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UNDECIDABILITY OF TOPOLOGICAL
AND ARITHMETICAL PROPERTIES
OF INFINITARY RATIONAL RELATIONS

OLIVIER FINKEL!

Abstract. We prove that for every countable ordinal o one cannot
decide whether a given infinitary rational relation is in the Borel class
>0 (respectively Hg). Furthermore one cannot decide whether a given
infinitary rational relation is a Borel set or a X1-complete set. We prove
some recursive analogues to these properties. In particular one cannot
decide whether an infinitary rational relation is an arithmetical set.
We then deduce from the proof of these results some other ones, like:
one cannot decide whether the complement of an infinitary rational
relation is also an infinitary rational relation.

Mathematics Subject Classification. 68Q45, 03D05, 03D55,
03E15.

1. INTRODUCTION

Rational relations on finite words were studied in the sixties and played a fun-
damental role in the study of families of context free languages [2]. Their exten-
sion to rational relations on infinite words was firstly investigated by Gire and
Nivat [9,11]. Infinitary rational relations are subsets of 3¢ x X%, where X7 and X,
are finite alphabets, which are recognized by Biichi transducers or by 2-tape finite
Biichi automata with asynchronous reading heads. So the class RAT,, of infini-
tary rational relations extends the class RAT of finitary rational relations and
the class of w-regular languages (firstly considered by Biichi in order to study the
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decidability of the monadic second order theory of one successor over the inte-
gers [3], see [17,23,24] for many results and references).

Infinitary rational relations and rational functions over infinite words they may
define have been much studied, see for example [1,5,19-21,23] for many results
and references.

The question of the complexity of such relations on infinite words naturally
arises. A way to investigate the complexity of infinitary rational relations is to
consider their topological complexity and particularly to locate them with regard
to the Borel and the projective hierarchies. It is well-known that every w-language
accepted by a Turing machine with a Biichi or Muller acceptance condition is an
analytic set [23], thus every infinitary rational relation is an analytic set.

We have shown in [7] that there exist some infinitary rational relations which
are XJ-complete and some others which are II3-complete and in [6] that there
exist some infinitary rational relations which are 3}-complete hence non Borel
sets.

The question of the decidability of the topological complexity of infinitary ra-
tional relations also naturally arises.

Mac Naughton’s theorem implies that every w-regular language is a Boolean
combination of TI9-sets [17,23,24] and Landweber proved that one can decide, for
a given w-regular language R, whether R is in the Borel class X9 (respectively,
19, 9, 119) [14].

We show in this paper that the above decidability results can not be extended
to rational relations over infinite words: for every countable ordinal o one cannot
decide whether a given infinitary rational relation is in the Borel class %2 (re-
spectively I1%). Furthermore one cannot even decide whether a given infinitary
rational relation is a Borel set or a X1-complete set.

Then we prove some recursive analogues to these properties. In particular one
cannot decide whether an infinitary rational relation is an arithmetical set.

The proof of the above results implies some other properties like the undecid-
ability of the rationality of the complement of an infinitary rational relation.

The paper is organized as follows. In Section 2 we introduce the notion of
rational relations over finite or infinite words. We prove our main results about
undecidability of topological and arithmetical properties in Section 3. Other re-
sults are proved in Section 4.

2. RATIONAL RELATIONS

Let us now introduce notations for words.

Let X be a finite alphabet whose elements are called letters. A non-empty finite
word over ¥ is a finite sequence of letters: x = aqas...a, where n > 1 and Vi €
[1;n] a; € . We shall denote z(i) = a; the ith letter of z and x[i] = z(1)...x(7)
for i < m. The length of x is || = n. The empty word will be denoted by A
and has 0 letter. Its length is 0. The set of finite words over ¥ is denoted X*.
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¥ = 3*—{A} is the set of non-empty words over ¥. A (finitary) language L over
Y. is a subset of ¥*. The usual concatenation product of v and v will be denoted
by w.v or just uwv.

