
RAIRO-Theor. Inf. Appl. 47 (2013) 293–314 Available online at:

DOI: 10.1051/ita/2013040 www.rairo-ita.org

ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION
ALGORITHM ∗

Sacha Krug

Abstract. The traveling salesman problem (TSP) is one of the most
fundamental optimization problems. We consider the β-metric traveling
salesman problem (Δβ-TSP), i.e., the TSP restricted to graphs satis-
fying the β-triangle inequality c({v, w}) ≤ β(c({v, u})+ c({u, w})), for
some cost function c and any three vertices u, v, w. The well-known
path matching Christofides algorithm (PMCA) guarantees an approxi-
mation ratio of 3β2/2 and is the best known algorithm for the Δβ-TSP,
for 1 ≤ β ≤ 2. We provide a complete analysis of the algorithm. First,
we correct an error in the original implementation that may produce
an invalid solution. Using a worst-case example, we then show that the
algorithm cannot guarantee a better approximation ratio. The exam-
ple can also be used for the PMCA variants for the Hamiltonian path
problem with zero and one prespecified endpoints. For two prespeci-
fied endpoints, we cannot reuse the example, but we construct another
worst-case example to show the optimality of the analysis also in this
case.

Mathematics Subject Classification. 90C27, 68W25.

1. Introduction

The traveling salesman problem (TSP) is one of the most studied optimiza-
tion problems. In its most general form, it is not polynomially approximable.

Keywords and phrases. traveling salesman problem, combinatorial optimization, approxima-
tion algorithms, graph theory.

∗ This work was partially supported by SNF grant No. 200021-132510/1.

1 Department of Computer Science, ETH Zurich, Switzerland. sacha.krug@inf.ethz.ch

Article published by EDP Sciences c© EDP Sciences 2013

http://dx.doi.org/10.1051/ita/2013040
http://www.rairo-ita.org
http://www.edpsciences.org


294 S. KRUG

Certain subsets of the TSP, however, allow for a constant-factor approximation.
One such subset is the metric TSP (Δ-TSP), i.e., the TSP restricted to input
graphs satisfying the triangle inequality. Christofides’ algorithm [7] provides a
3/2-approximation for the Δ-TSP. A natural idea is to apply this algorithm to
a larger set of input instances. This idea is captured by the concept of stability
of approximation [4–6, 12], which provides a formalism to express the changes of
the approximation ratio of an algorithm when a different set of input instances is
considered.

A natural generalization of the metric TSP is the β-metric TSP (Δβ-TSP),
i.e., the TSP restricted to graphs (V, E) satisfying the β-triangle inequality
c({v, w}) ≤ β · (c({v, u}) + c({u, w})), for some cost function c : E → �+ and
any three vertices u, v, w ∈ V . Böckenhauer et al. [5] showed that Christofides’
algorithm, when applied to Δβ-TSP instances, for any β > 1, no longer provides a
constant approximation ratio of 3/2, but an approximation ratio that depends on
the size of the graph. Therefore, the authors devised the path matching Christofides
algorithm (PMCA) that provides an approximation ratio of 3β2/2, for any β ≥ 1.
Other algorithms for the Δβ-TSP, for β ≥ 1, are due to Andreae [2] and Bender
and Chekuri [3] and provide approximation ratios of β2 + β and 4β, respectively.
Consider the problem of finding a Hamiltonian path with l ∈ {0, 1, 2} prespecified
endpoints in a β-metric graph, Δβ-HPPl for short. Forlizzi et al. [9] combined
the path matching Christofides algorithm and Hoogeveen’s approximation algo-
rithm for the Hamiltonian path problem [11] and obtained an approximation algo-
rithm for Δβ-HPPl (PMCA-HPPl) that provides approximation ratios of 3β2/2,
for l = 0, 1, and of 5β2/3, for l = 2.

We show that the four PMCA variants cannot provide better approximation
ratios. In Section 2, we construct a Δβ-TSP instance on which the PMCA cannot
achieve an approximation ratio of 3β2/2−ε, for any ε > 0. This instance can also be
used to establish tight lower bounds for the PMCA-HPP0 and the PMCA-HPP1.
As we shall see, it is not possible to reuse the example for the PMCA-HPP2. We
therefore construct another worst-case instance in Section 3 to prove the optimality
of the analysis also in this case.

We use the notation from [5]. Formally, the β-metric traveling salesman prob-
lem (Δβ-TSP) is the following optimization problem: Given a complete graph G
with edge costs that satisfy the β-triangle inequality, find a cycle in G that vis-
its every vertex exactly once and has minimum cost. A path matching for a
vertex set V of even size is a set of |V |/2 edge-disjoint paths having the ver-
tices in V as their disjoint endpoints. For simplicity, we address a set of paths
and, in particular, a path matching forming a tree (forest) as a tree (forest). Let
p = (v1, v2, . . . , vk) be a path. A vertex v is internal to p if v = vi, for 1 < i < k.
A bypass in p is an edge {u, v} replacing a sub-path (u = vi, vi+1, . . . , vj = v),
for 1 ≤ i < i + 1 < j ≤ k. We say that the vertices vi+1, vi+2, . . . , vj−1 are
bypassed. A conflict in a set of paths is a vertex that occurs in more than
one path. A conflict in an Eulerian cycle is a vertex that is visited more than
once.



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 295

2. The PMCA for the traveling salesman problem

In this section, we first briefly explain the PMCA (Algorithm 1) and then con-
struct a worst-case example to prove that the approximation ratio of the algorithm
cannot be improved.

The implementations of steps 1, 2, and 4 are well-known [5, 8, 10]. In step 4,
we need to ensure that each path q in M ′ occurs unchanged as a subpath in E.
In other words, it must not happen in E that there are a few vertices of q, then
some path p from T , and then the remaining vertices of q. We can achieve this by
regarding each such path q as a single edge when computing E.

Algorithm 2 shows the implementation of step 3. It consists roughly of two
parts. First, a path with only one conflict is searched2, and then this conflict is
resolved.

Algorithm 1 Path Matching Christofides Algorithm [5]
Require: A complete β-metric graph G, for some β ≥ 1.
1: Find a minimum spanning tree T in G. Let U be all odd-degree vertices in T.
2: Construct a minimum path matching M for U. {The matching is edge-disjoint due

to its minimality.}
3: Resolve conflicts in M and obtain a vertex-disjoint path matching M ′.
4: Construct an Eulerian cycle E := (p1, q1, p2, q2, . . . ) on T and M ′ such that p1, p2, . . .

are paths in T and q1, q2, . . . are paths in M ′.
5: Transform p1, p2, . . . into p′

1, p
′
2, . . . such that the forest Tf formed by p′

1, p
′
2, . . . has

maximum degree 3. Let E′ := (p′
1, q1, p

′
2, q2, . . . ).

6: Resolve all remaining conflicts in E′ and obtain a Hamiltonian cycle H .
Ensure: H .

In step 5, an arbitrary root vertex r is chosen. In every path pi, the vertex v
closest to r in T is bypassed if v is internal to pi and if v is incident to at least
four edges from T. This last condition was not stated in [5], but is necessary, as
otherwise the algorithm might drop certain vertices, i.e., they might not appear in
the end result, which would then by definition no longer be a Hamiltonian cycle.

