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INTERVAL EXCHANGES, ADMISSIBILITY AND BRANCHING RAUZY
INDUCTION ∗

Francesco Dolce1 and Dominique Perrin2

Abstract. We introduce a definition of admissibility for subintervals in interval exchange transforma-
tions. We characterize the admissible intervals using a branching version of the Rauzy induction. Using
this notion, we prove a property of the natural codings of interval exchange transformations, namely
that any derived set of a regular interval exchange set is a regular interval exchange set with the same
number of intervals. Derivation is taken here with respect to return words. We also study the case of
regular interval exchange transformations defined over a quadratic field and show that the set of factors
of such a transformation is primitive morphic. The proof uses an extension of a result of Boshernitzan
and Carroll.

Mathematics Subject Classification. 68R15, 37B10, 37E05.

1. Introduction

Interval exchange transformations were introduced by Oseledec [23] following an earlier idea of Arnold [1]. In-
terval exchange transformations have been generalized to transformations called linear involutions by Danthony
and Nogueira in [13] (for other generalizations, see [25]).

The natural coding of interval exchange produces sequences of linear complexity, including Sturmian se-
quences, and this has been widely studied (see, for example [15] or [2] for small alphabets).

Rauzy has introduced in [24] a transformation, now called Rauzy induction (or Rauzy–Veech induction), which
operates on interval exchange transformations. It actually transforms an interval exchange transformation into
another one operating on a smaller interval. Its iteration can be viewed as a generalization of the continued
fraction expansion. The induction consists in taking the first return map of the transformation with respect to
a subinterval of the interval on which the exchange is defined. The induced map of an interval exchange on s
intervals is still an interval exchange with at most s+ 2 intervals.

Rauzy introduced in [24] the definition of right-admissibility for an interval and characterized the right-
admissible intervals as those which can be reached by the Rauzy induction.

Interval exchange transformations defined over quadratic fields have been studied by Boshernitzan and Carroll
([10,11]). Under this hypothesis, they showed that, using iteratively the first return map on one of the intervals
exchanged by the transformation, one obtains only a finite number of different new transformations up to
rescaling, extending the classical Lagrange’s theorem that quadratic irrationals have a periodic continued fraction
expansion.
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In this paper, we generalize both the notion of admissible intervals and of Rauzy induction to a two-sided
version.

Our main result is a characterization of the admissible intervals (Thm. 4.3). We show that, in particular,
intervals associated with factors of the natural coding of an interval exchange transformation are admissible
(Prop. 3.16).

Our motivation is the study of the natural coding of these transformations by words, in the spirit of the
research initiated in [4] and containing a series of other papers (see for instance [5, 6] or [8] where interval
exchanges are also studied).

We prove a property of the natural codings of regular interval exchange transformations (Thm. 3.19) saying
that the family of these sets of words is closed by derivation, an operation consisting in taking the first return
words to a given word as a new alphabet.

We pay special attention to the case of interval exchange transformations defined over a quadratic field. We
prove that the family of transformations obtained from a regular interval exchange transformation by two-sided
Rauzy induction is finite up to rescaling. Moreover, we show that the related interval exchange set is obtained
as the set of factors of a primitive morphic word.

The paper is organized as follows.
In Section 2 we recall some basic definitions concerning words and sets. Return words and first return words

are also introduced.
In Section 3, we give some notions concerning interval exchange transformations. We recall the result of

Keane [19] which proves that regularity is a sufficient condition for the minimality of such a transformation
(Thm. 3.3). We also introduce the natural codings of interval exchange transformations. We define the derivate
of an interval exchange set with respect to a coding morphism and we show a closure property of these sets.

In Section 4, we first recall the notion of Rauzy induction introduced in [24]. We introduce a branching
version of Rauzy induction. We prove the generalization of Rauzy’s theorems to the two-sided case (Thms. 3.17
and 4.3).

In Section 5 we generalize the result of Boshernitzan and Carroll [11], enlarging the family of transformations
obtained using induction on every admissible semi-interval. This contains the results of [11] because every semi-
interval exchanged by a transformation is admissible, while for n > 2 there are admissible semi-intervals that we
cannot obtain using the induction only on the exchanged ones. We conclude the Section showing that regular
quadratic interval exchange sets are primitive morphic (Thm. 5.12).

2. Preliminaries

In this section, we first recall some definitions concerning words. We recall the definition of recurrent and
uniformly recurrent sets of words (see [21] for a more detailed presentation). We introduce the notion of fist return
words and derived words. Derived words have been widely studied, in particular in the context of substitutive
dynamics (see [14] for example) and are intimately connected with induction.

2.1. Words and recurrent sets

Let A be a finite nonempty alphabet. All words considered below, unless stated explicitly, are supposed to
be on the alphabet A. We denote by A∗ the set of all words on A. We denote by ε the empty word and by
A+ = A∗ \ {ε}. We denote by |w| the length of a word w. A set of words is said to be factorial if it contains the
factors of its elements.

A morphism f : A∗ → B∗ is a monoid morphism from A∗ into B∗. If a ∈ A is such that the word f(a) begins
with a and if |fn(a)| tends to infinity with n, there is a unique infinite word denoted fω(a) which has all words
fn(a) as prefixes. It is called a fixed point of the morphism f .
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A morphism f : A∗ → A∗ is called primitive if there is an integer k such that for all a, b ∈ A, the letter b
appears in fk(a). If f is a primitive morphism, the set of factors of any fixed point of f is uniformly recurrent
(see [16] Prop. 1.2.3 for example).

An infinite word y over an alphabet B is called morphic if there exists a morphism f on an alphabet A, a
fixed point x = fω(a) of f and a morphism σ : A∗ → B∗ such that y = σ(x). If A = B and σ is the identity
map, we call y purely morphic. If f is primitive we say that the word is primitive morphic.

A factorial set of words F �= {ε} is recurrent if for every u,w ∈ F there is a v ∈ F such that uvw ∈ F . For
an infinite word x, we denote F (x) the set of factors of x. An infinite word x is recurrent if for any u ∈ F (x)
there is a v ∈ F (x) such that uvu ∈ F (x). As well known, for any recurrent set F there is a recurrent infinite
word x such that F = F (x) and conversely, for any recurrent infinite word x, the set F (x) is recurrent (see for
example [20]).

Extending the definition, we say that a set F (x) is morphic (resp. purely morphic, primitive morphic) if the
infinite word x is morphic (resp. purely morphic, primitive morphic).

A recurrent set of words F is said to be uniformly recurrent if, for any word u ∈ F , there exists an integer
n ≥ 1 such that u is a factor of every word of F of length n.

2.2. Return words and derived sets

Let F be a set of words over an alphabet A. For w ∈ F , let

ΓF (w) = {x ∈ F | wx ∈ F ∩A+w} and Γ ′
F (w) = {x ∈ F | xw ∈ F ∩wA+}

be respectively the set of right return words and left return words to w. When F is recurrent, the sets ΓS(w)
and Γ ′

S(w) are nonempty. Actually both of them are infinite. Let

RF (w) = ΓF (w) \ ΓF (w)A+ and R′
F (w) = Γ ′

F (w) \A+Γ ′
F (w)

be respectively the set of first right return words and the set of first left return words to w. Note that wRF (w) =
R′

F (w)w.
Clearly, a recurrent set F is uniformly recurrent if and only if the set RF (w) (resp. R′

F (w)) is finite for
any w ∈ F .

Example 2.1. Let F be a set of words whose factors of length at most 6 are the labels of the paths starting
at the root of the tree represented in Figure 1 (we will see in Example 3.10 an infinite set of words having such
factors).

We have

RF (a) = {cbba, ccba, ccbba},
RF (b) = {acb, accb, b},
RF (c) = {bac, bbac, c}.

We colored in Figure 1 the words of αRF (α) for α ∈ A.

For a set of words X and a word u, we denote u−1X = {v ∈ A∗ | uv ∈ X}. Let F be a recurrent set and
let w ∈ F . A coding morphism for the set RF (w) is a morphism f : B∗ → A∗ which maps bijectively the
(possibly infinite) alphabet B onto RF (w). The set f−1(w−1F ), denoted Df (F ), is called the derived set of F
with respect to f . The following result is proved in ([6], Prop. 4.3).

Proposition 2.2. Let F be a recurrent set. For w ∈ F , let f be a coding morphism for the set RF (w). Then

Df (F ) = f−1(ΓF (w)) ∪ {ε}.
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Figure 1. The words of length ≤ 6 of the set F .
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Figure 2. The words of length ≤ 3 of Df (F ).

Let F be a recurrent set and x be an infinite word such that F = F (x). Let w ∈ F and let f be a coding
morphism for the set RF (w). Since w appears infinitely often in x, there is a unique factorization x = vwy with
y ∈ RF (w)ω and v such that vw has no proper prefix ending with w. The infinite word f−1(y) is called the
derived word of x relative to f , denoted Df (x).

Since the set of factors of a recurrent infinite word is recurrent, the following result, proved in ([6], Prop. 4.4),
shows in particular that the derived set of a recurrent set is recurrent.

Proposition 2.3. Let F be a recurrent set and let x be an infinite word such that F = F (x). Let w ∈ F and
let f be a coding morphism for the set RF (w). The derived set of F with respect to f is the set of factors of the
derived word of x with respect to f , that is Df (F ) = F (Df (x)).

Example 2.4. Let F be a recurrent set having as factors of length at most 6 the set represented in Figure 1
(we will see such a set in Example 3.10).

Let f be the coding morphism for the set RF (c) given by f(a) = bac, f(b) = bbac, f(c) = c. The derived set
of F with respect to f is represented in Figure 2.
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3. Interval exchanges

In this section we recall the basic definitions of interval exchange transformations, along with minimality and
regularity of interval exchanges. We also define the natural coding of an interval exchange and the associated
interval exchange set, that is the language of all possible natural codings of a transformation. We then consider
the notion of admissibility of a semi-interval. Finally we prove a closure property using the derivation defined
in the previous section.

