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NEW APPLICATIONS OF THE WREATH PRODUCT
OF FOREST ALGEBRAS ∗

Howard Straubing
1

Abstract. We give several new applications of the wreath product
of forest algebras to the study of logics on trees. These include new
simplified proofs of necessary conditions for definability in CTL and
first-order logic with the ancestor relation; a sequence of identities sat-
isfied by all forest languages definable in PDL; and new examples of
languages outside CTL, along with an application to the question of
what properties are definable in both CTL and LTL.
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1. Introduction

The present paper is part of an ongoing effort to understand what properties
of finite labeled trees are expressible in first-order logic and related logics (e.g.,
CTL, CTL∗, PDL). Recently, some progress has been made in approaching such
problems through algebraic means. The idea is that one associates to a given
regular tree language L a finite algebra (called the syntactic forest algebra of L)
in much the same way that the syntactic monoid is associated to a regular lan-
guage of words. Definability of L in a given logic is often reflected in computable
properties of the associated algebra. This approach has led to effective charac-
terizations of the properties definable in a number of logics (e.g., the temporal
logics EF and EX [3,7], first-order logic with successor [1], boolean combinations
of Σ1-languages [6], among others). For those logics for which such an effective
test is still lacking, the algebraic method has led to the formulation of necessary
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conditions for definability [7] and consequent proofs that certain properties cannot
be expressed in a logic.

The results of Bojaǹczyk et al. [7], in particular, use the wreath product of
forest algebras as the principal tool. Here we continue this line of work, providing
a number of novel examples of how these algebraic tools can be applied. Our
principal results are the following.

• We give simple new proofs of effective necessary conditions for definability in
CTL and first-order logic with the ancestor relation. These appear in [7] as the
absence of certain kinds of ‘vertical confusion’. Our proof takes advantage of
some natural expansion operations on forest algebras, which are of independent
interest.

• We provide a sequence of identities that must be ultimately satisfied by the
syntactic forest algebra of any language in CTL∗ or PDL. These identities are
a kind of generalized distributive law. We apply these results to show that there
are languages in EF of arbitrarily high operator complexity within PDL, as
well as a new proof that certain languages are not definable in FO[≺]. While
the non-definability results are known, the formulation in terms of identities is
new.

• We consider the question of the overlap between LTL and CTL, previously
studied by Maidl [11] and Bojaǹczyk [5]. We show that certain forest languages
are outside CTL by methods that appear to be fundamentally new. We apply
these to characterize the finite monoids M with the property that if L is any
regular language of words recognized by M, then the set of forests with a
maximal path in L is definable in CTL.

Our results, especially those concerning the generalized distributive laws and the
overlap of CTL and LTL, suggest a number of open problems, which we discuss
in the conclusion.

The paper illustrates the advantages of studying problems about logical ex-
pressibility in an algebraic setting. Once the machinery of forest algebras is in
place, the applications to logic follow in a straightforward manner. The algebra is
thus a source of new insights as well as a valuable complement to more traditional
model-theoretic methods like Ehrenfeucht–Fräıssé games.

In Section 2 we provide a brief review of the algebraic model. We also take this
opportunity to correct an error in the proof of a fundamental fact about division
of finite forest algebras that appeared in [7]. Section 3 gives the definitions of the
logics we consider in this paper. Because we deal with unranked finite forests,
rather than infinite trees, the definitions of languages like CTL look somewhat
different in this setting from the traditional formulations.

In Sections 4−6 we provide our applications. Section 4 shows how the ‘vertical
confusion’ criteria of [7] can be formulated and proved in a simple, natural fashion
by using certain expansions of forest algebras. In Section 5 we establish identities
that must be satisfied by forest languages in PDL, and use them to prove some
non-definability and hierarchy results. In Section 6 we take up the question of the
overlap between CTL and LTL. The concluding section lists some open problems.
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Figure 1. The forest a(b + ca) + ba(c+ a+ b(c+ a)).

2. Preliminaries

There are by now many basic surveys and a few books on the algebraic theory
of automata over words, including the syntactic monoid, variety theory, and the
ideal structure of finite semigroups. We refer the reader to Pin [13, 14].

Forest algebras are much newer. Most of the basic material on these algebras and
our particular approach to logics on trees can be found in Bojaǹczyk et al., [3, 7].
Here we repeat some of the principal definitions.

2.1. Trees and forests

Let A be a finite alphabet. We define trees and forests over A by mutual recur-
sion: If s is a forest and a ∈ A, then as is a tree. If t1, . . . , tn is a finite sequence
of trees, then t1 + . . . + tn is a forest. The recursion gets started with the empty
sequence of trees, whose sum we denote by 0. Thus a forest is a formal expression
like

a(b0 + ca0) + ba(c0 + a0 + b(c0 + a0)),

where a, b, c ∈ A. We usually drop the 0’s when we write such expressions. We
draw the forest in the obvious fashion as in Figure 1.

We then adopt the standard tree terminology, and write about nodes, root nodes
and leaf nodes, children, parents, ancestors and descendants of nodes, the subtree
rooted at a node, and the forest of a node, which consists of all the strict descen-
dants of a node. We write tx for the subtree rooted at the node x, and fx for the
forest of x. The set of all forests over A, is denoted HA. HA forms a monoid, with
0 as the identity element. Observe that the operation + is noncommutative.

2.2. Contexts

If we replace one leaf of a forest by a hole, denoted �, we obtain a context.
Figure 2 shows several contexts, both as diagrams and as formal expressions.

We denote the set of all contexts over A by VA. Let p, q ∈ VA, and x ∈ HA. We
obtain a new context pq upon replacing the hole in p by q, and a new forest ps
upon replacing the hole in p by s. With these operations we have
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Figure 2. The contexts a(b(c + �) + ca), � + a(b(c + a) + ca),
and �.

(pq)r = p(qr),

�p = p� = p,

p(qs) = (pq)s,

�s = s,

for any p, q, r ∈ VA; s ∈ HA. Thus VA forms a monoid with respect to substitution,
with � as the identity, and substitution of a forest in a context defines a left action
of the monoid VA on HA. (We emphasize that this is an action of a monoid on the
set HA: the operation in HA plays no role here).

2.3. Forest algebras

The pair (HA, VA) is an instance of a special kind of algebraic structure, called
a forest algebra, first introduced by Bojanczyk and Walukiewicz in [3]. In general,
a forest algebra is a pair (H,V ) satisfying the following properties:

• H is a monoid. The operation inH is written additively, and its identity element
is accordingly denoted 0.

• V is a monoid. The operation in V is written multiplicatively, so its identity is
usually denoted 1. (In some specific instances, as in the forest algebra (HA, VA),
the identity is denoted �).

• There is a left action of the monoid V on the set H. This means

(v1v2)h = v1(v2h), 1 · h = h,

for all v1, v2 ∈ V, h ∈ H.
• The action is faithful. That is, if v1h = v2h for all h ∈ H, then v1 = v2.
• Let g ∈ H. Then there exist elements of V, which we denote 1 + g and g + 1,

such that for all h ∈ H,

(g + 1)h = g + h, (1 + g)h = h+ g.
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In the case of (HA, VA), these elements are contexts of the form � + s, and
s + �, where s is a forest, (See, for example, the second context in Fig. 2).
Since ((g + 1)v)h = (g + 1)vh = g + vh for v ∈ V, we denote (g + 1)v by g + v,
and similarly write v + g for (1 + g)v.

We call H the horizontal monoid of (H,V ), and V the vertical monoid. A ho-
momorphism α : (H1, V1) → (H2, V2) is actually a pair of monoid homomorphisms

αH : H1 → H2, αV : V1 → V2

that also respects the left action, in other words,

αV (v)αH(h) = αH(vh)

for all v ∈ V, h ∈ H. Usually we drop the subscripts H and V and simply write
α for both components. Observe that if α maps onto V2, then it maps onto H2 as
well, since we then have for any h ∈ H2,

h = (1 + h) · 0 = αV (v) · 0 = αV (v)αH(0) = αH(v · 0)

for some v ∈ V1. Similarly, if two homomorphisms agree on the vertical monoid of
the domain, they agree on the horizontal monoid.

(HA, VA) is called the free forest algebra on A, and is also denoted AΔ. The free
forest algebra has the following universal property: If (H,V ) is a forest algebra, and
f : A→ V is any function, then there is a unique homomorphism α : AΔ → (H,V )
such that α(a�) = f(a) for all a ∈ A.