The last step is implemented as follows. First, bypass an arbitrary conflict x. If
neighbors of x are conflicts, bypass one of them. Else, bypass an arbitrary conflict.
Repeat this until no conflicts are left.

Theorem 2.1. For every β ≥ 1, the PMCA provides an approximation ratio of
3β2/2, and it cannot achieve a better approximation ratio on an infinite family of
graphs satisfying the β-triangle inequality.

The upper bound was shown in [5]. To prove the lower bound, we introduce a
graph that contains a Hamiltonian cycle of a certain cost and present one possible
implementation of the PMCA on this graph to obtain the desired lower bound.

2 There is always such a path because the graph formed by M is cycle-free due to the mini-
mality of M.



296 S. KRUG

Algorithm 2
Require: An edge-disjoint, cycle-free path matching M for U in G.

while M has conflicts do
pick an arbitrary path p that has at least two conflicts or at least one internal conflict
while p has more than one conflict do

let v, w be the first and the last conflict in p
let pv, pw be paths that contain v respectively w
pick as new p one of pv, pw that was formerly not picked

end while
let v be the only conflict in the finally chosen path p
if v is internal to p then

bypass v in p
else

bypass the unique edge incident to v in p together with one edge of the previously
picked path as shown in Figure 1

end if
end while

Ensure: A vertex-disjoint path matching M ′ = (q1, q2, . . . ).

v → →p

p′

Figure 1. Conflict resolution between the finally chosen path p
and another path p′ that has at least one more conflict.

Let G10,k(β) be the complete graph with vertex set {vi,j | 1 ≤ i ≤ 10, 1 ≤ j ≤
k}, for k ∈ �, with edge costs

c(v1,i, v2,i) = c(v2,i, v5,i) = c(v3,i, v6,i) = c(v4,i, v5,i) =
c(v5,i, v9,i) = c(v6,i, v7,i) = c(v8,i, v9,i) = c(v9,i, v10,i) := 1/k,

c(v2,i, v9,j) = c(v5,i, v6,i) := 1, c(v1,i, v7,j) := 1 + 2/k,

for i �= j, and maximum possible cost for all other edges such that the β-triangle
inequality is satisfied. Figure 2 shows the basic structure of the graph. (Only some
edges are shown.) Observe that the graph consists of k clusters, each consisting
of ten vertices. We denote these clusters by Ci, i.e., Ci := {v1,i, v2,i, . . . , v10,i},
for 1 ≤ i ≤ k. Furthermore, we call the set {v1,i, v2,i, v4,i, v5,i, v8,i, v9,i, v10,i} the
upper subcluster i, denoted USCi, and the vertex set {v3,i, v6,i, v7,i} the lower



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 297

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k

1/k

1
1 + 2/k

Edge costs

. . .

. . .

Figure 2. The graph G10,k(β).

subcluster i, denoted LSCi. The vertices are called USC vertices and LSC vertices,
respectively.

Lemma 2.2. The graph G10,k(β) satisfies the β-triangle inequality.

Proof. It suffices to show that G10,k(1) satisfies the triangle inequality; G10,k(β)
then clearly satisfies the β-triangle inequality.

Let {u, v, w} be a triangle, and let e = {u, v} be the edge in it with highest
cost, i.e., the one that could be responsible for a violation. We show that at least
one other edge in the triangle has high enough cost such that e does not violate
the triangle inequality.

By construction, e can only be one of those edges shown in Figure 2. Further-
more, all edges not shown in Figure 2 have maximum possible cost such that the
β-triangle inequality is satisfied; therefore, they all have cost at least 2/k. All edges
in the entire graph thus have cost at least 1/k, and we have to prove the statement
only in the following three cases.
Case 1: e = {v2,i, v9,j}. If w ∈ Ci, then the shortest path from w to v9,j has cost
at least 1 + 1/k, and thus also the edge {w, v9,j}. Therefore, c(v2,i, v9,j) = 1 ≤
1 + 2/k ≤ c(v2,i, w) + c(w, v9,j). If w �∈ Ci, then the shortest path from v2,i to w
has cost at least 1, and thus also the edge {v2,i, w}. Therefore, c(v2,i, v9,j) = 1 ≤
1 + 1/k ≤ c(v2,i, w) + c(w, v9,j).
Case 2: e = {v5,i, v6,i}. If w ∈ USCi, then the shortest path from w to v6,i has
cost at least 1 + 1/k, and thus also the edge {w, v6,i}. Therefore, c(v5,i, v6,i) =
1 ≤ 1 + 2/k ≤ c(v5,i, w) + c(w, v6,i). If w �∈ USCi, then the shortest path from
v5,i to w has cost at least 1 + 1/k, and thus also the edge {v5,i, w}. Therefore,
c(v5,i, v6,i) = 1 ≤ 1 + 2/k ≤ c(v5,i, w) + c(w, v6,i).
Case 3: e = {v1,i, v7,j}. If w ∈ Ci, then the shortest path from w to v7,j has
cost at least 1 + 3/k, and thus also the edge {w, v7,j}. Therefore, c(v1,i, v7,j) =
1 + 2/k ≤ 1 + 4/k ≤ c(v1,i, w) + c(w, v7,j). If w �∈ Ci, then the shortest path from
v1,i to w has cost at least 1 + 1/k, and thus also the edge {v1,i, w}. Therefore,
c(v1,i, v7,j) = 1 + 2/k ≤ 1 + 2/k) ≤ c(v1,i, w) + c(w, v7,j). �



298 S. KRUG

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k. . .

. . .

Figure 3. A Hamiltonian cycle of length 2k + 2β2 + 7β + 6 in
G10,k(β).

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k

. . .

. . .

Figure 4. A minimum spanning tree in G10,k(β). The odd-degree
vertices are circled.

Figure 3 shows a Hamiltonian cycle in G10,k(β) of cost 2k + 2β2 + 7β + 6. We
now show one possible implementation of the PMCA that returns a Hamiltonian
cycle of cost at least 3(k − 1)β2 on input G10,k(β).

The PMCA first computes the minimum spanning tree T shown in Figure 4.
The vertices in U are circled. It is easy to see that T is indeed a minimum span-
ning tree. Every edge in the graph has cost at least 1/k, therefore the edges
{v1,i, v2,i}, {v2,i, v5,i}, {v4,i, v5,i}, {v5,i, v9,i}, {v8,i, v9,i}, {v9,i, v10,i}, for 1 ≤ i ≤ k,
form minimum spanning trees for the respective upper subclusters. On the other
hand, the edges {v3,i, v6,i} and {v6,i, v7,i}, for 1 ≤ i ≤ k, form minimum span-
ning trees for the respective lower subclusters. We only need to add an edge for
every component to construct a minimum spanning tree for the whole graph. All
available edges have cost at least 1, so we can just take the edges {v5,i, v6,i}, for
1 ≤ i ≤ k, and {v9,i, v2,i+1}, for 1 ≤ i ≤ k − 1.

In the second step, the PMCA computes the minimum path matching M for U
shown in Figure 5.



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 299

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k

. . .

. . .

Figure 5. A minimum path matching for U in G10,k(β).

Theorem 2.3. M is a minimum path matching for U.

We need three lemmata to prove this result.

Lemma 2.4. In a minimum path matching, exactly one vertex per lower subclus-
ter is matched with a vertex that is not in this lower subcluster.

