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SMOOTH AND SHARP THRESHOLDS FOR RANDOM
k-XOR-CNF SATISFIABILITY
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Abstract. The aim of this paper is to study the threshold behav-
ior for the satisfiability property of a random k-XOR-CNF formula
or equivalently for the consistency of a random Boolean linear system
with k variables per equation. For k ≥ 3 we show the existence of a
sharp threshold for the satisfiability of a random k-XOR-CNF formula,
whereas there are smooth thresholds for k = 1 and k = 2.
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1. Introduction

Threshold phenomena were first observed for random graphs by Erdös and
Rényi [8]. They observed that for many interesting properties P the probability of
P appearing in a random graph exhibits a sharp increase at a certain critical value
of the edge probability. This threshold behavior occurs in various settings which
arise in combinatoric and computer science. This behavior is of interest from a
practical point of view since it has been observed [11, 20] that the hard instances
of NP-hard problems (which provide a challenging test material in order to study
average complexity of algorithms) are often associated with a phase transition.

Among all the problems for which phase transition has been studied, the satis-
fiability of k-CNF formulas, k-SAT for short, has sparked a lot of interest. Exper-
iments on solving k-CNF random formulas (see for instance [15]) have provided
evidence of the existence of a satisfiability threshold phenomenon with respect to
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the ratio, ck, of the number of clauses to the number of variables of formulas. Most
of the papers investigating the existence of a phase transition for this problem are
directed towards obtaining approximate estimates of its location. For instance for
3-SAT, for an observed sharp threshold of about c3 = 4.25 the best lower bound
is 3.003 [10] and the best upper bound is 4.506 [7], so there still exists a large
gap between lower and upper bounds. A sharp threshold has been established
for 2-SAT [5, 12], the critical value is c2 = 1. Observing that 2-SAT is a special
case of satisfiability which is solvable in polynomial time [2], in [6] we suggested
to investigate all the tractable cases identified by Schaefer [22]. We studied the
phase transition for the XOR-SAT problem, in which the “exclusive or” is used
instead of the “usual or”. We established a sharp threshold phenomenon with
critical value c = 1 and more precisely described the probability distribution of
the phase transition [6]. Our result concerned formulas with clauses of arbitrary
length. So, a natural question arises: is there a comparable result for XOR-SAT
with fixed clause-length formulas, namely k-XOR-SAT?

In this paper we study the threshold for the satisfiability of k-XOR-CNF for-
mulas. Section 2 is a preliminary work devoted to two simple conditions assuring
a sharp threshold. Based on correlation inequalities, this is a synthetic version of
Friedgut’s and Bourgain’s results [9] in the general context of monotone properties
of the hypercube. Then, we first prove (Sect. 3.2) that there are smooth threshold
phenomena for k = 1 and k = 2 with a well-described probability distribution.
The tools are well-known and come from classical random graphs’ theory. In Sec-
tion 4 we prove that there is a sharp threshold for k ≥ 3 in using our preliminary
work. This last result will need the most effort, we have to verify two conditions.
The second condition is hard to study, we describe the strategy that can be used in
order to tackle this point and we state three lemmas that concentrate the combi-
natorial and the probabilistic difficulties. We postpone the proof of these technical
key lemmas in Section 5.

On one hand this complete exposure of new results on random k-XOR-SAT
will serve for a didactical presentation of sharp threshold investigations. On the
other hand let us observe that our results on k-XOR-SAT analyze the threshold
behavior of the consistency of linear systems over the finite field GF (2), a topic of
independent interest that has been widely studied (see for example [16, 18, 19]).

2. Thresholds of monotone properties

2.1. Terminology

Let us introduce some terminology on thresholds of monotone properties.
Let N be a positive integer. Let s and s′ be two vectors in {0, 1}N . The sum

s ⊕ s′ denotes the componentwise XOR-operation on s and s′. One says that s
contains s′, s ≥ s′, if si ≥ s′i holds for each coordinate i = 1, . . . , N . Vectors from
{0, 1}N can be interpreted as characteristic functions over a set of cardinality N .
Thus if s contains s′, then the intended meaning of s⊕s′ is the difference set s\s′.
A nonempty subset E of the set of vectors {0, 1}N is called monotone increasing,
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or simply monotone, if it satisfies the following condition: if s′ ∈ E and s ∈ {0, 1}N ,
such that s ≥ s′, then s ∈ E. A monotone subset of {0, 1}N that contains ~0 is
equal to {0, 1}N and is called trivial.

For 0 ≤ p ≤ 1, let µp : {0, 1}N → {0, 1} be the function which satisfies the
equality

µp({s}) = (1 − p)N−w(s)pw(s)

for each vector s ∈ {0, 1}N , where w(s) denotes the Hamming weight of s. This
function defines the so-called product measure µp on {0, 1}N , thus for any set E
of 0-1 vectors:

µp(E) =
∑
s∈E

µp({s})·

The question of understanding how µp(E) varies with p is of principal interest.
For instance the well-known random graph model G(n, p) is the probability space
over the set of graphs on n vertices where each edge appears independently with
probability p = p(n). In this case N =

(
n
2

)
is the number of edges of the complete

graph Kn on n vertices, and any subgraph G of Kn is encoded by some x ∈ {0, 1}N

(xi = 1 if an only if the edge number i is in G). Given any graph theoretic property
P the probability that G(n, p) satifies P is nothing else but µp(PN ), where PN

assembles the subgraphs of Kn having property P . For many properties P of
importance, there is a threshold effect, in the sense that µp(PN ) jumps from 0 to
1 in a small interval.

More generally, let A ⊆ {0, 1}∗ be a monotone property, i.e. for every N ,
AN := A ∩ {0, 1}N is monotone. (It is said to be nontrivial if for any sufficiently
large N , AN is nontrivial.) Set fN(p) = µp(AN ). A quite natural result is:

Proposition 2.1 [3]. If A is a nontrivial monotone increasing property, then for
every N and for 0 ≤ p1 < p2 ≤ 1 we have fN (p1) < fN (p2).