We now discuss a critical relation on forest algebras called division. Let (H1, V1),
(H2, V2) be forest algebras, and let H ′ be a submonoid of H2, V

′ a submonoid of
V2, such that V ′ contains all contexts 1+h, h+1 with h ∈ H ′ and V ′H ′ ⊆ H ′. We
call (H ′, V ′) a subalgebra of (H2, V2), although strictly speaking it may fail to be
a forest algebra, since V ′ might not act faithfully on H ′. We say (H1, V1) divides
(H2, V2) and write (H1, V1) ≺ (H2, V2), if there is such a subalgebra, together with
an onto homomorphism α : (H ′, V ′) → (H1, V1).

The theorem below gives an equivalent characterization of division. This is very
close to, and in fact is slightly stronger than, a similar result (Lem. 4.2) of [7]. It
is worth giving a careful proof, since there is a gap in the argument in [7], which
is not entirely trivial to fill.

Theorem 2.1. Let A be a finite alphabet, and ψ a homomorphism from AΔ onto
a forest algebra (H1, V1). Then (H1, V1) ≺ (H2, V2) if and only if there exists a
submonoid K of H2, an onto monoid homomorphism Φ : K → H1, and for each
a ∈ A, an element â of V2 such that âK ⊆ K, and Φ(âh) = ψ(a�)Φ(h) for all
h ∈ K.

Proof. One direction is trivial: If (H1, V1) ≺ (H2, V2), then the horizontal part of
the forest algebra homomorphism Φ from a subalgebra (K,W ) of (H2, V2) onto
(H1, V1) provides us with the monoid homomorphism Φ : K → H1. Further, for



266 H. STRAUBING

each a ∈ A, there is an element â ∈ W such that Φ(â) = ψ(a�), and the desired
property follows from the definition of forest algebra homomorphisms.

Conversely, suppose we have a homomorphism Φ : K → H1, and a map a �→ â as
in the statement of the theorem. By the universal property of free forest algebras,
this map determines a unique homomorphism α : AΔ → (H2, V2). We claim that
for all s ∈ HA, α(s) ∈ K, and Φα(s) = ψ(s). In particular, α(s) = α(s′) implies
ψ(s) = ψ(s′).

Assuming the claim is true, let us see how it implies (H1, V1) ≺ (H2, V2). We
set

H ′ = {α(p · 0) : p ∈ VA},
V ′ = {α(p) : p ∈ VA}.

By the claim, H ′ is contained in K. H ′ is a submonoid of K, since

α(p · 0) + α(q · 0) = α(p · 0 + q · 0)
= α((p+ q · 0) · 0)
∈ H ′,

and 0 = α(1 · 0) ∈ H ′. V ′H ′ ⊆ H ′, because α(p)α(q · 0) = α((pq) · 0). If h ∈ H ′,
then h = α(p · 0) for some p ∈ VA, and thus 1 + h = α(� + p · 0) ∈ V ′, and
likewise h + 1 ∈ V ′. Thus (H ′, V ′) is a subalgebra, in the sense described above.
We now define a pair of maps, both denoted θ, from H ′ to H1 and from V ′ to V1.
If h = α(p · 0) for some p ∈ VA, then we set θ(h) = ψ(p · 0). By our claim above,
this is well-defined. θ is a homomorphism from H ′ to H1, because if s = α(p · 0),
t = α(q · 0), we have

θ(s+ t) = θ(α(p · 0) + α(q · 0))
= θ(α((p + q · 0) · 0))
= ψ((p+ q · 0) · 0)
= ψ(p · 0 + q · 0)
= ψ(p · 0) + ψ(q · 0)

= θ(s) + θ(t).

If v ∈ V ′ and v = α(p), then we set θ(v) = ψ(p). We must show that this is
well-defined: If α(p) = α(q) and h ∈ H1, then h = ψ(s) for some s ∈ HA. Thus
α(ps) = α(qs), so our claim gives

ψ(p)h = ψ(ps) = ψ(qs) = ψ(q)h,

and since h was arbitrary, faithfulness gives ψ(p) = ψ(q). It is straightforward to
verify that θ is a monoid homomorphism from V ′ to V1, and that it preserves the
left action and maps onto V1. Thus (H1, V1) ≺ (H2, V2).

It remains to establish the claim. We prove by induction on the number of nodes
in a forest s ∈ HA that Φ(α(s)) = ψ(s). This is true if s is the empty forest 0.
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If s is nonempty, it can either be written as s1 + s2, where s1 and s2 both have
fewer nodes than s, or as as′, where a ∈ A and s′ ∈ HA has fewer nodes than s.
In the first case, Φα(s1 + s2) = ψ(s1 + s2) follows immediately from the inductive
hypothesis and the fact that Φ, α and ψ are homomorphisms. In the second case,
the inductive hypothesis and the property of â give

Φ(α(as′)) = Φ(α(a)α(s′))
= Φ(âα(s′))
= ψ(a�)Φ(α(s′))
= ψ(a�)ψ(s′)

= ψ(as′). �

As mentioned above, there is a very similar theorem in [7] (essentially the case
where the alphabetA is identical to V and ψ extends the identity map on A). In the
proof of that result, it is claimed without justification that if αi : AΔ → (Hi, Vi) for
i = 1, 2, are forest algebra homomorphisms, and if for all p, q ∈ VA, α1(p) = α1(q)
implies α2(p) = α2(q), then (H1, V1) ≺ (H2, V2). While the analogous property
for semigroup or group homomorphisms is trivial, in the forest algebra setting it
requires a careful argument.

2.4. Forest languages and syntactic forest algebra

A set L ⊆ HA is called a forest language. Let α : AΔ → (H,V ) be a homomor-
phism, and let X ⊆ H. We say that L = α−1(X) is recognized by α, and also that
it is recognized by (H,V ). If L is recognized by a finite forest algebra, then we
say that L is a regular forest language. This coincides with the usual notions of
regularity for unranked trees (see, for example, Libkin [10]): While we deal with
forests rather than trees, L is a regular forest language in our formulation if and
only if aL is a regular tree language for all a ∈ A.

If L ⊆ HA then we define an equivalence relation ∼L on HA, called the syntactic
congruence of L, by setting s1 ∼L s2 if the sets {p ∈ VA : psi ∈ L} for i = 1, 2 are
equal. This equivalence is compatible with the addition in HA, and contexts in VA
act on equivalence classes in a well-defined manner. If p, p′ ∈ VA we define p ∼L p′
if p, p′ induce the same map on equivalence classes; i.e., ps ∼L p′s for all s ∈ HA.
We thus obtain a homomorphism ηL : AΔ → (HL, VL), where HL = HA/ ∼L,
and VL = VA/ ∼L . The equivalence ∼L was defined on contexts, precisely so that
contexts that act identically on classes of forests are equivalent. Thus the action
of VL on HL is faithful, so (HL, VL) is a forest algebra. (HL, VL) and ηL and are
called, respectively, the syntactic forest algebra and syntactic morphism of L. We
have the following fundamental theorem, an analogue of well-known properties of
the syntactic monoids of word languages:

Theorem 2.2. Let L ⊆ HA. A homomorphism α : AΔ → (H,V ) recognizes L if
and only if for all s, t ∈ HA, α(s) = α(t) implies s ∼L t.
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Figure 3. A forest algebra diagram. Here α+ α = α.

In particular, (HL, VL) divides any forest algebra recognizing L, and (HL, VL)
is finite if and only if L is a regular forest language.

State diagrams for forest algebras. This paper contains a number of diagrams il-
lustrating the syntactic forest algebras of various languages, and more generally
homomorphisms α from AΔ onto a finite forest algebra (H,V ). Here we describe
some of the conventions we use in these diagrams. Nodes in the diagram represent
elements of H. We draw an arrow labeled a from h to h′ if and only if α(a�)h = h′.
The resulting labeled digraph, together with the addition in H, completely deter-
mine both α and the algebra (H,V ). In the case where α = ηL is the syntactic
morphism of a forest language L, L itself is a union of ∼L classes, and we will
indicate a class in L by a doubled circular boundary on the corresponding node.
Very often, we can simplify the presentation by stipulating some additional prop-
erties: For instance, most of the examples in this paper will have H idempotent
and commutative. In this case, we can label the nodes in such a manner that the
addition in H is easily inferred from the label. For example, the set of forests over
{a, b} in which some maximal path is in a∗b has its syntactic forest algebra given
by the diagram in Figure 3. Here we need to stipulate one additional piece of in-
formation not implicit in the transitions or in the node labels 0 and ∞: namely
that α+ α = α.

