
RAIRO-Theor. Inf. Appl. 47 (2013) 69–96 Available online at:

DOI: 10.1051/ita/2012029 www.rairo-ita.org

ON CHARACTERISTIC FORMULAE
FOR EVENT-RECORDING AUTOMATA ∗

Omer Landry Nguena Timo
1

and Pierre-Alain Reynier
2

Abstract. A standard bridge between automata theory and logic is
provided by the notion of characteristic formula. This paper investi-
gates this problem for the class of event-recording automata (ERA), a
subclass of timed automata in which clocks are associated with actions
and that enjoys very good closure properties. We first study the prob-
lem of expressing characteristic formulae for ERA in Event-Recording
Logic (ERL), a logic introduced by Sorea to express event-based timed
specifications. We prove that the construction proposed by Sorea for
ERAwithout invariants is incorrect. More generally, we prove that
timed bisimilarity cannot in general be expressed in ERL for the class of
ERA , and study under which conditions on ERA it can be. Then, we in-
troduce the logic WTμ , a new logic for event-based timed specifications
closer to the timed logic Lν that was introduced by Laroussinie, Larsen
and Weise. We prove that it is strictly more expressive than ERL , and
that its model-checking problem against ERA is EXPTIME -complete.
Finally, we provide characteristic formulae constructions in WTμ for
characterizing the general class of ERAup to timed (bi)similarity and
study the complexity issues.

Mathematics Subject Classification. 03B44, 68Q60.

Keywords and phrases. Timed Logic, bisimulation, event-clock automata.

∗ The second author was partly supported by the ANR project ECSPER (JC09 472677).

1 Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université Bordeaux 1, 351
cours de la Libération, 33405 Talence Cedex, France. nguena@labri.fr
2 Laboratoire d’Informatique Fondamentale (LIF), Aix-Marseille Université, 39 avenue Joliot-
Curie, 13453 Marseille Cedex 13, France. pierre-alain.reynier@lif.univ-mrs.fr

Article published by EDP Sciences c© EDP Sciences 2013

http://dx.doi.org/10.1051/ita/2012029
http://www.rairo-ita.org
http://www.edpsciences.org

70 O.L. NGUENA TIMO AND P.-A. REYNIER

1. Introduction

In the untimed setting, automata and logics are central tools for the formal
verification of reactive systems. While a system is usually modelled as an au-
tomaton, the specification may be described either as a formula of a logic or as an
automaton. In the first case the correctness of the system reduces to a model check-
ing problem, whereas in the second case it requires a comparison of the behaviour
of the two automata, and different relations can be envisaged, such as bisimilar-
ity [16] or language inclusion. A standard bridge between automata theory and
logic is provided by the notion of characteristic formula. A characteristic formula
is a formula in a temporal logic that completely characterizes the behaviour of an
automaton modulo some chosen relation. Timed automata [3] is a well known for-
malism for modelling real-time systems. They are obtained by adding real-valued
variables called clocks to finite-state automata, and contain two kind of transi-
tions, discrete transitions and time-elapsing transitions. For this class, a solution
has first been proposed in [12], providing characteristic formulae in the logic Lν .
Then, these results have been improved in [1], yielding characteristic formulae
whose size is linear in that of the automaton.

The class of Event-Recording Automata [4] (ERA), which forms a subclass of
timed automata, is obtained by restricting clocks to be associated with events. This
class enjoys good closure properties such as determinization and complementation.
It has thus attracted attention to characterize its expressive power in terms of
some timed logic [9, 15], but logics considered there are linear-time. This paper
investigates the problem of constructing characteristic formulae for the class of
event-recording automata, up to timed similarity and timed bisimilarity, using a
branching-time logic devoted to event-based timed specifications.

As ERAcan be linearly translated into timed automata, results of [1] can be
used to build characteristic formulae in the logic Lν whose size is linear in that of
the ERA . However, as ERAare strictly less expressive than timed automata, our
motivation is to find a weaker logic, with a decidable satisfiability problem (the
status of the satisfiability problem for Lν is still an open problem [12]). There exists
a logic which is a natural candidate, the so-called Event-Recording Logic (ERL),
introduced by Sorea in [17]. This logic extends the mu-calculus by allowing the use
of event-clocks and has a decidable satisfiability problem. In this paper, we prove
that it is in general impossible to express timed bisimilarity for ERA in ERL. More
precisely, we identify two large subclasses of ERAwhich cannot be characterized by
ERL , and provide restrictions on the constants used in ERAwhich yield subclasses
that can be characterized by ERL.