Thus, each fN(p) defines an increasing one-to-one correspondence from [0, 1]
onto [0, 1]. Let us write pc(N) = f−1

N (c). For c = 1/2 , p1/2(N) is called the critical
probability of A. Let ε ∈ (0, 1/2], the interval τ(N) = [pε(N), p1−ε(N)] is called
the threshold interval. Let δε(N) denote its length, δε(N) = p1−ε(N) − pε(N).
One says that A has a sharp threshold if for every ε ∈ (0, 1/2] the ratio δε(N)

p1/2(N)

tends to 0 as N tends to infinity. (Intuitively it means that fN (p) jumps from near
0 to near 1 in an interval which is small with respect to the critical probability
when N tends to infinity.) If for some ε > 0 and for all N , the ratio δε(N)

p1/2(N) is
bounded away from 0, then one says that A has a smooth threshold.

2.2. A general sharp threshold criterion

In a remarkable paper [9] Friedgut and Bourgain developed a general sharp
threshold criterion for monotone subsets of the hypercube. Roughly speaking their
result says that if a monotone property A is not influenced by elements of bounded
weight, whatever these elements are in A or not, then A has a sharp threshold.
Thus two conditions appear in their criterion. Taking into account the fact that A
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is monotone the first condition says that elements from A of bounded weight have a
negligible probability to appear. The second one says that the probability of being
in A is not significantly modified when conditioning on the appearance of a given
element, s0, not in A and of bounded weight. Evidently these conditions have to
be verified asymptotically and in the scaling window, namely for any p = pc where
µpc(s ∈ A) = c for any parameter c in (0, 1).

Theorem 2.2 [9]. Let A be a monotone property such that p1/2(N) = o(1). If the
two following conditions are verified, then A has a sharp threshold.

(C1) For each parameter c ∈ (0, 1) and all positive integers K,

µpc(N)(s ≥ s′ where s′ ∈ A and w(s′) ≤ K) −−−−−−→
N→+∞

0.

(C2) For each parameter c ∈ (0, 1), for all positive integers K and all s0 /∈ A
with w(s0) = K,

µpc(N)(s ∈ A | s ≥ s0) −−−−−−→
N→+∞

c.

The question is how can we verify these two conditions for a specific property A.
We propose a new criterion that is easier to verify and thus that is useful, as we
will see for k-XOR-SAT, for investigating the phase transition for many monotone
properties. The following result shows first that the key in order to verify (C1)
is to study minimal elements of such properties: an element s from A is minimal
if for all s′ contained in s and different from s, s′ 6∈ A. Second, in using two
well-known correlation inequalities on monotone properties we render the second
condition easier to handle.

Theorem 2.3. Let A be a monotone property such that p1/2(N) = o(1). If the
two following conditions are verified, then A has a sharp threshold.
(C′1) For each parameter c ∈ (0, 1) and all positive integers K,

µpc(n)(s ≥ m, m is minimal for A and w(m) ≤ K) −−−−−−→
N→+∞

0.

(C′2) For each parameter c ∈ (0, 1), for all positive integers K and all s0 /∈ A
with w(s0) = K,

µpc(N)(s ∈ A, s ⊕ s0 6∈ A| s ≥ s0) −−−−−−→
N→+∞

0.

Proof. Observe that a vector s contains a vector s′ from A of Hamming weight
bounded by K if and only if s contains such a minimal element. Thus (C′1) is
equivalent to (C1).

The following inequalities

c ≤ µpc(N)(s ∈ A | s ≥ s0) ≤ c + µpc(N)(s ∈ A, s ⊕ s0 6∈ A | s ≥ s0),
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show that (C′2) implies (C2). As stated in the following lemma these inequalities
are consequences of two well-known correlation inequalities on monotone properties
(see [13]). �

Lemma 2.4. Let A and B be two monotone increasing properties, p ∈ [0, 1] and N
be any positive integer, we have

µp(AN ) ≤ µp(AN | BN ) ≤ µp(AN ) + µp((AN ∩ BN ) \ (AN ◦ BN ) | BN )

where AN ◦ BN = {s, there exists s′ ∈ AN with s ≥ s′ and s ⊕ s′ ∈ BN}.

Proof.

µp(AN | BN ) =
µp(AN ∩ BN )

µp(BN )
·

The first inequality is nothing else but the F.K.G. inequality for increasing events
(due to Fortuin, Kasteleyn and Ginibre):

µp(AN ∩ BN ) ≥ µp(AN )µp(BN ).

Now, since for increasing events, AN ◦ BN ⊂ AN ∩ BN , we get:

µp(AN ∩ BN ) = µp(AN ◦ BN ) + µp((AN ∩ BN ) \ (AN ◦ BN ));

and the second inequality comes from the B.K. inequality for increasing events
(due to Berg and Kesten):

µp(AN ◦ BN) ≤ µp(AN )µp(BN ). �

3. k-XOR-SAT: A challenging monotone property

In this section, we study the threshold phenomenon associated to the satisfiabil-
ity of k-XOR-CNF formulas, or equivalently to the consistency of linear systems
over GF (2), k being the fixed number of variables per equations in such sys-
tems. First, in the natural background of linear algebra, we make precise specific
probabilistic and combinatorial tools needed to investigate the phase transition
associated to the monotone property k-XOR-SAT. We completely describe this
phase transition for the particular cases k = 1 and k = 2 (in this last case the
natural translation of 2-XOR-SAT into a graph property will be the key fact).
Such a complete description is far from being accessible when k ≥ 3 for the un-
derlying combinatorial structure is that of hypergraphs. However, we will prove
the sharpness of the threshold for k-XOR-SAT (k ≥ 3) in the last sections.



