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EXISTENCE OF AN INFINITE TERNARY 64-ABELIAN
SQUARE-FREE WORD

MARI Huova

Abstract. We consider a recently defined notion of k-abelian equiva-
lence of words by concentrating on avoidance problems. The equivalence
class of a word depends on the numbers of occurrences of different fac-
tors of length k for a fixed natural number k and the prefix of the word.
We have shown earlier that over a ternary alphabet k-abelian squares
cannot be avoided in pure morphic words for any natural number k.
Nevertheless, computational experiments support the conjecture that
even 3-abelian squares can be avoided over ternary alphabets. In this
paper we establish the first avoidance result showing that by choos-
ing k to be large enough we have an infinite k-abelian square-free word
over three letter alphabet. In addition, this word can be obtained as a
morphic image of a pure morphic word.

Mathematics Subject Classification. 68R15.

INTRODUCTION

The theory of avoidance is one of the oldest and most studied topics in com-
binatorics on words. The first results were obtained by Axel Thue already at the
beginning of the 20th century [17,18]. He showed among other things the existence
of an infinite binary word which does not contain any factor three times consec-
utively, i.e., it avoids cubes. Similarly, he showed that squares can be avoided in
infinite ternary words.

Since the late 1960’s abelian, i.e., commutative, variants of the above prob-
lems have been studied. Apparently, the first nontrivial results were obtained by
Evdokimov [8] who showed that commutative squares can be avoided in infinite
words over a 25-letter alphabet. The size of the alphabet was reduced to 5 by
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Pleasant [16], until the optimal value, 4, was found by Kerénen [12]. Dekking [7]
managed to prove already earlier that the optimal value for the size of the alphabet,
in which abelian cubes are avoidable, is 3.

Our focus is on a new variant of the square-freeness. Repetitions are defined
via equivalence relations which lie properly in between equality and abelian equal-
ity. For this relation we use the notion of k-abelian equivalence, where k > 1 is a
natural number. Natural variants of the above Thue’s problems ask what the size
are for the smallest alphabets where k-abelian squares and cubes can be avoided.
Because k-abelian equivalence lies between usual equivalence and abelian equiva-
lence these two already examined equivalences give us bounds for our study. For
k-abelian square-freeness we know that the interesting size of an alphabet is 3.
In [11] it was shown that 2-abelian square-free words over ternary alphabets are
finite, the longest being 537 letters. We have computational results which support
the conjecture of the existence of an infinite ternary 3-abelian square-free word,
see [9]. On the other hand, we have shown in the same paper [9] that an infinite
ternary k-abelian square-free word cannot be obtained by iterating a morphism
for any k > 1.

Although, iterated morphisms constitute a common tool in avoidability ques-
tions, there also exist patterns for usual word powers that can be avoided in binary
words but not in words produced by only iterating a morphism. Cassaigne gives
a classification of binary patterns according to avoidability in binary words, in
binary pure morphic words and in ternary pure morphic words [3]. The patterns
a?f%a, afa?p and afa’Ba are such that they can be avoided over a binary
alphabet but not in infinite binary pure morphic words. Similarly, it seems that
3-abelian squares can be avoided over a ternary alphabet but not in infinite ternary
pure morphic words. A related well-known example is given by the famous (cube-
free) Kolakoski word: it is not pure morphic, see [5], but it is unknown whether it
is morphic. On the other hand Currie has conjectured (see [6,14], Problem 3.1.5,
p. 132), that if a pattern p is avoidable over an alphabet X, then there exist an
alphabet X’/ two morphisms f : X"* — X* and g : X'* — X'* and a letter a € X'
such that the infinite word f(¢g°°(a)) avoids p, that is, p is avoidable in morphic
words.

In this paper we give the first result showing that k-abelian squares can be
avoided in morphic words by choosing the value of k to be large enough. At the
moment we have a proof for the cases where k& > 64. The cases 3 < k < 63 are
still open. In addition, we give an example of a tool to show that a morphic word
cannot be obtained by iterating a single morphism, i.e., it is not pure morphic. In
general, rather little is known about avoiding k-abelian repetitions and avoiding
them even in morphic words. Results in [10,15] are examples of the case in which
the k-abelian cube-freeness over a binary alphabet is obtained in morphic words.
The results cover the cases k > 5 and rest of the cases 2 < k < 4 are under
research. Based on our results and intuition we do not dare to make a conjecture
related to Currie’s for k-abelian repetitions even in the case that a pattern would
be an integer power.
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1. PRELIMINARIES

For the basic terminology of words as well as avoidability we refer to [4,13]. The
basic notion in this paper, k-abelian equivalence of words, is defined as follows.