Proof. The “at least” part holds because |LSCi ∩ U | is odd.
Assume for contradiction that the “at most” part is wrong. Then, some mini-

mum path matching contains the paths (v3,i, . . . , u), (v6,i, . . . , v), (v7,i, . . . , w) for
some vertices u, v, w �∈ LSCi. We replace them with shortest paths (v3,i, . . . , u),
(v6,i, v7,i), (v, . . . , w) and obtain a shorter path matching for sufficiently large k.
Case 1: v and w are USC vertices. Then, c(v6,i, . . . , v) + c(v7,i, . . . , w) ≥ 2 + 3/k.
The distance from v to w is at most 1+4/k.3 Therefore, c(v6,i, v7,i)+c(v, . . . , w) ≤
1 + 5/k.
Case 2: v is a USC vertex and w is an LSC vertex. Then, c(v6,i, . . . , v) +
c(v7,i, . . . , w) ≥ 3 + 5/k. The distance from v to w is at most 1 + 8/k.4 Therefore,
c(v6,i, v7,i) + c(v, . . . , w) ≤ 1 + 9/k. The inverse case is analogous.
Case 3: v and w are LSC vertices. Then, c(v6,i, . . . , v) + c(v7,i, . . . , w) ≥ 4 + 9/k.
The distance from v to w is at most 2+7/k.5 Therefore, c(v6,i, v7,i)+c(v, . . . , w) ≤
2 + 8/k. �

Lemma 2.5. In a minimum path matching, at most one of the vertices v8,i and
v10,i per cluster is matched with an LSC vertex.

Proof. Assume for contradiction that there are paths (v8,i, . . . , v), (v10,i, . . . , w) for
some LSC vertices v and w. We replace these two paths with (v8,i, v9,i, v10,i) and a

3 Remember that any two upper subclusters are connected by an edge of cost 1.
4 Remember that any upper and lower subcluster not belonging to the same cluster are

connected by an edge of cost 1 + 2/k.
5 In this case, the shortest path from v to w is via some vertex v1,i and contains one edge of

cost 1 + 2/k and one edge of cost 1.



300 S. KRUG

shortest path (v, . . . , w) and obtain a shorter path matching for sufficiently large k.
We know from Lemma 2.4 that v and w are not in the same lower subcluster. In
particular, at least one of them is not in cluster Ci, which gives us the desired
bounds.
Case 1: v = v3,m, w = v3,n.

Let us first consider the case m = i. Then the shortest path from v8,i to v is of
the form

(v8,i, v9,i, v5,i, v6,i, v3,i)

and has cost 1 + 3/k. The shortest path from v10,i to w is of the form

(v10,i, v9,i, v5,i, v2,i, v1,i, v7,m, v6,m, v3,m)

and has cost 1 + 8/k. The inverse case is analogous.
If m �= i and n �= i, both paths have the latter form and thus cost 1 + 8/k.

Therefore, the minimum cost of the two shortest paths (v8,i, . . . , v3,m) and
(v10,i, . . . , v3,n) is 2 + 11/k. We can replace them with the path

(v3,m, v6,m, v5,m, v2,m, v1,m, v7,n, v6,n, v3,n)

of cost 2+7/k and (v8,i, v9,i, v10,i) of cost 2/k, and obtain a shorter path matching.
Case 2: v = v3,m, w = v6,n. Then, c(v8,i, . . . , v) + c(v10,i, . . . , w) ≥ 2 + 10/k but
c(v8,i, v9,i, v10,i) + c(v, . . . , w) ≤ 2 + 8/k. The inverse case is analogous.
Case 3: v = v3,m, w = v7,n. Then, c(v8,i, . . . , v) + c(v10,i, . . . , w) ≥ 2 + 9/k but
c(v8,i, v9,i, v10,i) + c(v, . . . , w) ≤ 2 + 7/k. The inverse case is analogous.
Case 4: v = v6,m, w = v6,n. Then, c(v8,i, . . . , v) + c(v10,i, . . . , w) ≥ 2 + 9/k but
c(v8,i, v9,i, v10,i) + c(v, . . . , w) ≤ 2 + 7/k.
Case 5: v = v6,m, w = v7,n. Then, c(v8,i, . . . , v) + c(v10,i, . . . , w) ≥ 2 + 8/k but
c(v8,i, v9,i, v10,i) + c(v, . . . , w) ≤ 2 + 6/k. The inverse case is analogous.
Case 6: v = v7,m, w = v7,n. Then, c(v8,i, . . . , v) + c(v10,i, . . . , w) ≥ 2 + 9/k but
c(v8,i, v9,i, v10,i) + c(v, . . . , w) ≤ 2 + 6/k. �

Lemma 2.6. Every minimum path matching can be transformed into a minimum
path matching in which (i) no v8,i is matched with an LSC vertex and (ii) v9,k is
matched neither with v8,k nor with v10,k.

Proof. (i) If the matching satisfies condition (i), go to step (ii). Otherwise, let
(v8,i, . . . , l) be one such path, for some LSC vertex l. We show a transforma-
tion that does not increase the cost of the matching. We know from Lemma 2.5
that there is a path (v10,i, . . . , u) for some USC vertex u. These two paths have,
without loss of generality, the forms (v8,i, v9,i, . . . , l) and (v10,i, v9,i, . . . , u),
respectively. We can replace them with shortest paths (v8,i, v9,i, . . . , u) and
(v10,i, v9,i, . . . , l), i.e., we just “flipped” v8,i and v10,i.

(ii) If the modified matching satisfies condition (ii), we are done. Otherwise it
contains, without loss of generality, the path (v8,k, v9,k) because if it contains
(v9,k, v10,k), we can just “flip” v8,k and v10,k as above. We replace (v8,k, v9,k)



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 301

and (v10,k, . . . , v) with (v8,k, v9,k, v10,k) and a shortest path (v9,k, . . . , v). We
know from the construction of our graph that these two paths have at most the
same cost. This transformation does obviously not violate condition (i). �

Now we are able to prove Theorem 2.3.

Proof. Let us first compute the cost of M. It contains k−1 paths (v4,i, v5,i, v6,i, v3,i)
and (v1,j , v2,j), for 1 ≤ i ≤ k−1 and 2 ≤ j ≤ k, of cost 1+2/k and 1/k, respectively,
summing up to (k − 1) · (1 + 2/k + 1/k) = k + 2 − 3/k. It further contains k
paths (v8,i, v9,i, v10,i) of cost 2/k as well as k paths of cost 1/k connecting two
LSC vertices, summing up to 3. The remaining two paths are (v4,k, v5,k, v9,k) and
(v1,1, v7,k) of cost 2/k and 1 + 2/k, respectively. Thus the cost of M is k + 2 −
3/k + 3 + 2/k + 1 + 2/k = k + 6 + 1/k.

Assume thus for contradiction that some minimum path matching M ′′ has cost
less than k + 6 + 1/k and, without loss of generality, satisfies conditions (i) and
(ii) of Lemma 2.6. We now compute the cost of M ′′.