3.1. Interval exchange transformations

Let us recall the definition of an interval exchange transformation (see [12, 28] or [26] for a more detailed
presentation).

A semi-interval is a nonempty subset of the real line of the form [α, β[= {z ∈ R | α ≤ z < β}. Thus it is
a left-closed and right-open interval. For two semi-intervals Δ,Γ , we denote Δ < Γ if x < y for any x ∈ Δ
and y ∈ Γ .

Given an order < on A, a partition (Ia)a∈A of a semi-interval [�, r[ in semi-intervals is ordered if a < b
implies Ia < Ib.

Let now <1 and <2 be two total orders on A. Let (Ia)a∈A be a partition of [�, r[ in semi-intervals ordered for
<1. Let λa be the length of Ia. Let μa =

∑
b≤1a λb and νa =

∑
b≤2a λb. Set αa = νa −μa. The interval exchange

transformation relative to (Ia)a∈A is the map T : [�, r[→ [�, r[ defined by

T (z) = z + αa if z ∈ Ia.

Observe that the restriction of T to Ia is a translation onto Ja = T (Ia), that μa is the right boundary of Ia and
that νa is the right boundary of Ja. We additionally denote by γa the left boundary of Ia and by δa the left
boundary of Ja. Thus

Ia = [γa, μa[, Ja = [δa, νa[.

Since a <2 b implies Ja <2 Jb, the family (Ja)a∈A is a partition of [�, r[ ordered for <2. In particular, the
transformation T defines a bijection from [�, r[ onto itself.

An interval exchange transformation relative to (Ia)a∈A is also said to be on the alphabet A. The values
(αa)a∈A are called the translation values of the transformation T .

Example 3.1. Let R be the interval exchange transformation corresponding to A = {a, b}, a <1 b, b <2 a,
Ia = [0, 1−α[, Ib = [1−α, 1[. The transformation R is the rotation of angle α on the semi-interval [0, 1[ defined
by R(z) = z + α mod 1.

Since <1 and <2 are total orders, there exists a unique permutation π of A such that a <1 b if and only if
π(a) <2 π(b). Conversely, <2 is determined by <1 and π and <1 is determined by <2 and π. The permutation
π is said to be associated to T .

Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 . . . <1 as. The pair (λ, π) formed by the family λ = (λa)a∈A and
the permutation π determines the map T . We will also denote T as Tλ,π. The transformation T is also said to
be an s-interval exchange transformation.

It is easy to verify that the family of s-interval exchange transformations is closed by taking inverses.

Example 3.2. Let T = R2 where R is the rotation of Example 3.1. The transformation T , represented in
Figure 3 is a 3-interval exchange transformation. One has A = {a, b, c} with a <1 b <1 c and b <2 c <2 a. The
associated permutation is the cycle π = (abc).

The orbit of a point z ∈ [�, r[ is the set O(z) = {T n(z) | n ∈ Z}. The transformation T is said to be minimal
if for any z ∈ [�, r[, the orbit of z is dense in [�, r[.
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0 1 − 2α 1 − α 1
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0 α 2α 1
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Figure 3. A 3-interval exchange transformation.

From now on, set γi = γai , δi = δai , μi = μai and νi = νai . The points 0 = γ1, μ1 = γ2, . . . , μs−1 = γs form
the set of separation points of T , denoted Sep(T ). Note that the transformation T has at most s−1 singularities
(that is points at which it is not continuous), which are among the nonzero separation points γ2, . . . , γs.

An interval exchange transformation Tλ,π is called regular if the orbits of the nonzero separation points
γ2, . . . , γs are infinite and disjoint. Note that the orbit of 0 cannot be disjoint from the others since one has
T (γi) = 0 for some i with 2 ≤ i ≤ s.

A regular interval exchange transformation is also said to satisfy the idoc condition (where idoc stands for
infinite disjoint orbit condition). It is also said to have the Keane property or to be without connection (see [9]).
As an example, the 2-interval exchange transformation of Example 3.1 which is the rotation of angle α is regular
if and only if α is irrational.

The following result is due to Keane [19].

Theorem 3.3 (Keane). A regular interval exchange transformation is minimal.

The converse is not true. Indeed, consider the rotation of angle α with α irrational, as a 3-interval exchange
transformation with λ = (1−2α, α, α) and π = (132). The transformation is minimal as any rotation of irrational
angle but it is not regular since μ1 = 1 − 2α, μ2 = 1 − α and thus μ2 = T (μ1).

Example 3.4. Let T be the 3-interval exchange transformation of Example 3.2 with α = (3 − √
5)/2. The

transformation T is regular since α is irrational. Note that 1−α is a separation point which is not a singularity
since T is also a 2-interval exchange transformation.

The following necessary condition for minimality of an interval exchange transformation is useful. A permu-
tation π of an ordered set A is called decomposable if there exists an element b ∈ A such that the set B of
elements strictly less than b is nonempty and such that π(B) = B. Otherwise it is called indecomposable. If an
interval exchange transformation T = Tλ,π is minimal, the permutation π is indecomposable. Indeed, if B is a
set as above, the set of orbits of the points in the set S = ∪a∈BIa is closed and strictly included in [�, r[. The
following example shows that the indecomposability of π is not sufficient for T to be minimal.

Example 3.5. Let A = {a, b, c} and λ be such that λa = λc. Let π be the transposition (ac). Then π is
indecomposable but Tλ,π is not minimal since it is the identity on Ib.

The iteration of an s-interval exchange transformation is, in general, an interval exchange transformation
operating on a larger number of semi-interval.

Proposition 3.6. Let T be a regular s-interval exchange transformation. Then, for any n ≥ 1, T n is a regular
n(s− 1) + 1-interval exchange transformation.

Proof. Since T is regular, the set ∪n−1
i=0 T

−i(μ) where μ runs over the set of s− 1 nonzero separation points of T
has n(s − 1) elements. These points partition the interval [�, r[ in n(s − 1) + 1 semi-intervals on which T is a
translation. �
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We close this subsection with a lemma that will be useful in Section 3.
Let T be an interval exchange transformation relative to a partition (Ii)s

i=1 and let (αi)s
j=1 be the translations

values of T . We say that αm1 + αm2 + . . . + αmm is an m-translation value of T if there exists a point z0 ∈
Im1 ∩ T−1 (Im2) ∩ . . . ∩ T−m+1 (Imm). Roughly speaking, iterating T we can start from Im1 and arrive to Imm

in exactly m steps, passing (in order) through Im2 , . . . Imm−1 .
Moreover, αm1 +αm2 + . . .+αmm is one of the translation values of the transformation Tm (namely the one

corresponding to the semi-interval containing the point z0).
Note that when T is minimal, every m-translation value of T , with m > 0, is different from zero.

Lemma 3.7. Let T be a minimal interval exchange transformation over an interval I. For every N > 0 there
exists an ε > 0 such that for every z ∈ I and for every n > 0, one has

|T n(z) − z| < ε =⇒ n ≥ N.

Proof. Let α1, α2, . . . , αs be the translation values of T . For every N > 0 it is sufficient to choose

ε = min
{∣∣∣∑M

j=1 αij

∣∣∣ | M ≤ N and
∑M

j=1 αij ∈ VM (T )
}
.

where VM (T ) denotes the set of M -translation values of T . �

3.2. Natural coding

Let T be an interval exchange transformation relative to (Ia)a∈A. For a given real number z ∈ [�, r[, the
natural coding of T relative to z is the infinite word ΣT (z) = a0a1 . . . on the alphabet A defined by

an = a if T n(z) ∈ Ia.

Example 3.8. Let α = (3−√
5)/2 and let R be the rotation of angle α on [0, 1[ as in Example 3.1. The natural

coding of R relative to α is the Fibonacci word which is the fixed point t = abaab . . . of the morphism f from
{a, b}∗ into itself defined by f(a) = ab and f(b) = a (see, for example, [21], Chapt. 2).

For a word w = b0b1 . . . bm−1, let Iw be the set

Iw = Ib0 ∩ T−1(Ib1 ) ∩ . . . ∩ T−m+1(Ibm−1 ). (3.1)

Note that each Iw is a semi-interval. Indeed, this is true if w is a letter. Next, assume that Iw is a semi-
interval. Then for any a ∈ A, T (Iaw) = T (Ia) ∩ Iw is a semi-interval since T (Ia) is a semi-interval by definition
of an interval exchange transformation. Since Iaw ⊂ Ia, T (Iaw) is a translate of Iaw , which is therefore also a
semi-interval. This proves the property by induction on the length. The semi-interval Iw is the set of points z
such that the natural coding of the transformation relative to z has w as a prefix.

Set Jw = Tm(Iw). Thus
Jw = Tm(Ib0) ∩ Tm−1(Ib1) ∩ . . . ∩ T (Ibm−1). (3.2)

In particular, we have Ja = T (Ia) for a ∈ A. Note that each Jw is a semi-interval. Indeed, this is true if w is a
letter. Next, for any a ∈ A, we have T−1(Jwa) = Jw ∩ Ia. This implies as above that Jwa is a semi-interval and
proves the property by induction. We set by convention Iε = Jε = [0, 1[. Then one has for any n ≥ 0

anan+1 . . . an+m−1 = w ⇐⇒ T n(z) ∈ Iw (3.3)

and
an−man−m+1 . . . an−1 = w ⇐⇒ T n(z) ∈ Jw (3.4)



148 F. DOLCE AND D. PERRIN

Let (αa)a∈A be the translation values of T . Note that for any word w,

Jw = Iw + αw (3.5)

with αw =
∑m−1

j=0 αbj as one may verify by induction on |w| = m. Indeed it is true for m = 1. For m ≥ 2,
set w = ua with a = bm−1. One has Tm(Iw) = Tm−1(Iw) + αa and Tm−1(Iw) = Iw + αu by the induction
hypothesis and the fact that Iw is included in Iu. Thus Jw = Tm(Iw) = Iw +αu +αa = Iw +αw. Equation (3.5)
shows in particular that the restriction of T |w| to Iw is a translation.