Wreath products. The wreath product is an operation on transformation monoids
that extends in a straightforward manner to forest algebras. Given forest algebras
(H1, V1), (H2, V2) we define a new forest algebra

(H1, V1) ◦ (H2, V2) = (H1 ×H2, V1 × V H1
2 ).

The addition in H1 ×H2 is simply the direct product, and the action is given by

(v, f) · (h1, h2) = (vh1, f(h1)h2).

It is easy to verify (see [7]) that (H1, V1) ◦ (H2, V2) is indeed a forest algebra. The
wreath product of forest algebras is associative.
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3. Logics for forest languages

3.1. First-order and generalized temporal logics for forests.

We describe some predicate and temporal logics for forests. While these are by
and large well known, they are often encountered in the setting of infinite trees,
rather than finite forests, where the definitions look a bit different.

First-order logic. Let A be a finite alphabet. Variables in first-order formulas rep-
resent nodes in a forest. The atomic formulas are of two kinds: Qax, where a ∈ A,
means that node x is labeled a, while x ≺ y means node x is a (not necessarily
strict) ancestor of node y. We can thus interpret sentences (formulas with no free
variables) in forests. We write s |= φ if the sentence φ is true when interpreted in
s ∈ HA, and denote by Lφ the set of all s ∈ HA such that s |= φ. We also say that
the sentence φ defines the language Lφ.

For example, the set of all forests in which some maximal path belongs to a∗b
is defined by the sentence

∃x(Qbx ∧ ∀y(x ≺ y → x = y) ∧ ∀y(y ≺ x→ x = y ∨Qay)).

The subformula ∀y(x ≺ y → x = y) says that x is a leaf node, and the subformula
∀y(y ≺ x→ x = y ∨Qay) says that every strict ancestor of x is labeled a.

We denote both the family of languages defined by such sentences, as well as
the family of sentences itself, by FO[≺].

Generalized temporal logic. Our temporal formulas come in two flavors–tree for-
mulas and forest formulas. The syntax and semantics of both kinds of formulas
are defined by mutual recursion. The syntax is given by these rules:

• If a ∈ A, then a is a tree formula.
• Every forest formula is a tree formula.
• � and ⊥ are forest formulas.
• If φ, ψ are tree formulas (respectively, forest formulas), then so are φ∨ψ, φ∧ψ,

and ¬φ.
• Let ψ1, . . . , ψk−1 be a collection of tree formulas. We define new tree formulas
φ1, . . . , φk by setting

φ1 = ψ1,

φi = ψi ∧
∧
j<i

¬ψj ,

for 1 < i < k, and
ψk =

∧
j<k

¬ψj .

A family Φ = {φ1, . . . , φk} constructed in this way is said to be unambiguous.
We treat such an unambiguous collection of formulas as a finite alphabet, and
take a regular language of words K ⊆ Φ∗. Then EK is a forest formula.
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We interpret forest formulas in forests, and tree formulas in trees, and therefore
we have two notions, |=forest and |=tree . The rules defining these semantic relations
parallel those given above for the syntax.

• Let a ∈ A, and t a tree over A. Then t |=tree a if and only if t = as, for some
s ∈ HA. (That is, the root node of t is labeled a.)

• Let φ be a forest formula, a ∈ A, and s ∈ HA. Then as |=tree φ if and only if
s |=forest φ. (In other words, a tree t tree-satisfies φ if and only if the forest fx
of its root node x forest-satisfies φ.)

• For all s ∈ HA, s |=forest � and s �|=forest ⊥.
• Boolean connectives ∨,∧,¬ have their usual meanings for both tree-satisfaction

and forest-satisfaction.
• Let Φ be an unambiguous family of tree formulas, and let K ⊆ Φ∗. Let s ∈ HA.

By the way the formulas of Φ were constructed, we can label each node x of
s by the unique φ ∈ Φ such that tx |=tree φ. Then s |=forestEK if and only if
there is a path of nodes x1 . . . xr beginning at a root of s (but not necessarily
extending all the way to a leaf) whose sequence of labels φ1 . . . φr belongs
to K.

If φ is a forest formula,then we denote by Lφ the set of all forests s ∈ HA such
that s |=forest φ.

We give some examples of how this formalism is used.

Example 3.1. Let A = {a, b}. The unambiguous set Φ constructed from the
single tree formula a is then just {a,¬a}, and since we are working over {a, b},
this is equivalent to taking Φ = {a, b}. Let K be the word language a∗b. Then EK
is satisfied by the forests that contain a node labeled b. Observe that this is not
the same thing as the set of forests in which there is a maximal path in a∗b, which
we saw in an earlier example. We abbreviate the formula EK by EFb.

Example 3.2. More generally, if ψ is any tree formula, then the forest formula
E((¬ψ)∗ψ) defines the set of all forests in which some node tree-satsifies ψ. We
denote this formula EFψ.

Example 3.3. Again let A = {a, b}. The forest formula emp = ¬(EFa ∨ EFb) is
satisfied only by the empty forest. (We can similarly define emp for any finite input
alphabet A.) Let ψ1 be the tree formula a, and ψ2 the tree formula b ∧ emp. The
unambiguous family Φ constructed from {ψ1, ψ2} is therefore {ψ1, ψ2,¬ψ1∧¬ψ2}.
Observe that the tree rooted at a node x tree-satisfies ψ2 if and only if x is a leaf
labeled b. The set of forests with a maximal path in a∗b is thus defined by the
forest formula E(ψ∗

1ψ2).

Example 3.4. Let ψ be any tree formula, so that Φ = {ψ,¬ψ} is the unambiguous
family constructed from {ψ}. The forest formula Eψ(ψ∪¬ψ)∗ thus defines the set
of forests in which the tree rooted at some root node satisfies ψ. (Alternatively, we
could simply write this as Eψ.) We abbreviate this formula EXψ. So, for instance,
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in the simplest case A = {a, b}, the forest formula EXa defines the set of forests in
which some root node is labeled a, and the tree formula EXa is satisfied by those
trees in which some child of the root is labeled a.

This extended temporal logic has been variously called ‘chain logic’ or ‘propo-
sitional dynamic logic’, although these terms were originally introduced in other
contexts. We will use PDL here to maintain consistency with the notation of [7].
If we restrict application of the operator EK to word languages K that are them-
selves definable by first-order sentences over <, we obtain the logic CTL∗.

Let φ, ψ be any tree formulas. The unambiguous family Φ obtained from {φ, ψ}
is {φ, ψ ∧¬φ,¬ψ ∧ ¬φ}. We write EψUφ as an abbreviation for the forest formula
E(ψ ∧ ¬φ)∗φ. If s ∈ HA then s |=forest EψUφ if and only if there is a node x such
that tx |=tree φ, and for all ancestors y of x, ty |=tree ψ. In other words, there is a
path on which ‘ψ holds until φ’.
CTL denotes the family of languages definable by formulas in which application

of the EK operator is restricted to have this form. We also denote by CTL the
family of such formulas. Note that we can recover both the EX and EF operators
in CTL, since EXψ is equivalent to E⊥Uψ, and EFψ is equivalent to E(¬ψ)Uψ.

The family of forests over {a, b} with a maximal path in a∗b is defined by the
CTL formula EaU(b∧emp). Using a similar trick, we can show how to obtain a kind
of universal quantification within CTL: Usually CTL is defined for infinite trees,
and traditional treatments include another operator, that allows one to express
‘there exists a maximal path that does not satisfy ‘ψ until φ’ ’ [9]. To see how
to do this in our present framework for finite forests, we may assume that ψ is
equivalent to ψ ∧ ¬φ, as this does not change the meaning of ‘ψ until φ’, and set
ρ to be ¬ψ ∧ ¬φ. A maximal path that does not satisfy ‘ψ until φ’ either has the
property that every node satisfies ψ, or there is a node satisfying ρ such that every
strict ancestor of the node satisfies ψ. Thus the existence of such a path is given
by the formula

EψU(ψ ∧ emp) ∨ EψUρ.

There is an important subtlety here. Consider the property ‘there are two con-
secutive b’s’, which is the same as ‘there is a maximal path with two consecutive
b’s’. One might expect the negation trick just described to allow us to express
‘there exists a maximal path without two consecutive b’s’. However when write
the original property as

EF(b ∧ EXb),

and apply the negation trick, we get the formula

E¬(b ∧ EXb)U(¬(b ∧ EXb) ∧ emp),

which simplifies to
E¬(b ∧ EXb)Uemp.
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Figure 4. The forest algebra U2.