First consider all paths having an LSC vertex as an endpoint. We know from
Lemma 2.4 that, for every LSCi, this means two paths (l1, . . . , l2) and (l3, . . . , v),
where l1, l2, l3 denote the three vertices in LSCi. It is possible that v ∈ LSCj.
Let therefore c be the number of paths matching two LSC vertices from different
clusters. No matter what vertex we choose as l3, the two paths always have cost
at least 1 + 3/k. On the other hand, a path connecting two LSC vertices from
different clusters Ci and Cj has cost at least 2 + 4/k, but we still have to consider
the paths inside LSCi and LSCj, respectively. Summing up, the minimum cost of
all paths having one or possibly two LSC vertices as endpoints amounts to

k · 1/k + (k − 2c) · (1 + 2/k) + c · (2 + 4/k) = k + 3.

Now we compute the cost of all paths having some vertex v8,i as an endpoint. A
path of the form (v8,i, . . . , v), for some vertex v �= v8,j , has minimum cost 2/k. But
we again have to consider the possibility of paths (v8,i, . . . , v8,j). Such a path has
minimum cost 1+4/k. Let d be the number of such paths. Then, the minimum cost
of all paths having one or possibly two vertices v8,i, v8,j as endpoints amounts to

(k − 2d) · 2/k + d · (1 + 4/k) = 2 + d ≥ 2.

Observe that the two path sets considered above are disjoint due to condition (i)
of Lemma 2.6.

Now we consider all remaining paths. The two path sets above contain together
at most 3k paths, so we are left with at least k paths. Every path has cost at
least 1/k. But there is more to it. All possible paths of cost 1/k have the form
(v3,i, v6,i), (v6,i, v7,i), for 1 ≤ i ≤ k, or (v1,j , v2,j), for 2 ≤ j ≤ k, or (v8,k, v9,k) or
(v9,k, v10,k). We already considered above all paths of the first two forms, and the
paths of the last two forms cannot occur in M ′′ due to condition (ii) of Lemma 2.6.
Therefore, only the k−1 paths (v1,j , v2,j), for 2 ≤ j ≤ k, are left. Since every other



302 S. KRUG

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k

. . .

. . .

Figure 6. A vertex-disjoint path matching for U in G10,k(β).

path has cost at least 2/k, the minimum cost of all remaining paths amounts
to 1 + 1/k.

We have shown that M ′′ has minimum cost

k + 3 + 2 + 1 + 1/k = k + 6 + 1/k,

which contradicts our assumption. �

The goal of the third step of Algorithm 1 is to resolve all conflicts in the min-
imum path matching M and obtain a vertex-disjoint path matching M ′. The
problematic paths in M are (v4,i, v5,i, v6,i, v3,i) and (v6,i, v7,i), for 1 ≤ i ≤ k − 1,
as well as (v4,k, v5,k, v9,k) and (v8,k, v9,k, v10,k). For each component in the first
set, the PMCA may choose the path (v4,i, v5,i, v6,i, v3,i) as p and thus bypass v6,i

in this path. For the second set, the PMCA may choose the path (v8,k, v9,k, v10,k)
as p and thus bypass v9,k in this path. In this step, the PMCA thus computes the
vertex-disjoint path matching M ′ shown in Figure 6.

Alternating between paths from T and paths from M ′, the PMCA computes in
the fourth step the Eulerian cycle E shown in Figure 7.

The goal of the fifth step is that every vertex is incident to at most three
edges from T. The problematic vertices are thus all v5,i and all v9,i except v9,k.
Let r := v1,1. The PMCA bypasses the vertices v5,i between v6,i and v9,i, for
1 ≤ i ≤ k − 1, the vertex v5,k between v9,k and v6,k, and the vertices v9,i between
v8,i and v2,i+1, for 1 ≤ i ≤ k−1, and obtains the modified Eulerian cycle E′ shown
in Figure 8.

The goal of the last step is that every vertex has degree 2. The problematic
vertices are all vertices v2,i except v2,1 and all vertices v5,i, v6,i, v9,i. The PMCA
obtains the Hamiltonian cycle H shown in Figure 9 by bypassing

• v2,i between v8,i−1 and v1,i, for 2 ≤ i ≤ k;



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 303

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k

. . .

. . .

Figure 7. The Eulerian cycle E. The paths of M ′ are dashed.

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k

. . .

. . .

Figure 8. The modified Eulerian cycle E′. The paths of M ′ are
dashed.

• v5,i between v4,i and v3,i, for 1 ≤ i ≤ k − 1, and v5,k between v4,k and v9,k;
• v6,i between v7,i and v9,i, for 1 ≤ i ≤ k − 1, and v6,k between v3,k and v7,k;
• v9,i between v10,i and v8,i, for 1 ≤ i ≤ k − 1, and v9,k between v10,k and v6,k.

Considering only the edges {v4,i, v3,i}, {v7,i, v9,i}, {v8,i, v1,i+1}, for 1 ≤ i ≤ k − 1,
we obtain cost(H) ≥ 3(k − 1)β2. For every β ≥ 1 and arbitrarily small ε > 0, we
have thus shown that there is an implementation I of the PMCA such that

cost(I(G10,k(β)))
OptΔβ−TSP(G10,k(β))

≥ 3(k − 1)β2

2k + 2β2 + 7β + 6
≥ 3

2
β2 − ε, (2.1)

for sufficiently large k, i.e., we have shown that the upper bound of 3β2/2 on the
approximation ratio of the PMCA is tight.



304 S. KRUG

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1

v10,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2

v10,2

v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k

v10,k

. . .

. . .

Figure 9. The Hamiltonian cycle H.

3. The PMCA for the Hamiltonian path problem

In this section, we analyze the PMCA variant for the β-metric Hamiltonian path
problem with l ∈ {0, 1, 2} prespecified endpoints (Δβ-HPPl) devised by Forlizzi
et al. [9]. Formally, Δβ-HPPl is the following optimization problem: Given a com-
plete graph G with edge costs that satisfy the β-triangle inequality, find a path in
G that visits every vertex exactly once, has minimum cost and starts and ends in
the prespecified endpoints, if any.

We first briefly explain the PMCA-HPPl (Algorithm 3) and then construct a
worst-case example to prove that the approximation ratio of the algorithm cannot
be improved for l = 2.

The implementation of step 1 is well-known. Step 2 is implemented using the
distance graph d(G) of G, i.e., the complete weighted graph with vertex set V (G)
in which the cost of an edge {u, v} is the cost of a shortest path from u to v in G.
The algorithm adds 2− l dummy vertices to d(G) with all edges incident to them
having cost 0 except the edge connecting them having cost ∞. The algorithm
computes a minimum perfect matching for U and the dummy vertices in d(G),
removes the edges incident to the dummy vertices from the matching and maps
it back to G by connecting two vertices with a shortest path if they are matched
in d(G). After potentially removing an additional edge, the graph contains exactly
two odd-degree vertices w and z.

The implementation of step 3 can be found in [9]. Essentially, it resolves the
conflicts in M for each tree in M separately. If the tree contains z, the algorithm
ensures that z is contained in the resulting forest.

In step 4, we distinguish two cases. Let y be the unique neighbor of w towards z
in T. If there is a path p = (z, . . . , w) in M ′, we construct an Eulerian cycle
E = (w, u1, . . . , uh−1, w) on T and M ′ − {p}, concatenate p and E and obtain
the Eulerian path (z, . . . , w, u1, . . . , uh−1, w). If there is no path (z, . . . , w), we
essentially look if there are (unique) paths p = (z, . . . , u) and q = (u′, . . . , w), and



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 305

if so, search for an Eulerian path P from u to u′ and concatenate p, P , and q. The
detailed implementation can be found in [9].