132 N. CREIGNOU AND H. DAUDÉ

3.1. Probabilistic model

A k-XOR-clause (or shortly a k-equation), C, is a linear equation over the finite
field GF (2) using exactly k variables, C = ((x1 ⊕ . . .⊕ xk) = ε) where ε = 0 or 1.
A k-XOR-formula (or shortly a k-system) is a conjunction of distinct k-XOR-
clauses. A truth assignment I is a mapping that assigns 0 or 1 to each variable
in its domain, it satisfies an XOR-clause C = ((x1 ⊕ . . . ⊕ xk) = ε) if and only
if I(C) :=

∑p
i=1 I(xi) mod 2 = ε, and it satisfies a formula F iff it satisfies every

clause in F .
We will denote by k-XOR-SAT (or shortly SAT) the property for a k-XOR-

formula of being satisfiable (or equivalently the property for a k-system of being
consistent) and by UNSAT the property of being unsatisfiable. The property
UNSAT is monotone increasing.

Throughout the paper we reserve n for the number of variables ({x1, . . . , xn}
denotes the set of variables). There are

(
n
k

)
ways to choose a subset of k variables

from the given set of variables {x1, . . . , xn}. Each subset determines a sum which is
a left-hand side of an affine equation. This sum can be put equal to 0 or to 1. Hence
each subset of k variables implies two possible affine equations. Therefore there
are together Nk = 2

(
n
k

)
different k-XOR-clauses over n variables. Let Sk(n, p) ∈

{0, 1}Nk denote the random formula on n variables where each k-equation appears
independently with probability p. Thus a random formula is represented by a
vector s ∈ {0, 1}Nk, such that for all coordinate i = 1, . . . , N , the value of si is 1 if
the ith k-XOR-equation appears in s and 0 otherwise. The Hamming weight of s,
w(s), represents the number of equations occurring in s.

We will denote by SAT
(k)
n (p) the probability that the random formula Sk(n, p)

is satisfiable:

SAT (k)
n (p) = µp(k-XOR-SAT).

We are interested in studying the asymptotic behavior of this probability, when Nk

(or equivalently n) tends to infinity. By abuse of notation we write pc(n) instead
of pc(Nk). Throughout the paper we will assume, whenever it is needed, that the
number n of variables we have is sufficiently large.

This probabilistic model is analogous to the random graph model G(n, p) and
is very handy. For instance the weight of the random k-system, w(Sk(n, p)), has
binomial distribution of parameters Nk and p. Hence, one may keep in mind that
Nk.p is the average number of equations (i.e. the average weight) of a random
k-system. It is easy to prove that a large number of equations is needed to observe
the transition as shown by the following estimate, which is far from being tight
but that will be sufficient for our purpose.

Lemma 3.1 [Lower bound lemma]. If the number of equations is smaller than the
square root of the number of variables, then the random linear system is almost
surely satisfiable:

µp(UNSAT ) = o(1) as soon as Nk.p = o(
√

n).
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Proof. Let us denote by S1 the part of Sk(n, p) corresponding to the equations hav-
ing a fixed variable, say x1. Then, w(S1) has binomial distribution of parameters
Nk−1 and p. Let Ui denotes the event that xi appears at most once in the k-system,
then µp(∩iUi) ≤ µp(SAT ) and by symmetry we get: µp(SAT ) ≥ 1−n(1−µp(U1)).
Observe now that µp(U1) = µp((S1) ≥ 2). Since w(S1) has binomial distribution,

it is easy to check that (1−µp(U1)) = o(
1
n

) as soon as Nk.p = o(
√

n), thus in this

case µp(UNSAT ) = o(1). �

3.2. Smooth thresholds for 1-XOR-SAT and 2-XOR-SAT

Theorem 3.2. The critical probability for the 1-XOR-SAT property verifies
pc(n) = θ(1/

√
n) and 1-XOR-SAT has a smooth threshold. More precisely, taking

p(n) = t/
√

n for any positive constant t, we get

lim
n→+∞SAT (1)

n

(
t√
n

)
= e−t2 .

Proof. Let S1(n, p) be the random 1-system. It is satisfiable if and only if for
every variable x the two equations (x = 0) and (x = 1) do not both appear in the
formula. Since for every x the probability of this event is (1 − p2) and since the
equations are drawn independently we have SAT

(1)
n (p) = (1 − p2)n. Therefore, if

p = t/
√

n then SAT
(1)
n (p) =

(
1 − t2

n

)n

and lim
n→+∞ SAT (1)

n

(
t√
n

)
= e−t2 . �

The satisfiability of 2-systems is strongly related to the existence of cycles in
graphs. Indeed, suppose we are given a 2-system s in {0, 1}N2. We construct a
graph G(s) with n vertices and w(s) weighted edges. For each variable xi we have
a vertex in G(s). For each equation xi ⊕ xj = ε we add the edge {xi, xj} to G(s)
with the weight ε.

Lemma 3.3. The 2-system s is satisfiable if and only if G(s) does not contain
any elementary cycle with odd weight.

Proof. Clearly, every elementary cycle with odd weight in G(s) corresponds to an
unsatisfiable subsystem in s. Conversely, we can use a depth-first-forest of G(s)
to find a solution of s. Indeed, for each depth-first-tree choosing a Boolean value
for the root determines exactly the Boolean value for every variable in the tree.
Since G(s) does not contain any elementary cycle with odd weight the assignment
so obtained satisfies all the equations of s. �

The asymptotic behavior of the number of cycles in random graphs has been
first investigated by Erdös and Rényi [8], and made precise by Janson [14] and
Takacs [23]. This number converges in distribution to a Poisson law of parameter
λ =

∑
l≥3 λl where λl is the limit of the average number of cycles of length l.

The proofs of these authors can easily be used in our context (with only a slight
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modification to take into account the weight) to estimate the probability that there
is no cycle of odd weight in the random graph G(s) associated with the random
2-system s.

