of monoids in the usual sense. One likewise
recovers the varieties of finite semigroups by restricting C to contain non-erasing
morphisms. With additional restrictions on C, one recovers the language families
from [1].

In the original definition of these “C-varieties”, C was permitted to be any class
of morphisms between free finitely-generated monoids as long as it is closed under
composition. We have preferred to alter the definition so that C is required to
contain all the length-preserving morphisms between free monoids. This condition
is satisfied by all the examples encountered so far in applications, and it smoothes
out various technical difficulties.

While [18] established the basic correspondence between C-varieties and families
of regular languages, fundamental questions about the underlying algebra were not
considered. In the present paper we begin to fill this gap.

We first give in Section 2 a version of Reiterman’s theorem [14] concerning the
definition of C-varieties by identities. Independently of us, Kunc [5] also devel-
oped the equational theory for C-varieties. Kunc worked with the original defi-
nition of these varieties, but as a drawback, his identities must be interpreted in
a non-standard manner. The new definition of C-varieties allows one a simplified
presentation which follows closely the corresponding proof for varieties of finite
monoids, as given for instance in [6].

As an illustration, when C is the class of length-preserving morphisms, we give
the identities describing the C-variety generated by the syntactic morphism of a
language of the form (ajasz---ax)™, where ay,...,a; are distinct letters. This
example actually occurred in a preliminary study of the long-standing open con-
jecture that there are languages of generalized star-height >1. This problem is
indeed equivalent to the existence of non-trivial identities satisfied by the syntac-
tic morphisms of all languages of generalized star-height <1.

In Section 3, we study an analogue of the Mal’cev product of C-varieties, and
show in particular that if C is the class of length-multiplying morphisms, the
C-variety of quasi-aperiodic stamps, which occurs in [1], can be decomposed as a
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Mal’cev product of two simpler varieties. Identities for the Mal’cev product of two
varieties are described in Section 5.

We outline in Section 4 the theory of positive C-varieties, and use it in Section 6
to extend to this setting the results of [12] on the polynomial closure of a class
of languages. In particular it permits to greatly simplify the presentation of [12],
which originally needed two separate definitions for the polynomial closure: one
when languages are considered as subsets of a free monoid, and another one when
they are considered as subsets of a free semigroup.

1. C-VARIETIES

Let C be a class of morphisms between finitely generated free monoids that
satisfies the following properties:
(1) C is closed under composition. That is, if A, B and C' are finite alphabets,
and f : A* — B* and g : B* — C* are elements of C, then g o f belongs
to C.
(2) C contains all length-preserving morphisms.

Examples include the classes of all length-preserving morphisms (morphisms for
which the image of each letter is a letter), of all length-multiplying morphisms
(morphisms such that, for some integer k, the length of the image of a word is k
times the length of the word), all non-erasing morphisms (morphisms for which
the image of each letter is a nonempty word), all length-decreasing morphisms
(morphisms for which the image of each letter is either a letter of the empty word)
and all morphisms.

A stamp is a morphism from a finitely generated free monoid onto a finite
monoid. The size of a stamp ¢ : A* — M is by definition the size of M. A
C-morphism from a stamp ¢ : A* — M to a stamp ¢ : B* — N is a pair (f, «),
where f: A* — B*isin C, a: M — N is a monoid morphism, and ¥ o f = a o (.

A C-morphism (f, «) is a C-projection if the map f : A* — B* satisfies f(A) =
B. Note that, in this case, f and « are necessarily onto. Indeed, f(A*) = B* and
thus f is onto. Furthermore, 1 is onto, and thus ¥ o f = a0 @ is onto. It follows
that « is onto.

A C-morphism (f, «) is a C-inclusion if the morphism « : M — N is injective.
In particular, if ¢ : B* — M is a stamp, f : A* — B* is an element of C and
t:Im(p o f) — M is the inclusion morphism, then the pair (f,¢) is a C-inclusion
from po f: A* — Im(po f) into .

We say that a stamp ¢ : A* — M C-divides a stamp ¢ : B* — N and write
@ < ¢ if there is a stamp 6 : C* — K, a C-inclusion (f,a) : § — ¢ and a
C-projection (g, ) : 6 — .

In [18], a different definition of division was given. There, it was said that ¢
C-divides v if there is a division diagram with n onto, f € C and p =no o f.

Proposition 1.1. The two definitions of division are equivalent.
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A* / B*
¥ (0
M @ N

FIGURE 1. A C-morphism.

A / - B*

® P
n

M Im(pof)C N

FIGURE 2. A division diagram.

A*: 'C* ~ B*
- -

® 0 P

Y K * . N

FIGURE 3. ¢ C-divides 1.

Proof. Suppose first that ¢ C-divides 1 according to the definition of this paper.
We then have a diagram with two commuting squares (see Fig. 3) such that «
is injective and g(C) = A. There thus exists k : A — C such that go k = 14.
The map k extends to a length-preserving morphism (also denoted by k) from A*
into C*. Setting f = hok and n = Soa~!, we obtain the diagram of Figure 2. Now
since C contains all length-preserving morphisms and is closed under composition,
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k and f are in C. Next, observe that
Im(iho f) = 0 h(k(4")) C ¥ 0 h(C*) = a0 6(C*) C Im(a)
so Boa~ ! is well defined. Secondly,
noyof=mnoohok=noaohok=LFoa toaohok=pFoblok=ypogok=c¢.
Thus ¢ divides ¢ in the sense of [18].

Conversely, suppose we have the division diagram of Figure 2. We then have a
commutative diagram

A* . 1A* A* f >~ B*
® o f (
n L
M Im(¢ o f) N

where ¢ is the inclusion morphism. This shows that ¢ divides ¢ in the sense of
this paper. O

When the class C of morphisms is understood, we omit the prefix C- and simply
use the terms projection, inclusion and divides.