Step 5 is implemented in the same way as in the PMCA, except that we do not
choose r arbitrarily, but set r := z. Step 6 is also implemented in the same way as
in the PMCA, except that we first bypass w if it is a conflict.

Theorem 3.1. For every β ≥ 1, both the PMCA-HPP0 and the PMCA-HPP1

provide an approximation ratio of 3β2/2, and they cannot achieve a better approx-
imation ratio on an infinite family of graphs satisfying the β-triangle inequality.

Theorem 3.2. For every β ≥ 1, the PMCA-HPP2 provides an approximation
ratio of 5β2/3, and it cannot achieve a better approximation ratio on an infinite
family of graphs satisfying the β-triangle inequality.

Algorithm 3 PMCA-HPPl

Require: A complete β-metric graph G = (V, E), for some β ≥ 1, and a set A ⊆ V of
size l.

1: Find a minimum spanning tree T in G. Let U be the vertices in V − A having odd
degree in T plus the vertices in A having even degree in T.

2: Construct a minimum path matching M for U. If necessary, remove an edge from T
such that the multigraph formed by T and M has two odd-degree vertices w, z.

3: Resolve conflicts in M and obtain a vertex-disjoint path matching M ′ that does not
contain z as an inner vertex.

4: Construct an Eulerian path P = (p1, q1, p2, q2, . . .) on T and M ′ from w to z such
that p1, p2, . . . are paths in T and q1, q2, . . . are paths in M ′.

5: Transform p1, p2, . . . into p′
1, p

′
2, . . . such that the forest Tf formed by p′

1, p
′
2, . . . has

degree at most 3, w and z are the endpoints of P ′ := (p′
1, q1, p

′
2, q2, . . .) and z is not

a conflict in P ′.
6: Resolve all remaining conflicts in P ′ and obtain a Hamiltonian path P ′′.

Ensure: P ′′.

The upper bounds were established in [9]. To prove the lower bounds for l = 0, 1,
the graph G10,k(β) can be reused. The proofs are for the most part quite similar
to the one of Theorem 2.1. For the PMCA-HPP1, the prespecified endpoint is v1,1.
Both proofs can be found in [13]. To prove the lower bound for l = 2, however, we
cannot reuse the graph G10,k(β), as we shall see.

For β = 1, observe that some implementation of the PMCA is an implemen-
tation of the Christofides algorithm. This implementation does not construct a
path matching in the second step, but a normal matching.6 For β = 1, observe
further that some implementation of the PMCA-HPP2 is an implementation of
Hoogeveen’s algorithm. As above, it is necessary always to construct a matching
instead of a path matching.

6 The condition β = 1 ensures no path matching is shorter than a minimum matching.



306 S. KRUG

v1,1

v2,1

v3,1v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1 v11,1

v12,1

v13,1

v14,1

v15,1 v16,1 v17,1

v18,1

v1,2

v2,2

v3,2v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2 v11,2

v12,2

v13,2

v14,2

v15,2 v16,2 v17,2

v18,2
. . .

. . .
v1,k

v2,k

v3,kv4,k v5,k

v6,k

v7,k

v8,k

v9,k v10,k v11,k

v12,k

v13,k

v14,k

v15,k v16,k v17,k

v18,k

Edge costs

1/k 1 1 + 1/k

Figure 10. The graph G18,k(β).

Assume that we could use the graph G10,k(β) to establish a lower bound of
5β2/3− ε on the approximation ratio of the PMCA-HPP2. In particular, we could
show that some implementation achieves an approximation ratio of 5/3 on the
graph G10,k(1). This would contradict the fact that the sets of worst-case instances
for the metric TSP and the metric HPP2 are disjoint [14].

To prove the lower bound of 5β2/3 − ε, we thus introduce a new graph. Let
G18,k(β) be the complete graph with vertex set {vi,j | 1 ≤ i ≤ 18, 1 ≤ j ≤ k}, for
k ∈ �, with edge costs

c(v1,i, v4,i) = c(v2,i, v4,i) = c(v3,i, v4,i) = c(v5,i, v8,i) =
c(v6,i, v8,i) = c(v7,i, v8,i) = c(v9,i, v12,i) = c(v10,i, v12,i) =

c(v11,i, v12,i) = c(v13,i, v14,i) = c(v14,i, v18,i) = c(v15,i, v18,i) =
c(v16,i, v18,i = c(v17,i, v18,i) = c(v18,j , v12,j+1) := 1/k,

c(v4,i, v12,i) = c(v8,i, v18,i) := 1,

c(v3,i, v5,i) = c(v12,i, v14,i) := 1 + 1/k,

for 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1, and maximum possible cost for all other edges such
that the β-triangle inequality is satisfied. Figure 10 shows the basic structure of
the graph. (Only some edges are shown). Observe that the graph consists of k
clusters, each consisting of 18 vertices. We denote these clusters by Ci, i.e., Ci :=
{v1,i, v2,i, . . . , v18,i}, for 1 ≤ i ≤ k. Furthermore, we call the set {v1,i, v2,i, v3,i, v4,i}
the upper left subcluster i, denoted ULSCi, the vertex set {v5,i, v6,i, v7,i, v8,i} the
upper right subcluster i, denoted URSCi, and the vertex set

{v13,j , v14,j , v15,j , v16,j , v17,j , v18,j , v9,j+1, v10,j+1, v11,j+1, v12,j+1}



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 307

the lower subcluster j, denoted LSCj, for 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1. Furthermore,
let v13,k, v14,k, v15,k, v16,k, v17,k, v18,k be the lower subcluster k, denoted LSCk.7

Lemma 3.3. The graph G18,k(β) satisfies the β-triangle inequality.

Proof. As above, we only show that G18,k(1) satisfies the triangle inequality.
Let {u, v, w} be a triangle, and let e = {u, v} be the edge with in it with highest

cost, i.e., the one that could be responsible for a violation. We show that at least
one other edge in the triangle has high enough cost such that e does not violate
the triangle inequality.

By construction, e can one of those edges shwon in Figure 10. Furthermore, all
other edges have cost at least 2/k. All edges in the entire graph thus have cost at
least 1/k, and we have to prove the statement only in the following four cases.
Case 1: e = {v3,i, v5,i}. If w ∈ ULSCi, then the shortest path from w to v5,i has
cost at least 1, and thus also the edge {w, v5,i}. Therefore, c(v3,i, v5,i) = 1+1/k ≤
1/k + 1 ≤ c(v3,i, w) + c(w, v5,i). Otherwise, the shortest path from v3,i to w has
cost at least 1, and thus also the edge {v3,i, w}. Therefore, c(v3,i, v5,i) = 1+1/k ≤
1 + 1/k ≤ c(v3,i, w) + c(w, v5,i).
Case 2: e = {v4,i, v12,i}. If w ∈ ULSCi, then the shortest path from w to v12,i

has cost at least 1, and thus also the edge {w, v12,i}. Therefore, c(v4,i, v12,i) =
1 ≤ 1/k + 1 ≤ c(v4,i, w) + c(w, v12,i). Otherwise, the shortest path from v4,i to w
has cost at least 1, and thus also the edge {v4,i, w}. Therefore, c(v4,i, v12,i) = 1 ≤
1 + 1/k ≤ c(v4,i, w) + c(w, v12,i).
Case 3: e = {v8,i, v18,i}. If w ∈ URSCi, then the shortest path from w to v18,i