Note that the semi-interval Jw is the set of points z such that the natural coding of T−|w|(z) has w as a
prefix.

If T is minimal, one has w ∈ F (ΣT (z)) if and only if Iw �= ∅. Thus the set F (ΣT (z)) does not depend on z
(as for Sturmian words, see [21]). Since it depends only on T , we denote it by F (T ). When T is regular (resp.
minimal), such a set is called a regular interval exchange set (resp. a minimal interval exchange set).

Let X be the closure of the set of all ΣT (z) for z ∈ [�, r[ and let S be the shift on X defined by S(x) = y with
yn = xn+1 for n ≥ 0. The pair (X,S) is a symbolic dynamical system, formed of a topological space X and a
continuous transformation S. Such a system is said to be minimal if the only closed subsets invariant by S are
∅ or X . It is well-known that (X,S) is minimal if and only if F (S) is uniformly recurrent (see for Example [21],
Thm. 1.5.9).

Then we have the following commutative diagram of Figure 4.

[ [ [ [

X X

T

ΣT

S

ΣT

Figure 4. A commutative diagram.

The map ΣT is neither continuous nor surjective. This can be corrected by embedding the interval [�, r[
into a larger space on which T is a homeomorphism (see [19] or [7] p. 349). However, if the transformation T
is minimal, the symbolic dynamical system (X,S) is minimal (see [7], p. 392). Thus, we obtain the following
statement.

Proposition 3.9. For any minimal interval exchange transformation T , the set F (T ) is uniformly recurrent.

Note that for a regular interval exchange transformation T , the map ΣT is injective (see [19], p. 30).

Example 3.10. Let T be the transformation of Example 3.4. Since T is minimal, the set F (T ) is uniformly
recurrent. In Subsection 5.4 we will show that the set F = F (T ) is the set of factors of the fixed point of a
primitive morphism. The words of length at most 6 of the set F are represented in Figure 1.

In Section 5 we will give a sufficient condition for an interval exchange set to be primitive morphic (Thm. 5.12).

3.3. Induced transformations and admissible semi-intervals

Let T be a minimal interval exchange transformation. Let I ⊂ [�, r[ be a semi-interval. Since T is minimal,
for each z ∈ [�, r[ there is an integer n > 0 such that T n(z) ∈ I.
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0 1 − 2α 1 − α 2α

a b c

0 α 4α− 1 2α

b c a

Figure 5. The transformation induced on I.

The transformation induced by T on I is the transformation S : I → I defined for z ∈ I by S(z) = T n(z)
with n = min{n > 0 | T n(z) ∈ I}. We also say that S is the first return map (of T ) on I. The semi-interval I
is called the domain of S, denoted D(S).

Example 3.11. Let T be the transformation of Example 3.4. Let I = [0, 2α[. The transformation induced by
T on I is

S(z) =

{
T 2(z) if 0 ≤ z < 1 − 2α
T (z) otherwise.

Let T = Tλ,π be an interval exchange transformation relative to (Ia)a∈A. For � < t < r, the semi-interval
[�, t[ is right admissible for T if there is a k ∈ Z such that t = T k(γa) for some a ∈ A and

(i) if k > 0, then t < T h(γa) for all h such that 0 < h < k,
(ii) if k ≤ 0, then t < T h(γa) for all h such that k < h ≤ 0.

We also say that t itself is right admissible. Note that all semi-intervals [�, γa[ with � < γa are right admissible.
Similarly, all semi-intervals [�, δa[ with � < δa are right admissible.

Example 3.12. Let T be the interval exchange transformation of Example 3.4. The semi-interval [0, t[ for
t = 1− 2α or t = 1− α is right admissible since 1− 2α = γb and 1−α = γc. On the contrary, for t = 2− 3α, it
is not right admissible because t = T−1(γc) but γc < t contradicting (ii).

The following result is Theorem 14 in [24].

Theorem 3.13 (Rauzy). Let T be a regular s-interval exchange transformation and let I be a right admissible
interval for T . The transformation induced by T on I is a regular s-interval exchange transformation.

Example 3.14. Consider again the transformation of Example 3.4. The transformation induced by T on the
semi-interval I = [0, 2α[ is the 3-interval exchange transformation represented in Figure 5.

The notion of left admissible interval is symmetrical to that of right admissible. For � < t < r, the semi-interval
[t, r[ is left admissible for T if there is a k ∈ Z such that t = T k(γa) for some a ∈ A and:

(i) if k > 0, then T h(γa) < t for all h such that 0 < h < k,
(ii) if k ≤ 0, then T h(γa) < t for all h such that k < h ≤ 0.

We also say that t itself is left admissible. Note that, as for right induction, the semi-intervals [γa, r[ and [νa, r[
are left admissible. The symmetrical statements of Theorem 3.13 also hold for left admissible intervals.

Let now generalize the notion of admissibility to a two-sided version. For a semi-interval I = [u, v[ ⊂ [�, r[,
we define the following functions on [�, r[:

ρ+
I,T (z) = min{n > 0 | T n(z) ∈ ]u, v[}, ρ−I,T (z) = min{n ≥ 0 | T−n(z) ∈ ]u, v[}.

We then define three sets. First, let

EI,T (z) = {k | −ρ−I,T (z) ≤ k < ρ+
I,T (z)}.
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Next, the set of neighbors of z with respect to I and T is

NI,T (z) = {T k(z) | k ∈ EI,T (z)}.
The set of division points of I with respect to T is the finite set

Div(I, T ) =
s⋃

i=1

NI,T (γi).

We now formulate the following definition. For � ≤ u < v ≤ r, we say that the semi-interval I = [u, v[ is
admissible for T if u, v ∈ Div(I, T ) ∪ {r}.

Note that a semi-interval [�, v[ is right admissible if and only if it is admissible and that a semi-interval [u, r[
is left admissible if and only if it is admissible. Note also that [�, r[ is admissible.

Note also that for a regular interval exchange transformation relative to a partition (Ia)a∈A, each of the
semi-intervals Ia (or Ja) is admissible although only the first one is right admissible (and the last one is left
admissible). Actually, we can prove that for every word w, the semi-intervals Iw and Jw are admissible. In order
to do that, we need the following Lemma.

Lemma 3.15. Let T be a s-interval exchange transformation on the semi-interval [�, r[. For any k ≥ 1, the set
Pk = {T h(γi) | 1 ≤ i ≤ s, 1 ≤ h ≤ k} is the set of (s − 1)k + 1 left boundaries of the semi-intervals Jy for all
words y ∈ F (T ) ∩Ak.

Proof. Let Qk be the set of left boundaries of the intervals Jy for |y| = k. Since Card(F (T )∩Ak) = (s−1)k+1 by
Proposition 3.6, we have Card(Qk) = (s−1)k+1. Since T is regular the set Rk = {T h(γi) | 2 ≤ i ≤ s, 1 ≤ h ≤ k}
is made of (s− 1)k distinct points. Moreover, since

γ1 = T (γπ(1)), T (γ1) = T 2(γπ(1)), . . . , T k−1(γ1) = T k(γπ(1)),

we have Pk = Rk ∪ {T k(γ1)}. This implies Card(Pk) ≤ (s − 1)k + 1. On the other hand, if y = b0 . . . bk−1,
then Jy = ∩k−1

i=0 T
k−i(Ibi). Thus the left boundary of each Jy is the left boundary of some T h(Ia) for some h

with 1 ≤ h ≤ k and some a ∈ A. Consequently Qk ⊂ Pk. This proves that Card(Pk) = (s − 1)k + 1 and that
consequently Pk = Qk. �

A dual statement holds for the semi-intervals Iy.

Proposition 3.16. Let T be a s-interval exchange transformation on the semi-interval [�, r[. For any w ∈ F (T ),
the semi-interval Jw is admissible.

Proof. Set |w| = k and Jw = [u, v[. By Lemma 3.15, we have u = T g(γi) for 1 ≤ i ≤ s and 1 ≤ g ≤ k. Similarly,
we have v = r or v = T d(γj) for 1 ≤ j ≤ s and 1 ≤ d ≤ k.

For 1 < h < g, the point T h(γi) is the left boundary of some semi-interval Jy with |y| = k and thus
T h(γi) /∈ Jw. This shows that g ∈ EJw,T (γi) and thus that u ∈ Div(Jw, T ).

If v = r, then v ∈ Div(Jw, T ). Otherwise, one shows in the same way as above that v ∈ Div(Jw, T ). Thus Jw

is admissible. �

Note that the same statement holds for the semi-intervals Iw instead of the semi-intervals Jw (using the dual
statement of Lem. 3.15).

It can be useful to reformulate the definition of a division point and of an admissible pair using the terminology
of graphs. Let G(T ) be the graph with vertex set [�, r[ and edges the pairs (z, T (z)) for z ∈ [�, r[. Then, if T
is minimal and I is a semi-interval, for any z ∈ [�, r[, there is a path PI,T (z) such that its origin x and its end
y are in I, z is on the path, z �= y and no vertex of the path except x, y are in I (actually x = T−n(z) with
n = ρ−I,T (z) and y = Tm(z) with m = ρ+

I,T (z)). Then the division points of I are the vertices which are on a
path PI,T (γi) but not at its end (see Fig. 6).