Theorem 3.4. The critical probability for the 2-XOR-SAT property verifies
pc(n) = θ(1/n) and 2-XOR-SAT has a smooth threshold. More precisely, taking
p(n) = t/n for any positive constant t, we get

lim
n→+∞SAT (2)

n

(
t

n

)
= et/2(1 − 2t)1/4 if 0 < t < 1/2, and 0 otherwise.

Proof. Let Xc be the Bernoulli random variable that indicates whether G(s) con-
tains the cycle c of odd weight. The expectation of Xc is E[Xc] = pl, where l is
the length of c. Let us denote by Yl the random variable that counts the number
of cycles of odd weight and of length l:

Yl =
∑

c of length l

Xc.

By means of the linearity of expectation

E[Yl] =
∑

c of length l

E[Xc].

Since there are
n(n − 1) . . . (n − l + 1)2l−1

2l
possible cycles of odd weight and fixed

length l, we get

E[Yl] =
n(n − 1) . . . (n − l + 1)2l−1

2l
pl.

When p = t/n (and 0 < t < 1/2), E[Yl] ∼ (2t)l

4l
. The random variable Yl is the

sum of the rare events Xc = 1 (for such an event appears with probability pl),
thus as in [14] and [23] the asymptotic behavior of Yl is given by a Poisson law

whose parameter is
(2t)l

4l
. Let us denote by Y the number of cycles of odd weight

Y =
∑
l≥2

Yl.

The asymptotic behavior of Y is also given (see [14] and [23]) by a Poisson law
whose parameter is λt =

∑
l≥2

(2t)l

4l = 1
4 ln(1 − 2t) + t

2 . More formally,

Y
d−→ P0(λt).

In particular, the probability that there is no cycle of odd weight is exp(−λt), that
is et/2(1 − 2t)1/4. �
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4. A sharp threshold for k-XOR-SAT, k ≥ 3

This section is devoted to the statement and the proof of our main result,
namely the existence of a sharp threshold phenomenon for k-XOR-SAT, k ≥ 3.
Using the first moment method we will prove that p1/2(n) = o(1), thus allowing
us to apply Theorem 2.3.

4.1. An upper bound for the threshold for k-XOR-SAT

Proposition 4.1. The critical probability for the k-XOR-SAT property verifies
p1/2(n) = O(n1−k) = o(1). More precisely, for each parameter c ∈ (0, 1) and all
values α > 1, the probability pc(n) satisfies the relation

pc(n) ≤ α.n

Nk
·

Proof. Let us decompose µp(s ∈ SAT ) according to w(s):

µp(s ∈ SAT ) =
∑

l

µp(s ∈ SAT | w(s) = l).µp(w(s) = l). (1)

Let us recall that Nk.p is the average weight of s. Since w(s) has a binomial
distribution the systems s for which w(s) is far from the average weight do not
appear with significant probability. Thus let us decompose the right-hand side
of (1) into two parts, Σ1 and Σ2, where

Σ1 =
∑

|l−Nk.p|>(Nk.p)2/3

µp(s ∈ SAT | w(s) = l).µp(w(s) = l),

Σ2 =
∑

|l−Nk.p|≤(Nk.p)2/3

µp(s ∈ SAT | w(s) = l).µp(w(s) = l).

Since w(s) has a binomial distribution and according to Bienaymé-Chebyshev’s
inequality the sum Σ1 verifies

Σ1 ≤
∑

|l−Nk.p|>(Nk.p)2/3

µp(w(s) = l) ≤ (Nkp)−1/3(1 − p). (2)

To estimate Σ2 we use the so-called first moment method. With each assignment
I : {x1, . . . , xn} −→ {0, 1} we associate the random variable XI defined on k-
XOR-systems by XI(s) = 1 if and only if I satisfies s. Since s ∈ SAT if and only
if
∑

I XI(s) ≥ 1, we have

µp(s ∈ SAT | w(s) = l) = µp

(∑
I

XI(s) ≥ 1| w(s) = l

)
. (3)
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Observe that any assignment I satisfies exactly the half of the Nk different k-
XOR-equations. Therefore the probability that a random system s is satisfied by
I only depends on the number l of equations occurring in s:

µp(XI(s) = 1 | w(s) = l) =

(
Nk/2

l

)
(
Nk

l

) ≤ 2−l. (4)

Thus, as there are 2n possible assignments I, from (3) and (4) we get:

µp(s ∈ SAT | w(s) = l) ≤ 2n−l.

Now, observe that Σ2 deals with system s of weight at least Nk.p− (Nk.p)2/3, thus
according to the previous inequality

Σ2 ≤ 2n−Nk.p+(Nk.p)2/3
.

∑
|l−Nk.p|≤(Nk.p)2/3

µp(s ∈ SAT ).

The sum in the right-hand side being lower than 1 we obtain:

Σ2 ≤ 2n−Nk.p+(Nk.p)2/3
. (5)

Therefore, according to the relations (5) and (2), for Nk.p ≤ αn with α > 1 we
have

lim
n−→+∞µp(SAT ) = 0. �

According to Theorem 2.3 and Proposition 4.1, proving the sharpness of the thresh-
old for k-XOR-SAT amounts to verify the two conditions C′1 and C′2.

4.2. Condition C′1 for k-XOR-SAT

Proposition 4.2. For each parameter c ∈ (0, 1) and all positive integers K,

µpc(n)(s ≥ m, m minimal for UNSAT and w(m) ≤ K) = o(1)

Proof. Observe that in a minimal unsatisfiable k-system every variable appears at
least twice. Therefore, a minimal unsatisfiable k-system of weight t involves at
most bkt/2c variables. Therefore, in order to get a minimal unsatisfiable k-XOR-
system of weight t, one has first to choose a subset of bkt/2c variables, and second
to choose t equations among the 2

(bkt/2c
k

)
equations one can construct from these

variables. Thus, we can derive a bound on the number of minimal unsatisfiable
k-XOR-systems of weight t:

#{m minimal for UNSAT and w(m) = t} ≤
(

n

bkt/2c
)(

2
(bkt/2c

k

)
t

)
= O

(
nkt/2

)
.