has cost at least 1, and thus also the edge {w, v18,i}. Therefore, c(v8,i, v18,i) =
1 ≤ 1/k + 1 ≤ c(v8,i, w) + c(w, v18,i). Otherwise, the shortest path from v8,i to w
has cost at least 1, and thus also the edge {v8,i, w}. Therefore, c(v8,i, v18,i) = 1 ≤
1 + 1/k ≤ c(v8,i, w) + c(w, v18,i).
Case 4: e = {v12,i, v14,i}. If w ∈ LSCi, then the shortest path from v12,i to w
has cost at least 1, and thus also the edge {v12,i, w}. Therefore, c(v12,i, v14,i) =
1+1/k ≤ 1+1/k ≤ c(v12,i, w)+c(w, v14,i). Otherwise, the shortest path from w to
v14,i has cost at least 1, and thus also the edge {w, v14,i}. Therefore, c(v12,i, v14,i) =
1 + 1/k ≤ 1/k + 1 ≤ c(v12,i, w) + c(w, v14,i). �

Figure 11 shows a Hamiltonian path from v9,1 to v17,k in G18,k(β) of cost 3k +
2β2 +21β +5− (2β2 +β)/k. We show one possible implementation of the PMCA-
HPP2 that returns a Hamiltonian path of cost at least 5(k − 1)β2 from v9,1 to
v17,k on inputs G18,k(β) and A := {v9,1, v17,k}.

The PMCA first computes the minimum spanning tree shown in Figure 12. The
vertices in U are circled. It is easy to see that T is indeed a minimum spanning
tree. Every edge in the graph has cost at least 1/k, therefore the edges of cost
1/k incident to v4,i, v8,i, for 1 ≤ i ≤ k, v13,i, v18,i, v12,i+1, for 1 ≤ i ≤ k − 1,
and v12,1, form minimum spanning trees for the upper left, upper right, and lower

7 Note that, for 1 ≤ j ≤ k− 1, the vertex set LSCj contains vertices from both Cj and Cj+1,
so in particular LSCj �⊆ Cj .



308 S. KRUG

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1 v10,1 v11,1

v12,1

v13,1

v14,1

v15,1 v16,1 v17,1

v18,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2 v10,2 v11,2

v12,2

v13,2

v14,2

v15,2 v16,2 v17,2

v18,2 . . .

. . .
v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k v10,k v11,k

v12,k

v13,k

v14,k

v15,k v16,k v17,k

v18,k

Figure 11. A Hamiltonian path in G18,k(β) from v9,1 to v17,k of
length 3k + 2β2 + 21β + 5 − 2β2+β

k .

v1,1

v2,1

v3,1v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1 v11,1

v12,1

v13,1

v14,1

v15,1 v16,1 v17,1

v18,1

v1,2

v2,2

v3,2v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2 v11,2

v12,2

v13,2

v14,2

v15,2 v16,2 v17,2

v18,2
. . .

. . .
v1,k

v2,k

v3,kv4,k
v5,k

v6,k

v7,k

v8,k

v9,k v10,k v11,k

v12,k

v13,k

v14,k

v15,k v16,k
v17,k

v18,k

Figure 12. A minimum spanning tree in G18,k(β). The vertices
in U are circled.

subcluster i, respectively.8 We only have to add an edge for every component such
that it is connected to the rest in the end. All available edges have cost at least 1,
so we can just take the edges {v4,i, v12,i} and {v8,i, v18,i}, for 1 ≤ i ≤ k. After that,
all available edges to connect the different components have cost at least 1 + 1/k,
so we can just take the edges {v12,i, v14,i}, for 1 ≤ i ≤ k.

In the second step, the PMCA computes the minimum path matching M for U
shown in Figure 13 and sets w := v17,k, z := v9,1.

Theorem 3.4. M is a minimum path matching for U.

Assume for contradiction that some minimum path matching M ′′ for U has cost
less than 2k + 13 − 2/k.

Lemma 3.5. Without loss of generality, M ′′ contains the paths (v13,i, v14,i), for
1 ≤ i ≤ k.

Proof. Assume that two vertices v13,i, v14,i are not matched with each other in M ′′.
The shortest path with v13,i as an endpoint has, without loss of generality, the form

8 The same holds of course for the edges {v9,1, v12,1}, {v10,1, v12,1}, {v11,1, v12,1}, and the
vertex set {v9,1, v10,1, v11,1, v12,1}.



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 309

v1,1

v2,1

v3,1v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1 v11,1

v12,1

v13,1

v14,1

v15,1 v16,1 v17,1

v18,1

v1,2

v2,2

v3,2v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2 v11,2

v12,2

v13,2

v14,2

v15,2 v16,2 v17,2

v18,2
. . .

. . .
v1,k

v2,k

v3,kv4,k v5,k

v6,k

v7,k

v8,k

v9,k v10,k v11,k

v12,k

v13,k

v14,k

v15,k v16,k v17,k

v18,k

Figure 13. A minimum path matching for U in G18,k(β).

(v13,i, v14,i, . . . , u). Let v be the vertex matched with v14,i. Replace the two paths
with (v13,i, v14,i) and (u, . . . , v14,i, . . . , v) of the same cost. �

Lemma 3.6. Without loss of generality, v10,i is matched with v11,i and v15,i with
v16,i in M ′′, for 1 ≤ i ≤ k.

Proof. We first show that two of the three vertices v9,i, v10,i, v11,i are matched with
each other, for 2 ≤ i ≤ k.

Assume for contradiction that three different paths have one of the three ver-
tices as an endpoint. These three paths have, without loss of generality, the form
(v9,i, v12,i, . . . , v), (v10,i, v12,i, . . . , v

′), (v11,i, v12,i, . . . , v
′′). We can replace the first

two paths with the paths (v9,i, v12,i, v10,i) and (v, . . . , v12,i, . . . , v
′) of the same

cost. A similar argument shows that two of the three vertices v10,1, v11,1, v12,1 are
matched with each other.

Assume now for contradiction that v10,1 or v11,1 is matched with v12,1. As in
the proof of Lemma 2.6, we can flip the endpoints of the two paths having v10,1

and v11,1, respectively, as endpoints and obtain a path matching that contains the
path (v10,1, v12,1, v11,1).

For i > 1, assume for contradiction that v9,i is matched with v10,i or v11,i

in M ′′, i.e., M ′′ contains, without loss of generality, the path (v9,i, v12,i, v10,i)
or (v9,i, v12,i, v11,i) and the path (v11,i, v12,i, . . . , v) or (v10,i, v12,i, . . . , v), respec-
tively. We can again flip the endpoints and obtain the paths (v10,i, v12,i, v11,i) and
(v9,i, v12,i, . . . , v) of the same cost.

The proof is analogous for v15,i and v16,i. �

Lemma 3.7. Without loss of generality, v1,i is matched with v2,i and v6,i with
v7,i in M ′′, for 1 ≤ i ≤ k.

Proof. The proof is similar to the previous one. As above, we prove the statement
only for v1,i and v2,i. The proof is analogous for v6,i and v7,i.