For V C ¥* wedenote V*={v1...v,|n>1andVie[l;n] v € VIU{A}.

The complement >* — L of a finitary language L C >* will be denoted L.

The first infinite ordinal is w. An w-word over ¥ is an w-sequence
a1as...0y ..., where a; € %,V¥i > 1. When o is an w-word over ¥, we write
oc=0(l)o(2)...0(n)...and o[n] = 6(1)c(2)...0(n) the finite word of length n,
prefix of 0. The set of w-words over the alphabet ¥ is denoted by ¥“. An
w-language over an alphabet X is a subset of ¥“. For V C ¥*, V¥ = {¢ =
Up oo Up... € XY | u; € V,Vi > 1} is the w-power of V. The concatenation
product is extended to the product of a finite word u and an w-word v: the in-
finite word w.v is then the w-word such that: (u.v)(k) = u(k) if k¥ < |u|, and
(w)(k) =v(k — |u]) if k> |ul.

The prefix relation is denoted C: the finite word v is a prefix of the finite word v
(respectively, the infinite word v), denoted u C v, if and only if there exists a finite
word w (respectively, an infinite word w), such that v = v.w.

The complement ¥ — L of an w-language L C ¥“ will be denoted L.

A relation over finite words is a subset of ¥* x I'* where X and I" are two finite
alphabets, so it is a set of couples of words.

The complement (X* x IT'™*) — R of a relation R C ¥* x I'™* will be denoted R™.

The usual concatenation product can be extended to couples of words: if
(u,v) € £* x I'* and (w,t) € ¥* x I'* then (u,v).(w,t) = (v.w,v.t). Then the
star operation is defined for U C ¥* x I'™* by U* = U,>1U™ U {(\,\)} where
U™ ={(ug.uz2 ... up,v1.09...05) | Vi > 1 (us,v;) € U}

The set RAT(X* x I'*) of rational relations is the smallest family of subsets
of ¥* x I'* which contains the emptyset, the singletons {(a, )} and {(A,b)} for
a € ¥ and b € T', and which is closed under finite union, concatenation product
and star operation. We call RAT the union of the sets RAT(E* x I'*) where 3
and I' are two finite alphabets.

Recall that w-regular languages form the class of w-languages accepted by finite
automata with a Biichi acceptance condition and this class is the omega Kleene
closure of the class of regular finitary languages [17,23,24].

A relation over infinite words (or infinitary relation) is a subset of X¢ x I'*
where ¥ and I are two finite alphabets, so it is a set of couples of infinite words.
The complement (X x I'Y) — R of an infinitary relation R C X¢ x I'¥ will be
denoted R™.

We refer for example to [11] or to [6] for the definition of infinitary rational
relations via Biichi transducers.

As in the case of w-regular languages it turned out that an infinitary relation
R C ¥¥ x I'¥ is rational if and only if it is in the form R = Uj<;<,S;.RY where
for all integers ¢ € [1,n] S; and R; are rational relations over finite words and
the w-power U“ of a finitary rational relation U is naturally defined by U¥ =
{urug .. up ... |Viu; € U}
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Infinitary rational relations are also characterized as images of w-regular lan-
guages by bimorphisms [11]. This implies the following property which will be
useful in the sequel.

Proposition 2.1. Let ¥, ¥y, I' and I'1 be finite alphabets and h : ¥* — X7 and
g : I — T'7 be two morphisms such that for all u € X (respectively, u € T)
h(u) #£ X (respectively, g(u) # X). So h and g may be naturally extended to some
functions h : ¥ — X% and g : T¥ — T'Y. Let then R C X x I be an infinitary
rational relation, then

R ={(h(w),5(t)) € Xf x T{ | (w,t) € R}

s an infinitary rational relation.

3. UNDECIDABILITY OF TOPOLOGICAL
AND ARITHMETICAL PROPERTIES

An infinitary rational relation R C ¢ x I'“ may be seen as an w-language over
the finite alphabet 3 x T'.