(6)
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We will prove that a(n) = o(1) where

a(n) = µpc(n)(s ≥ m, m minimal for UNSAT and w(m) ≤ K).

We have:

a(n) ≤
K∑

t=1

∑
m minimal

w(m)=t

µpc(n)(s ≥ m).

If m is of weight t, then µp(s ≥ m) = pt, thus we obtain:

a(n) ≤
K∑

t=1

#{m minimal and w(m) = t}.pc(n)t. (7)

Finally, from Proposition 4.1 we know that pc(n) = O(n1−k), therefore the in-
equalities (6) and (7) show that a(n) = 0(n− 1

2 ) as soon as k is greater than or
equal to 3. �

According to Theorem 2.3, Propositions 4.1 and 4.2, proving the sharpness of
the threshold for k-XOR-SAT amounts to verify C′2.

4.3. Condition C′2 for k-XOR-SAT

In our context let us recall that if a system s contains s0 as a subsystem (s ≥ s0),
then s ⊕ s0 denotes the system obtained from s in removing all the equations
occurring in s0. Here we will prove that, conditioned on the appearance of s0

(a specific satisfiable subsystem of fixed weight), the probability that a random
system s is unsatisfiable whereas s ⊕ s0 is satisfiable tends to be negligible as n
goes to infinity:

Proposition 4.3. For each parameter c ∈ (0, 1), for all positive integers K and
all s0 ∈ SAT with w(s0) = K,

µpc(n)(s ∈ UNSAT, s⊕ s0 ∈ SAT | s ≥ s0) −−−−−−→
n→+∞ 0.

Proof. The proof is divided into three lemmas. We have to measure the influence
of s0 (a fixed satisfiable system) on every s that contains it. Note that in the above
conditional probability the random part is s ⊕ s0 ∈ {0, 1}Nk−w(s0), a satisfiable
system. As we will see in the next section, it turns out that we can control the
influence of s0 in considering systems of the form (u, v) where u is a k-system
and v a (k − 1)-system. The induced measure, µ

(t)
p , on such systems is obtained

from the measure µp and depends on t, the number of variables occurring in s0

(note that if w(s0) = K, then t ≤ k.K). Then we will consider B(u, v) the set of
k-systems of weight (k − 1) that are inconsistent with (u, v) and we will show the
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following:

Lemma 4.4. Let Mk be the number of k-systems of weight (k − 1), Mk =
(2(n

k)
k−1

)
.

For each parameter c ∈ (0, 1), for all positive integers t and all s0 ∈ SAT in which
t distinct variables occur, there exist absolute positive constants C and D such that
for every γ > 0 and for every integer n sufficiently large,

µpc(n)(s ∈ UNSAT, s⊕ s0 ∈ SAT | s ≥ s0)

≤ C.µ
(t)
pc(n)[(u, v) ∈ SAT, #B(u, v) ≥ γ.Mk] + γ.D,

where
µ(t)

p (u, v) = tw(v)pw(u)+w(v)(1 − p)Nk−w(s0)−(w(u)+w(v)).

In order to evaluate the right-hand side of the above inequality, the idea is to
consider a slight modification of the initial probabilistic model where the influence
of the condition on B(u, v) becomes easier to evaluate.

Consider the following construction: first choose a (k, k − 1)-system, say s =
(u, v), with measure µ

(t)
p , second draw uniformly one of the Mk k-system of size

(k − 1), say a. The system (s, a) so obtained can be considered as a point in the
product space {0, 1}2(n−t

k )+2(n−t
k−1) × {1, · · · , Mk}. The associated measure, let us

call it ν
(t)
p , can easily be expressed in terms of the measure µ

(t)
p . Indeed we have:

ν(t)
p (s, a) =

µ
(t)
p (s)
Mk

·

Using this measure we establish the second lemma (see Sect. 5 for the proof):

Lemma 4.5. For each p ∈ [0, 1], for all positive integers t and for every γ > 0,

µ(t)
p [s ∈ SAT, #B(s) ≥ γ.Mk] ≤ ν

(t)
p ((s, a) ∈ UNSAT )− µ

(t)
p (s ∈ UNSAT )

γ
·

Now, we will prove that the addition of a random k-system of weight (k − 1), a,
has almost surely no effect on the satisfiability of a random system. This is exactly
what is stated in the following last lemma (see Sect. 5 for the proof):

Lemma 4.6. For each parameter c ∈ (0, 1), for all positive integers t

| ν(t)
pc

((s, a) ∈ UNSAT )− µ(t)
pc

(s ∈ UNSAT )| −−−−−−→
n→+∞ 0.

The three lemmas above prove Proposition 4.3.
Last but not least our main result follows from Theorem 2.3 and Proposi-

tions 4.1, 4.2 and 4.3. �

Theorem 4.7. For k ≥ 3, k-XOR-SAT has a sharp threshold.
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5. Proofs of the technical lemmas

5.1. Proof of Lemma 4.4

Recall that Mk is the number of k-systems of weight (k−1) and that B(u, v) the
set of such systems that are inconsistent with (u, v). For a fixed satisfiable system
s0 with t variables, we have to prove that there exit absolute positive constants
C and D such that for each parameter c ∈ (0, 1), for every γ > 0 and for every
integer n sufficiently large,

µpc(n)(s ∈ UNSAT, s⊕ s0 ∈ SAT | s ≥ s0)

≤ C.µ
(t)
pc(n) [(u, v) ∈ SAT, #B(u, v) ≥ γ.Mk] + γ.D.

The proof will be divided into 5 steps.