Again, we first show that two of the three vertices v1,i, v2,i, v3,i are matched
with each other.

Assume for contradiction three different paths have one of the three ver-
tices as an endpoint. These paths have, without loss of generality, the form



310 S. KRUG

(v1,i, v4,i, . . . , u), (v2,i, v4,i, . . . , v), and (v3,i, . . . , w). (Observe that we cannot as-
sume, without loss of generality, that the third path contains v4,i, as e.g. the
shortest path from v3,i to v5,i only consists of the edge {v3,i, v5,i}.) We can replace
the first two paths with the paths (v1,i, v4,i, v2,i) and (u, . . . , v4,i, . . . , v) of the same
cost.

Assume for contradiction that v1,i or v2,i is matched with v3,i in M ′′, i.e., M ′′

contains, without loss of generality, the path (v1,i, v4,i, v3,i) or (v2,i, v4,i, v3,i) and
the path (v2,i, v4,i, . . . , v) or (v1,i, v4,i, . . . , v), respectively. We can replace these
two paths with the paths (v1,i, v4,i, v2,i), (v3,i, v4,i, . . . , v) of the same cost. �

The three proofs above do not interfere with each other, i.e., we can indeed obtain
a minimum path matching that satisfies the conditions of all three lemmata by
applying the transformations described in the respective proofs. In other words,
M ′′ contains, without loss of generality, all the paths (v1,i, v4,i, v2,i), (v6,i, v8,i, v7,i),
(v10,i, v12,i, v11,i), (v13,i, v14,i), (v15,i, v18,i, v16,i).

The remaining unmatched vertices in U are

{v3,i, v5,i | 1 ≤ i ≤ k} ∪ {v12,1, v18,k}∪
{v9,i | 2 ≤ i ≤ k} ∪ {v17,i | 1 ≤ i ≤ k − 1},

i.e., exactly four vertices per cluster remain unmatched.

Lemma 3.8. M ′′ contains no path with endpoints in different clusters.

Proof. We use induction. Assume for contradiction that two vertices in C1 are
matched with vertices outside C1. Without loss of generality, they both use the
edge {v18,1, v12,2}. Therefore, M ′′ is not edge-disjoint and thus not minimal. The
same argument can be applied inductively to every cluster. �

So we only have to find a minimum path matching for each cluster, i.e., for the
vertices v3,1, v5,1, v12,1, v17,1 in C1, for the vertices v3,i, v5,i, v9,i, v17,i in the clus-
ters 2 to k − 1, and for the vertices v3,k, v5,k, v9,k, v18,k in Ck. One can easily see
that the path matching

{(v3,1, v4,1, v12,1), (v5,1, v8,1, v18,1, v17,1)} ∪ {(v3,i, v4,i, v12,i, v9,i) | i ≥ 2}∪
{(v5,i, v8,i, v18,i, v17,i) | 2 ≤ i ≤ k − 1} ∪ {(v5,k, v8,k, v18,k)}

is such a minimum path matching, and therefore M ′′ contains, without loss of
generality, exactly these paths. They have cost

1+1/k+1+2/k+(k− 1) · (1+2/k)+ (k− 2) · (1+2/k)+1+1/k = 2k +4− 2/k.

Let us now compute the cost of M ′′. It contains k paths (v13,i, v14,i) of cost 1/k, 2k
paths (v10,i, v12,i, v11,i) and (v15,i, v18,i, v16,i) of cost 2/k each, another 2k paths



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 311

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1 v10,1 v11,1

v12,1

v13,1

v14,1

v15,1 v16,1 v17,1

v18,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2 v10,2 v11,2

v12,2

v13,2

v14,2

v15,2 v16,2 v17,2

v18,2 . . .

. . .
v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k v10,k v11,k

v12,k

v13,k

v14,k

v15,k v16,k v17,k

v18,k

Figure 14. A vertex-disjoint path matching for U in G18,k(β).

(v1,i, v4,i, v2,i) and (v6,i, v8,i, v7,i) of cost 2/k each, and the path matching described
in the previous paragraph of cost 2k + 4 − 2/k. In total, we get

k · 1/k + 2k · 2/k + 2k · 2/k + 2k + 4 − 2/k = 2k + 13 − 2/k,

which contradicts our assumption. This concludes the proof of Theorem 3.4.
The goal of the third step is to resolve all conflicts in the minimum path match-

ing M in such a way that z = v9,1 is still contained in the resulting vertex-disjoint
path matching M ′. The PMCA-HPP2 does this for every connected component
of M separately. The paths {(v13,i, v14,i) | 1 ≤ i ≤ k} contain no conflicts. Let us
therefore now look at the problematic paths of M , i.e.,

{(v1,1, v4,1, v12,1), (v2,1, v4,1, v3,1), (v10,1, v12,1, v11,1)}∪
{(v5,i, v8,i, v6,i), (v7,i, v8,i, v18,i, v17,i), (v15,i, v18,i, v16,i) | 1 ≤ i ≤ k − 1}∪
{(v1,i, v4,i, v12,i, v9,i), (v2,i, v4,i, v3,i), (v10,i, v12,i, v11,i) | 2 ≤ i ≤ k}∪
{(v5,k, v8,k, v6,k), (v7,k, v8,k, v18,k, v15,k), (v16,k, v18,k)}. (3.1)

In the first set, the PMCA-HPP2 bypasses v2,1 in the path (v10,1, v12,1, v11,1) and
v4,1 in the path (v1,1, v4,1, v12,1). In the second set, it bypasses v18,i in the path
(v15,i, v18,i, v16,i) and v8,i in the path (v7,i, v8,i, v18,i, v17,i). In the third set, it
bypasses v12,i in the path (v10,i, v12,i, v11,i) and v4,i in the path (v1,i, v4,i, v12,i, v9,i).
In the fourth set, it transform the two paths (v7,k, v8,k, v18,k, v15,k), (v16,k, v18,k)
into the paths (v15,k, v16,k), (v7,k, v8,k, v18,k) and bypasses v8,k in the latter path.
This results in the vertex-disjoint path matching M ′ shown in Figure 14.

Now the PMCA-HPP2 computes an Eulerian path from w to z. Because M ′

contains no paths with w or z as an endpoint, the algorithm computes an Eulerian
path from z to y in T −{y, w} and M ′, where y is the neighbor of w towards z in T,
i.e., y = v18,k. Then, the PMCA-HPP2 appends {y, w} to this path and obtains
the Eulerian path P from v9,1 to v17,k shown in Figure 15.

The goal of the fifth step is that every vertex is incident to at most three edges
from T. The PMCA-HPP2 achieves this by considering every path p in P consisting
only of edges from T separately. If the vertex closest to r := z = v9,1 in p is internal



312 S. KRUG

v1,1

v2,1

v3,1

v4,1

v5,1

v6,1

v7,1

v8,1

v9,1 v10,1 v11,1

v12,1

v13,1

v14,1

v15,1 v16,1 v17,1

v18,1

v1,2

v2,2

v3,2

v4,2

v5,2

v6,2

v7,2

v8,2

v9,2 v10,2 v11,2

v12,2

v13,2

v14,2

v15,2 v16,2 v17,2

v18,2
. . .