It follows directly from closure under composition and the definition of division
given in [18] that division is transitive. Note that division is not antisymmetric,
but if ¢ <+ and 9 < ¢ then the finite monoids Im(¢) and Im(z)) are isomorphic.

The restricted direct product of two stamps ¢ and g9 is the stamp ¢ with
domain A* defined by p(a) = (¢1(a), p2(a)) (see Fig. 4). The image of ¢ is a
submonoid of the monoid M7 x M.

A C-variety of stamps is a class of stamps closed under C-division and finite
restricted direct products (possibly empty). Equivalently, a C-variety is a class of
stamps closed under C-projections, C-inclusions and finite restricted direct prod-
ucts.

When C is the class of all (resp. length-preserving length-multiplying, non-
erasing, length-decreasing) morphisms, we use the term all-variety (resp. Ip-
variety, lm-variety, ne-variety, de-variety).

As an example of C-variety, consider the class MOD of all stamps ¢ from a
free monoid A* onto a finite cyclic group such that, for all a,b € A, ¢(a) = p(b).

Proposition 1.2. The class MOD is an Im-variety (and also an Ip-variety).

Proof. Consider the diagram given in Figure 1. First assume that (f,a) is a
projection and that ¢ is in MOD. Then N is a quotient of M and thus is also
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FIGURE 4. The restricted direct product of two stamps.

a cyclic group. Furthermore, if b,0’ € B then b = f(a) and b’ = f(a’) for some
a,a’ € A. Now since ¢ is in MOD, ¢(a) = ¢(a’). It follows that

showing that ¢) belongs to MOD.

Next assume that (f,«) is an inclusion and that ¢ is in MOD. Then C
is a subgroup of D and hence is also cyclic. Furthermore, if a,a’ € A, then
|f(a)] = |f(a")| since f is length-multiplying. It follows that ¥(f(a)) = ¥(f(a’))
and a(¢(a)) = a(p(a’)) since Y o f = ao . Since « is injective, it follows that
p(a) = p(a’).

Finally, let ¢1 : A* — M; and @2 : A* — M, be two stamps of MOD.
Then their restricted direct product is clearly in MOD, since if a,a’ € A, then
(p1(a), p2(a)) = (p1(a’), p2(a’)). Thus MOD is an Im-variety. O

If p : A* — M is a stamp, consider the set p(A) as an element of the
monoid P(M) of the subsets of M. This element has a unique idempotent power,
which is also a subsemigroup of M, called the stable subsemigroup of p. A stamp is
said to be quasi-aperiodic if its stable subsemigroup is aperiodic. More generally,
given a variety of finite semigroups V, a stamp is said to be a quasi-V stamp if
its stable subsemigroup belongs to V. It is stated in [18] that the quasi-V stamps
form an Im-variety (and also an Ip-variety), denoted by QV.

2. THE REITERMAN THEOREM FOR C-VARIETIES

2.1. METRIC MONOIDS

Recall that a metric on a set E is a map d : E?> — R¥ satisfying the following
properties:

(1) for every (u,v) € E?, d(u,v) = d(v,u);

(2) for every (u,v) € E?, d(u,v) = 0 if and only if u = v;

(3) for every (u,v,w) € E3, d(u,w) < d(u,v) + d(v,w).
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A metric is an ultrametric if it satisfies the stronger condition
(3") for every (u,v,w) € E3, d(u,w) < max(d(u,v),d(v,w)).
A metric monoid is a monoid M equipped with a metric d, such that (M,d) is
a complete metric space and the multiplication of M is uniformly continuous.
Morphisms between two metric monoids are required to be uniformly continuous.
In this section, we will treat every finite monoid M as a metric monoid equipped
with the discrete metric d defined by

d(s,1) = {0 ifs=t

1 otherwise.

Let V be a C-variety of stamps. An important example of metric monoid is the
free pro-V monoid on A, which we now define. A stamp ¢ : A* — M separates
two words u and v of A* if p(u) # ¢(v). Given two words u,v € A*, we set

rv(u,v) = min{Card(M) | there is a stamp ¢ : A* — M of V

that separates u and v}

and dv (u,v) = 27"V(%?) with the usual conventions min () = +oco and 2= = 0.
We first establish some general properties of dvy .

Proposition 2.1. The following properties hold for every w,v,w € A*
(1) dv(u,v) =dv(v,u);
(2) dv(uw,vw) < dyv(u,v) and dy(wu, wv) < dv(u,v);
(3) dv(u,w) < max{dv(u,v),dv(v,w)}.

Proof. The first assertion is trivial. A stamp of V separating uw and vw certainly
separates u and v. Therefore dv (vw,vw) < dv(u,v), and dually, dv (wu,wv) <
dv (u,v).

Let ¢ : A* — M be a stamp of V separating v and w. Then ¢ separates either u
and v, or v and w. It follows that min(rv (u,v), rv(v,w)) < rv(u,w) and hence
dv (u, w) < max{dv(u,v),dv(v,w)}. O

If V is the C-variety of all stamps onto a finite monoid, we simplify the notation dv
to d.

Proposition 2.2. The function d is an ultrametric on A*.

Proof. Properties (1) and (3) of the definition of an ultrametric follow from Propo-
sition 2.1. Suppose that d(u,v) = 0. In particular, the syntactic morphism of the
language {u} does not separate u from v, showing that w = v. Thus by Proposi-
tion 2.1, d is an ultrametric. O

In the general case, dvy is not always a metric, because one may have dy (u,v) =
0 even if uw # v. For instance, if V is a C-variety of stamps onto commutative



246 J.-E. PIN AND H. STRAUBING

monoids, dv (ab,ba) = 0, since there is no way to separate ab and ba in a com-
mutative monoid. To work around this inconvenience, we first observe that, by
Proposition 2.1, the relation ~v defined by

u ~v v if and only if dv (u,v) =0

is a congruence on A*. Equivalently, u ~v v if and only if, for each stamp
v A* = M of V, p(u) = ¢(v). Let my be the natural morphism from A*
onto A*/~vy.