Step 1. In the above conditional probability the random part is s ⊕ s0, thus
we work on {0, 1}Nk−w(s0). The system s becomes UNSAT because of s0 if the
system s⊕s0 constrains the variables from s0 in a way which is inconsistent with the
equations of s0. Therefore it is natural to distinguish in s the equations containing
variables occurring in s0 from the others. Let x1, . . . , xt be the variables occurring
in s0. Recall that t ≤ k.K since w(s0) is bounded by K. Let s̃ be the system of
equations from s that do not contain any variable from {x1, . . . , xt}. Observe that
if we replace x1, . . . , xt by some truth values, then the equations from s̃ have still
k variables each, whereas the equations from s ⊕ s0 ⊕ s̃ (that are the equations
from s ⊕ s0 having each at least one variable from {x1, . . . , xt}) become of size
< k. Let us denote by s∗ these equations of size < k so obtained.

We know that s0 is in SAT. Therefore, if we consider an assignment I on
{x1, . . . , xt} satisfying s0, then in order to get s ∈ UNSAT and s⊕s0 ∈ SAT , the
system (s̃, s∗) obtained from s ⊕ s0 by replacing the variables x1, . . . , xt by their
truth values I(x1), . . . , I(xt) must be unsatisfiable. Therefore,

µp(s ∈ UNSAT, s⊕ s0 ∈ SAT | s ≥ s0) ≤ µp((s̃, s∗) ∈ UNSAT, s̃ ∈ SAT | s ≥ s0).

From now on we fix I an assignment on {x1, . . . , xt} satisfying s0. Our goal is to
delimit the influence of this assignment, that is the influence of s0, on s in working
on such systems (s̃, s∗).

Let E = {s such that / (s̃, s∗) ∈ UNSAT, s̃ ∈ SAT }. We have obtained

µp(s ∈ UNSAT, s⊕ s0 ∈ SAT | s ≥ s0) ≤ µp(E | s ≥ s0). (8)

Step 2. In this step we will show that we can restrict our investigation to systems
s such that every equation in s∗ has exactly k − 1 variables, and such that the
left-hand side of all equations in s∗ are pairwise disjoint.

Let us call V1 the set of systems s such that s∗ contains equations of size < k−1.
A system s is in V1 if it contains at least one equation which has i ≥ 2 variables in
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{x1, . . . , xt} and (k − i) variables in {xt+1, . . . , xn}. Since there are
(
t
i

)(
n−t
k−i

)
ways

of choosing such a subset of variables which determines the left-hand side of an
affine equation,

µp(V1) ≤ p

k−2∑
i=0

2
(

t

i

)(
n − t

k − i

)
.

Now, since the critical probability pc is O(n1−k) the previous inequality shows
that

µpc(V1) = o(1). (9)
Thus we can suppose that s∗ only contains equations of size k − 1, in this
way we can restrict our attention to systems s such that (s̃, s∗) is a (k, k − 1)-
system.

However a technical difficulty appears for the Hamming weight of (s̃, s∗) is not
necessarily the same as that of s ⊕ s0. For instance, suppose that

s0 =
{

x1 +x2 +x3 = 1
x1 +x3 +x4 = 0,

I(x1) = I(x3) = I(x4) = 0, I(x2) = 1 and

s =




x1 +x2 +x3 = 1
x1 +x3 +x4 = 0
x1 +x5 +x6 = 1
x3 +x5 +x6 = 1.

Then,

s ⊕ s0 =
{

x1 +x5 +x6 = 1
x3 +x5 +x6 = 1,

whereas (s̃, s∗) is reduced to one equation, x5 + x6 = 1, repeated twice.
Let us call V2 the set of systems s that contain two equations having both the

same (k−1) variables in {xt+1, . . . , xn} (only such a pair of equations can provides
an equation repeated twice in s∗). We have,

µp(V2) ≤ p2

(
t

1

)(
n − t

k − 1

)
.

Now, since the critical probability pc is O(n1−k) this last inequality shows that

µpc(V2) = o(1). (10)

Therefore we can suppose that s∗ does not contain twice the same equa-
tion.

Finally, if V = {0, 1}2(n
k) \(V1∪V2), then from the relations (9) and (10) we get:

µpc(E | s ≥ s0) = µpc(E ∩ V | s ≥ s0) + o(1). (11)
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We have shown that we can restrict our attention to systems (u, v) formed by a k-
system, u, on {xt+1, . . . , xn}, coupled with a (k− 1)-system, v, on {xt+1, . . . , xn}.
Such a system can be encoded as a point of {0, 1}2(n−t

k ) × {0, 1}2(n−t
k−1) and in the

next step we will make precise the measure induced by on this new product space.

Step 3. Consider the following mapping Ψ : s 7→ (u, v) = (s̃, s∗) from systems
s that contain s0 to systems of the form (u, v), where equations from u are k-
equations and equations from v are equations of size ≤ k − 1. Let us denote by
µ

(t)
p the measure induced by Ψ on {0, 1}2(n−t

k ) × {0, 1}2(n−t
k−1)

µ(t)
p (u, v) = µp

(
s ∈ V, Ψ(s̃, s∗) = (u, v)| s ≥ s0

)
.

In order to evaluate µ
(t)
p (u, v), observe that the mapping s 7→ (s̃, s∗) is not one-to-

one. For instance, if

s0 =
{

x1 +x2 +x3 = 1
x1 +x3 +x4 = 0

and I(x1) = I(x3) = I(x4) = 0, I(x2) = 1, then

s1 =




x1 +x2 +x3 = 1
x1 +x3 +x4 = 0
x1 +x5 +x6 = 1
x5 +x6 +x7 = 1

and

s2 =




x1 +x2 +x3 = 1
x1 +x3 +x4 = 0
x4 +x5 +x6 = 1
x5 +x6 +x7 = 1

are mapped into the same system{
x5 +x6 = 1

x5 +x6 +x7 = 1.

