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1. Introduction

Motivation. Optics is a key technology in communication networks and it is
expected to dominate important applications such as video conferencing, scien-
tific visualization, real-time medical imaging, high speed super-computing, and
distributed computing. A single optical wavelength supports rates of gigabytes-
per-second, see e.g. [9,13]. Multiple laser beams that are propagated over the same
fiber on distinct optical wavelengths can increase this capacity much further. This
is achieved through WDM (Wavelength Division Multiplexing) [5], by partitioning
the optical bandwidth into a large number of channels. It allows multiple data
streams to be transferred concurrently (on different wavelengths) along the same
optical fiber.

All-optical [15] communication networks are switched networks with reconfig-
urable wavelength selective optical switches, without wavelength converters, where
different signals may travel on the same communication link (but on different wave-
lengths) into a node, and then exit from it on different links, keeping their original
wavelengths. We refer the reader to [2] for an account of the theoretical problems
and results obtained for this all-optical model. These systems provide all source-
destination pairs with end-to-end transparent channels that are identified through
a wavelength and a physical path. Maintaining the signal in optical form allows
for high data transmission rates in these networks since there is no prohibitive
overhead due to conversions to and from the electronic form.

The actual process of setting up switches and of assigning wavelengths is done
using an electronic backbone control network. A solution consists of settings for the
switches in the network (establishing a routing), and an assignment of wavelengths
to the requests so that no directed link will carry two different signals on the same
wavelength. One may wonder at the use of a relatively slow electronic network
to set-up these high-speed connections. In fact, the major applications for such
networks require connections that last for relatively long periods, once set-up.

Contribution of this work. The cost and feasibility of switching and ampli-
fication devices depend on the number of wavelengths they handle. It is evident
that the number of wavelengths (optical bandwidth) is a costly source and thus a
limiting factor. As pointed out in [1], in a network where links and/or nodes may
fail it is important to establish routings for a required communication pattern,
that guarantee fault-free transmission. The construction has to take into account
the available capacity of the optical bandwidth. Hence it is important to construct
fault-tolerant routings requiring the least possible number of wavelengths.

In this paper we will initiate the study of fault-tolerant routings in all-optical
networks. We concentrate on one of the dominating topological structures for
distributed systems — the binary hypercube, and we consider the total exchange
(also called all-to-all or gossiping) communication process. We assume that up
to f links/nodes may fail in the system, and describe nearly optimal (with re-
spect to the number of wavelengths) all-to-all f -fault tolerant protocols for the



ON F -WISE ARC FORWARDING INDEX AND WAVELENGTH 257

r-dimensional binary hypercube for any f , 0 ≤ f < r. For that purpose we in-
troduce the notion of f -wise arc forwarding index, as a generalization of widely
studied arc forwarding index introduced in [11], and compute its values for the
hypercube. Our results generalize corresponding results of [1, 4, 14], where the
problem was solved for f = 0. For other work concerning 0-fault tolerant proto-
cols in all-optical networks see, e.g. [1–4,7,10,16,17]. A preliminary version of this
paper has appeared in [12].

2. Model, notation, and results

The Optical network model. Our model for optical networks and the wave-
length routing problem is adopted from [2]. An all-optical network is modeled as
a symmetric directed graph G = (VG, AG), where VG is a set of vertices, and AG

is a set of arcs such that if 〈u, v〉 ∈ AG, then 〈v, u〉 ∈ AG. Let P (x, y) denote a
dipath (directed path) in G from the vertex x to the vertex y, i.e. a sequence of
vertices v1, . . . , vk+1 such that 〈vi, vi+1〉 ∈ AG is an arc for 1 ≤ i ≤ k, v1 = x and
vk+1 = y. The number k is the length of the dipath P (x, y). Let dist(x, y) denote
the distance of x and y in G, that is the length of a shortest dipath P (x, y). If
P (x, y) and P (y, z) are two dipaths such that P (x, y) ∩ P (y, z) = {y}, then the
composition P (x, y) ·P (y, z) is the dipath P (x, y′) followed by P (y, z), where y′ is
the last but one vertex of P (x, y).

The Wavelength routing problem. A request in G is an ordered pair of vertices
[x, y] in G corresponding to a message to be send from x to y. An instance I in
G is a set of requests in G. We denote the fact that I is a subject to G by (G, I).
An f -wise routing for an (G, I) is a set of internally vertex-disjoint dipaths

R = {P0(x, y), P1(x, y), . . . , Pf (x, y) : [x, y] ∈ I}

where Pi(x, y) ∩ Pj(x, y) = {x, y} for all i 6= j. Let us note that if f = 0, then the
0-wise routing for an (G, I) is simply referred to as the routing for (G, I).

Let G be a symmetric digraph and I an instance in G. The f -wise wavelength
routing problem for (G, I) consists of finding an f -wise routing R for (G, I) and
of finding an assignment of a wavelength to each dipath from R, so that no two
dipaths of R sharing an arc are assigned the same wavelength.