To overcome these limitations, we consider a new timed logic for event-clocks,
called WTμ [13], and provide characteristic formulae constructions for timed simi-
larity and timed bisimilarity. In addition, the satisfiability problem for the fragment
of WTμ we use here is proved to be decidable in [13].

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 71

After recalling standard definitions in Section 2, we study in Section 3 the prob-
lem of expressing characteristic formulae for timed bisimilarity for ERA in the logic
ERL. We prove that it is in general impossible, and detail how restrictions on the
nature of constants used in ERA impact this negative result. In addition, we ex-
plain why an existing attempt, which can be found in [18], is not correct. Then,
we consider in Section 4 our new timed logic WTμ to express the characteristic
formulae. The definition of this logic is closer to the definition of Lν as it sepa-
rates quantifications over discrete successors and time successors. We prove that
it is indeed strictly more expressive than ERL , and that its model-checking prob-
lem over ERA is EXPTIME -complete. Finally, we provide characteristic formulae
constructions in WTμ for timed (bi)similarity together with complexity issues in
Section 5. We end with a positive result for ERL : for ERAwith a fixed granularity
and without invariants, it is possible to build characteristic formulae in ERL.

Part of the results presented here appeared in [14].

2. Preliminaries

Let Σ be a finite alphabet and let Σ∗ be the set of finite words over Σ. The sets
N, Q, Q≥0 and R≥0 are the sets of natural, rational, non-negative rational and non-
negative real numbers respectively. Given a real number x, �x� (resp. 〈x〉) denotes
its integral part (resp. its fractional part). We consider as time domain � the set
Q≥0 or the set R≥0. We consider a finite set X of variables, called clocks. A clock
valuation over X is a mapping v : X → � that assigns to each clock a time value.
The set of all clock valuations over X is denoted �X . Let t ∈ �. The valuation
v + t is defined by (v + t)(x) = v(x) + t, ∀x ∈ X . For a clock y ∈ X , we denote by
v[y := 0] the valuation such that for each clock x ∈ X , (v[y := 0])(x) = 0 if x = y,
and (v[y := 0])(x) = v(x) otherwise. Finally, 0 denotes the valuation mapping
every clock to 0.

In the context of event-recording automata, each clock refers to a specific action.
Then, we associate clocks with letters of an alphabet. Given an alphabet Σ, we
then denote by XΣ the set of clocks {xa | a ∈ Σ}. We may also write �Σ to
represent the set of clock valuations �XΣ .

Given a set of clocks XΣ , we introduce two sets of clock constraints over XΣ .
The most general one, denoted by C(Σ), is defined by the grammar1 “g ::= x ∼
c | x − y ∼ c | g ∧ g | tt” where x, y ∈ XΣ , c ∈ Q≥0, ∼ ∈ {<,≤, =,≥, >} and tt
stands for true. We also use the proper subset Cup(Σ) of upper bounds constraints
consisting only of conjunctions of constraints of the form x ≺ c with ≺∈ {<,≤}.
We allow empty conjunctions which, as usual, stand for tt. We write v |= g when
the clock valuation v satisfies the clock constraint g, using the standard semantics.
We also denote by �g� the set of clock valuations v such that v |= g holds.

1 Constraints of the form x − y ∼ c are called diagonal constraints.

72 O.L. NGUENA TIMO AND P.-A. REYNIER

The granularity of a set of clock constraints C0 ⊆ C(Σ) is defined as the pair
(d, M) ∈ N × N where d (resp. M) is the least common multiple of denominators
(resp. the maximal value) of constants appearing in clock constraints of C0. Con-
versely, we say that r ∈ Q≥0 can be produced by granularity (d, M) iff r ≤ M and
there exist p, q ∈ N such that r = p

q and q divides d.
In addition, we also consider as granularities the pairs (∞, M) and (d,∞) which

respectively denote constants that belong to Q≥0 ∩ [0, M] and to { p
d | p ∈ N}.