Proposition 2.3. Fvery stamp ¢ : A* — M of V factors through mv .
Proof. Tt is now an immediate consequence of the definition of my . O
Proposition 2.2 can now be generalized as follows.

Proposition 2.4.
(1) The function dv is an ultrametric on A*/~~;.
(2) The product on A* [~ is uniformly continuous for this metric.

Proof. (1) follows directly from Proposition 2.1, since dy (u,v) = 0 implies u ~v v
by definition. We use the same proposition to obtain the relation

dy (uv,u'v") < max{dy (uv,uv’), dv(uv', u'v")} < max{dy(v,v"),dv(u,u')}
which proves (2). O

2.2. PROFINITE MONOIDS

The completion of the metric space (A*,d), denoted by @, is called the free
profinite monoid on A. The completion of the metric space (A*/~v, dv ), denoted
by Fy (A), is called the free pro-V monoid on A. These topological monoids satisfy
the following properties:

Proposition 2.5. Let 'V be a C-variety of stamps and A a finite alphabet.
(1) The monoid Fy(A) is compact.
(2) The natural morphism my from (A*,d) onto (A*/~v,dv) is uniformly con-
tinuous.

(3) Every stamp ¢ : A* — M of V is uniformly continuous for dv. Furthermore,
there is a uniformly continuous morphism w from A* [~y onto M such that
Y =moTmy.

(4) Ewvery morphism of C is uniformly continuous for dv .

Proof.

(1) Since FV(A) is complete, it suffices to verify that, for every n > 0, A* is
covered by a finite number of open balls of radius < 27". Consider the
congruence ~,, defined on A* by

u ~yp, v if and only if p(u) = ¢(v) for every stamp of V of size < n.
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Since A is finite, there are only finitely many morphisms from A* onto a
monoid of size < n, and thus ~,, is a congruence of finite index. Furthermore,
dv(u,v) < 27™ if and only if v and v are ~,-equivalent. It follows that the
~n-classes are open balls of radius < 27" and cover A*.

(2) Let my be the natural morphism from A* onto A*/~v. Since dy(u,v) <
d(u,v), mv is uniformly continuous.

(3) Let ¢ be a stamp of V of size n. If dyv(u,v) < 27", then in particular
o(u) = ¢(v). Therefore ¢ is uniformly continuous. Since 7y (u) = mv(v)
implies ¢(u) = ¢(v), there is a morphism = from A*/~v onto M such that
@ = momy. This morphism is uniformly continuous for the same reason as
®.

(4) Let f: A* — B* be a morphism of C. If ¢ is a stamp of V separating f(u)
and f(v), then ¢ o f is a stamp of V separating v and v. It follows that
dv(f(u), f(v)) < dy(u,v), and thus f is uniformly continuous. O

It is a well known fact that a uniformly continuous function from a metric space
(E,d) into a metric space (E’,d’) admits a uniformly continuous extension ¢ :
E — E’. Furthermore this extension is unique.

Corollary 2.6.
(1) The morphism my extends uniquely to a uniformly continuous morphism
from (Zf*,d) onto (Fy(A),dv).
(2) Every stamp ¢ : A* — M of V extends uniquely to a uniformly continu-

ous morphism from A* onto M and induces a unique uniformly continuous
morphism 7 from Fy(A) onto M.

(3) Every morphism f : A* — B* of C induces a unique uniformly continuous
morphism from Fy(A) into Fy(B).

Proof. The corollary is an immediate consequence of Proposition 2.5 and of the
result on extensions of uniformly continuous functions recalled above. O

Note that the distance dv on FV(A) can be defined directly by setting

rv(u,v) = min{Card(M) | there is a stamp ¢ : A* — M of V
such that @(u) # ¢(v)}

and dy (u,v) = 27"v(®Y),
We now state the key property of the free pro-V monoid.
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Theorem 2.7. Let ¢ : A* — M be a stamp. Then ¢ belongs to V if and only
if there is a uniformly continuous morphism @ from Fy(A) onto M such that
p=Tomy.

™V ~

A Fyv(A)

M

Proof. By Corollary 2.6, ¢ induces a uniformly continuous morphism ¢ from Fy, (A)
onto M such that ¢ = pomy.

Conversely, suppose there is a uniformly continuous morphism 7 from FV(A)
onto M such that ¢ = & o wy. The set

D = {(u,v) € Fy(A) x By (A) | #(u) = #(v)}

is the inverse image under 7 of the diagonal of M x M, and since M is discrete
and 7 is continuous, it is a clopen subset of Fy(A) x Fy(A). Let F be the class

of all morphisms of the form & : FV(A) — M, where a : A* — M, is a stamp
of V. For each a € F, let

Ca = {(u,v) € Fv(4) x Fy(4) | &(u) # &(v)}.

Each C, is open by continuity of & Furthermore, if (u,v) does not belong to
any Cy, then &(u) = &(v) for each stamp of V, which gives dy(u,v) =0, u = v
and 7(u) = 7(v), and thus (u,v) € D. It follows that the family DU (Cy)acr is a
covering of Fy/(A) x Fy(A) by open sets, and since Fy (A) is compact, it admits
a finite subcovering, say D U (Cy)acr, where F is a finite set.

Let u,v € A* and o € F. If a(u) = a(v), then & o my(u) = & o my(v) and
thus (mv(u), 7v(v)) ¢ Co. It follows that if a(u) = a(v) for each a € F, then
(mv(u), mv (v)) € D, which implies that 7omy(u) = Fomy(v), that is p(u) = ¢(v).
Consequently ¢ is a projection of a substamp of the stamp [] .« and thus
belongs to V. O

Let A be a finite alphabet and let ¢ : A* — M be a stamp. By Corollary 2.6,
¢ extends to a morphism from A* onto M, also denoted by ¢. Furthermore, any
C-morphism f : A* — B* extends to a morphism from A* onto B*, also denoted

by f.
2.3. IDENTITIES
We now extend the notion of identity as follows. Let w,v € A% A stamp

@ : B* — M satisfies the identity u = v if, for every C-morphism f : A* — B*,
po f(u) = ¢o f(v). A variety V satisfies a given identity if every stamp of V
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satisfies this identity. We also say in this case that the given identity is an identity
of V.
We now show that identities are stable under the morphisms of C.