The following is a generalization of Theorem 3.13. Recall that Sep(T ) denotes the set of separation points
of T , i.e. the points γ1 = 0, γ2, . . . , γs (which are the left boundaries of the semi-intervals I1, . . . , Is).
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u x v

z

u y v

T n

Tm

Figure 6. The neighbors of z with respect to I = [u, v[.

u xg xj xd v

γg γj γd

u yg yj

xd

yd v

Figure 7. The transformation induced on [u, v[.

Theorem 3.17. Let T be a regular s-interval exchange transformation on [�, r[. For any admissible semi-
interval I = [u, v[, the transformation S induced by T on I is a regular s-interval exchange transformation with
separation points Sep(S) = Div(I, T ) ∩ I.
Proof. Since T is regular, it is minimal. Thus for each i ∈ {2, . . . , s} there are points xi, yi ∈]u, v[ such that
there is a path from xi to yi passing by γi but not containing any point of I except at its origin and its end.
Since T is regular, the xi are all distinct and the yi are all distinct.

Since I is admissible, there exist g, d ∈ {1, . . . , s} such that u ∈ NI,T (γg) and v ∈ NI,T (γd). Moreover, since
u is a neighbor of γg with respect to I, u is on the path from xg to yg (it can be either before or after γg).
Similarly, v is on the path from xd to yd (see Fig. 7 where u is before γg and v is after γd).

Set x1 = y1 = u. Let (Ij)1≤j≤s be the partition of I in semi-intervals such that xj is the left boundary of Ij
for 1 ≤ j ≤ s. Let Jj be the partition of I such that yj is the left boundary of Jj for 1 ≤ j ≤ s. We will prove
that

S(Ij) =

⎧⎪⎨⎪⎩
Jj if j �= 1, g
J1 if j = g

Jg if j = 1

and that the restriction of S to Ij is a translation.
Assume first that j �= 1, g. Then S(xj) = yj . Let k be such that yj = T k(xj) and denote I ′j = Ij \ xj . We

will prove by induction on h that for 0 ≤ h ≤ k− 1, the set T h(I ′j) does not contain u, v or any xi. It is true for
h = 0. Assume that it holds up to h < k − 1.

For any h′ with 0 ≤ h′ ≤ h, the set T h′
(I ′j) does not contain any γi. Indeed, otherwise there would exist h′′

with 0 ≤ h′′ ≤ h′ such that xi ∈ T h′′
(I ′j), a contradiction. Thus T is a translation on T h′

(Ij). This implies that
T h is a translation on Ij . Note also that T h(I ′j) ∩ I = ∅. Assume the contrary. We first observe that we cannot
have T h(xj) ∈ I. Indeed, h < k implies that T h(xj) /∈]u, v[. And we cannot have T h(xj) = u since j �= g. Thus
T h(I ′j) ∩ I �= ∅ implies that u ∈ T h(I ′j), a contradiction.

Suppose that u = T h+1(z) for some z ∈ I ′j . Since u is on the path from xg to yg, it implies that for some h′ with
0 ≤ h′ ≤ h we have xg = T h′

(z), a contradiction with the induction hypothesis. A similar proof (using the fact



152 F. DOLCE AND D. PERRIN

that v is on the path from xd to yd) shows that T h+1(I ′j) does not contain v. Finally suppose that some xi is in
T h+1(I ′j). Since the restriction of T h to Ij is a translation, T h(Ij) is a semi-interval. Since T h+1(xj) is not in I
the fact that T h+1(Ij) ∩ I is not empty implies that u ∈ T h(Ij), a contradiction.

This shows that T k is continuous at each point of I ′j and that S = T k(x) for all x ∈ Ij . This implies that the
restriction of S to Ij is a translation into Jj .

If j = 1, then S(x1) = S(u) = yg. The same argument as above proves that the restriction of S to I1 is a
translation form I1 into Jg. Finally if j = g, then S(xg) = x1 = u and, similarly, we obtain that the restriction
of S to Ig is a translation into I1.

Since S is the transformation induced by the transformation T which is one to one, it is also one to one. This
implies that the restriction of S to each of the semi-intervals Ij is a bijection onto the corresponding interval
Jj , J1 or Jg according to the value of j.

This shows that S is an s-interval exchange transformation. Since the orbits of the points x2, . . . , xs relative
to S are included in the orbits of γ2, . . . , γs, they are infinite and disjoint. Thus S is regular.

Let us finally show that Sep(S) = Div(I, T )∩ I. We have Sep(S) = {x1, x2, . . . , xs} and xi ∈ NI,T (γi). Thus
Sep(S) ⊂ Div(I, T ) ∩ I. Conversely, let x ∈ Div(I, T ) ∩ I. Then x ∈ NI,T (γi) ∩ I for some 1 ≤ i ≤ s. If i �= 1, g,
then x = xi. If i = 1, then either x = u (if u = �) or x = xπ(1) since γ1 = T (γπ(1)). Finally, if i = g then x = u
or x = xg. Thus x ∈ Sep(S) in all cases. �

Note that for any s-interval exchange transformation on [�, r[ and any semi-interval I of [�, r[, the trans-
formation S induced by T on I is an interval exchange transformation on at most s + 2-intervals (see [12],
Chapt. 5 p. 128). Actually, it follows from the proof of Lemma 2, page 128 in [12] that, if T is regular and S
is an s-interval exchange transformation with separation points Sep(S) = Div(I, T ) ∩ I, then I is admissible.
Thus the converse of Theorem 3.17 is also true.

3.4. A closure property

In the following we will prove a closure property of the family of regular interval exchange sets. The same
property holds for Sturmian sets (see [18]) and for uniformly recurrent tree sets (see [5]).

Lemma 3.18. Let T be a regular interval exchange transformation and let F = F (T ). For w ∈ F , let S be the
transformation induced by T on Jw. One has x ∈ RF (w) if and only if

ΣT (z) = xΣT (S(z))

for some z ∈ Jw.

Proof. Assume first that x ∈ RF (w). Then for any z ∈ Jw ∩ Ix, we have S(z) = T |x|(z) and

ΣT (z) = xΣT (T |x|(z)) = xΣT (S(z)).

Conversely, assume that ΣT (z) = xΣT (S(z)) for some z ∈ Jw. Then T |x|(z) ∈ Jw and thus wx ∈ A∗w which
implies that x ∈ ΓF (w). Moreover x does not have a proper prefix in ΓF (w) and thus x ∈ RF (w). �

Since a regular interval exchange set is recurrent, the previous lemma says that the natural coding of a point
in Jw is a concatenation of first return words to w. Moreover, note also that T n(z) ∈ Jw if and only if the prefix
of length n of ΣT (z) is a return word to w.

Theorem 3.19. Any derived set of a regular s-interval exchange set is a regular s-interval exchange set.
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Proof. Let T be a regular s-interval exchange transformation and let F = F (T ).
Let w ∈ F . Since the semi-interval Jw is admissible according to Proposition 3.16, the transformation S

induced by T on Jw is, by Theorem 3.17, an s-interval exchange transformation. The corresponding partition
of Jw is the family (Jwx)w∈RF (w).

Using Lemma 3.18 and the observation following, it is clear that ΣT (z) = f(ΣS(z)), where z is a point of Jw

and f : A∗ → RF (w)∗ is a coding morphism for RF (w).
Set x = ΣT (T−|w|(z)) and y = ΣT (z). Then x = wy and thus ΣS(z) = Df (x). By Proposition 2.3, this shows

that the derived set of F with respect to f is F (S). �

Theorem 3.19 implies, in particular, a result of [27], i.e., that Card(RF (w)) = Card(A) (see also [3, 5]).

4. Rauzy induction

In this section we describe the transformation called Rauzy induction defined in [24] which operates on
regular interval transformations and recall the results concerning this transformation (Thms. 3.13 and 4.1). We
introduce the definition of admissibility for an interval. It generalizes in a natural way the notion of admissibility
defined in [24]. We also introduce a branching version of this transformation and generalize Rauzy’s results to the
two-sided case (Thms. 3.17 and 4.3). In particular we characterize in Theorem 4.3 the admissible semi-intervals
for an interval exchange transformation.

4.1. One-sided Rauzy induction

Let T = Tλ,π be a regular s-interval exchange transformation on [�, r[. Set Z(T ) = [�,max{γs, δπ(s)}[.
Note that Z(T ) is the largest semi-interval which is right-admissible for T . We denote by ψ(T ) the transfor-

mation induced by T on Z(T ).
The following result is Theorem 23 in [24].

Theorem 4.1 (Rauzy). Let T be a regular interval exchange transformation. A semi-interval I is right admis-
sible for T if and only if there is an integer n ≥ 0 such that I = Z(ψn(T )). In this case, the transformation
induced by T on I is ψn+1(T ).

The map T �→ ψ(T ) is called the right Rauzy induction. There are actually two cases according to γs < δπ(s)

(Case 0) or γs > δπ(s) (Case 1). We cannot have γs = δπ(s) since T is regular.
In Case 0, we have Z(T ) = [�, δπ(s)[ and for any z ∈ Z(T ),

ψ(T )(z) =

{
T 2(z) if z ∈ Iaπ(s)

T (z) otherwise.

The transformation S = ψ(T ) is the interval exchange transformation relative to (Ka)a∈A with Ka = Ia ∩Z(T )
for all a ∈ A. Note that Ka = Ia for a �= as. The translation values βa are defined as follows, denoting αi, βi

instead of αai , βai ,

βi =

{
απ(s) + αs if i = π(s)
αi otherwise.

In summary, in Case 0, the semi-interval Jaπ(s) is suppressed, the semi-interval Jas is split into S(Kas)
and S(Kaπ(s)). The left boundaries of the semi-intervals Ka are the left boundaries of the semi-intervals Ia.
The transformation is represented in Figure 8, in which the left boundary of the semi-interval S(Kaπ(s)) is
denoted δ′π(s).
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γπ(s) γs r
aπ(s) as

δs δπ(s)

as aπ(s)

↓ ...γπ(s) γs

aπ(s) as

δs δπ(s)

as aπ(s)

Figure 8. Case 0 in Rauzy induction.