For a finite alphabet X we shall consider the set X“ equipped with the usual
Cantor topology for which open sets are in the form W.X* with W C X*.

Recall that closed sets are characterized by the following:

Proposition 3.1. A set L C X% is a closed subset of X iff for every o € X*,
[Vn > 1,3u € X% such that o(1)...0(n).u € L] implies that o € L.

We refer to [6] or to [13,17,23] for the definition of Borel and analytic subsets
of X«.

We shall say that an infinitary rational relation is effectively given if a Biichi
transducer recognizing it or a rational expression defining it is given.

We shall firstly prove that one cannot decide whether an infinitary rational rela-
tion is a closed (respectively, open) set even if we consider only open (respectively,
closed) infinitary rational relations.

Proposition 3.2. Let X andY be finite alphabets having at least two letters, then
there exists a family F1 of infinitary rational relations which are closed subsets

of X¥ x Y%, such that one cannot decide whether a given R € Fi is an open
subset of X“ x Y¥.

Proof. Return to the Post Correspondence Problem which has been shown to be
undecidable.

Theorem 3.3 (Post). Let ' be an alphabet having at least two elements. Then it is
undecidable to determine, for arbitrary n-tuples (x1,x2...,2,) and (y1,y2- .., Yn)
of non-empty words in I'*, whether there exists a non-empty sequence of indices
01,92 ...,k such that i, i, . .. Tip, = Yiy Yin - - - Yiy, -
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Let now X D {a,b} and T" be finite alphabets having at least two letters. Let n
be an integer > 1 and = (z1,z2...,2,) and (y1,¥y2...,yn) be n-tuples of non-
empty words in I'* and call

R(x) = {(ba"ba™ ...ba"  xs 2, ... x;,.) | k is an integer > 1
and 41,142, ...,4; € [1,n]}
R(y) = {(baba™ ...ba"™  y; yi, . .. yi,) | k is an integer > 1

and i1,142,...,1; € [1,n]}

Then R(z) € ¥* x I'* is a finitary rational relation and so is its complement
(3* x I'*) — R(x), [2]. Similarly R(y) and its complement are finitary rational
relations.

Let now c be a new letter not in ¥ UT" and let

O(x) = R(x).(c,e)(ZU{c})” x (TU{c})*).

Then O(z) C (XU {c})¥ x (T'U{c})¥ is an infinitary rational relation and it is an
open subset of (X U {c})* x (I' U{c})*. Its complement O(x)~ = (X U {c})*¥ x
(T'U{c})* — O(x) is the union of the three sets C;(z), Ca(x) and Cs(x) where

Ci(z) = (X" x I") = R(x)).(¢, ). (R U {e})* x (T'U{e})?)

Ca(z) =32“ x (TU{c})*
Cs(x) = (XU {c}H)“ xT*.
Thus O(z)~ is the union of three infinitary rational relations and it is in RAT,,
because the class RAT,, is closed under finite union.
The infinitary rational relation O(y) is defined in a similar manner and its

complement O(y)~ is in RAT,,.
Consider now

O(x) N O(y) = (R(z) N R(y))-(c,c)-(ZU{c})” x (T'U{c})*)

then O(x) NO(y) is non empty if and only if R(x) N R(y) is non empty if and only
if there exists a non-empty sequence of indices 41,...,4; such that z;, ...z; =
Yiy - - - Yi,- Thus one cannot decide whether O(z) N O(y) is empty, i.e. whether
(O(z) NO(y))~ is equal to (XU {c})¥ x (T'U{c})~.

But (O(x) NO(y))~ = O(x)~ UO(y)~ is the union of two infinitary rational
relations hence it is in RAT,,. Moreover it is the union of two closed subsets of
(BU{c})? x (T'U{c})“ therefore it is also a closed subset of (XU{c})“ x (T'U{c})*.

Then there are two cases.