Proposition 2.8. Let V be a C-variety and let w = v be an identity of V, with
u,v € A*. If f : A* — B* is a morphism of C, then f(u) = f(v) is also an identity
of V.

Proof. Let ¢ : C* — M be a stamp of V and let g : B* — C* be a C-morphism.
Then, go f: A* — C* is also a C-morphism, and thus pogo f(u) = pogo f(v).
It follows that f(u) = f(v) is an identity of V. O

We now show that identities of V are closely related to free pro-V monoids.

Proposition 2.9. Let A be a finite alphabet. Given two elements u and v of ;1\*,
u=wv is an identity of V if and only if wv (u) = v (v).

Proof. If w = v is an identity of V, then u and v cannot be separated by any
stamp of V. Thus dv(u,v) =0, u ~v v and mv (u) = my(v). Conversely, suppose
that mv(u) = mv(v), and let ¢ : B* — M be a stamp of V. If f: A* - B* is a
C-morphism, then ¢ o f is in V and by the definition of dv, ¢ o f(u) = p o f(v).
It follows that u = v is an identity of V. O

Corollary 2.10. Let V and W be two C-varieties of stamps satisfying the same
identities on the alphabet A. Then Fy(A) and Fw(A) are isomorphic.

We are now ready to state the generalization of Reiterman’s theorem. Given a
set E of identities, we denote by [E] the class of stamps satisfying all the identities
of E.

Theorem 2.11. A class of stamps is a C-variety if and only if it can be defined
by a set of identities.

Proof. The fact that every class of stamps defined by a set of identities is a variety
can be proved easily.

Let V be a C-variety. Let E be the class of all identities which are satisfied
by every stamp of V and let W = [E]. Clearly VC W. Let ¢ : A* — M be a
stamp of W. This stamp can be extended to a uniformly continuous morphism
from A* onto M. Let U, v € Ax. By Proposition 2.9, if my(u) = 7y (v), then
u = v is an identity of V and thus is satisfied by ¢. In particular, v (u) = mv (v)
implies (u) = @(v) and thus there exists a morphism 7 : Fyy(A) — M such that
¢ = womy. We claim that & is uniformly continuous. Since FV(A) is compact
by Proposition 2.5, it suffices to verify that 7 is continuous. Let F' be a subset of
the discrete monoid M. We first observe that #71(F) = my (e 1 (F)). Since ¢ is
continuous, ¢~ (F) is closed. Now, A% is compact, my is continuous, and FV(A) is
Hausdorff. It follows that 7y (=1 (F)) is closed, proving the claim. It now follows
from Theorem 2.7 that ¢ is in V. Thus V = W. g
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We now give some examples of identities.

(1) MOD is defined by the single identity a*~1b = 1, both as an Im-variety and
an [p-variety. It is worth taking a moment to prove this, noting that the
identity implies, in both cases, the identities a* = 1 and a = b. Without the
condition that C contains length-preserving morphisms we cannot arbitrarily
substitute one letter for another and deduce a* = 1 from a*~'b. In the
context of all-varieties and ne-varieties, the same identities imply that the
semigroup is trivial.

(2) The Im-variety of stamps onto aperiodic monoids is defined by the familiar
identity z* = z**!. But there is no finite basis for the identities of the
Ip-variety of stamps onto aperiodics.

(3) It is shown in [10] that the languages of generalized star-height < 1 form an
Ip-variety of languages, to which corresponds an [p-variety of stamps. Thus
the long-standing open conjecture that there are languages of generalized
star-height > 1 is equivalent to the existence of non-trivial identities for this
variety. Thus an important problem is to try to find a nontrivial identity for
this [p-variety (assuming one exists!).

2.4. AN EXAMPLE

Let Ay denote the k-letter alphabet {aq,...,ar} and let Vi be the Ip-variety of
stamps generated by the syntactic morphism of the language (aias - - - a;)t of A.
The goal of this section is to give the identities describing V. The proof requires
some arguments from combinatorics on words.

Let A be a finite alphabet, let £ > 2 and let 0 < r < k. Given a word w,
let Sy (w) be the set of letters of w occurring in positions that are congruent to
r modulo k. That is, if w = ¢g- - - ¢,_1, with each ¢; in A, then

Sr,k(w) = {C,«, Cr4ky Cr4-2k, - - }

Let us say that w is k-redundant if the sets Sy, for 0 < r < k, are not pairwise
distinct.

Example 2.12. Let A = {a,b,c,d,r} and w = abracadabra. Then Sy3 =
{a,d,r}, S13 ={a,b,c}, Sa.3 = {a,b,r}. Thus w is not redundant.

Define an equivalence relation ~j on A* by setting u ~j v if and only if either
u and v are both k-redundant, or if |u| = |v| mod k and S, x(u) = Srx(v) for
0<r<k.

Lemma 2.13. For each k > 2, ~ is a congruence on A*.