This says that there is a maximal path along which every node is either a, or
is labeled b but has no child labeled b. Observe that this is not the same thing
as ‘there is a maximal path without two consecutive b’s’. For example, the forest
b(b+ a) has a maximal path without two consecutive b’s, but does not satisfy the
formula. As we shall see later on (Thm. 6.1), the property ‘there exists a maximal
path without two consecutive b’s’ is not expressible in CTL.

3.2. Wreath product characterization of logically defined families

The principal result of [7] is a characterization of the languages definable in
these logics in terms of iterated wreath products of certain basic forest algebras.
We state the relevant parts of this theorem below.

We say that a finite forest algebra (H,V ) is horizontally idempotent and com-
mutative if H is an idempotent and commutative monoid. (H,V ) is distributive if
v(h1 + h2) = vh1 + vh2 holds for all v ∈ V ; h1, h2 ∈ H. (H,V ) is aperiodic if V
is an aperiodic monoid (i.e., V contains no nontrivial groups) and (H,V ) is flat if
H is commutative and V = {1 + h : h ∈ H}.

The forest algebra U2 is given by Figure 4.
The conventions about the use of the symbols 0 and ∞ imply that U2 is horizon-

tally idempotent and commutative. The diagram only shows generators c0, c∞ of
the vertical monoid, but it is easy to verify that apart from the identity, these are
the only elements, since cxcy = cx for any x ∈ {0,∞}, and 1+0 = 1, 1+∞ = c∞.
U2 is distributive and aperiodic, but not flat. (Recall that 1 + 0 and 1 + ∞ are
instances of the operation (v, h) �→ v + h, and represent elements of the vertical
monoid).

We associate to various logics L a family AL of basic forest algebras, as follows:

• APDL consists of the horizontally idempotent and commutative, distributive
forest algebras.

• ACTL∗ consists of the algebras in APDL that are also aperiodic.
• AFO[≺] consists of the algebras in ACTL∗ together with the flat aperiodic

algebras.
• ACTL = {U2}.
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Theorem 3.5. Let A be a finite alphabet, and let L ⊆ HA. Let L be any of the
logics PDL,CTL∗, FO[≺], CTL. Then L is definable in L if and only if it is
recognized by a wreath product

(H1, V1) ◦ . . . ◦ (Hk, Vk),

where each (Hi, Vi) is in AL.

(It should be pointed out that the statement of this theorem in [7] for the logic
FO[≺]is slightly different: There, only one kind of base algebra for FO[≺] is given:
these are called aperiodic path algebras. However, it is easier to prove this modified
statement of the theorem, using identical techniques).

We give a refined version of this theorem for the logics PDL and CTL∗. Let
k > 0. We define PDLk to consist of those languages in PDL defined by formulas
in which the depth of nesting of the EK operator is no more than k, and define
CTL∗

k analogously.

Theorem 3.6. Let A be a finite alphabet, and let L ⊆ HA. Let k > 0. Then L is
definable in PDLk (respectively, CTL∗

k) if and only if it is recognized by a wreath
product

(H1, V1) ◦ . . . ◦ (Hk, Vk),

where each (Hi, Vi) is in APDL (respectively ACTL∗).

Proof. We merely sketch how the argument in [7] needs to be modified. There it
is shown that (a) If Φ is an unambiguous collection of tree formulas, and K ⊆ Φ∗

a regular language, then LEK is recognized by

(H1, V1) ◦ (H2, V2),

where (H2, V2) is in APDL and (H1, V1) recognizes all the forest languages underly-
ing Φ. (More precisely, if φ ∈ Φ, then φ can be written as a boolean combination of
formulas a∧ψ, where ψ is a forest formula, and (H1, V1) recognizes all the Lψ.) If
further K is first-order definable, then (H2, V2) ∈ ACTL∗ . (b) Conversely, suppose
L ⊆ HA is recognized by a wreath product (H1, V1) ◦ (H2, V2), where (H2, V2) is
in APDL. Then L is a boolean combination of languages of the form LEK, where
K ⊆ Φ∗ and each φ ∈ Φ is a boolean combination of a ∧ ψ, where Lψ ⊆ HA is
recognized by (H1, V1). In case (H2, V2) ∈ ACTL∗ , the languages K can be chosen
to be first-order definable.

The correspondence between operator depth and length of the wreath product
now follows from these properties:

• If L1, . . . , Lr are recognized by (H1, V1), . . . , (Hr, Vr), then all boolean combi-
nations of the Li are recognized by the direct product

r∏
i=1

(Hi, Vi).
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• Let (Hij , Vij), 1 ≤ i ≤ r, j = 1, 2, be forest algebras. Then

r∏
j=1

(
(Hi1, Vi1) ◦ (Hi2, Vi2)

) ≺ ( r∏
j=1

(Hi1, Vi1)
) ◦ ( r∏

j=1

(Hi2, Vi2)
)
.

In fact, the left-hand side is a subalgebra of the right-hand side. This is a well-
known fact about the wreath product of transformation monoids that works
without modification for forest algebras. See, for example, Eilenberg [8].

• If (H1, V1), . . . , (Hr, Vr) are in APDL (respectively, ACTL∗) then
∏r
i=1(Hi, Vi)

is in APDL (respectively, ACTL∗). �

4. Aperiodicity

If we forget about the additive structure of the horizontal monoids, a wreath
product of forest algebras is just a wreath product of transformation monoids.
As is well known, the wreath product preserves aperiodicity, and aperiodicity is
preserved under homomorphic images and taking submonoids. It thus follows from
Theorem 3.5 that for every L in FO[≺], VL is aperiodic. Of course this holds for
the subclasses CTL∗ and CTL as well. We do not need anything as fancy as the
wreath product to prove aperiodicity of the vertical monoids for these classes,
but Theorem 3.5 provides some additional information that allows us to prove a
stronger necessary condition based on aperiodicity.

Let (H,V ) be a forest algebra. We can define the sum of two maps v, w from H
to H by pointwise addition: for all h ∈ H,

(v + w)h = vh+ wh.

We denote by V̂ the smallest set of maps that contains V and that is closed under
both addition and composition. (H, V̂ ), which we also denote ̂(H,V ) is thus a forest
algebra with an additional additive structure on the vertical monoid: It is a sem-
inearring, and we call it the seminearring closure of (H,V ). (See Bojańczyk [2]).
Just as elements of V are represented by contexts over A, elements of V̂ are rep-
resented by multicontexts. A multicontext p may have several holes; p acts on a
forest s by substituting s for each of the holes of p, giving a forest ps. See Figure 5.

The following lemma collects some elementary facts about the seminearring
closure.

Lemma 4.1. Let (H1, V1), (H2, V2) be forest algebras.
(a) If (H1, V1) ≺ (H2, V2), then (H1, V̂1) ≺ (H2, V̂2).
(b)

̂(H1, V1) ◦ (H2, V2) ≺ (H1, V̂1) ◦ (H2, V̂2).

Proof. (a) Pick a finite alphabet A for which there is an onto homomorphism
ψ : AΔ → (H1, V1). There then exist a homomorphism Φ from a submonoid H ′ of
H2 onto H1, and an assignment a �→ â for each a ∈ A, that satisfy the conditions
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Figure 5. A multicontext.

in Theorem 2.1. By another application of this theorem, this time with V̂1 as the
underlying alphabet, it will suffice to show that for every v ∈ V̂1 there exists v̂ ∈ V̂2

such that Φ(v̂h) = vΦ(h) for all h ∈ H ′.

To do this, we extend the map ψ to multicontexts over A: Given a multicontext
p we associate an element ψ(p) ∈ V̂1 by induction on the size of p:

ψ(p1 + p2) = ψ(p1) + ψ(p2), ψ(ap) = ψ(a)ψ(p).

We can similarly extend the map a �→ â to multicontexts, defining p̂ ∈ V̂2 by

p̂1 + p2 = p̂1 + p̂2, âp = âp̂.

At each step in the construction of p, the following property is preserved: for any
h ∈ H ′,

Φ(p̂h) = ψ(p)Φ(h).

Given v ∈ V̂1, we can represent it by a multicontext pv such that ψ(pv) = v. We
then set v̂ = p̂v, which gives the desired division.

(b) Let (H,V ) = (H1, V1) ◦ (H2, V2). The vertical monoid W of (H, V̂1) ◦ (H, V̂2) is
closed under composition, by definition of the wreath product, and it contains V.
So it suffices to prove that W is closed under addition as well, since this will show
that (H1, V̂1) ◦ (H2, V̂2) is a seminearring, and thus contains ̂(H,V ). (This is a
stronger result than the statement in the Lemma, since we obtain inclusion rather
than just division).
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Figure 6. A pair of uniform multicontexts.