(1) First case. R(x) N R(y) is empty thus (O(z) N O(y))~ is equal to (X U
{c})* x (T'U{c})¥ and it is an open (and closed) subset of (X U {c})¥ x

(T'U{c})~.
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(2) Second case. R(z)N R(y) is non empty thus there exists a non-empty
sequence of indices %1, ..., such that z;, ...2;, = vs, ...¥i,. Then each
sequence (i1, ...,4;)™, where n is an integer > 1, gives another solution of
Post correspondence problem and ((ba‘tba® ...ba" )", (v, 24, - .. 34,)") is
in R(x) N R(y).

We show now that O(x) N O(y) is not closed.
If O(x)NO(y) = (R(z)NR(y)).(c,c).(XU{c})* x (T'U{c})¥) was a closed
set it would contain the couple ((ba"tba® ...ba" )%, (x; @i, ... 7;)*) of
infinite words because each of its prefixes is the prefix of some couple
(u,v) € O(x) N O(y). But this is not possible because for all (w,t) €
O(z) N O(y) the infinite words w and ¢ contain at least one occurrence of
the letter c.
So in this case O(xz)NO(y) is not closed and the infinitary rational relation
O(z)~ UO(y)~ is not open.
We have seen that one cannot decide which of these two cases holds and this ends
the proof for two alphabets X and Y having at least three letters: the family F;
is formed by the infinitary rational relations O(z)~ UO(y)~.
An easy coding allows to infer the result for two alphabets X and Y having
at least two letters; details are left to the reader but such codings will be used in
proof of Proposition 3.6.

Proposition 3.4. Let ¥ and I be finite alphabets having at least two letters, then
there exists a family Fo of infinitary rational relations which are open subsets of
¥ x T'Y, such that one cannot decide whether a given R € Fa is a closed subset
of X x I',

Proof. Return to the Post Correspondence Problem for infinite words which has
been shown undecidable by Gire [12].

Theorem 3.5. Let I' be an alphabet having at least two elements. Then it is un-

decidable to determine, for arbitrary n-tuples (x1,...,2n) and (y1,...,Yyn) of non-
empty words in I'*, whether there exists an infinite sequence of indices
11,02, ..,k ... such that ©;, Tiy ... Tip .. = Yir Yig - - - Yip, - - -

Let ¥ O {a,b} and T' be finite alphabets having at least two letters and = =
(x1,...,25) and y = (y1,...,Yn) be n-tuples of non-empty words in I'*. The w-
powers R(z)¥ and R(y)*, where R(x) and R(y) are defined as above, are infinitary
rational relations and subsets of ¢ x I'“. Moreover their complements are also
infinitary rational relations. This can be proved as an extension of the preceding
result concerning the complement of R(x). We briefly sketch the proof, as exposed
in [19]. Let

U= (=% — {ba';ba®; ... ;ba"}*) x ¥
then U is an infinitary rational relation because ¥ — {ba'; ba?;...;ba™}* is an w-
regular language. And let W C ¥* x I'* be the finitary rational relation defined by

W = {(w,t) € * x T* | 3j € [I,n] w = ba’b and |t| = |z;| and t # x;}
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then
(R(z)*)” =UUR(z)* W.(2“ x T*).
Thus (R(x)“)~ € RAT,, because it is the union of two infinitary rational relations.
From the characterization of closed sets given in Proposition 3.1 we can easily
infer that R(z)* and R(y)“ are closed subsets of 3% x I'“. Thus R(z)* N R(y)“ is
also a closed set and its complement

(R(z)* N R(y)*)” = (R(x)*)” U (R(y)*)~

is an open subset of X% x I'“.
Two cases may happen.