Communication instances. For a general network G and an arbitrary instance
I, the problem of determining the minimum number of wavelengths in a solution
to the wavelength routing problem for (G, I) is an NP-complete problem [6]. We
consider widely used global communication instance, the total exchange (also called
all-to-all or gossiping). Later, in the proofs we will decompose this instance into
special instances, called all-to-all-d instances, in which only pairs of vertices of
distance d are considered. Formally, these instances can be defined as follows:

– the all-to-all instance is IA = {[x, y] : x, y ∈ VG, x 6= y},
– the all-to-all-d instance is Id

A = {[x, y] : x, y ∈ VG, dist(x, y) = d}.
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Routing parameters. A natural lower bound for the minimum number of wave-
lengths needed for a given instance on a network is its arc-congestion in the net-
work. Formally, let G be a symmetric digraph, IA the all-to-all instance in G,
and R an f -wise routing for (G, IA). The load of an arc α ∈ AG in the routing
R, denoted by ~π(G, R, α), is the number of dipaths of R containing α. The load
of a routing R, denoted by ~π(G, R), is the maximum of ~π(G, R, α) over all arcs
α ∈ AG. The f -wise arc-forwarding index ~π(G, f) is the minimum of ~π(G, R) over
all possible f -wise routings R for (G, IA). Note that ~π(G, 0) is the well-known
arc-forwarding index of G, cf. [11].

In the wavelength routing problem, it is convenient to think of wavelengths as
colors. Thus, let ~ω(G, f) denote the smallest number of colors that are sufficient
to solve the f -wise wavelength routing problem for (G, IA) over all possible f -wise
routings for (G, IA). The parameter ~ω(G, f) is called the f -wise optical index of
G, and if f = 0, then it is the optical index of G.

To solve a given f -wise wavelength routing problem for (G, I) one has to use a
number of wavelengths at least equal to the maximum number of dipaths having
to share an arc, hence we have:

Proposition 2.1. For any symmetric digraph G, and any f ≥ 0, ~π(G, f) ≤
~ω(G, f).

The directed hypercube. Let Hr denote the r-dimensional binary hypercube
in which each edge is replaced by two opposite directed arcs. Let us note that the
vertices of Hr are all binary strings of length r and an ordered pair of vertices,
say u = u1u2 . . . ur and v = v1v2 . . . vr, is joined by an arc 〈u, v〉 if, and only if the
corresponding strings differ in precisely one position, say 1 ≤ i ≤ r. Subsequently,
we say that u and v differ in the ith dimension, that the corresponding arc is the
i-th dimension arc, and sometimes we refer to v as u(i). In other words:

v = u(i) and u = v(i).

Let the symbol ≺ denote the lexicographical order on the hypercube vertices.
Now for each ordered pair [u, v] ∈ IA, we have either u ≺ v or v ≺ u. In order
to distinguish what kind of pair we are dealing with, we define the orientation
σ(u, v) ∈ {≺,�} of an ordered pair [u, v] ∈ IA as σ(u, v) =≺, if u ≺ v, and
σ(u, v) =�, otherwise.

The fault tolerant model. We consider a fault tolerant model in which arbitrary
set of vertices and/or arcs may fail. A routing for (G, I) is said to be f -fault tolerant
if it can remain functional in the presence of up to f faulty vertices and/or arcs in
G. A routing is functional as long as it contains a non-faulty communication dipath
between each pair of non-faulty vertices from the instance I. The following simple
observation shows that in order to construct f -fault tolerant routing protocols it
is enough to describe f -wise routings.

Proposition 2.2. For any symmetric digraph G, any instance I in G, and any
f ≥ 0, any f -wise routing for (G, I) is f -fault tolerant for (G, I).
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Our Results. First, we study the f -wise arc-forwarding index of Hr. For any
integer f , 0 ≤ f < r, we prove that

~π(Hr, f) = (f + 1)2r−1 +

⌈
2
r

f∑
i=1

(f − i + 1)
(

r

i

)⌉
.

The above result is obtained by proving a lower bound for ~π(Hr, f), and then
describing an f -wise routing Rf for (Hr , IA) whose load is equal to the lower
bound for ~π(Hr, f).

Second, we give a coloring of dipaths of Rf , which gives us an upper-bound for
~ω(Hr, f). The number of colors in the coloring is nearly optimal, as we prove that

~π(Hr, f) ≤ ~ω(Hr, f) ≤
{

(1 + εr)~π(Hr, f), for 0 ≤ f < r
2 ,

(3
2 + εr)~π(Hr, f), for r

2 ≤ f < r,

where limr→∞ εr = 0. Because both the description of the layout Rf and also the
description of the coloring of dipaths of Rf can be carried out in polynomial time,
we conclude that we have given nearly optimal f -fault tolerant all-to-all protocols
for all-optical hypercubes. Moreover, our results generalize corresponding results
for the hypercube in [1, 4, 14]. Indeed, the results for hypercube in these papers
can be obtained from ours by setting f = 0.