Let (v, f), (w, g) ∈ W, so that v, w ∈ V̂1 and f, g : H1 → V̂2. Then given
h1 ∈ H1, h2 ∈ H2, we have

[(v, f) + (w, g)](h1, h2) = (v, f)(h1, h2) + (w, g)(h1, h2)

= (vh1, f(h1)h2) + (wh1, g(h1)h2)
= (vh1 + wh1, f(h1)h2 + g(h1)h2)
= ((v + w)h1, (f(h1) + g(h1))h2)
= (v + w,F )(h1, h2),

where F : H1 → V̂2 is defined by F (h) = f(h) + g(h) for all h ∈ H1. Thus W is
closed under addition, as claimed. �

We define another forest algebra ˜(H,V ) = (H, Ṽ ), intermediate between (H,V )
and (H, V̂ ), which we call the uniform closure of (H,V ). Ṽ is the smallest set
containing V and closed under the composition and the operations

v �→ v + . . .+ v.

Note that since H is finite, there are only finitely many distinct sums of this
form, so Ṽ is finite and is effectively computable from V. Given a homomorphism
ψ : AΔ → (H,V ) we can represent elements of V̂ by uniform multicontexts over A,
which are obtained by applying these same operations to VA.

Figure 6 shows a pair of uniform multicontexts. Observe that the multicontext
on the right is obtained from the one on the left by composing with the context
a(b(ab+a)+1). (In particular, this relaxes the requirement in [7] that in a uniform
multicontext all the subtrees at each fixed level are identical).

The analogue of Lemma 4.1 for the uniform closure holds as well. The proof is
identical: We simply substitute uniform multicontexts for arbitrary ones.
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Lemma 4.2. Let (H1, V1), (H2, V2) be forest algebras.
(a) If (H1, V1) ≺ (H2, V2), then (H1, Ṽ1) ≺ (H2, Ṽ2).
(b)

˜(H1, V1) ◦ (H2, V2) ≺ (H1, Ṽ1) ◦ (H2, Ṽ2).

The notions of seminearring closure and uniform closure lead to succinct state-
ments and simple proofs of effective necessary conditions for definability in CTL
and FO[≺]. These were first proved in [7] in terms of absence of ‘vertical confusion’.

Theorem 4.3. Let L ⊆ HA.
(a) If L is definable in CTL, then V̂L is aperiodic.
(b) If L is definable in FO[≺], then ṼL is aperiodic.

Proof. (a) Suppose L is definable in CTL. Then by Theorem 3.5 and Lemma 4.1,

̂(HL, VL) ≺ ̂U2 ◦ . . . ◦ U2

≺ Û2 ◦ . . . ◦ Û2

But observe that the vertical monoid of Û2 is already closed under addition, so
that Û2 = U2. Thus (HL, VL) divides a wreath product of copies of U2. Since U2 is
aperiodic, and aperiodicity is preserved under wreath product and division, VL is
aperiodic.

(b) The idea of the proof is the same. Theorem 3.5 and Lemma 4.2 imply

˜(HL, VL) ≺ (H1, Ṽ1) ◦ . . . ◦ (Hk, Ṽk),

where each (Hi, Vi) is in AFO[≺]. It remains to show that for each such algebra, Ṽi
is aperiodic. We do this for each of the two kinds of algebras in AFO[≺]: Suppose
first that (Hi, Vi) is horizontally idempotent and commutative, distributive and
aperiodic. Idempotence implies v+ . . .+v = v. Thus Vi is already closed under the
operation v �→ v+ . . .+ v, and so Ṽi = Vi is aperiodic. For the case where (Hi, Vi)
is flat and aperiodic, we claim that every v ∈ Ṽi has the form

v : g �→ kg + h,

where k ∈ Z+ and h ∈ Hi. Certainly, each v ∈ Vi has this form, since by flatness
such a v maps g to g + h for some h ∈ Hi. The set of such maps is also clearly
closed under composition and the operations v �→ v + . . . + v, which establishes
the claim. Thus if r > 0, vr maps g ∈ H to

krg + (1 + k + . . .+ kr−1) · h.

Since H is aperiodic, there exists M > 0 such that M ′f = Mf for all M ′ > M,
f ∈ H. Thus vrg = vr+1g for sufficiently large r. Since every v ∈ Ṽi satifies
vr = vr+1, Ṽi is aperiodic. �
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Figure 7. The syntactic forest algebra of E′(ab)+.

We recall the applications of this theorem from [7]. If L ⊆ A∗ is a regular word
language, then we denote by E′L the set of forests that contain a maximal path
whose sequence of labels is in L. (Note the difference between E′L and EL – the
former concerns only paths that extend all the way to a leaf).

Proposition 4.4. E′(ab)+ is not definable in CTL.

Proof. Let K = E′(ab)+. It is easy to verify that HK is idempotent and commuta-
tive, and the syntactic forest algebra is given by Figure 7, together with the rules
α+ γ = α, β + γ = β.

Let v ∈ V̂K be the element represented by the multicontext a� + b�. Then

vα = aα+ bα = γ + β = β, vβ = aβ + bβ = γ + α = α.

Thus v interchanges α and β, so V̂K contains a nontrivial group. By Theorem 4.3,
K is not definable in CTL. �

An example of an application of the second part of Theorem 4.3, also discussed
in [7], is the set of L all binary trees in which some path has even length. Since
these are unlabeled trees, we are working over a unary alphabet {a}. A simple
computation shows that the uniform multicontext a(� + �) interchanges two ele-
ments of HL. Thus ṼL contains a nontrivial group, so L is not definable in FO[≺].
This example is interesting in light of the fact, discovered by Potthoff [15], that
L is definable in first-order logic for ordered forests, in which there is an ‘older
sibling’ as well as an ‘ancestor’ predicate.

5. Identities and generalized distributivity

Let Ξ = {x1, x2, . . .} be a countable alphabet. An identity is a formal equation
s = t, where s, t ∈ HΞ . A forest algebra (H,V ) satisfies the identity s = t, written

(H,V ) |= (s = t)

if and only if for every homomorphism ψ : ΞΔ → (H,V ), ψ(s) = ψ(t).
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Some of the conditions on forest algebras that we discussed earlier can be ex-
pressed in terms of identities. For example, the horizontally idempotent and com-
mutative forest algebras are those that satisfy the identities

x1 + x2 = x2 + x1, x1 + x1 = x1.

Distributive forest algebras are those that satisfy the identity

x1(x2 + x3) = x1x2 + x1x3.

(As we proceed, we will informally drop the requirement that all variables in
identities have the form xi, and write identities as x(y + z) = xy + xz, x + y =
y + x, etc.) Forest algebras (H,V ) in which V is aperiodic are those that satisfy
xny = xn+1y for some n > 0.

A pseudovariety of finite forest algebras is a family of algebras closed under
finite direct products and division. The general theory of pseudovarieties of finite
monoids and their associated identities, as presented, for example, in [8], extends
to forest algebras. In particular, if

(si = ti)i≥1

is a sequence of identities, then the family of forest algebras that satisfy all but
finitely many of the identities of the sequence forms a pseudovariety. The converse,
which is far less obvious, is also true: All pseudovarieties arise in this way.

We now exhibit a particular sequence of identities that can be thought of as a
kind of generalized distributive law:

s1 = x1x2(y1 + y2), t1 = x1(x2y1 + x2y2).

For n ≥ 1,

sn+1 = x2n+1x2n+2(sn + tn), tn+1 = x2n+1(x2n+2sn + x2n+2tn).

Let k > 0, and let PDLk denote the forest algebras that divide a wreath
product of k members of APDL. As we showed in Theorem 3.6, each PDLk is
a pseudovariety, and a forest language is definable in PDLk if and only if its
syntactic forest algebra is in PDLk.

Theorem 5.1. Let k > 0. If (H,V ) ∈ PDLk and x ∈ Ξ, then (H,V ) |= (sk = tk).

Proof. It suffices to show that if (H1, V1) |= (s = t) and (H2, V2) is distributive
and horizontally idempotent and commutative, then

(H1, V1) ◦ (H2, V2) |=
(
x(s+ t) = xs+ xt

)
.