γπ(s) γs r
aπ(s) as

δs δπ(s)

as aπ(s)

↓ ...
γπ(s) γs

aπ(s) as

δs δπ(s)

as aπ(s)

Figure 9. Case 1 in Rauzy induction.

In Case 1, we have Z(T ) = [�, γs[ and for any z ∈ Z(T ),

ψ(T )(z) =

{
T 2(z) if z ∈ T−1(Ias)
T (z) otherwise.

The transformation S = ψ(T ) is the interval exchange transformation relative to (Ka)a∈A with

Ka =

{
T−1(Ia) if a = as

T−1(T (Ia) ∩ Z(T )) otherwise.

Note that Ka = Ia for a �= as and a �= aπ(s). Moreover Ka = S−1(T (Ia) ∩ Z(T )) in all cases. The translation
values βi are defined by

βi =

{
απ(s) + αs if i = s

αi otherwise.

In summary, in Case 1, the semi-interval Ias is suppressed, the semi-interval Iaπ(s) is split into Kaπ(s) and Kas .
The left boundaries of the semi-intervals S(Ka) are the left boundaries of the semi-intervals Ja. The transfor-
mation is represented in Figure 9, where the left boundary of the semi-interval Kas is denoted γ′s.

Example 4.2. Consider again the transformation T of Example 3.4. Since Z(T ) = [0, 2α[, the transformation
ψ(T ) is represented in Figure 5. The transformation ψ2(T ) is represented in Figure 10.

The symmetrical notion of left Rauzy induction is defined similarly.
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0 2 − 5α 1 − 2α 1 − α

a c b
0 α 4α− 1

b c a

Figure 10. The transformation ψ2(T ).

Let T = Tλ,π be a regular s-interval exchange transformation on [�, r[. Set Y (T ) = [min{μ1, νπ(1)}, r[. We
denote by ϕ(T ) the transformation induced by T on Y (T ). The map T �→ ϕ(T ) is called the left Rauzy induction.

Note that one has also Y (T ) = [min{γ2, δπ(2)}, r[.
The symmetrical statements of Theorem 4.1 also hold for left admissible intervals.

4.2. Branching induction

The following is a generalization of Theorem 4.1.

Theorem 4.3. Let T be a regular s-interval exchange transformation on [�, r[. A semi-interval I is admissible
for T if and only if there is a sequence χ ∈ {ϕ, ψ}∗ such that I is the domain of χ(T ). In this case, the
transformation induced by T on I is χ(T ).

We first prove the following lemmas, in which we assume that T is a regular s-interval exchange transformation
on [�, r[. Recall that Y (T ), Z(T ) are the domains of ϕ(T ), ψ(T ) respectively.

Lemma 4.4. If a semi-interval I strictly included in [�, r[ is admissible for T , then either I ⊂ Y (T ) or I ⊂
Z(T ).

Proof. Set I = [u, v[. Since I is strictly included in [�, r[, we have either � < u or v < r. Set Y (T ) = [y, r[ and
Z(T ) = [�, z[.

Assume that v < r. If y ≤ u, then I ⊂ Y (T ). Otherwise, let us show that v ≤ z. Assume the contrary. Since
I is admissible, we have v = T k(γi) with k ∈ EI,T (γi) for some i with 1 ≤ i ≤ s. But k > 0 is impossible
since u < T (γi) < v implies T (γi) ∈ ]u, v[, in contradiction with the fact that k < ρ+

I (γi). Similarly, k ≤ 0 is
impossible since u < γi < v implies γi ∈ ]u, v[. Thus I ⊂ Z(T ).

The proof in the case � < u is symmetric. �

The next lemma is the two-sided version of Lemma 22 in [24].

Lemma 4.5. Let T be a regular s-interval exchange transformation on [�, r[. Let J be an admissible semi-
interval for T and let S be the transformation induced by T on J . A semi-interval I ⊂ J is admissible for T if
and only if it is admissible for S. Moreover Div(J, T ) ⊂ Div(I, T ).

Proof. Set J = [t, w[ and I = [u, v[. Since J is admissible for T , the transformation S is a regular s-interval
exchange transformation by Theorem 3.17.

Suppose first that I is admissible for T . Then u = T g(γi) with g ∈ EI,T (γi) for some 1 ≤ i ≤ s, and
v = T d(γj) with d ∈ EI,T (γj) for some 1 ≤ j ≤ s or v = r.

Since S is the transformation induced by T on J there is a separation point x of S of the form x = Tm(γi)
with m = −ρ−J,T (γi) and thus m ∈ EJ,T (γi). Thus u = T g−m(x).

Assume first that g −m > 0. Since u, x ∈ J , there is an integer n with 0 < n ≤ g −m such that u = Sn(x).
Let us show that n ∈ EI,S(x). Assume by contradiction that ρ+

I,S(x) ≤ n. Then there is some k with 0 < k ≤ n

such that Sk(x) ∈]u, v[. But we cannot have k = n since u /∈ ]u, v[. Thus k < n.
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Next, there is h with 0 < h < g − m such that T h(x) = Sk(x). Indeed, setting y = Sk(x), we have
u = T g−m−h(y) = Sn−k(y) and thus h < g−m. If 0 < h ≤ −m, then T h(x) = Tm+h(γi) ∈ I ⊂ J contradicting
the hypothesis that m ∈ EJ,T (γi). If −m < h < g−m, then T h(x) = Tm+h(γi) ∈ I, contradicting the fact that
g ∈ EI,T (γi). This shows that n ∈ EI,S(x) and thus that u ∈ Div(I, S).

Assume next that g −m ≤ 0. There is an integer n with g −m ≤ n ≤ 0 such that u = Sn(x). Let us show
that n ∈ EI,S(x). Assume by contradiction that n < −ρ−I,S(x). Then there is some k with n < k < 0 such that
Sk(x) = T h(x). Then T h(x) = T h+m(γi) ∈ I with g < h + m < m, in contradiction with the hypothesis that
m ∈ EI,T (γi).

We have proved that u ∈ Div(I, S). If v = r, the proof that I is admissible for S is complete. Otherwise, the
proof that v ∈ Div(I, S) is similar to the proof for u.

Conversely, if I is admissible for S, there is some x ∈ Sep(S) and g ∈ EI,S(x) such that u = Sg(x). But
x = Tm(γi) and since u, x ∈ J there is some n such that u = T n(γi).

Assume for instance that n > 0 and suppose that there exists k with 0 < k < n such that T k(γi) ∈]u, v[.
Then, since I ⊂ J , T k(γi) is of the form Sh(x) with 0 < h < g which contradicts the fact that g ∈ EI,S(x).
Thus n ∈ EI,T (γi) and u ∈ Div(I, T ).

The proof is similar in the case n ≤ 0.
If v = r, we have proved that I is admissible for T . Otherwise, the proof that v ∈ Div(I, T ) is similar.
Finally, assume that I is admissible for T (and thus for S). For any γi ∈ Sep(T ), one has

ρ−I,T (γi) ≥ ρ−J,T (γi) and ρ+
I,T (γi) ≥ ρ+

J,T (γi)

showing that Div(J, T ) ⊂ Div(I, T ). �

The last lemma is the key argument to prove Theorem 4.3. It is a tree version of the argument used by Rauzy
in [24].

Lemma 4.6. For any admissible interval I ⊂ [�, r[, the set F of sequences χ ∈ {ϕ, ψ}∗ such that I ⊂ D(χ(T ))
is finite.

Proof. The set F is suffix-closed. Indeed it contains the empty word because [�, r[ is admissible. Moreover, for
any ξ, χ ∈ {ϕ, ψ}∗, one has D(ξχ(T )) ⊂ D(χ(T )) and thus ξχ ∈ F implies χ ∈ F .

The set F is finite. Indeed, by Lemma 4.5, applied to J = D(χ(T )), for any χ ∈ F , one has Div(D(χ(T )), T ) ⊂
Div(I, T ). In particular,the boundaries ofD(χ(T )) belong to Div(I, T ). Since Div(I, T ) is a finite set, this implies
that there is a finite number of possible semi-intervals D(χ(T )). Thus there is is no infinite word with all its
suffixes in F . Since the sequences χ are binary, this implies that F is finite. �

Proof of Theorem 4.3. We first prove by induction on the length of χ that the domain I of χ(T ) is admissible
and that the transformation induced by T on I is χ(T ). It is true for |χ| = 0 since [�, r[ is admissible and
χ(T ) = T . Next, assume that J = D(χ(T )) is admissible and that the transformation induced by T on J is
χ(T ). Then D(ϕχ(T )) is admissible for χ(T ) since D(ϕχ(T )) = Y (χ(T )). Thus I = D(ϕχ(T )) is admissible for
T by Lemma 4.5 and the transformation induced by T on I is ϕχ(T ). The same proof holds for ψχ.

Conversely, assume that I is admissible. By Lemma 4.6, the set F of sequences χ ∈ {ϕ, ψ}∗ such that
I ⊂ D(χ(T )) is finite.

Thus there is some χ ∈ F such that ϕχ, ψχ /∈ F . If I is strictly included in D(χ(T )), then by Lemma 4.4
applied to χ(T ), we have I ⊂ Y (χ(T )) = D(ϕχ(T )) or I ⊂ Z(χ(T )) = D(ψχ(T )), a contradiction. Thus
I = D(χ(T )).

We close this subsection with a result concerning the dynamics of the branching induction.

Theorem 4.7. For any sequence (Tn)n≥0 of regular interval exchange transformations such that Tn+1 = ϕ(Tn)
or Tn+1 = ψ(Tn) for all n ≥ 0, the length of the domain of Tn tends to 0 when n→ ∞.
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2α 10α− 3 5α− 1 1
a b c

2 − 3α 4 − 8α

b c a

Figure 11. The transformation S.