3. The f-wise arc-forwarding index of Hr

If a network possesses an f -wise routing for the instance IA, then since any pair
of vertices of the underling network must be connected with at least f+1 vertex/arc
disjoint dipaths, the underling network must be (f + 1)-vertex/arc connected.
Since Hr is r-vertex/arc connected, we may hope to describe f -wise routings for
Hr only for f ∈ {0, 1, . . . , r − 1}. Thus, through the rest of the paper we assume
that 0 ≤ f < r. We begin with giving a lower bound to the f -wise arc-forwarding
index of Hr.

A bound for binomial coefficients. We use the following basic upper bound
for binomial coefficients which can be found, for example, in [8].(

r

k

)
< 2r− 1

2 log 3r+1.

Lemma 3.1. For any f , 0 ≤ f < r,

~π(Hr, f) ≥ (f + 1)2r−1 +

⌈
2
r

f∑
i=1

(f − i + 1)
(

r

i

)⌉
.

Proof. We first lower-bound the total congestion count in any f -wise routing for
(Hr, IA). In any f -wise routing there are f + 1 internally vertex disjoint dipaths



260 J. MAŇUCH AND L. STACHO

joining any ordered pair of vertices. Consider any two vertices in Hr of distance
d, 1 ≤ d ≤ r. The total contribution of the corresponding f + 1 dipaths to the
congestion count is at least d2 + (f − d + 1)(d + 2) if d ≤ f , and if d > f , then the
total contribution is at least (f+1)d. Since there are 2r

(
r
d

)
distinct ordered pairs of

vertices of distance d in Hr, the overall contribution is at least 2r
(

r
d

)
((d+2)f−d+2)

if d ≤ f , and is at least 2r
(

r
d

)
(f + 1)d if d > f .

Hence the total congestion count is at least

f∑
i=1

2r

(
r

i

)
((i + 2)f − i + 2) +

r∑
i=f+1

2r

(
r

i

)
(f + 1)i

= (f + 1)r22r−1 + 2r+1

f∑
i=1

(f − i + 1)
(

r

i

)
= L .

Since there are r2r arcs in Hr, the average congestion of any f -wise routing for
(Hr, IA) is at least L/(r2r). This means that

~π(Hr, f) ≥ (f + 1)2r−1 +

⌈
2
r

f∑
i=1

(f − i + 1)
(

r

i

)⌉
. �

In what follows, we describe the construction of an f -wise routing for (Hr, IA) that
attains the above lower bound. First, we give a basic idea of the construction. For
every ordered pair of vertices [u, v], we will describe f +1 internally vertex disjoint
dipaths as follows. Assume the distance of u and v is d. Then, u and v differ
in exactly d dimensions, and consequently, one can choose d shortest internally
vertex-disjoint dipaths joining u to v. We will use these shortest dipaths in our
routing in an order to be specified later. If d < f +1, we still need f +1−d dipaths.
The length of these dipaths will be d + 2, and for every such dipath, we choose a
dimension i, such that the dipath will have the form: 〈u, u(i)〉 ·P · 〈v(i), v〉, where
P is the first (in the order given below) of the shortest dipaths from u(i) to v(i).
We must choose i such that all the f + 1 dipaths joining u and v (in our routing)
will be internally vertex disjoint, and moreover, the congestion of the resulting
routing will be as small as possible. To minimize the congestion, the routing must
have the property that every arc of Hr plays the role of i almost the same number
of times. To achieve this, we introduce and prove the existence of an (r, f)-system
of f functions that will give us f + 1 − d different dimensions for every pair of
vertices [u, v] of distance d, such that all the f + 1 dipaths joining u to v will
be internally vertex disjoint. In addition, the system will have the property that
the load of every arc of Hr will be almost the same (such a system will be called
regular). Now we are ready to present the detailed description of the routing.

The characteristic. We will treat some specific pairs of vertices as similar. For
this reason, we introduce the notion of characteristic. For any pair of distinct
vertices u and v of Hr, the characteristic C = (c1, c2, . . . , cd), with c1 < c2 < · · · <
cd, is the ordered list of all dimensions in which u and v differ. Let C denote
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the set of all characteristics in Hr, and Cd the set of all characteristics in Hr

with d elements. Obviously, |C| = 2r − 1, and |Cd| =
(

r
d

)
. For convenience, let

Ca,b = ∪b
i=aCi.

Regular(r, f)-system of functions. Now we describe the above mentioned
system of functions. The system will return the same value from {1, 2, . . . , r}
for any ordered pair of vertices of Hr with the same characteristic and the same
orientation. However, the returned values for [u, v] and [v, u] will be different
(this technical requirement will be later used to minimize the number of wave-
lengths). The system consists of f functions t0, t1, . . . , tf−1, where ti is defined
on C1,f−i × {≺,�}. Thus, for any fixed characteristic C ∈ Cd, we have functions
t0, t1, . . . , tf−d that are defined for (C,≺) and (C,�).

Formally, an (r, f)-system of functions is a system of f functions t0, t1, . . . , tf−1,
where ti : C1,f−i × {≺,�} → {1, . . . , r}, and for each characteristic C ∈ Cd, 1 ≤
d ≤ f , and each orientation φ ∈ {≺,�}, the elements of C and the elements
t0(C, φ), . . . , tf−d(C, φ) are all distinct. The idea behind using the orientation φ
is that in this way we are able to describe two different dipaths connecting u and
v: one for [u, v] and another for [v, u].