2.1. Timed transition systems

Timed transition systems describe systems which combine discrete and contin-
uous evolutions. They are used to define the behavior of timed systems such as
Timed Automata [3], or Event-Clock Automata [4].

Definition 2.1 (Timed Transition System (TTS)). A timed transition system
over the alphabet Σ is a transition system S = 〈Q, q0, Σ,→〉, where Q is the set
of states, q0 ∈ Q is the initial state, and the transition relation →⊆ Q × (Σ ∪
�) × Q consists of continuous (or delay) transitions q

d−→ q′ (d ∈ �), and discrete
transitions q

a−→ q′ (a ∈ Σ).

Moreover, we require the following standard properties for TTS :

• Time-Determinism : if q
d−→ q′ and q

d−→ q′′ with d ∈ �, then q′ = q′′.
• 0-Delay : q

0−→ q.

• Additivity : if q
d−→ q′ and q′ d′−→ q′′ with d, d′ ∈ �, then q

d+d′−−−→ q′′.
• Continuity : if q

d−→ q′, then for every d′ and d′′ in � such that d = d′ + d′′,

there exists q′′ such that q
d′−→ q′′ d′′−→ q′.

With these properties, a run of S can be defined as a finite sequence of transitions
ρ = q0

d0−→ q′0
a0−→ q1

d1−→ q′1
a1−→ q2 . . .

an−−→ qn+1 where discrete and continuous
transitions alternate. To such a run corresponds the timed word w = (ai, τi)0≤i≤n

over Σ where τi =
∑i

j=0 dj is the absolute time at which ai happens, and we say
that the timed word w is accepted by S. The language of S, denoted L(S), is
defined as the set of timed words that are accepted by S.

2.2. Event-Recording Automata

We consider the restriction of Event-Clock Automata to Event-Recording
Automata. In this context, for each action a ∈ Σ, the system owns a distinguished
clock denoted by xa. This clock records the amount of time that elapsed since the
last occurrence of the event a. Therefore, clock xa is reset precisely when event a
occurs (we also assume that all clocks are initially equal to 0).

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 73

Definition 2.2 (Event-Recording Automata (ERA) [4]). An event-recording
automaton over the alphabet Σ is a tuple A = 〈L, �0, Σ, E, I〉 where:

• L is a finite set of locations;
• �0 ∈ L is the initial location;
• E ⊆ L × C(Σ) × Σ × L is a finite set of edges;
• I : L → Cup(Σ) associates an upper bound constraint with each location.

We say that an ERA is without invariants if the mapping I associates tt to each
location. In this case we may remove component I from the definition of A. The
class of ERAwithout invariants is denoted by ERA lazy.

The granularity of an ERAA is defined as the granularity of all clock constraints
of A. Given a granularity (d, M), the class of ERAdefined using only constants
that can be produced by (d, M) is denoted by ERA (d,M).

We may also combine these subscripts with the exponent lazy.

Examples of ERAare depicted in Figures 1 and 2, pages 78 and 82 respectively.
Note that all these ERAare without invariants.

Without loss of generality, we assume that the clock constraints of edges are
consistent with invariants. This technical assumption ensures that the configura-
tion reached after a discrete transition is a correct configuration. More formally,
we have, for any v ∈ �Σ :

∀(�, g, a, �′) ∈ E, v |= g ⇒ (v |= I(�)) ∧ (v[xa := 0] |= I(�′)).

This property can easily be ensured by a syntactic transformation of the model.
More precisely, each edge e = (�, g, a, �′) is replaced by the edge e = (�, g, a, �′)
where g is obtained from g as follows. Consider the constraint g1 obtained by
projecting the constraint I(�′) on clocks different from xa (this means that if I(�′)
constrains the clock xa, then this constraint is relaxed). Then we let g be the
conjunction g ∧ I(�) ∧ g1.