Proof. Assume the contrary and let I be an open interval included in the domain of Tn for all n ≥ 0. The
set Div(I, T ) ∩ I is formed of s points. For any pair u, v of consecutive elements of this set, the semi-interval
[u, v[ is admissible. By Lemma 4.6, there is an integer n such that the domain of Tn does not contain [u, v[, a
contradiction. �

4.3. Equivalence relation

Let [�1, r1[, [�2, r2[ be two semi-intervals of the real line. Let T1 = Tλ,π1 be an s-interval exchange transfor-
mation relative to a partition of [�1, r1[ and T2 = Tμ,π2 another s-interval exchange transformations relative
to [�2, r2[. We say that T1 and T2 are equivalent if π1 = π2 and λ = cμ for some c > 0. Thus, two interval
exchange transformations are equivalent if we can obtain the second from the first by a rescaling following by
a translation. We denote by [Tλ,π] the equivalence class of Tλ,π.

Example 4.8. Let S = Tμ,π be the 3-interval exchange transformation on a partition of the semi-interval
[2α, 1[, with α = (3 − √

5)/2, represented in Figure 11. S is equivalent to the transformation T = Tλ,π of
Example 3.4, with length vector λ = (1 − 2α, α, α) and permutation the cycle π = (132). Indeed the length
vector μ = (8α− 3, 2 − 5α, 2 − 5α) satisfies μ = 2−5α

α λ.

Note that if T is a minimal (resp. regular) interval exchange transformation and [S] = [T ], then S is also
minimal (resp. regular).

For an interval exchange transformation T we consider the directed labeled graph G(T ), called the induction
graph of T , defined as follows. The vertices are the equivalence classes of transformations obtained starting from
T and applying all possible χ ∈ {ψ, ϕ}∗. There is an edge labeled ψ (resp. ϕ) from a vertex [S] to a vertex [U ]
if and only if U = ψ(S) (resp ϕ(S)) for two transformations S ∈ [S] and U ∈ [U ].

Example 4.9. Let α = 3−√
5

2 and R be a rotation of angle α. By Example 3.1, R is a 2-interval exchange trans-
formation on [0, 1[ relative to the partition [0, 1 − α[, [1−α, 1[. The induction graph G(R) of the transformation
is represented in the left of Figure 13.

Note that for a 2-interval exchange transformation T , one has [ψ(T )] = [ϕ(T )], whereas in general the two
transformations are not equivalent.

The induction graph of an interval exchange transformation can be infinite. A sufficient condition for the
induction graph to be finite is given in Section 5.

Let now introduce a variant of this equivalence relation (and of the related graph). We consider the case of
two transformations “equivalent” up to reflection (and up to the separation points). This choice allows us to
obtain the same natural coding for an interval exchange transformation relative to a point, and for the mirror
transformation relative to the specular point (with respect to the midpoint of the of the interval).

For an s-interval exchange transformation T = Tλ,π, with length vector λ = (λ1, λ2, . . . , λs), we define the
mirror transformation T̃ = Tλ̃,τ◦π of T , where λ̃ = (λs, λs−1, . . . , λ1) and τ : i �→ (s− 1 + 1) is the permutation
that reverses the names of the semi-intervals.

Given two interval exchange transformations T1 and T2 on the same alphabet relative to two partitions of two
semi-intervals [�1, r1[ and [�2, r2[ respectively, we say that T1 and T2 are similar either if [T1] = [T2] or [T1] = [T̃2].
Clearly, similarity is also an equivalent relation. We denote by 〈T 〉 the class of transformations similar to T .
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2α 2 − 3α 4 − 8α 1

b a c

10α− 3 5α− 1
c b a

Figure 12. The transformation U .

Example 4.10. Let T be the interval exchange transformation of Example 3.4. The transformation U = ϕ6(T )
is represented in Figure 12 (see also Example 4.18). It is easy to verify that U is similar to the transformation
S of Example 4.8. Indeed, we can obtain the second transformation (up to the separation points and the end
points) by taking the mirror image of the domain.

Note that the order of the labels, i.e. the order of the letters of the alphabet, may be different from the order
of the original transformation.

As of the equivalence relation, also similarity preserves minimality and regularity.
Let T be an interval exchange transformation. We denote by

S(T ) =
⋃
n∈Z

T n
(
Sep(T )

)
the union of the orbits of the separation points. Let S be an interval exchange transformation similar to T .
Thus, there exists a bijection f : D(T )\S(T ) → D(S)\S(S). This bijection is given by an affine transformation,
namely a rescaling following by a translation if T and S are equivalent and a rescaling following by a translation
and a reflection otherwise. By the previous remark, if T is a minimal exchange interval transformation and
S is similar to T , then the two interval exchange sets F (T ) and F (S) are equal up to permutation, that is
there exists a permutation π such that one for every w = a0a1 . . . an−1 ∈ F (T ) there exists a unique word
v = b0b1 . . . bn−1 ∈ F (S) such that bi = π(ai) for all i = 1, 2, . . . n− 1.

In a similar way as before, we can use the similarity in order to construct a graph. For an interval exchange
transformation T we define G̃(T ) the modified induction graph of T as the directed (unlabeled) graph with
vertices the similar classes of transformations obtained starting from T and applying all possible χ ∈ {ψ, ϕ}∗
and an edge from 〈S〉 to 〈U〉 if U = ψ(S) or U = ϕ(S) for two transformations S ∈ 〈S〉 and U ∈ 〈U〉.

Note that this variant appears naturally when considering the Rauzy induction of a 2-interval exchange
transformation as a continued fraction expansion. There exists a natural bijection between the closed interval
[0, 1] of the real line and the set of 2-interval exchange transformation given by the map x �→ Tλ,π where π = (12)
and λ = (λ1, λ2) is the length vector such that x = λ1

λ2
.

In this view, the Rauzy induction corresponds to the Euclidean algorithm (see [22] for more details), i.e. the
map E : R2

+ → R2
+ given by

E(λ1, λ2) =

{
(λ1 − λ2, λ2) if λ1 ≥ λ2

(λ1, λ2 − λ2) otherwise.

Applying iteratively the Rauzy induction starting from T corresponds then to the continued fraction expansion
of x.

Example 4.11. Let α and R be as in Example 4.9. The modified induction graph G̃(R) of the transformation
is represented on the right of Figure 13. Note that the ratio of the two lengths of the semi-intervals exchanged
by T is 1−α

α = 1+
√

5
2 = φ = 1 + 1

1+ 1
1+...

.
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[R]

ψ, ϕ

ψ, ϕ

R

Figure 13. Induction graph and modified induction graph of the rotation R of angle α =
(3 −√

5)/2.

4.4. Induction and automorphisms

Let T = Tλ,π be a regular interval exchange on [�, r[ relative to (Ia)a∈A. Set A = {a1, . . . , as}. Recall now from
Subsection 3.2 that for any z ∈ [�, r[, the natural coding of T relative to z is the infinite word ΣT (z) = b0b1 . . .
on the alphabet A with bn ∈ A defined for n ≥ 0 by bn = a if T n(z) ∈ Ia.

Denote by θ1, θ2 the morphisms from A∗ into itself defined by

θ1(a) =

{
aπ(s)as if a = aπ(s)

a otherwise,
θ2(a) =

{
aπ(s)as if s a = as

a otherwise.

The morphisms θ1, θ2 extend to automorphisms of the free group on A.
The following result already appears in [17]. We give a proof for the sake of completeness.

Proposition 4.12. Let T be a regular interval exchange transformation on the alphabet A and let S = ψ(T ),
I = Z(T ). There exists an automorphism θ of the free group on A such that ΣT (z) = θ(ΣS(z)) for any z ∈ I.

Proof. Assume first that γs < δπ(s) (Case 0). We have Z(T ) = [�, δπ(s)[ and for any x ∈ Z(T ),

S(z) =

{
T 2(z) if z ∈ Kaπ(s) = Iaπ(s)

T (z) otherwise.

We will prove by induction on the length of w that for any z ∈ I, ΣS(z) ∈ wA∗ if and only if ΣT (z) ∈ θ1(w)A∗.
The property is true if w is the empty word. Assume next that w = av with a ∈ A and thus that z ∈ Ia. If
a �= aπ(s), then θ1(a) = a, S(z) = T (z) and

ΣS(z) ∈ avA∗ ⇔ ΣS(S(z)) ∈ vA∗ ⇔ ΣT (T (z)) ∈ θ1(v)A∗ ⇔ ΣT (z) ∈ θ1(w)A∗.

Otherwise, θ1(a) = aπ(s)as, S(z) = T 2(z). Moreover, ΣT (z) = aπ(s)asΣT (T 2(z)) and thus

ΣS(z) ∈ avA∗ ⇔ ΣS(S(z)) ∈ vA∗ ⇔ ΣT (T 2(z)) ∈ θ1(v)A∗ ⇔ ΣT (z) ∈ θ1(w)A∗.

If δπ(s) < γs (Case 1), we have Z(T ) = [�, γs[ and for any z ∈ Z(T ),

S(z) =

{
T 2(z) if z ∈ Kas = T−1(Ias)
T (z) otherwise.

As in Case 0, we will prove by induction on the length of w that for any z ∈ I, ΣS(z) ∈ wA∗ if and only if
ΣT (z) ∈ θ2(w)A∗.

The property is true if w is empty. Assume next that w = av with a ∈ A. If a �= as, then θ2(a) = a,
S(z) = T (z) and z ∈ Ka ⊂ Ia. Thus

ΣS(z) ∈ avA∗ ⇔ ΣS(S(z)) ∈ vA∗ ⇔ ΣT (T (z)) ∈ θ2(v)A∗ ⇔ ΣT (z) ∈ θ2(w)A∗.