The distribution e = (e1, . . . , er) of an (r, f)-system of functions {ti}f−1
i=0 is a

vector of integers, where

ej = |{(x, i) : x ∈ C1,f−i × {≺,�}, i = 0, . . . , f − 1, and ti(x) = j}| ,

for all j = 1, . . . , r. Numbers ej represent how many times functions t0, . . . , tf−1 re-
turn the value j. We say that an (r, f)-system of functions is regular, if maxr

j=1 ej−
minr

j=1 ej ≤ 1.
The following lemma guarantees the existence of a regular (r, f)-system of func-

tions.

Lemma 3.2. For any 0 ≤ f < r, there exists a regular (r, f)-system of functions
satisfying

ti(C,≺) 6= ti(C,�), for all C ∈ Cd, 1 ≤ d ≤ f , and 0 ≤ i ≤ f − d. (1)

Before we present the proof of the above lemma we need some more definitions.

The configuration. Let ρ be a cyclic shift on the set {1, . . . , r}, i.e. ρ(i) = i + 1
for i < r and ρ(r) = 1. Clearly, the map ρ can be extended to the set of all
characteristics C. Let us define the equivalence relation on C as follows: two
characteristics C1, C2 ∈ C are equivalent, written C1 ∼ C2, if there exists k such
that C2 = ρk(C1). This relation factorizes the set C (resp. Cd) into the set of
equivalence classes Ĉ (resp. Ĉd). The equivalence classes are called configurations.
One can imagine each configuration Ĉ ∈ Ĉ as a ring with r beads colored by two
colors, say black and white, see Fig. 1a). Note that if Ĉ ∈ Ĉd, then the ring
representing Ĉ has exactly d black beads and r − d white beads.

If we number beads clockwise starting from an arbitrary bead, then the black
beads represent a characteristic. For example, in Fig. 1b) the characteristic (3, 5, 6)
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a) b)

2

4

61

5

3

Figure 1. A configuration and a corresponding characteristic.

is depicted. It belongs to the equivalence class (configuration)

Ĉ = {(1, 3, 4), (2, 4, 5), (3, 5, 6), (1, 4, 6), (1, 2, 5), (2, 3, 6)} .

If the rotation of the ring representing configuration Ĉ by m beads results in
the original position of the ring, we say that Ĉ has symmetry m. Further, a
configuration Ĉ is m-symmetric, if m > 0 is the smallest symmetry it has. It is easy
to observe that any m-symmetric configuration contains exactly m characteristics
and that m | r. Two numbers x and y are congruent modulo r, written x ≡ y
(mod r), if they give the same remainder after dividing by r.

Proof of Lemma 3.2. We first prove the existence of a regular (r, f)-system. Later,
we show how it can be modified to satisfy (1). We prove a slightly stronger
statement than in Lemma 3.2. We say that a system of functions has an (a, b)-
cyclic distribution if its distribution e = (e1, . . . , er) for some α ≥ 0 satisfies:

ea = ea+1 = · · · = eb−1 = α + 1 and eb = eb+1 = · · · = er = e1 = · · · = ea−1 = α

if a ≤ b, and

ea = ea+1 = · · · = er = e1 = · · · = eb−1 = α + 1 and eb = eb+1 = · · · = ea−1 = α

if a > b.
In what follows, we construct an (r, f)-system of functions that has (1, b)-cyclic

distribution for some b. Such system is obviously regular.
Let j0 ∈ {1, . . . , r}. Consider an m-symmetric configuration Ĉ ∈ Ĉd, 1 ≤ d < r,

and an orientation φ ∈ {≺,�}. We first show how to define functions {ti}f−d
i=0 on

Ĉ × {φ} such that they have (j0, j′0)-cyclic distribution for some j′0. Since d < r,
there exists a characteristic C0 ∈ Ĉ such that j0 /∈ C0. Let Ck = ρk(C0) for
k = 1, . . . , m − 1; so Ĉ = {C0, . . . , Cm−1}.

Consider the numbered ring representing C0. The ring has r − d white beads.
Since the ring is m-symmetric, each part of the ring with m beads has the same
number of white beads. We divide the ring into r

m disjoint parts, each consisting of
m beads. Hence, each part contains exactly w := m

r (r − d) white beads. Consider
the part containing j0. Let j1, . . . , jw−1 ∈ {1, . . . , r} be the corresponding numbers
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of remaining white beads in the part. Thus, j0, j1, . . . , jw−1 do not belong to C0,
and are all distinct modulo m. For notation convenience, we let jw = j0.

Let f − d + 1 = p · r
m + q, where 0 ≤ q < r

m , so

p =
⌊m

r
(f − d + 1)

⌋
≤ m

r
(f − d + 1) ≤ w,

where p = w implies q = 0. Define the values of functions t0, . . . , tf−d on the set
Ĉ × {φ} ⊆ Cd × {φ} as follows:

ti+(l−1)· r
m

(Ck, φ) ≡ jl + k + im (mod r) , (2)

for i = 0, . . . , r
m − 1, l = 1, . . . , p, and if q > 0, let

ti+p· r
m

(Ck, φ) ≡ j0 + k + im (mod r) , (3)

for i = 0, . . . , q − 1. Note that since p ≤ w, all jl’s in (2) are defined, and if q > 0,
then j0 is different from all these values. Moreover, since the returned values of
the (r, f)-system of functions must be from {1, . . . , r}, the system {ti}f−d

i=0 is well
defined using congruence relations in (2) and (3).