Definition 1.1. Let £ > 1 be a natural number. We say that words v and v in X
are k-abelian equivalent, in symbols u = v, if

1. pref,_; (u) = pref,,_; (v), and sufy_; (u) = sufx_; (v); and
2. for all w € X*, the number of occurrences of w in u and v coincide, i.e.
Ul = [V]ew.

Different words of length at most £ — 1 are defined to be in-equivalent as well as
all the words of different length.

Here pref),_; (resp. sufx_1) is used to denote the prefix (resp. suffix) of length k—1
of a word.
It is straightforward to see that =y is an equivalence relation and, moreover,

U=V=U=p V= U=, 0,
where =, denotes the abelian equivalence, same as =1, and that
u=v&Su=pv Vk>1.

Now, notions like k-abelian repetitions are naturally defined. For instance w = uv
is a k-abelian square if and only if u = v.

Example 1.2. Words abaab and aabab are 2-abelian equivalent and thus
abaabaabab is a 2-abelian square. Those words are not 3-abelian equivalent but
ababbaabb and abbaababb are 3-abelian equivalent and also 2-abelian equivalent.

A prefiz preserving (or prolongable) morphism is a morphism h : X* — X* for
which there exists a letter ¢ € X and a word o € X* such that h(a) = aa and
h™(a) # € for every n > 0. We call an infinite word a pure morphic word if it is
obtained by iterating a prefix preserving morphism. A morphic word is obtained
from a pure morphic word by taking an image of it by a morphism or equivalently
under a coding, see [1].

As mentioned in the introduction we have proved the following result in [9].

Theorem 1.3. Every ternary infinite pure morphic word contains a k-abelian
square for any k > 1.

In our construction for an infinite 64-abelian square-free word we use two
morphisms, one defined by Kerdnen and the other defined by Badkobeh and
Crochemore. Kerdnen has proved that there exists an 85-uniform morphism over
a four letter alphabet that generates an infinite abelian square-free word, [12].
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For convenience, let us denote with g the morphism from {a, b, ¢, d}" into {0, 1,2}"
defined as follows:

a — 0102101202102010210121020120210120102120121020120210121
0212010210121020102120121020120210121020102101202102012
10212010210121020120210120102120121020102101210212,

b+— 0102101202102010210121020120210120102120121020120210121
0201021012021020121021201021012102010212012102012021012
10212010210121020120210120102120121020102101210212,

c — 0102101202102010210121020120210120102120121020102101202
1020121021201021012102010212012102012021012102010210120
21020102120121020120210120102120121020102101210212,

d +— 0102101202102010210121020120210120102120121020102101202
1020102120121020120210121020102101202102012102120102101
21020102120121020120210120102120121020102101210212.

The morphism ¢ is the one for which Badkobeh and Crochemore proved the fol-
lowing result in [2]:

Theorem 1.4 ([2]). The morphism g translates any infinite 7/5" -free word on the
alphabet {a,b,c,d} into a T/4F-free ternary word containing only two 7/4-powers,
the fewest possible.

We conclude this section by defining the notions an identifying factor, an iden-
tifying prefiz and an identifying suffiz. These all are defined with respect to a
morphism. We denote the set of factors of a word w with F'(w) and the set of its
prefixes with pref(w).

Definition 1.5. An identifying factor with respect to a morphism h : X5 — X}
is such a factor f € X that

(a) there exists a unique a € Xy such that f € F(h(a)); and
(b) for this a, |h(w)|f = |w|a - |h(a)|s for all w € X.

An identifying prefix with respect to a morphism h : X — X7 is such a prefix
p € X5 of some word h(i) where i € X that

(a) there exists a unique a € X such that p € pref(h(a)); and
(b) for this a, |h(w)|, = |w|, for all w € Xj.

An identifying suffix is defined correspondingly.