The semantics of an event-recording automaton A is defined in terms of a timed
transition system. Intuitively, it manipulates exactly one clock per action, which
allows to measure the time elapsed since the last occurrence of this action. The
formal definition is given by2:

Definition 2.3 (semantics of an ERA). Given an ERAA = 〈L, �0, Σ, E, I〉, its
semantics is given by the TTSSA defined by SA = 〈Q, q0, Σ,→〉 where Q =
{(�, v) ∈ L × �Σ | v |= I(�)}, q0 = (�0,0), and → consists of time-elapsing and
discrete transitions: ∀(�, v) ∈ Q,

Time-elapsing steps ∀d ∈ �, we have (�, v) d−→ (�, v + d) iff v + d |= I(�),
Discrete steps ∀a ∈ Σ, we have (�, v) a−→ (�′, v′) iff there exists an edge e =

(�, g, a, �′) ∈ E such that v |= g and v′ = v[xa := 0].

2 The definition slightly differs from the original definition of [4] as it assigns 0 as the ini-
tial value of clocks. This modification allows us to simplify our constructions, but the original
framework could also be handled.

74 O.L. NGUENA TIMO AND P.-A. REYNIER

Finally, we simply denote by L(A) the language of timed words L(SA).

In the previous definition, the set of states of the TTSSA is restricted to val-
uations compatible with the invariant of the current location. In particular, this
provides continuity of invariant-satisfaction during the course of a transition. In
addition, as invariants are defined by upper bound constraints, when firing a time-
elapsing transition (�, v) d−→ (�, v+d), all intermediate valuations v+d′, with d ≤ d′,
do satisfy v + d′ |= I(�).

We say that an ERA is deterministic whenever, for every location � ∈ L, letter
a ∈ Σ and valuation v ∈ �Σ , there exists at most one transition (�, g, a, �′) ∈ E
such that v |= g holds.

We assume the reader is familiar with the region construction of [3] for timed
automata. For the sake of completeness, we recall here the main definitions and
properties we use in what follows.

Definition 2.4 (clock region). We consider a constant K ∈ N and define the
relation �K over clock valuations. For two valuations v, v′ ∈ �Σ , we have v �K v′

iff the following conditions hold:

1. ∀x ∈ XΣ , if v(x) ≤ K or v′(x) ≤ K, then �v(x)� = �v′(x)�;
2. ∀x ∈ XΣ s.t. v(x) ≤ K, then 〈v(x)〉 = 0 ⇐⇒ 〈v′(x)〉 = 0;
3. ∀x, y ∈ XΣ s.t. |v(x) − v(y)|≤K, then 〈v(x)〉≤〈v(y)〉 ⇐⇒ 〈v′(x)〉≤〈v′(y)〉.
A clock region is an equivalence class of the relation �K .

We let RK(Σ) be the set of clock regions for constant K. We recall that the
size of RK(Σ) is in 2O(m. log Km) where m = |Σ| (see [4]). When the constant K
is clear from the context, we denote by [v] the clock region that contains v. To
define the region automaton of an ERAA, we can assume that all the constants
occurring in its clock constraints are natural numbers (otherwise, all constants
need to be multiplied by the least common multiple of the denominators of all
rational numbers appearing in clock constraints).

Definition 2.5 (region automaton). Let A = 〈L, �0, Σ, E, I〉 be an ERAwith
integral constants. Let K be some positive integer. We define the region automaton
of A for constant K, denoted by RK(A) = 〈RK(A), Σ ∪ {τ},→〉, as follows3:

• RK(A) = {(�, r) ∈ L × RK(Σ) | ∃v ∈ r s.t. v |= I(�)};
• (�, r) τ−→ (�, r′) ⇐⇒ ∃δ ∈ � s.t. (�, v) δ−→ (�, v′) in SA, r=[v] and r′=[v′];
• ∀a ∈ Σ, (�, r) a−→ (�, r′) ⇐⇒ ∃(�, v) a−→ (�, v′) in SA s.t. r=[v] and r′=[v′].

It is well known that if K is larger than the largest integer constant that appears
in the clock constraints of A, then RK(A) is time abstract bisimilar [3] to SA.

3 τ is an action not in Σ intended to represent time-elapsing.

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 75

2.3. Event-Recording Logic

Definition 2.6 (Event-Recording Logic (ERL) [17]). Let Σ be a finite alphabet,
Var be a finite set of variables, the formulae of the Event-Recording Logic over Σ
and Var are defined by the grammar:

ϕ ::= tt | ff | X | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [g, a]ϕ | 〈g, a〉ϕ | μX.ϕ | νX.ϕ

where g ∈ C(Σ), a ∈ Σ and X ∈ Var.