Proof. Tt is clear that ~y, is a congruence relation, and that it has finite index. To
prove that it is a congruence, we need to verify that if u ~; v and a € A, then
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ua ~ va and au ~ av. This is obviously the case if u and v are both k-redundant.
If not, then the desired equivalences follow at once from the following facts:

(a) Sy k(ua) = { Srk(w)U{a} if |u|=r—1modk

Sri(u) otherwise;
] Sor(w)u{a} ifr=1
(b) Sr.p(au) = { Sr—1.5(u) otherwise.
Thus the equivalence classes of ua and au depend only on the equivalence class
of u. g

Observe that the congruence class consisting of the k-redundant words is the
zero element of the quotient monoid A*/ ~y.
We are now ready to state the main result of this subsection:

Theorem 2.14. Let ¢ : A* — M be a stamp. The following conditions are
equivalent:
(1) ¢ factors through ~y;
(2) o belongs to Vi;
(3) ¢ satisfies the following identities, where, for 0 <i <k, u; = 1 - 24;
(a) for 0 <i<k-—2, yrux = xu;x = TU;TY;
(b) Tuk—1y = yug—1z;
(c) u} = ug.
Proof. (1) implies (2). It suffices to show that the projection morphism from A*
onto A*/~y, belongs to V. This morphism factors through the restricted direct
product of the syntactic morphisms of the classes of ~y, so it suffices to show
that each of these classes belongs to the Ip-variety Vi of languages generated by

(a1az---ag)t. Consider first a nonzero congruence class. It is either the set
consisting of the empty word alone, or else of the form

(By---By)* By --- By,

where 1 < ¢ < k and the B; are pairwise disjoint subsets of A. This language is
the intersection of the languages

(Ay- - AR)* Ay - Ay,

over all partitions {A1,..., Ax} of A such that B; C A; for 1 < j < k. Each of
these is in turn the inverse image of the language of A}

L — (a1a2 .. .ak)*al s QG
under the length-preserving morphism that maps each A; to the letter a;. Finally,
L = (a1a2 .. .ak)+(ai+1 - ak)_l

which is in Vi (A*), so each congruence class is in V.
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The language {1} of A* is the inverse image of the language {1} of A} under
any length-preserving morphism. Further, we have

{1} = (@) (a1 )\ (ara - an)

and thus {1} € V(A*).

Finally, since the zero congruence class is the complement of the union of all
the other classes, it too is in V(A4*).

(2) implies (3). It is easy to see that the syntactic morphism of (ajag---ag)™
satisfies the given identities.

(3) implies (1). We describe a distinguished representative for each nonzero
congruence class. For this, we suppose that the alphabet A is linearly ordered.
Given pairwise disjoint subsets (Syx)o<r<r of A and 0 < m < k, we construct a
word w = aj ---a; using the following algorithm. The ith step of the algorithm
determines the letter a;. If, after ¢ steps, all the letters of U1<j<i S;.r have been
used, and ¢ = m mod k, then the algorithm terminates, and we set w = a; - - - a;.
Otherwise we set a;11 to be the least unused letter of S(;y1) mod ,x if such an
unusued letter exists, or the greatest letter of S(;11) mod k,k, under the ordering
on A, if all letters of this set have been used.

For example, suppose k =3, A = {a,b,¢,d,e, f}, So3 = {a,c,d}, S1,3 = {b, e},
So.3 = {f} and m = 2. We write these three sets as the columns of a table, then
fill out the shorter columns by repeating the last element:

QLo e
o o
—

We then read the normal form from the table, proceeding row by row until the
final row, stopping when the length of the word is congruent to m mod k. In this
instance, the word obtained is abfcefde.

Obviously, each word w in A* is either congruent to 0, or congruent to a unique
word in this normal form. We show that w can be transformed, in a sequence of
steps, to this unique normal form, and that each step preserves the value under .
To describe the transformations, we again write a word, row by row, in the form
of a table with k columns. Since the length of the word might not be exactly
divisible by k, the last row of the table might be shorter than the other rows, and
thus some of the rightmost columns might have one fewer letter than the other
columns.

The identity (b) implies that we can permute the letters of any column without
changing the value, under ¢, of the associated word. We’ll call this a permutation
transformation. The identity (c) implies that we can replace any row (with the
exception of the last row, if it is incomplete) by two copies of the same row, and,
similarly, replace two identical adjacent rows by a single copy, without changing
the value under ¢. These are called idempotent transformations. Note that both
types of transformations preserve the ~-class as well.
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By using permutation transformations we can always transform a word into one
in which the columns of the associated table are sorted according to the order of A.
If the word represented is not in normal form, and the columns are sorted, then
either some column contains two occurrences of a letter that is not the greatest
letter of the column, or some column contains an unnecessary repetition of its
greatest letter.

In the first instance, the table contains rows of the form zaz’, yby' and zcz’,
where z, @', y,y/, 2,2" € A*, a,b € A, |z| = |y| = |z], |2'| = |¥/|, and zcz’ is the last
row of the table. We can permute the columns so that the row yay’ is replaced
by yby’, and zaz’ becomes the last row of the table. We can then duplicate the
row yby'. We then use another sequence of permutation transformations to obtain
rows xax’, yby' and zcz' as the last row. We then eliminate the duplicated row
and sort the columns. As a result we arrive at a word with one less occurrence of
a in the column in question. We do this for each repeated occurrence of a letter
that is not the greatest in its column.

For the second instance, of a column in a sorted table contains an unnecessary
repetition of its last letter, then every letter in the last complete row of the table
must appear in an earlier row of the table, and thus the last two complete rows of
the table are identical. We then apply an idempotent transformation to eliminate
the duplicated row.

Now suppose u ~ v. If v and v are both k-redundant, then they can each be
transformed, by a series of permutation transformations, to words in which some
row contains a repeated letter. The identities (a) imply that any such word is the
(necessarily unique) zero element of M, and thus ¢(u) = ¢(v). If v and v are not
k-redundant, then the above argument shows that there is a word w in normal
form such that ¢(u) = ¢(w) = ¢(v). This completes the proof. O

It might be helpful to see an example of the reduction process described above.