Actually, given any (k, k − 1)-system (u, v), there are tw(v) systems s in V such
that (s̃, s∗) = (u, v), moreover in the above conditional probability the random
part is s ⊕ s0. Therefore,

µ(t)
p (u, v) = tw(v)pw(u)+w(v)(1 − p)Nk−w(s0)−(w(u)+w(v)),

and:
µpc(E ∪ V | s ≥ s0) = µ(t)

pc
[(u, v) ∈ UNSAT, u ∈ SAT ] + o(1). (12)

Step 4. We will show that the right-hand side in (12) can be controlled in con-
sidering A(u, v) the set of (k − 1)-equations that are inconsistent with the system
(u, v). Indeed adding a (k−1)-system can be seen as a dynamical process in which



142 N. CREIGNOU AND H. DAUDÉ

we add one equation at a time. Moreover if (u, v) ∈ UNSAT and u ∈ SAT then
there exist v′ and v′′ such that (u, v′) ∈ SAT, (u, v′, v′′) ∈ UNSAT , w(v′′) = 1
and v ≥ v′ + v′′. Thus, µ

(t)
p [(u, v) ∈ UNSAT, u ∈ SAT ] is lower than or equal to

∑
(u,v′)∈SAT

µ(t)
p (u, v′)

tp

(1 − p)
#A(u, v′)

2(n−t
k−1)−|v′|−1∑

j=0

(
2
(

n−t
k−1

)− |v′| − 1
j

)(
tp

1 − p

)j

Therefore,

µ(t)
p [(u, v) ∈ UNSAT, u ∈ SAT ] ≤ Yt(n)

(
1 +

tp

1 − p

)2(n−t
k−1)

,

where Yt(n) =
∑

(u,v′)∈SAT µ
(t)
p (u, v′) tp

(1−p)#A(u, v′).
Now, for any δ > 0 we have Yt(n) ≤ S1 + S2 where

S1 =
∑

(u,v′)∈SAT,#A(u,v′)≥δ(n−t
k−1)

µ(t)
p (u, v′)

tp

(1 − p)
#A(u, v′),

S2 =
∑

(u,v′)∈SAT,#A(u,v′)<δ(n−t
k−1)

µ(t)
p (u, v′)

tp

(1 − p)
#A(u, v′).

But (n−t
k−1)tpc

(1−pc) , µ
(t)
pc

(
{0, 1}2(n−t

k ) ×{0, 1}2(n−t
k−1)

)
, and

(
1 + tpc

1−pc

)2(n−t
k−1)

are bounded.
Hence

S1 = O

(
µ(t)

pc

[
(u, v′) ∈ SAT, #A((u, v′)) ≥ δ

(
n − t

k − 1

)])
, S2 = δ.O(1).

Thus we have proved that there exit absolute positive constants A and B such
that for every δ > 0 and for every integer n sufficiently large,

µ(t)
pc

[s = (u, v), (u, v) ∈ UNSAT, u ∈ SAT ]

≤ A.µ(t)
pc

[
s = (u, v) ∈ SAT, #A((u, v)) ≥ δ

(
n − t

k − 1

)]
+ B.δ. (13)

Step 5. In this last step, we will show that, in some sense, the size of A((u, v)) is
bounded from above by those of B((u, v)). More precisely, we are going to prove
that

µ(t)
p

[
(u, v) ∈ SAT, #A((u, v)) ≥ δ.

(
n − t

k − 1

)]
≤ µ(t)

p [(u, v) ∈ SAT, #B((u, v)) ≥ φ(δ).Mk] , (14)

where Φ(δ) = Dkδk with Dk a constant depending on k only.
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The proof is based on the following trick. From k equations of A(s) one can
build a system in B(s). Indeed, if each of the following equations belongs to A(s)

x1 + · · · +xk−1 = ε1

...
...

...
x(k−1)2+1 + · · · +xk(k−1) = εk

then a solution (x1, · · · , xn) of s must satisfy
∑k(k−1)

i=1 xi =
∑k

i=1(εi + 1), hence
the following k-system is in B(s)




x1 + · · · +xk = 0
...

...
...

...
xk(k−3)+1 + · · · +xk(k−2) = 0
xk(k−2)+1 + · · · +xk(k−1) = 1 +

∑k
i=1(εi + 1).

At first sight, this trick furnishes
(
#A(s)

k

)
k-systems in B(s), and thus the conclusion

is pure routine. However, one can raise two objections to this reasoning. Let us
choose k = 3 for the exposition.

First, observe that the three following 2-equations: x1 + x2 = 0, x2 + x3 =
0, x3 + x1 = 0 do not produce a system with 3-equations. We have to guarantee
that the trick actually furnishes a system in B(s).

Second, note that the two different systems of 2-equations: x1+x2 = 0, x3+x4 =
0, x5 +x6 = 0 and x1 +x3 = 0, x2 +x5 = 0, x4 +x6 = 0, lead to the same 3-system.
Hence, one system in B(s) can be counted twice or more.

To make rigorous our initial reasoning we can first suppose that we start with k
equations of A(s) whose sets of variables are pairwise disjoint. In order to see that
the above calculus remains valid, it suffices to note that the number of systems
of (k − 1)-systems of weight k whose sets of variables are pairwise disjoint is
asymptotically equivalent to the total number of (k − 1)-systems of weight k.
Second, observe that for a fixed k, at most (k(k − 1))! (k − 1)-systems of weight k
in which any variable appears at most once, can produce the same system k-system
of weight (k − 1). Therefore the conclusion is still valid.

According to the relations (8, 11–13) and (14), Lemma 4.4 is proved.

5.2. Proof of Lemma 4.5

We have to prove that for each p ∈ [0, 1], for every γ > 0,

µ(t)
p [s ∈ SAT, #B(s) ≥ γ.Mk] ≤ ν

(t)
p ((s, a) ∈ UNSAT )− µ

(t)
p (s ∈ UNSAT )

γ
,

where

ν(t)
p (s, a) =

µ
(t)
p (s)
Mk

·
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Observe that if s is UNSAT, then (s, a) is UNSAT. So,

ν(t)
p ((s, a) ∈ UNSAT ) = ν(t)

p ((s, a) ∈ UNSAT, s ∈ SAT ) + ν(t)
p (s ∈ UNSAT ).