(1) First case. There exists an infinite sequence of indices i1,1i9,... 0. ..
such that
’L'ill‘iz . l‘zk e, = yilyiQ y’Lk e
Then R(z)“ NR(y)“ is non empty. In that case R(z)* N R(y)* is not open
otherwise it would contain a set (u,v).(X* x I'¥) for some finite words
u € ¥* and v € T'™*. So the couple (u.a®,v.e*), for e € I, would be in
R(z)¥ N R(y)* and this is not possible because the first component u.a®
would contain only a finite number of occurrences of the letter b.
Then (R(z)* N R(y)¥)” = (R(z)*)” U (R(y)¥) is not closed.
(2) Second case. There is no infinite sequence of indices i1, 42, . .., i . . . such
that
’L'ill‘iz . l‘zk e, = yilyiQ y’Lk e
Then R(z)“NR(y)* is empty hence it is open and its complement (R(x)“ N
R(y)*)” = (R(z)¥)” U(R(y)*)” = X« xI'¥ is a closed subset of ¥« x I'“.
But one cannot decide which of these two cases holds so one cannot decide whether
the open infinitary rational relation (R(z)¥)~ U (R(y)*)” is a closed subset of
XY x I,
The family F> is then formed by the infinitary rational relations (R(x)“)~ U
(R(y)*)
In order to extend these undecidability results to all Borel classes we shall firstly
prove the following result:

Proposition 3.6. Let X and Y be finite alphabets having at least two letters,
then there exists a family F of infinitary rational relations which are subsets of
XY x Y%, such that, for R € F, either R = X“ x Y or R is a ¥1-complete subset
of X¥ XYY, but one cannot decide which case holds.

Proof. We shall rely on a previous result proved in [6]: there exists some Xi-
complete infinitary rational relations.

We first describe such a rational relation R which is an w-language over the
alphabet (X U{A}) x (X U{A})) where X is a finite alphabet having two letters
and A is an additionnal letter not in 3. Every word of R may be seen as a couple
y = (y1,y2) of w-words over the alphabet ¥ U {A} and then y = (y1,y2) is in R if
and only if it is in the form
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y1 = x(1).u1. Avg.x(3).us. Avg.x(5)us. A. ... Avgp.x(2n + 1) ugpi1.4. ..
yo = v1.2(2).uzs. Avs.x(4).ug. A. ... Avopir.2(2n + 2).ugpt2.A ...
where for all integers i > 1, (i) € ¥ and u;,v; € ¥* and

[v;| = 2|ug] or [v;| = 2Jug| + 1

and the w-word x = x(1)z(2)...2(n)... is in a given II9-complete w-regular lan-
guage B C X*. For example X = {0,1} and B = (0*.1)¥ is a well-known example
of TI9-complete w-regular language.

Let us now assume that ¥ is an alphabet having two letters and R is a X1-
complete infinitary rational relation defined as above.

Recall that if ¥ is an alphabet having at least two letters then it is undecidable to
determine, for a given rational relation (over finite words) S C ¥* x 3*, whether
S = ¥* x ¥*, see [2]. This can be proved by considering the finitary rational
relations (R(z) N R(y))~ = R(z)~ U R(y)~ where R(z) and R(y) are defined as
above.

We define, from the X1-complete infinitary rational relation R C ((SU{A})¥ x
(XU {A})¥) and a given rational relation § C ¥* x ¥*, the following relation:

RS:81U82U83

where
S =8.(4A).(Zu{A})* x (BU{A4})*)
Sy = (2" x ¥N).(4,A).R
S3=[ZU{A})Y x Z°]U[Z* x (ZU{A})¥]
RS is the union of three infinitary rational relations thus RS € RAT,, because
the class RAT,, is closed under finite union.
Now two cases may happen.
(1) First case. S = ¥* x ¥* therefore R® = (S U {A})¥ x (U {A})¥).
(2) Second case. S # ¥* x ¥* therefore there is some (u,v) € ¥* x ¥*
such that (u,v) ¢ S. But then, for (w,t) € (XU {A})¥ x (XU {A})¥,
(u,v).(A, A).(w,t) € RS if and only if (w,t) € R.
Consider now the function

Pl (EULADT x (ZU{A}D®) = (BU{A}” x (BU{A}))

defined by
cp(u,v)((wat)) = (uvv)'(Aa A)(wvt)
It is easy to see that ¢(,.) is a continuous function and that, for all

(w.1) € (SU{AD” x (SU{4})),
Oluw) ((w,t)) € RS if and only if (w,t) € R.