When we substitute elements of the wreath product for the variables in s
and t respectively, we obtain (h1, h2), (k1, k2) ∈ H1 × H2. Since we suppose
(H1, V1) |= (s = t), we have h1 = k1. Let us denote their common value by h.
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If we now substitute the vertical element (v, f) ∈ V1 ×V H1
2 for s, we obtain (using

distributivity in the right coordinate, and idempotence and commutativity in the
left)

x(s+ t) = (v, f)((h, h2) + (h, k2))
= (v, f)(h, h2 + k2)
= (vh, f(h)(h2 + k2))
= (vh+ vh, f(h)h2 + f(h)k2)
= (vh, f(h)h2) + (vh, f(h)k2)
= (v, f)(h, h2) + (v, f)(h, k2)

= xs+ xt. �

We will give two applications of this identity-based approach to PDL. The
first is a proof that the hierarchy based on operator depth in PDL is infinite. This
differs from similar-looking hierarchy results concerning CTL∗ in Shamir et al. [17]
and Bojańczyk [4] in the exact way the hierarchy is formed. However, we do not
really view our hierarchy result here as a new fact so much as an illustration of a
new technique for proving such results.

To this end, we define two sequences of temporal formulas {αn}, {βn}, for n ≥ 1,
over the alphabet {a, b}. All the formulas use the temporal operator EF.

α1 : EFa, β1 : EFb,

αn+1 : EF(a ∧ αn ∧ βn),
βn+1 : EF(a ∧ αn) ∧ EF(a ∧ βn) ∧ ¬αn+1.

To understand these formulas, look at the case n = 2: α2 says there is a node
labeled a with strict descendants labeled a and b. β2 says that there is no such
node, but there is a node labeled a with a strict descendant labeled a and another
node labeled a with a strict descendant labeled b. For example, the forest ba(a+b)
satisfies α2, while b(aa+ ab) satisfies β2.

Theorem 5.2. Let k > 0. The syntactic forest algebras of Lαk
and Lβk

are in
PDLk\PDLk−1.

Proof. Membership in PDLk follows immediately from the nesting depth of the
formulas αk and βk, and Theorem 3.6. To show non-membership in PDLk+1, we
consider the following sequences {s′n}, {t′n} of forests over {a, b}:

s′1 = a, t′1 = b,

s′n+1 = a(s′n + t′n), t
′
n+1 = as′n + at′n.

This is a specialization of the forests si, ti introduced earlier for Theorem 5.1, we
are just considering the special case where xi = 1 for odd i and xi = a for even i.
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Theorem 5.1 implies that for all n > 1, s′n = t′n is an identity for PDLn−1. We
also have, by a straighforward induction, that for all n ≥ 1,

s′n |= αn ∧ ¬βn, t′n |= βn ∧ ¬αn.

These observations give us the desired result, for if, say, the syntactic forest algebra
Lαn were in PDLn−1, then s′n and t′n would be mapped by the syntactic morphism
to the same element, and thus we would have s′n, t′n either both in Lαn , or both
outside it, a contradiction. The same applies, of course, to βn. �

An immediate corollary is

Corollary 5.3. Let n > 0. Neither αn nor βn is equivalent to a PDL formula
with nesting depth strictly less than n.

Thus, while the EF operator is extremely weak in one sense, it can climb to all
levels of the depth hierarchy within PDL.

As a second application of Theorem 5.1, we give a simple new proof of what has
become a kind of standard counterexample. We consider forests over the alphabet
{∧,∨, 0, 1}. Each component of such a forest is a tree, and as long as the tree only
has 0 and 1 as leaf labels, and only has ∧ and ∨ as labels of interior nodes, it
represents a well-formed boolean expression. We define L to be the set of all such
forests in which every component is an expression tree that evaluates to True. For
example ∨(0 + 1) ∈ L, but ∧(0 + 1) /∈ L.

Theorem 5.4. L is not definable in FO[≺].

Proof. Observe that HL is idempotent and commutative. (This is the reason for
defining L as the set of forests of valid expression trees, rather than just individual
trees). In [7] it is proved that any language definable in FO[≺] that is horizontally
idempotent and commutative is definable in PDL, and in fact in CTL∗. (See also
Moller and Rabinovich [12]). We will consequently suppose that (HL, VL) ∈ PDLn
for some n and derive a contradiction. We define another specialization of our
identities:

s′0 = 0, t′0 = 1,

and
s′n+1 = ∨ ∧ (s′n + t′n), t

′
n+1 = ∨(∧s′n + ∧t′n).

If we interpret these forests as left- and right-hand sides of identities, then
Theorem 5.1 implies that s′n = t′n is an identity for PDLn. But note that for
each n, s′n is a false boolean expression, and t′n a true one, so s′n and t′n have
different values under the syntactic morphism of L. Thus L cannot be in PDLn
for any n. �
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6. The overlap of CTL and LTL

Theorems 4.3 and 5.1 provide necessary conditions for definability in various
logics. It would be very nice if any of these conditions turned out to be sufficient.
We will discuss this question in more detail in the conclusion. But we can say right
away that the aperiodicity conditions for CTL and FO[≺] given in Theorem 4.3 are
not sufficient: Theorem 5.4, concerning the language L of true boolean expression
forests, provides a counterexample in both cases, since one can check that V̂L is
aperiodic.

Still, one might hope to rescue a weaker sufficiency result from the aperiodicity
condition for CTL. Our counterexample was a language of the form E’L, where L
is a word language. Is it possible that for all such languages aperiodicity of V̂E′L
implies that E′L is definable in CTL?

If a language of the form E’L is in CTL, then L must be aperiodic, and conse-
quently definable in LTL. We are thus addressing what, in other guises, is referred
to as the ‘common fragment’ of LTL and CTL (Maidl [11], Bojańczyk [5]). For
which regular languages L is E’L definable in CTL?

We give a partial solution to this problem by characterizing the monoids M
such that E’L is in CTL for every L ⊆ A∗ recognized by M. To do so, we will first
exhibit a language of the form E’L that is not definable CTL but for which V̂E′L is
nonetheless aperiodic. This shows both the extent to which the methods already
exhibited for proving nondefinability can fail, and how a more careful analysis of
the wreath product can provide the sought-after result.

6.1. Another language not in CTL

Let A = {a, b}. For the remainder of this subsection, let L ⊆ HA consist of all
nonempty forests in which every maximal path has two consecutive occurrences
of b.

Theorem 6.1. L is not definable in CTL.

Proof. We compute the syntactic forest algebra (HL, VL) of L. If s ∈ L and p ∈ VA,
then ps ∈ L if and only if every maximal path in p, except possibly the one leading
to the hole, contains two consecutive occurrences of b. Thus all elements of L are
equivalent under the syntactic congruence, so L forms a single congruence class.
We will provisionally denote this class by 0′: we’ll explain this choice of notation
later.

Suppose s /∈ L, but that every root node of s is labeled b. Let p ∈ VA. Then
ps ∈ L if and only if the following conditions hold:

Every maximal path in p, except the path of ancestors of the hole, contains
two consecutive b’s.
The parent of the hole is labeled b, or the path of ancestors of the hole contains
two consecutive b’s.
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Figure 8. The syntactic forest algebra of L. Addition is idempo-
tent and commutative, with α+ 0′ = α.

Figure 9. The subalgebra K.

Thus for all such s, ps ∈ L depends only on p, so all such forests are congruent.
We denote this congruence class by α.

Suppose s �= 0, but is not of either of the kinds described above. Then ps ∈ L
if and only if every maximal path in p, including the path to the hole, contains
two consecutive b’s. So all of these are congruent, and we denote their congruence
class by ∞. This notation is justified by the fact that if s belongs to this class,
then so does s+ s′ for any forest s′.

Finally, the empty forest is not equivalent to any of these: Let s ∈ L. Then
0 + s ∈ L, but this is not true if 0 is replaced by a member of the classes α or
∞. And 0 of course does not belong to the class L. We denote this class 0. Easily,
{0, 0′, α,∞} is idempotent and commutative under addition, and α+ 0′ = α.

Figure 8 is a state transition diagram of this syntactic forest algebra, showing
the transitions induced by the letters.

Observe that if we remove the state 0, we obtain a forest algebra in which 0′

is the additive identity. We will work with this smaller algebra, which we call K,
and hereinafter denote its identity as 0 rather than 0′. See Figure 9

By Theorem 3.5, L is definable in CTL if and only if (HL, VL) divides an iterated
wreath product of copies of the forest algebra U2 (see Fig. 4). If this were true,
then the subalgebra K would also divide such a wreath product. We will show
that, in fact, this cannot occur.