Now we show that the values of elements of Ck and the values

t0(Ck, φ), . . . , tf−d(Ck, φ)

are all distinct for any k = 0, . . . , m− 1. Indeed, since for any 0 ≤ l < w, jl /∈ C0,
we have also (jl + k) mod r /∈ Ck, and since Ĉ is m-symmetric, for all i, we have
(jl + k + im) mod r /∈ Ck. Thus, t0(Ck, φ), . . . , tf−d(Ck, φ) /∈ Ck. Assume that
ti+(l−1)· r

m
(Ck, φ) = ti′+(l′−1)· r

m
(Ck, φ) for some 0 ≤ i, i′ ≤ r

m −1, and 1 ≤ l, l′ ≤ p.
(For the simplicity we consider only the case q = 0, the case q > 0 is left for
the reader.) This implies that jl + im ≡ jl′ + i′m (mod r), and also jl ≡ jl′

(mod m). But jl’s are distinct modulo m, so l = l′ and the first equality simplifies
to (i − i′)m ≡ 0 (mod r), which gives i = i′. Note that if m = r, then, by
assumption, we must have i = i′ = 0.

We next show that for each l = 1, . . . , p, the functions {ti+(l−1)· r
m
} r

m−1
i=0 defined

on Ĉ × {φ} contribute to the distribution by the r-vector (1, . . . , 1). This follows
from the fact that the sequence

t0+(l−1)· r
m

(C0, φ), t0+(l−1)· r
m

(C1, φ), . . . , t0+(l−1)· r
m

(Cm−1, φ),

t1+(l−1)· r
m

(C0, φ), t1+(l−1)· r
m

(C1, φ), . . . , t1+(l−1)· r
m

(Cm−1, φ),

...

t r
m−1+(l−1)· r

m
(C0, φ), t r

m−1+(l−1)· r
m

(C1, φ), . . . , t r
m−1+(l−1)· r

m
(Cm−1, φ)

is an arithmetic sequence modulo r with step 1. Indeed, it is easy to see that the
difference modulo r between two consecutive elements in any line is 1, and the
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difference between the first element of a line and the last element of the previous
line is

t(i+1)+(l−1)· r
m

(C0, φ) − ti+(l−1)· r
m

(Cm−1, φ) ≡
(jl + 0 + (i + 1)m) − (jl + (m − 1) + im) = 1 (mod r).

In the same sequel, one can show that the functions {ti+p· r
m
}q−1

i=0 on Ĉ ×{φ} have
(j0, j′0)-cyclic distribution, where j′0 ≡ j0 + qm (mod r). Hence, the functions
{ti}f−d

i=0 on Ĉ × {φ} have (j0, j′0)-cyclic distribution, as claimed.
Now, let Ĉ1, Ĉ2, . . . , ĈK be a sequence of all configurations, where Ĉi ⊆ C1,f .

Defining the (r, f)-system of functions is equivalent to defining it step by step on
the following sequence

Ĉ1 × {≺}, Ĉ2 × {≺}, . . . , ĈK × {≺}, Ĉ1 × {�}, Ĉ2 × {�}, . . . , ĈK × {�} .

By the above construction, we can define functions on Ĉ1 × {≺}, such that they
have (1, a1)-cyclic distribution for some a1. Then we define functions on Ĉ2 ×
{≺} such that they have (a1, a2)-cyclic distribution. Clearly, these functions on
Ĉ1 ×{≺}∪ Ĉ2 ×{≺} will have (1, a2)-cyclic distribution. We continue inductively
and construct an (r, f)-system of functions with (1, b)-cyclic distribution for some
value b.

Finally, we show how a regular (r, f)-system of functions {ti}f−1
i=0 can be modi-

fied to satisfy (1). Let us observe that if we permute the values

t0(C, φ), . . . , tf−d(C, φ) ,

for fixed C ∈ Cd, and φ ∈ {≺,�}, we get a regular system of functions, again.
The result follows from the fact that for each d = 1, . . . , f − 1, and C ∈ Cd, there
exists a permutation of t0(C,�), . . . , tf−d(C,�) such that ti(C,≺) 6= ti(C,�) for
i = 0, . . . , f − d. �

Description of the layout. Let [u, v] ∈ IA be an ordered pair of vertices of Hr

with the characteristic C = (c1, c2, . . . , cd). We define f + 1 dipaths joining u to v
as follows. For i = 0, 1, . . . ,min{d− 1, f}, we let Pi(u, v) = (u0, u1, . . . , ud), where
u0 = u, u1 = u0(ci+1), u2 = u1(ci+2), . . . , ud−i = ud−i−1(cd), ud−i+1 = ud−i(c1),
ud−i+2 = ud−i+1(c2), . . . , ud = ud−1(ci). Let us note that the i-th dipath is
constructed so that from u we first use the ci+1-th dimension, then the ci+2-th
dimension, and so on. These are the only shortest u to v dipaths in our layout.
For i = d, d + 1, . . . , f , we let Pi(u, v) = 〈u, u′〉 · P0(u′, v′) · 〈v′, v〉, where u′ =
u(ti−d(C, σ(u, v))), v′ = v(ti−d(C, σ(u, v))), and {ti}f−1

i=0 is a regular (r, f)-system
of functions.