Example 2.15. Let £ = 3 and let w = abecdeabfab. This word is not
3-redundant. The tabular representation is

e 2 o 2
S o o
o)

Using permutation transformations we sort the columns

o 2 2 2
SIS S S
~ O
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Using an idempotent transformation, we eliminate the repeated row:

e
f

o 2 2
ISHRS RS

The following steps eliminate the repeated a in the first column:

2 o 2
SIS SIS Y
~ O
2 0o o
QU T
0
o2 2 o
QU T
0O
o 2 O
SIS SIS Y
~ 0
o O 8
Q o
~ O

We proceed similarly to remove the repeated b in the second column, and eventu-
ally arrive at:
a
c
c

e
f

QU Qo

which gives the normal form abecdfcd.

3. MAL’CEV PRODUCTS

In this section, we extend to C-varieties of stamps the classical notion of Mal’cev
product of varieties.

Let V7 and V3 be varieties of finite semigroups and let M and N be finite
monoids. Recall that a relational morphism 7 : M — N is a (V1, Va)-relational
morphism if, for every subsemigroup T of N in V, the semigroup 7—!(7T") belongs
to Vl.

Let W be a C-variety of stamps. Denote by (V1,Va) 8 W the class of all
stamps ¢ : A* — M for which there exists a stamp 1 : A* — N of W such that
the relational morphism 7 =1 o o1 is a (V1, V3)-relational morphism.

A*

—1
o
M vov > N

If Vi =V and V5 is the trivial variety of semigroups, the notation simplifies to
V & W (this is the Mal’cev product of V and W).

Proposition 3.1. The class (V1, V) @'W is a C-variety.
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Proof. Let u : A* — M and v : B* — N be two stamps and let (f,«) be a
C-morphism from p to v. By definition, vo f = a o pu.

First assume that p € (V1, V) ® W and that (f,«) is a projection. Then f
and « are onto and there is a stamp & : A* — K of W such that ko u~ ! is a
(V1, Vy)-relational morphism. Since f(A) = B, there is a map g : B — A such
that fog = 1. Let us extend ¢ into a length-preserving morphism from B*
into A*. Let v = ko g and let R = Im(v). By construction R is a submonoid
of K. Let us denote by ¢ : R — K the inclusion map. Then v =t~ ! o k0 g and
the pair (g,¢) is an inclusion from 7 into k. In particular, the stamp ~ is in W.
The situation is summarized in the diagram below:

K H

K < A* - M
L g f a
R - ~ B* 7 - N

Let 7 = yor~!. We claim that 7 is a (V1, V3)-relational morphism. First observe
that

1

T :1/0771 1 -1

=Vvog "OK ! -1

or=vofogog "ok oL

Crvofortor=aopor tou

Now, let T be a subsemigroup of R in V3. Then 7= 3T) = aoportoi(R).
Since ¢ is injective, ¢(R) is in V3. Furthermore, since ko1 is a (V1, Vy)-relational
morphism, the semigroup 77 = pox 1t or(R) is in Vi. It follows that o(T") is also
in V1, proving the claim. Therefore v belongs to (V1,Va) @) W.

Suppose now that v € (V1,V2) 8@ W and that (f, ) is an inclusion. Then « is
injective and there is a stamp x : B* — K of W such that kov~! is a (V1,Va)-
relational morphism. The situation is summarized in the diagram below

A* ! B*
p v &
M @ N K
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Let v = ko f. Since f € C, v is a stamp of W. Let 7 = yo u~!. We claim that 7
is a (V1, Vy)-relational morphism. Let T be a subsemigroup of K in Vy and let
T' = vo k™ Y(T). Since K o vt is a (V1, Va)-relational morphism, 77 is in V7.
Furthermore, since « is injective, a~! o « is the identity on M. Therefore, using
the relation o = v o f, we obtain

Tﬁl(T) =aloaoy lo ﬁfl(T) =atovofoflto mil(T)
Calovor™T)=a }T).

Now a~1(T”) is in V1, proving the claim. Therefore ;1 belongs to (V1, V) @ W.

Finally, let pq : A* — M; and ps : A* — M be two stamps of (V1, Vy) () W.
By definition, there exist two stamps of W, k1 : A* — K; and kg : A* — K> such
that K oul_l and Ko ougl are (V1, Va)-relational morphisms. Let x : A* — K be
the restricted direct product of k1 and k9 and p : A* — M be the restricted direct
product of p; and pp. We claim that x o u~t is a (V1, Vy)-relational morphism
from M to K. Let m; and 73 be the projections from K; x K5 onto K7 and Ko,
respectively. Let T be a subsemigroup of K in V5. Then

po k™ (T) = po ry (1 (T)) Mo ry (ma(T):

It follows that y o k~1(T) is in Vi, proving the claim. Therefore p belongs to
(V17 VQ) @ Ww. O

Recall that a variety of finite semigroups V is monoidal if S € V implies S* € V.

Proposition 3.2. If V is a monoidal variety of finite semigroups, then QV =
V& MOD.

Proof. Let a: A* — M be a stamp of V& MOD. By definition, there is a stamp
B: A* = G of MOD, such that 7 = Boa~! : M — G is a V-relational morphism.

A*
T
Let n be an integer such that «(A™) is the stable subsemigroup of . Then, in
particular, a(A") = (A" ). On the other hand, since § is a stamp of MOD,
B(AME) = (B(A)IEN" = {1}, where 1 is the identity of G. It follows that a/(A™) is
a subsemigroup of the semigroup 7~!(1). But since 7 is a V-relational morphism,
771(1) is in V, and so is a(A™). Thus « is in QV.
Let o : A* — M be a stamp of QV and let S = «(A™) be the stable sub-

semigroup of «. Since « is in QV, S is a semigroup of V. Define a morphism
B : A* — Z/nZ by setting S(a) =1 for all a € A. By construction, g is in MOD

M

G
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and a o 3710) = a(A™)* = {1} U S. It follows that 8o a~! is a V-relational
morphism and thus M € V& MOD. O

Corollary 3.3. The following equality holds: QA = A & MOD.