The proof is by induction of the number of factors in the wreath product.
Obviously K �≺ U2, because the horizontal monoid of right-hand side has two
elements, and the left-hand side three. For the inductive step, we will show that
if X is any forest algebra such that K ≺ U2 ◦X, then K ≺ X.
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If K ≺ U2 ◦ X, then there exist a homomorphism Φ from a submonoid H ′ of
the horizontal monoid of U2 ◦X, and vertical elements â, b̂ of the wreath product
satisfying the conditions in Theorem 2.1. Let us denote the horizontal monoid of
X by H(X), and its vertical monoid by V (X). We write

â = (c, f), b̂ = (d, g),

where f, g : {0,∞} → V (X), and c, d ∈ {1, c0, c∞}. We choose elements (aq, xq) ∈
{0,∞}×H(X) for q ∈ {0, α,∞} such that Φ(aq, xq) = q for each q.

We first consider the case where a0 = aα = a∞ = ∞. Observe that the set

H ′′ = {x ∈ H(X) : (∞, x) ∈ domΦ}

is a subsemigroup of H(X), and the map Ψ : H ′′ → {0, α,∞} defined by

Ψ(x) = Φ(∞, x)

is a homomorphism. By our assumption that aq = ∞ for all q, we also have that
Ψ is onto. We define

ā = f(∞) + x0, b̄ = g(∞) + x0 ∈ V (X).

If x ∈ H ′′, then we have

(∞, ā · x) = (c · ∞ + ∞, f(∞) · x+ x0)
= (c, f) · (∞, x) + (∞, x0)
= â · (∞, x) + (∞, x0)
∈ domΦ,

since â · (domΦ) ⊆ domΦ, and domΦ is closed under addition. Thus ā · (domΨ) ⊆
domΨ, and likewise b̄ · (domΨ) ⊆ domΨ. We also have, for any x ∈ H ′′,

Ψ(ā · x) = Φ(∞, ā · x)
= Φ(c · ∞ + ∞, f(∞) · x+ x0)

= Φ(â(∞, x) + (∞, x0))
= Φ(â · (∞, x)) + Φ(∞, x0)
= aΦ(∞, x) + 0
= aΦ(∞, x)
= aΨ(x).

Similarly Ψ(b̄ · x) = bΨ(x). Thus K ≺ X.
We thus suppose that the aq cannot all be chosen equal to ∞. If a0 = ∞, then

we find
Φ(∞, xα + x0) = Φ(aα, xα) + Φ(∞, x0) = α+ 0 = α,
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and likewise Φ(∞, x∞ + x0) = ∞. Thus all three elements have preimages in
{∞} × H(X), and we are back in the previous case. So we can suppose that no
element of the form (∞, x) can be mapped by Φ to 0. If c = c∞, we find

Φ(∞, f(0) · x0) = Φ(â(0, x0)) = a · 0 = 0,

which means that we could have chosen a0 = ∞. As we have shown this is im-
possible, we must have c ∈ {1, c0}. The same argument with b̂ in place of â shows
d ∈ {1, c0}.

If aα = ∞, then

Φ(d · ∞, g(∞) · xα) = Φ(b̂(∞, xα)) = b · α = 0,

so d · ∞ cannot be ∞, and thus d = c0. This gives

Φ(0, g(a∞) · x∞) = Φ(c0 · a∞, g(a∞) · x∞)
= Φ(b̂(a∞, x∞))
= b · ∞
= α,

so we could have chosen our preimage of α with aα = 0. This gives

Φ(0, f(0) · xα) = Φ(c · 0, f(0) · xα)
= Φ(â(0, xα))
= a · α
= ∞

so we also could have chosen our preimage of ∞ with a∞ = 0. So we may now
suppose (0, x0), (0, xα), (0, x∞) are mapped by Φ to 0, α,∞ respectively. We now
set ā = f(0), b̄ = g(0), and

H ′′ = {x ∈ H(X) : (0, x) ∈ domΦ}.
As before, we have H ′′ closed under addition, and the map Ψ : x �→ Φ(0, x) a
homomorphism from H ′′ onto {0, α,∞}. If (0, x) ∈ domΦ, then we have

(0, ā · x) = (c · 0, f(0) · x) = â(0, x) ∈ domΦ,

so that ā(domΨ) ⊆ domΨ, and similarly for b̄. Finally, we have for x ∈ H ′′,

Ψ(ā · x) = Φ(0, ā · x)
= Φ(c · 0, f(0) · x)
= Φ(â(0, x))
= aΦ(0, x)
= aΨ(x),

and similarly Ψ(b̄ · x) = bΨ(x). So K ≺ X in this case as well. �
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The complement of L is the language E′T, where T ⊆ {a, b}∗ consists of all
forests in which some maximal path does not contain two consecutive b’s. It fol-
lows from Theorem 6.1 that this language, as well, is not definable in CTL. This
provides a negative answer to the question raised earlier whether every forest lan-
guage of the form E′K for some K ⊆ {a, b}∗ whose associated seminearring is
aperiodic, is definable in CTL. To complete the analysis, we need to make sure
that ̂(HL, VL) is indeed aperiodic.

Proposition 6.2. ̂(HL, VL) is aperiodic.

Proof. We will show that no multicontext p can induce a nontrivial cycle in the
horizontal elements of HL. Obviously, 0 cannot be an element of any such cycle.
We have a number of cases to consider, depending on the form of p.

If p has a hole at every leaf node, then p · 0′ = 0′. This means that 0′ cannot
be a member of any cycle induced by p. We need to rule out the possibility that
p interchanges α and ∞. If p has a root node labeled a, then we can not have
p · h = α for any h ∈ HL. If all root nodes are labeled b, then we can never have
p · h = ∞.

So the only possibility for a cycle is one where p has some leaf nodes that are
not holes. If p has a root node labeled a, then as above, we can not have p ·h = α.
Thus p would have to interchange 0′ and ∞. Similarly, if p has all root nodes
labeled b, then p would have to interchange 0′ and α. We can show that neither of
these is possible as a consequence of the following fact, which can be proved by an
easy induction on the number of nodes of p: For every multicontext p, if p ·α = 0′

or p · ∞ = 0′, then p · 0′ = 0′. �

6.2. Monoids associated with the common fragment of LTL and CTL

The ideal result in this vein would be an algorithm that takes as input an
automaton recognizing a word language L ⊂ A∗ and outputs whether or not E′L
is in CTL. This problem is open, and, as we discuss later in the conclusion, it may
prove to be very difficult.

In general, the structure of the syntactic monoid of L is not sufficient to answer
this question. This is shown by Theorem 6.1: If L is given by the regular expression
(a + b)∗bb(a + b)∗–that is, if L consists of strings over {a, b} that contain two
consecutive occurrences of b, then E′L is in CTL. But this is not true for the
complement of L, which has the same syntactic monoid.

Here we give necessary and sufficient conditions on a finite monoid M so that
for all L ⊆ A∗ recognized by M, E′L ∈ CTL. We first recall some basic facts about
the ideal structure of finite semigroups: Two elements s, t of a finite monoid M
are J -equivalent if MsM = MtM. Equivalence classes of this relation are called
J -classes. If a J -class contains an idempotent the class is said to be regular.
Generally speaking, the product of two elements in a J -class J need not belong to
the J -class, and if st /∈ J, we must have MstM ∩ J = ∅—in other words, we can
never get back to J once the product of two elements takes us outside of J. The Rees
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Figure 10. The nontrivial J -classes in M((ab)+) (left) and
M((a+ b)∗bb(a+ b)∗) (right).

Matrix Theorem, restricted to finite aperiodic monoids, states that for each regular
J -class J there is a pair of finite sets X,Y and a map P : Y ×X → {0, 1}, such
that J is isomorphic to X × Y with multiplication given by

(x, y) · (x′, y′) = (x, y′), if P (y, x′) = 1,

with the product undefined if P (y, x′) = 0. This latter case is the situation where
the product of the elements of J corresponding to (x, y) and (x′, y′) is not in J.

The function P has an additional property: For each y ∈ Y there is at least one
x ∈ X such that P (y, x) = 1, and similarly for each x ∈ X there is at least one
y ∈ Y such that P (y, x) = 1. Observe that P (y, x) = 1 if and only if (x, y) is an
idempotent. We can thus depict a regular J -class in a finite aperiodic monoid by
what has come to be called an egg-box diagram: This is a rectangular grid with
rows indexed by X, columns by Y, and with an asterisk in each cell corresponding
to an idempotent.