Now, for every f , 0 ≤ f < r, we define the layout Rf for (Hr, IA) as follows.

Rf = {Pi(x, y), i = 0, . . . , f : [x, y] ∈ IA}.
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Since the proof of Lemma 3.2 is constructive and the corresponding algorithm
(which can be easily abstracted from the proof) is polynomial, there is a polynomial
algorithm that for given r and f , returns the dipaths of the layout Rf .

For convenience, we define the following sub-layouts of Rf . First, for any
1 ≤ d ≤ r, and 0 ≤ k ≤ f , we define a sub-layout Rk,d consisting of all k-th
dipaths joining vertices at distance d in Rf . Thus,

Rk,d = {Pk(x, y) ∈ Rf : [x, y] ∈ Id
A}.

Obviously, Rf = ∪1≤d≤r ∪0≤k≤f Rk,d. Second, for any characteristic C and any
0 ≤ k ≤ f , we define a sub-layout Rk(C) consisting of all k-th dipaths joining
pairs of vertices with the characteristic C. Thus,

Rk(C) = {Pk(x, y) : the characteristic of [x, y] is C} .

Routing properties of the layout Rf .

Lemma 3.3. The layout Rf is an f -wise routing in Hr for any 0 ≤ f < r.

Proof. It is enough to prove that the dipaths Pi(u, v), i = 0, 1, . . . , f , are pairwise
internally vertex disjoint for any pair of vertices u = u1u2 . . . ur and v = v1v2 . . . vr

of characteristic C = (c1, c2, . . . , cd). Let σ(u, v) =≺.
For any 0 ≤ i < j ≤ min{d − 1, f}, the dipaths Pi(u, v) and Pj(u, v) are

internally vertex disjoint. Indeed, every internal vertex, say x = x1x2 . . . xr , of
Pj(u, v) has xcj+1 = vcj+1 and xcj = ucj , while every internal vertex, say y =
y1y2 . . . yr, of Pi(u, v) has either ycj+1 = vcj+1 and ycj = vcj , or ycj+1 = ucj+1 . The
claim follows from the fact that ucj 6= vcj and ucj+1 6= vcj+1(recall the definition
of the characteristic).

For any 0 ≤ i ≤ min{d− 1, f} and d ≤ j ≤ f , the dipaths Pi(u, v) and Pj(u, v)
are internally vertex disjoint. Note that if f < d, then this is trivially true. Now,
every internal vertex, say x = x1x2 . . . xr, of Pj(u, v) has xtj−d(C,≺) 6= utj−d(C,≺),
while every internal vertex, say y = y1y2 . . . yr, of Pi(u, v) has ytj−d(C,≺) =
utj−d(C,≺), since tj−d(C,≺) /∈ C.

Finally, for any d ≤ i < j ≤ f , the dipaths Pi(u, v) and Pj(u, v) are internally
vertex disjoint. (If f < d, then this is trivially true.) By the definition of the
(r, f)-system of functions, the values ti−d(C,≺), tj−d(C,≺) are distinct and do
not belong to C. Hence every internal vertex, say x = x1x2 . . . xr , of Pj(u, v) has
xtj−d(C,≺) 6= utj−d(C,≺), while every internal vertex, say y = y1y2 . . . yr, of Pi(u, v)
has ytj−d(C,≺) = utj−d(C,≺). �
Lemma 3.4. For any f , 0 ≤ f < r, it holds that

~π(Hr, f) ≤ (f + 1)2r−1 +

⌈
2
r

f∑
i=1

(f − i + 1)
(

r

i

)⌉
.

Proof. We show that the layout Rf attains the upper bound. By Lemma 3.3, the
proof will follow. We split the layout Rf into (f + 1)r sub-layouts Rk,d, where
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0 ≤ k ≤ f and 1 ≤ d ≤ r, and calculate the congestion for every sub-layout
separately.

Let us fix d, 1 ≤ d ≤ r. First, consider sub-layouts Rk,d for k = 0, 1, . . . ,
min{d − 1, f}. For any such fixed k, all dipaths in Rk,d are the shortest dipaths.
Fix a characteristic C ∈ Cd, and consider Rk(C). Obviously, in the layout Rk(C),
every arc of Hr is used at most once. More precisely, the congestion of an arc is
one if, and only if the arc is an i-th dimension arc, where i ∈ C. Indeed, for any
fixed C and any fixed k, fixing an i-th dimension arc (i ∈ C) determines whole
dipath completely. This means that the congestion of an i-th dimension arc of
Hr in the sub-layout Rk,d is equal to the total number of characteristic from Cd

containing i. This number is equal to
(

r−1
d−1

)
. Since it does not depend on i, this

means that the congestion of any arc of Hr in Rk,d is
(

r−1
d−1

)
.