4. THE ORDERED CASE

4.1. ORDERED MONOIDS AND ORDERED STAMPS

Just as Eilenberg’s theory of varieties has been extended to the ordered case [7],
the theory developed in the present paper can be extended to include C-varieties
of ordered stamps. This extension is relatively straightforward, and we only give
here the main definitions and results, together with some of the changes required
in the proofs of the main results.

A relation < on a monoid M is stable if, for every x,y,z € M, x < y implies
rz < yz and zx < zy. An ordered monoid is a monoid equipped with a stable
partial order relation.

A congruence on an ordered monoid (M, <) is a stable quasi-order which is
coarser than <. In particular, the order relation < is itself a congruence. If <
is a congruence on (M, <), then the equivalence relation ~ associated with < is
a monoid congruence on M. Furthermore, there is a well-defined stable order on
the quotient set M/~, given by [s] < [t] if and only if s < ¢t. Thus (M/~, <) is an
ordered monoid, also denoted by M/=.

The product of a family (M;);c; of ordered monoids is the ordered monoid
defined on the set []..; M;. The multiplication and the order relation are defined
componentwise.

A morphism from an ordered monoid (M, <) into an ordered monoid (N, <) is
a monoid morphism ¢ : M — N such that s1 < sy implies ¢(s1) < ¢(s2). Ordered
submonoids and quotients are defined in the usual way. Complete definitions can
be found in [13].

An order ideal T of an ordered monoid (M, <) is a subset of M such that if
r €l andy <z thenyel.

An ordered stamp is an onto morphism from a finitely generated free monoid
onto a finite ordered monoid. A C-morphism from a stamp ¢ : A* — (M, <) to a
stamp ¢ : B* — (N, <) is a pair (f,«), where f : A* - B*isinC, a: M — N is
a morphism of ordered monoids, and ¥ o f = a0 .

The notions of C-inclusion, C-projection, C-division, C-varieties of ordered stamps
and Mal’cev products can now be readily extended to the ordered case.

i€l

4.2. LANGUAGES

A language L of A* is recognized by an ordered monoid (M, <) if and only if
there exist an order ideal I of M and a monoid morphism 7 from A* into M such
that L =n~1(I).
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Let A* be a free monoid. Given a language L of A* we define the syntactic

congruence ~y, and the syntactic preorder <p, as follows:

(1) w~g vif and only if for all x,y € A*, vy € L < zuy € L;

(2) w<pwvif and only if for all x,y € A*,2vy € L = zuy € L.
The monoid A*/~y, is called the syntactic monoid of L, and is denoted by M (L).
The monoid A*/~p, ordered with the stable order relation induced by <y, is called
the ordered syntactic monoid of L. The syntactic (ordered) monoid of a rational
language is finite.

A set of languages closed under finite intersection and finite union is called
a positive boolean algebra. Thus a positive boolean algebra always contains the
empty language and the full language A* since § = (J,c4 Ls and A* =,y Li. A
positive boolean algebra closed under complementation is a boolean algebra.

A class of recognizable languages is a correspondence )V which associates with
each alphabet A a set V(A*) of recognizable languages of A*.

A positive C-variety of languages is a class of recognizable languages V such
that

(1) for every alphabet A, V(A*) is a positive boolean algebra;

(2) if p: A* — B* is a morphism of C, L € V(B*) implies ¢~ !(L) € V(A*);

(3) if L € V(A*) and if a € A, then a™'L and La™! are in V(A4*).
A C-variety of languages is a positive C-variety of languages closed under comple-
ment.

If V is a C-variety of ordered stamps, we denote by V(A*) the set of languages
whose ordered syntactic morphisms are in V. Then V is a positive C-variety of
languages. Conversely, one can associate with any positive C-variety of languages V
the C-variety of stamps V generated by the ordered syntactic morphisms of the
languages of V.

The following result extends simultaneously the results of the first author [7]
and of the second author [18].

Theorem 4.1. The correspondences V.— YV and V — V define bijections between
the C-varieties of ordered stamps and the positive C-varieties of languages.

The proof is a straightforward generalization of the two aforementioned results
and is therefore omitted.

5. IDENTITIES OF MAL’CEV PRODUCTS

In [11], Pin and Weil gave a set of identities defining the Mal’cev product of
two varieties of finite semigroups. This result can be adapted as follows.

Theorem 5.1. Let W be a C-variety of stamps and let V. = [E] be a variety of
ordered semigroups. Then V8 W is defined by the identities of the form &(x) <
6(y), where x < y is an identity of E with x,y € B* for some finite alphabet B and

o : BT — AT is a semigroup morphism such that, for all b,b’ € B, W satisfies
the identity o(b) = o(b') = o(b?).
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We now apply this result to the variety QA = A @ MOD. The variety of
semigroups A is defined by the single identity ¥ = 2“*!. On the other hand, the
free pro-MOD monoid is a group and thus, if an identity of the form v = u? holds
in MOD, then the identity u = 1 also holds in MOD. Therefore, we obtain

Proposition 5.2. The lm-variety (resp. lp-variety) QA is defined by the set of
identities of the from u® = u“*l, where u =1 is an identity of MOD.

One can take for instance u = a* b, or u = ba*~2cab”~2b, etc. If QA is consid-
ered as an Im-variety, this result can be improved as follows (see [5]):

Proposition 5.3. The Im-variety QA is defined by the single identity
(xwfly)w —_ (xwfly)uﬂrl.

Proof. Tt follows from Proposition 5.2 that the identity (z*~1y)* = (2*~1y)“*!is
satisfied by QA.

Conversely, suppose ¢ : A* — M satisfies this identity. If ¢ is not in QA,
then the stable subsemigroup ¢(A¥) contains a nontrivial group element g. Let
u,v € AF be such that ¢(v) = g and ¢(u) is the identity e of the group generated
by g. Since

p(v”u)” = e = p(u)

and

s0(,Uu)71u)w+1 — gfl

the identity is not satisfied, a contradiction. O

Observe that in the second part of the proof, we needed to be able to choose u
and v to be words of equal length for any desired length. So this argument does
not show ¢ € QA if we interpret the identity over Cj,. In fact there is no finite
basis for the pseudoidentities of QA as an Ip-variety. This is shown by the family
of languages

Ly = ((af ---af)?)*
over the alphabet A, = {a1,...,a,}. It is easy to see that the syntactic morphism
of L, is not in QA, but the image of B* where B is a strict subset of A, is
aperiodic.