. . .
v1,k

v2,k

v3,k

v4,k

v5,k

v6,k

v7,k

v8,k

v9,k v10,k v11,k

v12,k

v13,k

v14,k

v15,k v16,k v17,k

v18,k

Figure 15. The Eulerian path P. The paths of M ′ are dashed.

v1,1

v2,1

v3,1

v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1 v11,1

v12,1

v13,1

v14,1

v15,1 v16,1 v17,1

v18,1 . . .

. . .
v1,2

v2,2

v3,2

v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2 v11,2

v12,2

v13,2

v14,2

v15,2 v16,2 v17,2

v18,2

v1,k

v2,k

v3,k

v4,k v5,k

v6,k

v7,k

v8,k

v9,k v10,k v11,k

v12,k

v13,k

v14,k

v15,k v16,k v17,k

v18,k

Figure 16. The modified Eulerian path P ′. The paths of M ′ are
dashed.

to p, it is bypassed. Therefore, it bypasses v4,i between v3,i and v1,i and v8,i

between v5,i and v7,i, for 1 ≤ i ≤ k, v12,1 between v11,1 and v14,1, v12,i between v9,i

and v14,i and between v10,i and v4,i, for 2 ≤ i ≤ k, v18,i between v16,i and v8,i and
between v17,i and v12,i+1, for 1 ≤ i ≤ k−1, and finally v18,k between v16,k and v8,k.
This results in the Eulerian path P ′ shown in Figure 16.

The goal of the last step is that every vertex except v9,1 and v17,k has degree 2.
The problematic vertices are thus v4,i, v8,i, v12,i, v14,i, v18,i, for 1 ≤ i ≤ k. Because
w = v17,k is not a conflict in P ′, the PMCA-HPP2 starts with the resolution of
an arbitrary conflict. It obtains the Hamiltonian path P ′′ shown in Figure 17 by
bypassing

• v4,1 between v12,1 and v2,1, and every other v4,i between v10,i and v2,i;
• v8,i between v16,i and v6,i, for 1 ≤ i ≤ k;
• v12,1 between v1,1 and v10,1, and every other v12,i between v1,i and v9,i;
• v14,1 between v11,1 and v13,1, and every other v14,i between v9,i and v13,i;
• v18,i between v7,i and v17,i, for 1 ≤ i ≤ k.

Considering only the edges {v1,i, v9,i}, {v2,i, v10,i}, {v6,i, v16,i}, {v7,i, v17,i},
{v9,i, v13,i}, for 2 ≤ i ≤ k, we obtain cost(P ′′) ≥ 5(k − 1)β2. For every β ≥ 1 and
arbitrarily small ε > 0, we have thus shown that there is an implementation I of



ANALYSIS OF A NEAR-METRIC TSP APPROXIMATION ALGORITHM 313

v1,1

v2,1

v3,1

v4,1 v5,1

v6,1

v7,1

v8,1

v9,1 v10,1 v11,1

v12,1

v13,1

v14,1

v15,1 v16,1 v17,1

v18,1
. . .

. . .
v1,2

v2,2

v3,2

v4,2 v5,2

v6,2

v7,2

v8,2

v9,2 v10,2 v11,2

v12,2

v13,2

v14,2

v15,2 v16,2 v17,2

v18,2

v1,k

v2,k

v3,k

v4,k v5,k

v6,k

v7,k

v8,k

v9,k v10,k v11,k

v12,k

v13,k

v14,k

v15,k v16,k v17,k

v18,k

Figure 17. The Hamiltonian path P ′′.

the PMCA-HPP2 such that

cost(I(G18,k(β)))
OptΔβ−HPP2

(G18,k(β))
≥ 5(k − 1)β2

3k + 2β2 + 21β + 5 − 2β2+β
k

≥ 5
3
β2 − ε, (3.2)

for sufficiently large k, i.e., we have shown that the upper bound of 5β2/3 on the
approximation ratio of the PMCA-HPP2 is tight.

4. Conclusion

We proved that the upper bound on the path matching Christofides algorithm
(PMCA) as well as the upper bounds on the PMCA-HPPl, for l ∈ {0, 1, 2}, are
tight. The implications of these results are twofold. On the one hand, we know now
that these algorithms can indeed return a result that is as bad as possible, i.e.,
the upper bounds cannot be improved. Thus, if we want algorithms that provide
better upper bounds, we have to come up with new ones. Indeed, for the special
case of the metric HPP2, a recent result due to An et al. [1] improves the upper
bound to (1 +

√
5)/2 ≈ 1.6180. On the other hand, the structure of the worst-case

examples may provide insights into why the algorithms perform badly and may
help devise better algorithms.

References

[1] H.-C. An, R. Kleinberg and D.B. Shmoys, Improving Christofides’ algorithm for the s-t path
TSP. In Proc. of the 44th symposium on Theory of Computing (STOC 2012) 875–886.

[2] T. Andreae, On the Traveling Salesman Problem Restricted to Inputs Satisfying a Relaxed
Triangle Inequality. Networks 38 (2001) 59–67.

[3] M.A. Bender and C. Chekuri, Performance guarantees for the TSP with a parameterized
triangle inequality. Inf. Proc. Lett. 73 (2000) 17–21.

[4] H.-J. Böckenhauer and J. Hromkovič, Stability of approximation algorithms or parameteriza-
tion of the approximation ratio. In Proc. of the 9th International Symposium on Operations
Research in Slovenia (SOR 2007) 23–28.



314 S. KRUG

[5] H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert and W. Unger, Towards the notion
of stability of approximation for hard optimization tasks and the traveling salesman problem.
Theor. Comput. Sci. 285 (2002) 3–24.

[6] H.-J. Böckenhauer, J. Hromkovič and S. Seibert, Stability of Approximation. In Handbook
of Approximation Algorithms and Metaheuristics, edited by T.F. Gonzalez. Chapman &
Hall, Boca Raton (2007).

[7] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical Report 388. Carnegie Mellon University, Graduate School of Industrial Adminis-
tration (1976).

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms. MIT
Press, Cambridge (2009).

[9] L. Forlizzi, J. Hromkovič, G. Proietti and S. Seibert, On the Stability of Approximation for
Hamiltonian Path Problems. Alg. Oper. Res. 1 (2006) 31–45.

[10] E.G. Goodaire and M.M. Parmenter, Discrete Mathematics with Graph Theory. Prentice
Hall, Upper Saddle River (2005).

[11] J.A. Hoogeveen, Analysis of Christofides’ heuristic: Some paths are more difficult than cycles.
Oper. Res. Lett. 10 (1991) 291–295.

[12] J. Hromkovič, Algorithmics for Hard Problems. Introduction to Combinatorial Optimiza-
tion, Randomization, Approximation, and Heuristics. Springer, Heidelberg (2004).

[13] S. Krug, Analysis of Approximation Algorithms for the Traveling Salesman Problem in
Near-Metric Graphs. Master’s thesis. ETH Zurich, Department of Computer Science (2011).

[14] T. Mömke, Structural Properties of Hard Metric TSP Inputs. In Proc. 37th Int. Conf. on
Current Trends in Theory and Practice of Computer Science (SOFSEM 2011) 394–405.

Communicated by C. De Figueiredo.
Received December 18, 2012. Accepted July 11, 2013.


	Introduction
	The PMCA for the traveling salesman problem
	The PMCA for the Hamiltonian path problem
	Conclusion
	References