Second, consider sub-layouts Rk,d for k = d, d + 1, . . . , f (recall, d is fixed). If
f < d, we are done. Otherwise, for any fixed k, all dipaths in Rk,d are of the form
〈x, x′〉 · P0(x′, y′) · 〈y′, y〉, where x′ = x(tk−d(C, σ(x, y))), y′ = y(tk−d(C, σ(x, y))),
and [x, y] ∈ Id

A has characteristic C. We first calculate the congestion forced by
dipaths P0(x′, y′). One can see that ∪[x,y]∈Id

A
[x′, y′] = Id

A. Indeed, x′ and y′

are of the same characteristic as x and y are, and moreover, σ(x′, y′) = σ(x, y).
Hence, x = x′(tk−d(C, σ(x′, y′))), y = y′(tk−d(C, σ(x′, y′))). As a consequence, we
conclude that

∪[x,y]∈Id
A
P0(x′, y′) = ∪[x,y]∈Id

A
P0(x, y) = R0,d .

Hence the load of any arc of Hr in Rk,d forced by dipaths P0(x′, y′) is
(

r−1
d−1

)
. It

follows that the load of any arc of Hr in Rf forced by the dipaths considered thus
far is equal to (f +1)2r−1, since 1 ≤ d ≤ r. Finally, we consider the remaining arcs
of ∪1≤d≤r∪d≤k≤f Rk,d (arcs of the form 〈x, x′〉 and 〈y′, y〉). These arcs are exactly
those, returned by functions {ti}f−1

i=0 . Since {ti}f−1
i=0 is a regular (r, f)-system of

functions, we know that any dimension of Hr is returned at most d 2
r

∑f
i=1(f − i+

1)
(
r
i

)e times. Indeed, for any fixed i, 1 ≤ i ≤ d, there are
(

r
i

)
distinct characteristics

with i elements, and we apply t0, t1, . . . , tf−i to every of these characteristics two
times (once with ≺, and once with �) in the layout Rf .

Hence, the load of any arc of Hr in the layout Rf is at most (f + 1)2r−1 +
d 2

r

∑f
i=1(f − i + 1)

(
r
i

)e, as claimed. �

Corollary 3.5. For any f , 0 ≤ f < r, it holds that

~π(Hr, f) = (f + 1)2r−1 +

⌈
2
r

f∑
i=1

(f − i + 1)
(

r

i

)⌉
.

The previous corollary determines the f -wise forwarding index of Hr. Moreover,
it generalizes corresponding results (when f = 0) from [1, 4, 14], then ~π(Hr) =
~π(Hr, 0) = 2r−1. Note that we have a nice closed formula also in the case f = r−1,
then ~π(Hr, r − 1) = (r + 2) · 2r−1 − 2.
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We have proved that Rf , for 0 ≤ f < r, is an f -wise routing, and thus, by
Proposition 2.2, it is f -fault tolerant in Hr. In what follows, we show that Rf

also requires nearly optimal number of wavelengths to solve the f -wise wavelength
routing problem for Hr.

4. The f-wise optical index of Hr

Description of the coloring. Consider a characteristic C ∈ Cd. It is easy to
observe that if k < d, any two dipaths in Rk(C) are arc disjoint, so for k < d,
we color all dipaths in Rk(C) by the same color. Denote by C̄ the complement
of characteristic C, i.e. C̄ = {1, . . . , r} \ C. If k < d and k < r − d, then any
dipath in Rk(C) is arc disjoint with any dipath in Rk(C̄), since they use arcs of
distinct dimensions. Hence, in this case we color all dipaths in Rk(C)∪Rk(C̄) by
the same color.

Finally, we analyze the case k ≥ d. Take any two distinct dipaths Pk(u1, v1),
and Pk(u2, v2) from Rk(C), C ∈ Cd, such that φ = σ(u1, v1) = σ(u2, v2). Now

Pk(u1, v1) = 〈u1, u
′
1〉 · P0(u′

1, v
′
1) · 〈v′1, v1〉 and

Pk(u2, v2) = 〈u2, u
′
2〉 · P0(u′

2, v
′
2) · 〈v′2, v2〉 ,

where u′
1 = u1(e), v′1 = v1(e), u′

2 = u2(e), v′2 = v2(e), and e = tk−d(C, φ). Clearly,
P0(u′

1, v
′
1) and P0(u′

2, v
′
2) are arc-disjoint, since they are the shortest dipaths of the

same characteristic C. Also arcs 〈u1, u
′
1〉, 〈v′1, v1〉 (resp. 〈u2, u

′
2〉, 〈v′2, v2〉) cannot

be contained in the dipath P0(u′
2, v

′
2) (resp. P0(u′

1, v
′
1)), since they are arcs of

dimension e /∈ C. Hence, the only possibility, where the above dipaths could
intersect are arcs 〈u1, u

′
1〉, 〈v′2, v2〉 or arcs 〈u2, u

′
2〉, 〈v′1, v1〉. Assume, for instance,

〈u1, u
′
1〉 = 〈v′2, v2〉. This implies v′2 = u1, u′

1 = v2, and also u′
2 = v1, v′1 = u2.