Moreover, since there are Mk ways to choose a, then by definition of ν
(t)
p :

ν(t)
p (s ∈ UNSAT ) = µ(t)

p (s ∈ UNSAT ).

Therefore, the right-hand side of the above inequality is nothing else but

1
γ

ν(t)
p ((s, a) ∈ UNSAT, s ∈ SAT ),

which is equal to
1
γ

ν(t)
p (s ∈ SAT, a ∈ B(s)),

and thus greater than

1
γ

ν(t)
p (s ∈ SAT , a ∈ B(s) , #B(s) ≥ γ.Mk).

The above relation between ν
(t)
p and µ

(t)
p concludes the proof.

5.3. Proof of Lemma 4.6

We have to prove that for each parameter c ∈ (0, 1),

| ν(t)
pc

((s, a) ∈ UNSAT )− µ(t)
pc

(s ∈ UNSAT )| −−−−−−→
n→+∞ 0.

In order to make clear the first term: ν
(t)
pc ((s, a) ∈ UNSAT ) let us observe that

a fixed k-equation may appear both in s and a. We will now make precise the
measure induced by ν

(t)
p on sets of different equations occuring in (s, a).

Let us consider W (s, a) the system formed by set of equations in (s, a). If
we denote by Ds(a) the number of k-equations in a that do not already appear
in s, then for a fixed (k, k − 1)-system w = (u, v) such that |u| ≥ k − 1 there

are
( |u|

k − 1

)(
k − 1

j

)
ways to choose (s, a) such that W (s, a) = w and Ds(a) =

j. Thus, the induced probability on such systems w, let us call it ρ
(t)
p , can be

expressed as:

ρ(t)
p (w) =

k−1∑
j=0

ν(t)
p (W (s, a) = w , Ds(a) = j).
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ρ(t)
p (u, v) =

k−1∑
j=0

( |u|
k − 1

)(
k − 1

j

)
p|u|−j(1 − p)Nk−|u|+j+w(s0) 1

Mk

( tp

(1 − p)

)|v|

=
p|u|(1 − p)Nk−|u|+w(s0)

Mk

( |u|
k − 1

)( tp

(1 − p)

)|v| k−1∑
j=0

(
k − 1

j

)(
1 − p

p

)j

·

Therefore,

ρ(t)
p (u, v) = µ(t)

p (u, v)

( |u|
k−1

)
Mk

(
1
p

)k−1

(15)

and, ν
(t)
p ((s, a) ∈ UNSAT ) = ρ

(t)
p (w ∈ UNSAT ).

We are now in a position to prove the lemma. Recalling that the weight of a
random k-system has binomial distribution of parameter Nk and p, we introduce R,
the following subset of {1, . . . , Nk}:

R =
{
r ∈ {1, . . . , Nk} / |r − Nkp| ≥ (Nkp)2/3

}
·

Let Rc denote the complement of R in {1, . . . , Nk} and Ur = {w = (u, v) ∈
UNSAT, |u| = r}, we have:

µ(t)
p (UNSAT ) =

∑
r∈R

µ(t)
p (Ur) +

∑
r∈Rc

µp(Ur),

ρ(t)
p (UNSAT ) =

∑
r∈R

ρ(t)
p (Ur) +

∑
r∈Rc

ρ(t)
p (Ur).

Hence, ν
(t)
pc ((s, a) ∈ UNSAT )− µ

(t)
pc (s ∈ UNSAT )| ≤ T1 + T2 + T3 where

T1 = µ(t)
p (w = (u, v) / |u| ∈ R), T2 = ρ(t)

p (w = (u, v) / |u| ∈ R)

and T3 =
∑

r∈Rc

|µ(t)
p (Ur) − ρ(t)

p (Ur)|. (16)

Let us prove that T1, T2 and T3 are o(1) when p = pc = O(n1−k).
First, observe that

T1 = µp(u / |u| ∈ R)
∑

v

(
tp

(1 − p)

)|v|
·

When p = pc the second term of this product is bounded and as in Proposition 4.1,
Chebyshev’s inequality shows that the first term is o(1). Therefore, T1 = o(1).

In view of (15) similar arguments show that T2 = o(1) and that

T3 = O

(
sup
r∈Rc

∣∣∣
(

r
k−1

)
Mk

(
1
p

)k−1

− 1
∣∣∣
)

.
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According to Lemma 3.1, Nk.pc −→ +∞, hence it is not difficult to verify that
this shows that T3 = o(1), thus completing the proof of Lemma 4.6.

6. Conclusion

We have proved the existence of a sharp threshold phenomenon for k-XOR-
SAT, k ≥ 3. Let us observe that, from another point of view, our result analyses
the threshold behavior of the consistency of linear systems over the finite field
GF (2). Some related results on the rank of such systems or on the expectation of
their number of solutions have been obtained by [16, 18, 19] in a slightly different
model (in which repetitions of variables in the same equation are allowed), but
the sharpness of the phase transition for the property of consistency of a random
k-system was not proved. Hence, our result illustrates the interest of directing a
lot of work towards obtaining general conditions for sharpness of a phase transition
as Friedgut and Bourgain did.

Due to its connections to linear algebra, k-XOR-SAT is a well-known and well-
studied problem. We are convinced that the precise and accurate study of its
threshold behavior will have a great didactical impact in the scope of phase tran-
sitions. Our feeling is that k-XOR-SAT is a natural candidate to understand the
probabilistic behavior of sharp phase transitions for random SAT type problems
and to fill the gap between rigorous results and statistical physics calculations in
such studies (see [21]).
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