160 F. DOLCE AND D. PERRIN

Next, if a = as, then θ2(a) = aπ(s)as, S(z) = T 2(z) and z ∈ Kas = T−1(Ias) ⊂ Iaπ(s) . Thus

ΣS(z) ∈ avA∗ ⇔ ΣS(S(z)) ∈ vA∗ ⇔ ΣT (T 2(z)) ∈ θ2(v)A∗ ⇔ ΣT (z) ∈ θ2(w)A∗.

where the last equivalence results from the fact that ΣT (z) ∈ aπ(s)asA
∗. This proves that ΣT (z) =

θ2(ΣS(z)). �
Example 4.13. Let T be the transformation of Example 3.4. The automorphism θ1 is defined by

θ1(a) = ac, θ1(b) = b, θ1(c) = c.

The right Rauzy induction gives the transformation S = ψ(T ) computed in Example 3.14. One has ΣS(α) =
bacba . . . and ΣT (α) = baccbac . . . = θ1(ΣS(α)).

We state the symmetrical version of Proposition 4.12 for left Rauzy induction. The proof is analogous.

Proposition 4.14. Let T be a regular interval exchange transformation on the alphabet A and let S = ϕ(T ),
I = Y (T ). There exists an automorphism θ of the free group on A such that ΣT (z) = θ(ΣS(z)) for any z ∈ I.

Combining Propositions 4.12 and 4.14, we obtain the following statement.

Theorem 4.15. Let T be a regular interval exchange transformation. For χ ∈ {ϕ, ψ}∗, let S = χ(T ) and let
I be the domain of S. There exists an automorphism θ of the free group on A such that ΣT (z) = θ(ΣS(z)) for
all z ∈ I.

Proof. The proof follows easily by induction on the length of χ using Propositions 4.12 and 4.14. �

Note that if the transformations T and S = χ(T ), with χ ∈ {ψ, ϕ}∗, are equivalent, then there exists a
point z0 ∈ D(S) ⊆ D(T ) such that z0 is a fixed point of the isometry that transforms D(S) into D(T ) (if χ is
different from the identity map, this point is unique). In that case one has ΣS(z0) = ΣT (z0) = θ (ΣS(z0)) for
an appropriate automorphism θ, i.e. ΣT (z0) is a fixed point of an appropriate automorphism.

Corollary 4.16. Let T be a regular interval exchange transformation. For w ∈ F (T ), the set RF (w) is a basis
of the free group on A.

Proof. By Proposition 3.16, the semi-interval Jw is admissible. By Theorem 4.3 there is a sequence χ ∈ {ϕ, ψ}∗
such that D(χ(T )) = Jw. Moreover, the transformation S = χ(T ) is the transformation induced by T on Jw. By
Theorem 4.15 there is an automorphism θ of the free group on A such that ΣT (z) = θ(ΣS(z)) for any z ∈ Jw.

By Lemma 3.18, we have x ∈ RF (w) if and only if ΣT (z) = xΣT (S(z))) for some z ∈ Jw. This implies that
RF (w) = θ(A). Indeed, for any z ∈ Jw, let a is the first letter of ΣS(z). Then

ΣT (z) = θ(ΣS(z)) = θ(aΣS(S(z))) = θ(a)θ(ΣS(Sz)) = θ(a)ΣT (S(z)).

Thus x ∈ RF (w) if and only if there is a ∈ A such that x = θ(a). This proves that the set RF (w) is a basis of
the free group on A. �

The property proved in the previous corollary is actually true for a much larger class of sets than regular
interval exchange sets (see [5], Thm. 4.7). We illustrate the this result with the following examples.

Example 4.17. We consider again the transformation T of Example 3.4 and F = F (T ). We have RF (c) =
{bac, bbac, c} (see Example 3.10). We represent in Figure 14 the sequence χ of Rauzy inductions such that Jc is
the domain of χ(T ).

The sequence is composed of a right induction followed by two left inductions. We have indicated on each
edge the associated automorphism (indicating only the image of the letter which is modified). We have χ = ϕ2ψ
and the resulting composition θ of automorphisms gives

θ(a) = bac, θ(b) = bbac, θ(c) = c.

Thus RF (c) = θ(A).
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b
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b

c

b

c

a
b ba−−−→

. . .

a
b

w

c

b

a

Figure 14. The sequence χ ∈ {ϕ, ψ}∗.

Example 4.18. Let T and F be as in the preceding example. Let U be the transformation induced by T
on Ja. We have U = ϕ6(T ) and a computation shows that for any z ∈ Ja, ΣT (z) = θ(ΣU (z)) where θ is the
automorphism of the free group on A = {a, b, c} which is the coding morphism for RF (a) defined by:

θ(a) = ccba, θ(b) = cbba, θ(c) = ccbba.

One can verify that F (U) = F (S), where S is the transformation obtain from T by permuting the labels of the
intervals according to the permutation π = (acb).

Note that F (U) = F (S) although S and U are not identical, even up to rescaling the intervals. Actually, the
rescaling of U to a transformation on [0, 1[ corresponds to the mirror image of S, obtained by taking the image
of the intervals by a symmetry centered at 1/2.

Note that in the above examples, all lengths of the intervals belong to the quadratic number field Q[
√

5].
In the next Section we will prove that if a regular interval exchange transformation T is defined over a

quadratic field, then the family of transformations obtained from T by the Rauzy inductions contains finitely
many distinct transformations up to rescaling.

5. Interval exchange over a quadratic field

An interval exchange transformation is said to be defined over a set Q ⊂ R if the lengths of all exchanged
semi-intervals belong to Q.

The following is proved in [11]. Let T be a minimal interval exchange transformation on semi-intervals defined
over a quadratic number field. Let (Tn)n≥0 be a sequence of interval exchange transformation such that T0 = T
and Tn+1 is the transformation induced by Tn on one of its exchanged semi-intervals In. Then, up to rescaling
all semi-intervals In to the same length, the sequence (Tn) contains finitely many distinct transformations. In
the same paper, an extension to the right Rauzy induction is suggested (but not completly developed).

In this section we generalize this results and prove that, under the above hypothesis on the lengths of the
semi-intervals and up to rescaling and translation, there are finitely many transformations obtained by the
branching Rauzy induction defined in Section 4.

Theorem 5.1. Let T be a regular interval exchange transformation defined over a quadratic field. The family of
all induced transformation of T over an admissible semi-interval contains finitely many distinct transformations
up to equivalence.

The proof of the Theorem 5.1 is based on the fact that for each minimal interval exchange transformation
defined over a quadratic field, a certain measure of the arithmetic complexity of the admissible semi-intervals
is bounded.
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5.1. Complexities

Let T be an interval exchange transformation on a semi-interval [�, r[ defined over a quadratic field Q[
√
d],

where d is a square free integer ≥ 2. Without loss of generality, one may assume, by replacing T by an equivalent
interval exchange transformation if necessary, that T is defined over the ring Z[

√
d] = {m + n

√
d | m,n ∈ Z}

and that all γi and αi lie in Z[
√
d] (replacing [�, r[ if necessary by its equivalent translate with γ0 = � ∈ Z[

√
d]).

For z = m+ n
√
d, let define Ψ(z) = max(|m|, |n|).

Let A([�, r[) be the algebra of subsets X ⊂ [�, r[ which are finite unions X =
⋃

j Ij of semi-intervals defined
over Z[

√
d], that is Ij = [�j , rj [ for some �j , rj ∈ Z[

√
d]. Note that the algebra A([�, r[) is closed under taking

finite unions, intersections and passing to complements in [�, r[.
Set ∂(X) the boundary of X and |X | the Lebesgue measure of X . Given a subset X ∈ A([�, r[), we define

the complexity of X as Ψ(X) = max{Ψ(z) | z ∈ ∂(X)} and the reduced complexity of X as Π(X) = |X |Ψ(X).
A key tool to prove Theorem 5.1 is the following result proved in ([11], Thm. 3.1).

Theorem 5.2 (Boshernitzan). Let T be a minimal interval exchange transformation on an interval [�, r[ defined
over a quadratic number field. Assume that (Jn)≥1 is a sequence of semi-intervals of [�, r[ such that the set
{Π(Jn) | n ≥ 1} is bounded. Then the sequence Tn of interval exchange transformations obtained by inducing
T on Jn contains finitely many distinct equivalence classes of interval exchange transformations.

Thus, in order to prove Theorem 5.1, it is sufficient to show that the reduced complexity of every admissible
semi-interval is bounded.

The following Proposition is proved in ([11], Prop. 2.1) It shows that the complexity of a subset X and of its
image T (X) differ at most by a constant that depends only on T .

Proposition 5.3. There exists a constant u = u(T ) such that for every X ∈ A([�, r[) and z ∈ [�, r[ one has
|Ψ(T (X))−Ψ(X)| ≤ u and Ψ(T (z)−z) ≤ u. Moreover, one has Ψ(γ) ≤ u and Ψ(T (γ)) ≤ u for every separation
point γ.

Clearly, by Proposition 5.3, one also has |Ψ(T−1(X))−Ψ(X)| ≤ u for everyX ∈ A([�, r[) and Ψ(T−1(z)−z) ≤
u for every z ∈ [�, r[.

Although it is not necessary for our purposes, we can improve the approximation of the reduced complexity of
a nonempty subset X ∈ A([�, r|) by the following proposition. This result, proved in ([11], Prop. 2.4), determines
a lower bound on Π(X).

Proposition 5.4. Let X ∈ A([�, r[) be a subset composed of n disjoints semi-intervals. Then Π(X) > n/(4
√
d).

5.2. Return times

Let T be an interval exchange transformation. For a subset X ∈ A([�, r[) we define the maximal positive
return time and maximal negative return time for T on X by the functions

ρ+(X) = min
{
n ≥ 1 |T n(X) ⊂ ⋃n−1

i=0 T
i(X)

}
,

and
ρ−(X) = min

{
m ≥ 1 |Tm(X) ⊂ ⋃m−1

i=0 T−i(X)
}
.