This means that R = ga(_ulv) (RS). But we know that R is X1-complete
and this implies that RS is also ¥1-complete.
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Remark that we already knew that RS was a 31-set because it is an
infinitary rational relation.
But one cannot decide which case holds. So we have got the family F in the
case of two alphabets X and Y having both three elements. In fact we had
X =Y =X U{A} but the result holds also if X # Y as it is easy to see.

Assume we have got the result for X =Y = YU{A} = {a,b, A} and consider the
morphism & : {a,b, A}* — {a,b}* defined by h(a) = bab, h(b) = ba?b and h(A) =
ba®b. This morphism can be naturally extended to a function h : {a,b, A}* —
{a,b}* and to a function h : {a,b, A}* x {a,b, A} — {a,b}* x {a,b}*. It is easy
to see that the functions h and h are continuous and injective. Define now, from
the infinitary relation RS, the following

WS = h(RS) U [{a,b}* x {a,b}* — h({a,b, A}* x {a,b, A}*)].
Remark that the set
{a,0}* x {a,b}* — h({a,b, A} x {a,b, A}*)
is equal to
({a,0} = h({a,b, A}*)) x {a,b}* | J{a,0}* x ({a,b}* = h({a,b, A}*))

but it is easy to see that {a,b}* — h({a,b, A}*) is an w-regular language (because
it is the complement of the w-regular language h({a, b, A}*)) thus the set

{a,b} x {a,b}* — h({a,b, A} x {a,b, A}*)

is an infinitary rational relation.

On the other side 2(RS) is an infinitary rational relation by Proposition 2.1
because RS € RAT,,. Therefore WS € RAT,, because the class RAT,, is closed
under finite union.

We can now state that again two cases may happen.

(1) First case. RS = ((XU{A})* x (BU{A})¥) then WS = {a,b}* x {a,b}*.
(2) Second case. R is a X1-complete subset of (X U {A})* x (L U{A})~.
By construction of W it holds that

h=t(W?) = RS.

But we know that RS is 3}-complete, that W is a E}-set and that the
function A is continuous thus W¢ is also X1-complete.

Again one cannot decide which case holds and this proves the result for two al-
phabets X and Y having two elements.

In order to prove now the result for every alphabet, assume, without loss of gen-
erality, that we have got the family F in the case of two alphabets X = {c;, ca} and
Y = {d1, d2} having two elements and consider two alphabets X' = {cy,ca,...,cr}
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having k elements and Y’ = {di,ds, ...,d,} having p elements with k,p > 2. De-
fine now, for F' € F, the set

TF=FUX“xY¥ - XYxY".

It is easy to see that X9 xy'Y _ X“xY¥isan infinitary rational relation thus
TF € RAT,, because the class RAT,, is closed under finite union.
Again only two cases may happen for F € F.

(1) First case. F = X¥ x Y* thus 7F = X' ¥ x Y'«.

(2) Second case. F is a X}-complete subset of X* x Y. Consider the
embedding g : X¥ x Y* — X' x Y'¢ defined by g(u,v) = (u,v) for all
(u,v) € X¥ x Y¥. The function g is continuous and

g HT")=F

therefore 7" is 31-complete because F' is 33-complete and 71 is a 31-set
(because TH € RAT,).

But one cannot decide which case holds and this proves the result for two alpha-
bets X and Y having at least two elements.

We can now state the following results. We refer to [23] for the precise definition
of the Arithmetical hierarchy of w-languages.