These identifying objects with respect to a morphism h : X§ — X7 can be
used to track down properties of a word w € X by analysing the factors of the
word h(w). If h(a) for some a € X contains an identifying factor f then we can
find out |w|q by counting |h(w)|s and |h(a)|s. Identifying prefixes and suffixes can
be used to locate letters in w. We give a short example to illustrate these notions
and to show how we will use them.
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Example 1.6. Let h: {a,b,c}* — {a,b,c}* be a morphism defined by

a — abcab,
b +— beb,

c +— cacbh.

Now the six shortest identifying factors with respect to h are ab, ac, acbh, beb, cab and
cac. From these six factors ab and ac are not identifying prefixes or suffixes but cac
is an identifying prefix, acb and cab are identifying suffixes and beb is both an iden-
tifying prefix and an identifying suffix. Consider a word w’ = bcbabcabcacbabcab
which is obtained by taking a h-morphic image of some word w over an alpha-
bet {a, b, c}. By counting the occurrences of the identifying factor ab in the word w’
we can determine that w contains the letter a twice. Because ab is not an identi-
fying prefix or suffix we cannot locate the positions of these a’s by looking for the
positions of ab’s in w’. Instead, cab is an identifying suffix related to h(a) and we
can determine that w’ = bebh(a) cacbh(a). By continuing analysis with identifying
prefixes bcb and cac we can find out that w = baca.

2. A 64-ABELIAN SQUARE-FREE WORD

In this section we will prove the existence of a ternary infinite 64-abelian square-
free word by taking a suitable morphic image of an infinite abelian square-free
word.

Theorem 2.1. Let 2 € {a,b,c,d}* be an infinite abelian square-free word and
g: {a,b,c,d}” —{0,1,2}" the morphism introduced in the previous section. The
infinite word w = g(£2) over {0,1,2} is 64-abelian square-free.

Proof. First, we make some remarks about the morphism ¢ and the word 2. First
of all, the word {2 exists and for example, the word constructed by Keranen could
be chosen to be {2. The morphism ¢ is 160-uniform and synchronizing. It is of the
form

a — uvayz
boswoyz [l = 47, 2] = 40, Jo] = Jaf = 10, w] = [y] = 13,
C = uwyrz la| = |B] = [y| = [0] = 50.

d +— uwdxrz

The word §2 can only contain factors ij where ¢, j € {a,b,c,d} and i # j. It can be
easily checked by computer that now each word g(ij) contains each of its factors
of length 63 at most once except in cases g(bd) = pfqrfs and g(db) = rfspfq
where |p| = 32,|f] = 78, |q| = 50,|r| = 57,|s| = 25. In these cases there are 16
factors of length 63 that occur twice, namely the factors of f. Thus each g(i) for
i € {a,b,c,d} contains at least one identifying factor of each length from 63 up
to 160 and each ¢(i) contains also an identifying prefix and suffix of length 63



312 MARI HUOVA

for any ¢ € {a,b,c,d}. In addition, the factor prefy,(u) occurs only as a prefix
of g(a),g(b),g(c) and g(d). Respectively for the factor sufsp(z). If the word w
contains a factor of length 63 twice they cannot overlap by the observations above,
S0 w = wotwitws where [t| = 63. Now [twi| = n - 160 + Ay - 135 + Ay - 25, where
n € {0,1,2,...} and (41, 42) € {(0,0),(0,1),(1,0)}. Here A1 # Ao if and only if
t € F(f). In most of the cases the two occurrences of ¢ originate from the images
of two occurrences of the same letter in (2. Consequently, the coefficient 160 comes
from the length of the morphism. In the case that the first occurrence of ¢ belongs
to f in ¢g(d) and the second occurrence of ¢ belongs to f in g(b), i.e. A1 =1, there
exists extra factor of 135 refering to |fsp|. If the occurrences of ¢t € F(f) are in
the opposite order, thus first in ¢g(b) and then in g(d), then we have As = 1 and
|fqr] = 185 = 160 + 25.

We proceed by showing that if w contained a 64-abelian square then {2 would
not be abelian square-free or ¢g({2) would not be square-free which would give a
contradiction. We use identifying factors and prefixes to return our analysis to
the properties of {2. So assume that the word w contains a 64-abelian square, i.e.,
w=wA;Asw’ and Ay =¢4 As. If |A1| < 64 then A; = A and some of words g(i7),
where ij € {a,b,c,d} ({a,b,c,d} \ {i}), should contain a square which contradicts
the result of Theorem 1.4. So we may assume that |A;| > 64.