We also define the minimal positive return time and the minimal negative return time as

σ+(X) = min {n ≥ 1 |T n(X) ∩X �= ∅} ,
and

σ−(X) = min
{
m ≥ 1 |T−m(X) ∩X �= ∅} .



INTERVAL EXCHANGES, ADMISSIBILITY AND BRANCHING RAUZY INDUCTION 163

If T is minimal, it is clear that for every X ∈ A([�, r[), one has

[�, r[ =
⋃ρ+(X)−1

i=0 T i(X) =
⋃ρ−(X)−1

i=0 T−i(X).

Note that when J is a semi-interval, we have ρ+(J) = maxz∈J ρ
+
J,T (z) and σ+(J) = minz∈J ρ

+
J,T (z). Sym-

metrically ρ−(J) = maxz∈J ρ
−
J,T (z) + 1 and σ−(J) = minz∈J ρ

−
J,T (z) + 1.

Let ζ, η be two functions. We write ζ ∈ O(η) if there exists a constant C such that |ζ| ≤ C|η|. We write
ζ ∈ Θ(η) if one has both ζ ∈ O(η) and η ∈ O(ζ). Note that Θ is an equivalence relation, that is ζ ∈ Θ(η) ⇔
η ∈ Θ(ζ).

Boshernitzan and Carroll give in [11] two upper bounds for ρ+(X) and σ+(X) for a subset X (Thms. 2.5
and 2.6 respectively) and a more precise estimation when the subset is a semi-interval (Thm. 2.8). Some slight
modifications of the proofs can be made so that the results hold also for ρ− and σ−. We summarize these
estimates in the following theorem.

Theorem 5.5. For every X ∈ A([�, r[) one has ρ+(X), ρ−(X) ∈ O(Ψ(X)) and
σ+(X), σ−(X) ∈ O (1/|X |). Moreover, if T is minimal and J is a semi-interval, then
ρ+(J) ∈ Θ (ρ−(J)) = Θ (σ+(J)) = Θ (σ−(J)) = Θ (1/|J |).

An immediate corollary of Theorem 5.5 is the following

Corollary 5.6. Let T be minimal and assume that

{T i(z) | −m+ 1 ≤ i ≤ n− 1} ∩ J = ∅
for some point z ∈ [�, r[, some semi-interval J ⊂ [�, r[ and some integers m,n ≥ 1. Then |J | ∈
O (1/max{m,n}).
Proof. By the hypothesis, z /∈ ⋃n−1

i=0 T
−i(J), then we have ρ−(J) ≥ n. By Theorem 5.5, we ob-

tain |J | ∈ Θ (1/ρ−(J)) ⊆ O (1/n). Symmetrically, since ρ+(J) ≥ m, one has |J | ∈ O (1/m). Then
|J | ∈ O (min {1/m, 1/n}) = O (1/max{m,n}). �

5.3. Reduced complexity of admissible semi-intervals

In order to obtain Theorem 5.1, we prove some preliminary results concerning the reduced complexity of
admissible semi-intervals.

Let T be an s-interval exchange transformation. Recall from Section 3 that we denote by Sep(T ) = {γi | 0 ≤
i ≤ s − 1} the set of separation points. For every n ≥ 0 define Sn(T ) =

⋃n−1
i=0 T

−i
(
Sep(T )

)
with the conven-

tion S0 = ∅.
Since Sep(T−1) = T

(
Sep(T )

)
, one has Sn(T−1) = T n−1

(Sn(T )
)
.

Given two integers m,n ≥ 1, we can define Sm,n = Sm(T ) ∪ Sn(T−1). An easy calculation shows that
Sm,n(T ) =

⋃n
i=−m+1 T

i
(
Sep(T )

)
. Observe also that Sm,n(T ) = T n

(Sm+n(T )
)

= T−m+1
(Sm+n(T )

)
.

Denote by Vm,n(T ) the family of semi-intervals whose endpoints are in Sm,n(T ). Put V(T ) =
⋃

m,n≥0 Vm,n(T ).
Every admissible semi-interval belongs to V(T ), while the converse is not true.

Theorem 5.7. Π(J) ∈ Θ(1) for every semi-interval J admissible for T .

Proof. Let m,n be the two minimal integers such that J = [t, w[∈ Vm,n(T ). Then t, w ∈ {Tm(γi) | 1 ≤ i ≤
s} ∪ {T−n(γi) | 1 ≤ i ≤ s}. Suppose, for instance, t = TM (γ), with M = max{m,n} and γ a separation point.
The other cases (namely, t = T−M (γ), w = TM (γ) or w = T−M(γ)) are proved similarly.

The only semi-interval in V0,0(T ) is [�, r[ and clearly in this case the theorem is verified.
Suppose then that J ∈ Vm,n(T ) for some nonnegative integers m,n with m + n > 0. We have Ψ(J) =

max{Ψ(t), Ψ(w)} ≤ Mu where u is the constant introduced in Proposition 5.3. Moreover, by the definition
of admissibility one has {T j(γ) | 1 ≤ j ≤ M} ∩ J = ∅. Thus, by Corollary 5.6 we have |J | ∈ O(1/M). Then
Π(J) = |J | Ψ(J) ∈ O(1). By Proposition 5.4 we have Π(J) > 1/(4

√
d). This concludes the proof. �
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Figure 15. Modified induction graph of the transformation T .

Denote by Um,n(T ) the family of semi-intervals partitioned by Sm,n(T ). Clearly Vm,n(T ) contains Um,n(T ).
Indeed every semi-interval J ∈ Vm,n(T ) is a finite union of contiguous semi-intervals belonging to Um,n(T ).

Note that Um,0(T ) is the family of semi-intervals exchanged by Tm, while U0,n(T ) is the family of semi-
intervals exchanged by T−n.

Put U(T ) =
⋃

m,n≥0 Um,n(T ). Using Theorem 5.7 we easily deduce the following corollary, which is a gener-
alization of Theorem 2.11 in [11].

Corollary 5.8. Π(J) ∈ Θ(1) for every semi-interval J ∈ U(T ).

We are now able to prove Theorem 5.1.
Proof of Theorem 5.1. By Theorem 4.3, every admissible semi-interval can be obtained by a finite sequence
χ of right and left Rauzy inductions. Thus we can enumerate the family of all admissible semi-intervals. The
conclusion easily follows from Theorem 5.2 and Theorem 5.7.

An immediate corollary of Theorem 5.1 is the following.

Corollary 5.9. Let T be a regular interval exchange transformation defined over a quadratic field. Then the
induction graph G(T ) and the modified induction graph G̃(T ) are finite.

Example 5.10. Let T be the regular interval exchange transformation of Example 3.4. The modified induction
graph G̃(T ) is represented in Figure 15. The transformation T belongs to the similarity class 〈T1〉 as well as
transformations S of Example 4.8 and U of Example 4.10. The transformations ψ(T ) and ψ2(T ) of Example 4.2
belongs respectively to classes 〈T2〉 and 〈T4〉, while the two last transformations of Figure 14, namely ϕψ(T ) and
ϕ2ψ(T ), belongs respectively to 〈T5〉 and 〈T7〉. Finally, the left Rauzy induction sequence from T to U = ϕ6(T )
corresponds to the loop 〈T1〉 → 〈T3〉 → 〈T4〉 → 〈T6〉 → 〈T7〉 → 〈T8〉 → 〈T1〉 in G̃(T ).

5.4. Primitive morphic sets

In this section we show an important property of interval exchange transformations defined over a quadratic
field, namely that the related interval exchange sets are primitive morphic. Let prove first the following result.

Proposition 5.11. Let T, χ(T ) be two equivalent regular interval exchange transformations with χ ∈ {ϕ, ψ}∗.
There exists a primitive morphism θ and a point z ∈ D(T ) such that the natural coding of T relative to z is a
fixed point of θ.
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Proof. By Proposition 3.9, the set F (T ) is uniformly recurrent. Thus, there exists a positive integer N such that
every letter of the alphabet appears in every word of length N of F (T ). Moreover, by Theorem 4.7, applying
iteratively the Rauzy induction, the length of the domains tends to zero.

Consider T ′ = χm(T ), for a positive integer m, such that D(T ′) < ε, where ε is the positive real number for
which, by Lemma 3.7, the first return map for every point of the domain is “longer” thanN , i.e. T ′(z) = T n(z)(z),
with n(z) ≥ N , for every z ∈ D(T ′).

By Theorem 4.15 and the remark following it, there exists an automorphism θ of the free group and a point
z ∈ D(T ′) ⊆ D(T ) such that the natural coding of T relative to z is a fixed point of θ, that is ΣT (z) = θ (ΣT (z)).

By the previous argument, the image of every letter by θ is longer than N , hence it contains every letter of
the alphabet as a factor. Therefore, θ is a primitive morphism. �

Theorem 5.12. Let T be a regular interval exchange transformation defined over a quadratic field. The interval
exchange set F (T ) is primitive morphic.

Proof. By Theorem 5.1 there exists a regular interval transformation S such that we can find in the induction
graph G(T ) a path from [T ] to [S] followed by a cycle on [S]. Thus, by Theorem 4.15 there exists a point
z ∈ D(S) and two automorphisms θ, η of the free group such that ΣT (z) = θ (ΣS(z)), with ΣS(z) a fixed point
of η.

By Proposition 5.11 we can suppose, without loss of generality, that η is primitive. Therefore, F (T ) is a
primitive morphic set. �

Example 5.13. Let T = Tλ,π be the transformation of Example 3.4 (see also 3.10). The set F (T ) is primitive
morphic. Indeed the transformation T is regular and the length vector λ = (1 − 2α, α, α) belongs to Q

[√
5
]3
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