Theorem 3.7. Let X and T' be finite alphabets having at least two letters, a be
a countable ordinal > 1, and j be an integer > 1. Then for an effectively given
infinitary rational relation R C X% x I'Y it is undecidable to determine whether:

(a) R is in the Borel class £9;

) R is in the Borel class T19;

(¢) R is a Borel subset of ¢ x I';

(d) R is a X1-complete subset of ¥« x T'¥;

) R is in the arithmetical class ¥j;

) R is in the arithmetical class II;;

(g) R is an arithmetical set in Up>1%, = Up>111,.

Proof. Let ¥ and I' be finite alphabets having at least two letters and F be the
family of infinitary rational relations included in ¥¢ x I'“ obtained in the proof
of Proposition 3.6. Then two cases may happen for F' € F: either F' = X% x I'¥
or F is a Xi-complete subset of ¥« x I'“.

In the first case F' is an open and closed subset of ¥ x I'“ thus, for every
countable ordinal o > 1, it is in the class Eg and also in the class Hg. Moreover
it is in every arithmetical class 3; or II;.

In the second case F is not a Borel set because a X1-complete set is not Borel.
So it is not in any arithmetical class because each arithmetical class 3,, (respec-
tively II,,) is included in the Borel class 39 (respectively I19).

But one cannot decide which case holds and this ends the proof of Theorem 3.7.
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4. OTHER UNDECIDABILITY RESULTS

Proposition 3.6 establishes a strong undecidability result which implies other
ones.

Theorem 4.1. Let X and T' be finite alphabets having at least two letters. Then
it is undecidable to determine, for an effectively given infinitary rational relation
R C X% x T'Y, whether:

(a) R is accepted by a deterministic Bichi (respectively, Muller) 2-tape finite
automaton;

(b) R is accepted by a deterministic Biichi (respectively, Muller) Turing ma-
chine;

(c) its complement (¥ x T'¥) — R is an infinitary rational relation;

(d) its complement (3¢ x ') — R is accepted by a non deterministic Turing
machine with a Bichi (respectively Muller) acceptance condition.

Proof. Let ¥ and I' be finite alphabets having at least two letters and F be the
family of infinitary rational relations included in ¢ x I'“ obtained in the proof
of Proposition 3.6. Then two cases may happen for F' € F: either F' = X% x I'“
or F' is a X}-complete subset of ¢ x T'“.

In the first case F' is obviously accepted by a deterministic Biichi (respectively,
Muller) 2-tape finite automaton hence also by a deterministic Biichi (respectively,
Muller) Turing machine.

Moreover its complement F~ = () is in RAT,, and is accepted by a non deter-
ministic Turing machine with a Biichi (respectively Muller) acceptance condition.

In the second case F is Xi-complete thus it cannot be accepted by any deter-
ministic finite machine with a Biichi (respectively Muller) acceptance condition
because otherwise it would be a Boolean combination of II-sets hence a AJ-set.
In fact w-languages accepted by deterministic Biichi Turing machines form the
class I, and w-languages accepted by deterministic Muller Turing machines form
the class of Boolean combinations of IIy-sets, see [23].

Moreover its complement F'~ is a IT}-complete subset of ¥« x I'“. It is well-
known that a IT}-complete set is not a 33-set thus it is not accepted by any Turing
machine with a Biichi or Muller acceptance condition and it cannot be in RAT,,.

But one cannot decide which case holds.

Notice that item (a) was already proved by Frougny and Sakarovitch in [8].
They deduced this result from a corresponding one on finitary rational relations. It
is also proved in [8] that one cannot decide whether an infinitary rational relation
R C ¥¥ x I'¥ is synchronized, i.e. is an w-regular language over the alphabet
> x I'. This latter result can also be deduced from Proposition 3.6. So we give
here another proof of these results which follows from topological properties of
infinitary rational relations. Moreover we have also proved item (b) showing that
the “intrinsic determinism” of infinitary rational relations is undecidable.

Acknowledgements. Thanks to the referees for useful comments on a previous version of
this paper.
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