The syntactic monoids of (ab)+ and (a+ b)∗bb(a+ b)∗ have very similar struc-
tures. Both contain six elements: 1, 0, and a regular J -class with a 2 × 2 Rees
matrix representation. In the case of (ab)+ this J -class contains two idempotents
(the syntactic congruence classes of ab and ba) and two non-idempotents (the syn-
tactic congruence classes of a and b). In the case of (a+ b)∗bb(a+ b)∗ the class of
a is also idempotent. Egg-box diagrams of these J -classes are shown in Figure 10.

The class DA consists of finite aperiodic monoids M in which every regular
J -class is closed under multiplication (equivalently, every element of every regular
J -class is idempotent). DA forms a pseudovariety of finite monoids. This variety,
which arises in an surprisingly large number of contexts, was first identified by
Schützenberger [16], who proved the following property of the languages recognized
by monoids in DA.

Theorem 6.3. Let L ⊆ A∗. If M(L) ∈ DA then L is a finite union of languages
of the form

A∗
0a1A

∗
1 . . . anA

∗
n,

where for i = 1, . . . , n, ai ∈ A, and for i = 0, . . . , n, Ai ⊆ A.
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(As we have stated this theorem, the converse is false, but in fact Schützenberger
gave a precise characterization of languages recognized by DA, which entails an
additional unambiguity condition on the concatenation product and union. We
will not require this).

Here is our principal result concerning languages of the form E′L definable in
CTL.

Theorem 6.4. Let M be a finite monoid, and A a finite alphabet with at least
two letters. The following are equivalent:

• For every L ⊆ A∗ recognized by M, E′L is in CTL.
• M ∈ DA.

Proof. First suppose that M ∈ DA, and let L be recognized by M. Then M(L) ≺
M. Since DA is closed under division, M(L) ∈ DA, and thus by Theorem 6.3, L
is a union of products of the form A∗

0a1A
∗
1 . . . anA

∗
n, where for i = 1, . . . , n, ai ∈ A,

and for i = 0, . . . , n, Ai ⊆ A. Easily for any L1, L2 ⊆ A∗, E′(L1∪L2) = E′L1∪E′L2.
Thus it suffices to show that E′L ∈ CTL when L has the form A∗

0a1A
∗
1 . . . anA

∗
n.

We can prove this by induction on the length n of the product. First, if A′ ⊆ A,
then E′(A′)∗ is defined by the formula

emp ∨ EφU(φ ∧ emp),

where φ is
∨
a∈A′ a. Now, assuming we have a CTL formula ψ defining the set of

forests with a maximal path in A∗
kak+1 . . . anA

∗
n, we obtain the following formula

for A∗
k−1akA

∗
kak+1 . . . anA

∗
n:

E

⎛
⎝ ∨
a∈Ak−1

a

⎞
⎠ U(ak ∧ ψ).

For the converse, assume that M /∈ DA. We will show that there are word
languages L recognized by M such that E′L is not in CTL.

If M contains a group, then it recognizes a word language L such that M(L)
contains a group. There is thus a word v and a sequence of words (u0, . . . , uk−1)
such that v cycles these words in M(L): That is, vui is equivalent to u(i+1) mod k

under the syntactic congruence of L, but the ui are not all congruent to one
another. In particular, u0 and u1 are not congruent, so there exist words x, y
such that xu0y ∈ L and xu1y /∈ L, or vice-versa. Now consider the sequence of
words (u0y, u1y, . . . , uk−1y) as forests, and compare them modulo the syntactic
congruence of E′L. We then have that u0y and u1y are not equivalent. However,
we do have vuiy equivalent to vu(i+1) mod ky. Thus v induces a nontrivial cycle in
the syntactic forest algebra of E′L. This algebra is thus not aperiodic, so it cannot
be definable in CTL.

We may therefore assume that M is aperiodic. Thus M has regular J -class J
that contains a non-idempotent element. Consider a Rees matrix representation
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of J, and let (x, y) be a non-idempotent element. There must be x′ �= x and y′ �= y
such that (x, y′) and (x′, y) are both idempotent. Let a, b ∈ A be distinct letters,
and define a homomorphism φ : A∗ →M that maps b to (x, y), a to (x′, y′), and all
other letters of A to (x, y)2. Consider the language L = φ−1(J) recognized by M.

If w ∈ L, then w ∈ {a, b}∗, because otherwise w ∈M(x, y)2M, which is outside
of J. If (x′, y′) is not idempotent, then w cannot contain any factor of the form aa,
or bb, because both P (y, x) and P (y′, x′) are 0. Thus L consists precisely of the
words in which a and b strictly alternate, and so E′L is not definable in CTL, a
consequence of Proposition 4.4. (That Proposition concerns the language E′(ab)+,
but the same proof applies to E′L.) If (x′, y′) is idempotent, P (y′, x′) = 1, so w ∈ L
if and only if w contains no factor of the form bb. But now Theorem 6.1 implies
that E′L is not definable in CTL. �

7. Conclusion

Much of this paper has been devoted to showing how standard notions from the
algebraic theory of regular word languages–sequences of identities, preservation of
aperiodicity under wreath products and quotients, ideal structure of semigroups–
can be brought to bear on questions of logical definability of properties of trees,
both producing new insights and simplifying existing arguments. However, there
is one very significant gap: We have only been able to demonstrate algebraic nec-
essary conditions for definability in various logics, by deriving properties of the
wreath product. What is missing is a mechanism for obtaining wreath product de-
compositions of forest algebras, which will be required in order to use this theory
to obtain sufficient conditions. Such a decomposition is demonstrated in [7], but
only in the rather simple case of a characterization of the logic EF .

Let us examine our results in this light.

Seminearring closure and aperiodicity. As we saw, aperiodicity of the seminearring
closure of a forest algebra is a necessary, but not a sufficient condiition for mem-
bership in CTL. Still, this notion might be relevant for the problem of obtaining
an effective characterization of CTL. Let us begin with a seminearring (H,V )
in which H is idempotent and commutative, and V is aperiodic. By the Krohn–
Rhodes Theorem, (H,V ) considered as a transformation monoid divides an iter-
ated wreath product of copies of U2, again considered as transformation monoids–
that is, ignoring the additive structure. The problem of characterizing membership
in CTL is essentially that of finding when such a transformation monoid division
preserves the additive structure, and is thus a forest algebra division.

We should expect that, considered as a transformation monoid, (H,V ) might
admit a shorter decomposition as a wreath product of copies of U2 than it has as a
forest algebra. It would be interesting to see examples of languages in CTL whose
syntactic forest algebras have this property. (If we knew for some reason that such
a length discrepancy never arises, then we would have a proof of decidability of
membership in CTL, albeit with a very inefficient algorithm).
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Generalized distributivity. What is the exact relation between the generalized dis-
tributive idenitities and definability in PDL? The dream theorem here would
state that if a finite forest algebra is horizontally idempotent and commutative
and satisfies sn = tn for some n, then it divides a wreath product of distributive,
horizontally idempotent and commutative forest algebras.

This seems like too much to hope for, and it is probably more prudent to search
for a counterexample. But the identities give us a new way to think about the
problem. If generalized distributivity is not sufficient, then what do we need to
add to these identities to permit the decomposition?

The overlap of CTL and LTL. The work of Bojaǹczyk [5], building on earlier
results of Maidl [11], provides an effective characterization of the languages L ⊆ A∗

such that E′L is definable in CTL using only positive applications of the operator
EφUψ: that is, this operator is never used within the scope of a negation. L is
definable in this way if and only if it has depth 3/2 in the concatenation hierarchy;
that is, L is a union of languages of the form

A∗
0a1A

∗
1 . . . anA

∗
n,

where for i = 1, . . . , n, ai ∈ A, and for i = 0, . . . , n, Ai ⊆ A. One can decide
effectively whether a given regular language L is of depth 3/2.

We have already seen that every language in DA has this form, and we have
argued above that for every such language L, E′L is definable in CTL. However,
there are languages of depth 3/2 that are outside DA. Bojańczyk provides an
example of a language L that does not have depth 3/2, but for which E′L is
in CTL.

The question of definability of E′L in CTL is thus very complex. We conjecture
that every L for which E′L belongs to CTL has depth no more than 2 in the
concatenation hierarchy; these are boolean combinations of languages of depth 3/2.
(Bojaǹczyk’s example has depth 2). Even if this turns out to be true, it is far from
settling the general question: We have already seen that there are languages L
of depth 2 for which E′L is not in CTL. Moreover, in contrast to depth 3/2, the
problem of effectively determining if a given regular language has depth 2 has been
open for many years.
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