6. POLYNOMIAL CLOSURE

In this section, we extend to C-varieties the main results of [12].

The polynomial closure of a class of languages £ of A* is the set of languages
that are finite unions of languages of the form LgaiL; - - - a, L, where the a;’s are
letters and the L;’s are elements of L.

By extension, if V is a positive C-variety of languages, we denote by Pol V the
class of languages such that, for every alphabet A, Pol V(A*) is the polynomial
closure of V(A*).



260 J.-E. PIN AND H. STRAUBING

Let, for 0 < i < n, L; be recognizable languages of A*, let n; : A* — M(L;) be
their syntactic ordered stamps and let

n:A* = Im(n) € M(Lo) Xx M(Ly) X --- x M(Ly)
be the ordered stamp defined by

n(u) = (o(u),m(u), ..., 1M (w)).

Let a1, asz, ..., a, be letters of A and let L = Loai1 Ly - - anLy. Let p: A* — M(L)
be the syntactic ordered stamp of L. The properties of the relational morphism

Tznou_l:M(L)—>M(LO)XM(Ll)X---XM(Ln)

were intensively studied in the literature. We cite below the most recent of these
results [9]. Recall that an ordered semigroup (.S, <) belongs to the variety of finite
ordered semigroups LI if and only if, for every s in S and every idempotent e
in S, ese <e.

Proposition 6.1. The relational morphism 7 : M (L) — M(L1) x M (L) x - -- X
M (L) is a (LI, LI")-relational morphism.

The algebraic characterization of the polynomial closure was given in [12] for
varieties of languages and in [9] for positive varieties. It can be further extended
as follows.

Theorem 6.2. Let V be a C-variety of ordered stamps and let V be the associ-
ated positive C-variety of languages. Then Pol V is a positive C-variety and the
associated C-variety of ordered stamps is the Mal’cev product (LIT, LIT)@ V.

It is interesting to observe that, in [12], two different definitions of the polyno-
mial closure were used. One for classes of languages of A* — the one given above —
and another one for classes of languages of A™: the polynomial closure of a class of
languages £ of AT is the set of languages of A* that are finite unions of languages
of the form woLquy - -+ Lyu,, where n > 0, the u;’s are words of A* and the L;’s
are elements of L. If n = 0, one requires of course that ug is not the empty word.

This definition can be recovered in the framework of varieties of stamps. The
first step consists in interpreting the notion of variety of finite semigroups.

Let us introduce a notation: if (S, <) is an ordered semigroup, denote by (S%, <)
the ordered monoid defined as follows: ST = S U {I}, where I is a new identity,
and the order on ST is the order on S, together with the trivial relation I < I.

Let V be a variety of finite ordered semigroups. We now associate to V the
ne-variety of ordered stamps V' consisting of all morphisms ¢ : A* — M such
that the semigroup ¢(A™) is in V. In particular, if (S,<) € Vand o : AT — S is
an onto morphism, the stamp ! : A* — ST defined by setting ©!(1) = I, is in V.

We now compare V to V', the positive ne-varieties of languages corresponding
to V and V', respectively.
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Lemma 6.3. Every language of V(A™T) is a language of V'(A*). Conversely, if L
is a language of V'(A*), then LN AT is a language of V(AT).

Proof. Let L be a language of V(A™T) and let ¢ : AT — (5, <) be its ordered
syntactic morphism. Then (S, <) € V and thus ¢! € V. Let J be an order ideal
of S such that L = ¢~!(J). Then J is also an order ideal of S? and thus L is a
language of V'(A*).

Conversely, if L € V'(A*), its ordered syntactic morphism ¢ : A* — (M, <)
belongs to V' and thus p(AT) € V. It follows that L N A" € V(A™). O

Using V' in the place of V avoids the need for two separate definitions for the
polynomial closure and Theorem 6.2 is sufficient in all the cases. More precisely:

Proposition 6.4. For each alphabet A, Pol V'(A*) is the set of languages that
are finite union of languages of the form ugLiuy - -+ Lyuy,, where n > 0, the u;’s
are words of A* and the L;’s are elements of L.

Proof. First, every language of the form LoaiL; - anL,, with ag,...,a, € A, is
also of the form woLjuy - - - Lyty,.

We claim that V'(A*) contains the languages {1} and A*. Indeed, the trivial
semigroup 0 belongs to V. Therefore the stamp ¢! : A* — ST = {1,0} defined
by ¢!(1) =1 and ¢’ (a) = 0 for each a € A is in V’. This proves the claim, since
{1} = (¢)"1(1) and A* = ()" 1(0).

Consider now a language L which is a union of languages of the form
u0L1u1 s Lnun

where the u;’s are words of A* and the L;’s are elements of £. Observing that if
u = aq---ag, then {u} = {1}ar1{l}a2{1}---{1}ar{l}, we may assume that each
word wu; is either a letter or the empty word. Next, the formula

KK'=K({1}nK')u | ] Ka(a™'K")
acA

shows that the u;’s equal to the empty word can be eliminated, since if L € L,
then a='L € L. Thus L belongs to Pol V'(A*). O

Similar subtleties occurring in [9] for the definition of the Schiitzenberger prod-
uct of n semigroups also disappear within the framework of C-varieties.

7. CONCLUSION

In this paper, we generalized to C-varieties a number of algebraic results of
varieties of monoids, but there is still a lot to do. In particular, it is possible to
extend the theory of wreath products to C-varieties. Due to space limitation, it
was not possible to include this generalization in the present paper and it will be
the topic of a subsequent article.
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