Because Ay =g4 Az we have prefy;(Ay) = prefg(Az) and w has the same factor
of length 63 twice. Similarly, sufgs3(A1) = sufss(A42) and thus [A1]| = n, - 160 +
A1p - 135 + A2p - 25 and |A2‘ = Ng * 160 + Als - 135 + Ags - 25. Now ‘A1| = ‘A2|
and the only possibility is that n, = ng, A1, = A1 and Ay, = Ao, If Ay =1,
then both Suf63(A1) S F(f) and pref63(A2) S F(f) In fact, sufgg(Al)pref63(A2)
should be a factor of f which is not possible because [sufgs(A;)prefgs(Asz)| > |f]-
Similar reasoning holds if Ay, = 1. So we have Ay, = Ay, = A15 = A5 = 0 and
|A1‘ = ‘AQ‘ =MNyp 160.

Let w = wA; Asw’ = wig(ar) Al glaz)ALg(as)w), where ay,az,a3 € {a,b,c,d},
gla1) = uivy, glas) = ugvs, g(as) = ugvs and vi Ajus = Ay and voAuz = As. The
following graph illustrates the situation.

Ay As

Because |A:1| = |Az] = nyp - 160 we have |ui| = |ug| = |us| and |vi| = |v2| = |vs].
Now we can divide the study into two cases.

If |ui] = 0 then A; = g(ai1),A2 = g(az2) for some ajas € F(£2). Because
each g(i) for any i € {a, b, ¢, d} contains at least one identifying factor of length 64
and A; =g4 Az S0 oy should be abelian equivalent to . This gives a contradiction
because {2 is abelian square-free.
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If Jui| = m > 0 then Ay = v1g(aq)usg, Az = vag(az)us for some agasas € F(12).
We may assume |uz| > 63, the case |vz| > 63 would be similar. Now sufgs(uz) =
sufgs(A1) = sufs(Az) = sufps(usz) and |ugvag(as)| = (Jae| + 1) - 160 so ug have
to be equal to ug and az = as, too. Because each ¢(i) for any ¢ € {a,b,c,d}
has an identifying prefix of length 64 and A; =¢4 As, so g(aias) and g(asas) =
g(a2a2) have to have those same identifying factors, so a1 =, ag, too. This gives
a contradiction because now ajasasas € F(£2) and ajas =, asas. O

Now we have proved the existence of a 64-abelian square-free word. By choos-
ing the initial abelian square-free word to be morphic we get that the 64-abelian
square-free word constructed as in Theorem 2.1 is also morphic. Though, by
Theorem 1.3 this word cannot be pure morphic.

Example 2.2. Let {2k be the abelian square-free word over four letter alphabet
constructed by Kerénen in [12]. The word is produced by iterating an 85-uniform
morphism, i.e., {2 is pure morphic. By taking a morphic image of it with the
morphism g we have a 64-abelian square-free word, which is morphic. Now by
Theorem 1.3 ¢g(§2x) cannot be pure morphic. In general, this can be formulated
as follows: let {2,, be a morphic word over {a,b, ¢,d} then there does not exist a
single morphism that would generate the morphic word g({2,,) directly.

3. CONCLUSIONS

We know that k-abelian squares are avoidable either over a ternary alphabet
or over a four letter alphabet. The avoidability behavior seems to depend on the
value of k. An earlier result shows that 2-abelian squares are not avoidable over
ternary alphabets. Computational evidence suggests that it would be enough to
increase the value of k by one to achieve avoidability. On the other hand, we have
shown that k-abelian squares are not avoidable in pure morphic words over ternary
alphabet for any value of k.

In this paper we proved that 64-abelian squares can be avoided over three letter
alphabet. This is the first result for avoidability concerning k-abelian squares in
ternary alphabets. In addition, the 64-abelian square-free word can be chosen to be
morphic. It cannot be pure morphic but it is enough to take a morphic image of a
pure morphic word. On the other hand, this shows how we can use Theorem 1.3 as
a tool for proving that a word is not achievable by generating a single morphism.
The further aim of the research is to decrease the size of k£ and find the bound
for the value of k to determine avoidability and unavoidability, if it is possible.
This bound would divide the k-abelian equivalence classes to those that behave
like usual equality and to those that behave like abelian equality.
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