We must have σ(v2, v1) = σ(v′2, v
′
1) = σ(u1, u2), which is a contradiction. One

can come to a similar contradiction with the second pair of arcs. So, the dipaths
are arc-disjoint. Note, that the same holds without the assumption that the pairs
[u1, v1], [u2, v2] have the same orientation, if we assume that tk(C,≺) 6= tk(C,�).
According to Lemma 3.2, we can assume that the system of functions {ti}f−1

i=0 has
property (1), and we can color all dipaths in Rk(C) by the same color, if d < f .
If d = f , then k = f and we need 2 colors for dipaths Pf (u, v) ∈ Rf (C): one for
corresponding dipaths with u ≺ v and another one for dipaths with u � v. This
gives us the following upper bound on the f -wise optical index.

Theorem 4.1. For any 0 ≤ f < r
2 , it holds that

~ω(Hr, f) ≤ (f + 1)2r−1 +
f∑

i=1

(f − i + 1)
(

r

i

)
+ (1 − δf,0) ·

(
r

f

)
≤

(
1 + 4√

3r

)
~π(Hr, f) ,
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and for any r
2 ≤ f < r, it holds that

~ω(Hr, f) ≤ (2f + 2 − r/2)2r−1 − (f + 1) +
1
2

⌈r

2

⌉(
r

dr/2e
)

+
(

r

f

)
≤

(
3
2

+
2(r + 5)
3r(r + 2)

)
~π(Hr, f) .

Here δ is the Kronecker δ, defined as follows δi,j =

{
0 for i 6= j,
1 for i = j.

Proof. Let Sk =
r⋃

d=1

Rk,d. Consider, for instance, r odd. According to the de-

scription of coloring, to color paths in Sk, where k ≤ r−1
2 , we use 2r−1 +

∑k
i=1

(
r
i

)
colors: to color paths in ∪r

d= r+1
2
Rk,d we use 2r−1 colors; for paths in Rk,d,

where k < d ≤ r−1
2 , we use the same set of colors as for paths in Rk,r−d

and for other paths we use new colors. If k = d = f 6= 0, then we have
to use another set of

(
r
f

)
colors. So for f ≤ r−1

2 , we color our layout with∑f
k=0

[
2r−1 +

∑k
i=1

(
r
i

)]
+ (f 6= 0) · (

r
f

)
colors, which gives us the first claim

of the theorem.
Notice, that to color paths in Sk, where k ≥ r+1

2 , we can use the same number of

colors as we used for coloring paths in S r−1
2

. This is 2r−1 +
∑ r−1

2
i=1

(
r
i

)
= 2 ·2r−1−1

colors. All together we can color the layout Rf , where f ≥ r+1
2 with

r−1
2∑

k=0

[
2r−1 +

k∑
i=1

(
r

i

)]
+

(
f + 1 − r + 1

2

)
(2 · 2r−1 − 1) +

(
r

f

)
=

(
2f + 2 − r

2

)
2r−1 − (f + 1) +

r + 1
4

(
r

r+1
2

)
+

(
r

f

)
colors, which gives the claim. The evaluation for even r is very similar. The last
bounds in the statement of the theorem come from (3) and an observation that∑f

i=1(f − i + 1)
(
r
i

) ≤ f · (r
f

)
. �

Note that for (r − 1)-wise optical index of Hr we have a nice closed formula
(similarly as we had for (r−1)-wise forwarding index) as an upper bound ~ω(Hr, r−
1) ≤ 3

2r ·2r−1+ 1
2

⌈
r
2

⌉ (
r

dr/2e
)
. Using Proposition 2.1, we obtain the following nearly

optimal bounds on ~ω(Hr, f).
Corollary 4.2. For any 0 ≤ f < r,

~π(Hr, f) ≤ ~ω(Hr, f) ≤
{

(1 + εr)~π(Hr, f), for 0 ≤ f < r
2 ,

(3
2 + εr)~π(Hr, f), for r

2 ≤ f < r,

where limr→∞ εr = 0.
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Concluding remarks. It is a well known open problem for 0-wise routings to
show that ~π(G, 0) = ~ω(G, 0) for any symmetric digraph G. This is the case for
many extensively studied interconnection networks and was recently proved also
for the symmetric trees, cf. [7]. As we mentioned above, ~π(Hr , 0) = ~ω(Hr, 0). It
is natural to ask the same question for f -wise routings:

Conjecture 4.3. Let G be a symmetric digraph with connectivity k. For any
0 ≤ f < k, ~π(G, f) = ~ω(G, f).

In particular, for hypercubes, our paper leaves a gap between ~π(G, f) and
~ω(G, f) for f > 0. The computer tests show that for the 3-dimensional hyper-
cube and f = 0, 1, 2, ~π(H3, f) = ~ω(H3, f) which supports our conjecture. This is
also obvious for H2.
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