In the timed logic Lν [12], the formulae have their own clocks and the seman-
tics is then defined using a valuation for the clocks of the formula. When defin-
ing the semantics of ERL formulae over some alphabet Σ, the clock constraints
range over event clocks associated with Σ. Then, the semantics is defined for
TTS corresponding to ERAover the same alphabet Σ, and the clock constraints
are evaluated over the valuations of the ERA . Moreover, variables of ERL formulae
are dealt with using assignment functions. Formally, an assignment function of
variables Var over the set Q is a function V : Var → P(Q). The updating notation
V [X := Q′] denotes the assignment V ′ that agrees with V on all variables except X ,
where V ′(X) = Q′ ⊆ Q.

Definition 2.7 (semantics of ERL). Let Σ be a finite alphabet, Var be a finite
set of variables, A = 〈L, �0, Σ, E, I〉 be an ERA 4 over Σ and SA = 〈Q, q0, Σ,→〉
be its associated TTS . Consider a formula ϕ ∈ ERL over Σ and Var and an
assignment function V of Var over Q. The semantics of ϕ for A under V , denoted
�ϕ�AV , is given by the set of states (�, v) ∈ Q for which the formula holds, and is
defined inductively as follows:

�tt�AV := Q
�ff�AV := ∅
�X�AV := V(X)

�ϕ1 ∧ ϕ2�
A
V := �ϕ1�

A
V ∩ �ϕ2�

A
V

�ϕ1 ∨ ϕ2�
A
V := �ϕ1�

A
V ∪ �ϕ2�

A
V

�[g, a]ϕ�AV := {(�, v) ∈ Q | ∀δ ∈ �, ∀(�, g′, a, �′) ∈ E, v + δ |= g ∧ g′ ⇒
(�′, v′) ∈ �ϕ�AV , where v′ = (v + δ)[xa := 0]}

�〈g, a〉ϕ�AV := {(�, v) ∈ Q | ∃δ ∈ �, ∃(�, g′, a, �′) ∈ E s.t. v + δ |= g ∧ g′ and
(�′, v′) ∈ �ϕ�AV , where v′ = (v + δ)[xa := 0]}

�μX.ϕ�AV := ∩{Q′ ⊆ Q | �ϕ�AV[X:=Q′] ⊆ Q′}
�νX.ϕ�AV := ∪{Q′ ⊆ Q | Q′ ⊆ �ϕ�AV[X:=Q′]}.

Using standard definitions, we say that an occurrence of a variable X is bound
(resp. free) in a formula ϕ whenever it is (resp. it is not) under the scope of a
fixpoint operator μ or ν. It is easy to verify that if all variables are bound in a
formula ϕ (we say that ϕ is a sentence), then the semantics of ϕ does not depend
on the assignment function. In this case, we omit the subscript V , and given an

4 Note that we extend the definition of [17] to ERA with invariants.

76 O.L. NGUENA TIMO AND P.-A. REYNIER

ERAA, and a configuration q of A, for a sentence ϕ, we write A, q |= ϕ whenever
we have q ∈ �ϕ�A. We also use the shortcut A |= ϕ whenever A, qA0 |= ϕ, where qA0
denotes the initial configuration of A. Moreover, we say that a bound variable X
is guarded if it is in the scope of an operator 〈·〉 or [·]. According to [17], one can
assume that every bound variable is guarded.

Remark 2.8 (on greatest fixpoints). To express characteristic formulae, we shall
see later that we need greatest fixpoints on systems of inequalities. In this case,
we will use a slightly different presentation. Given a finite set Var of variables, we
will associate to each variable X a formula D(X) over the variables Var. D is then
called a declaration, and the semantics associated with this definition is the largest
solution of the system of inequalities X ⊆ D(X) for any X ∈ Var. It can be proved
(see [5] or [8]) that this presentation can be translated into an equivalent formula
with greatest fixpoints. For each variable X ∈ Var, there exists a formula ϕD

X , with
only greatest fixpoints, which has an equivalent satisfiability set. In this setting,
we will add the declaration D as subscript to the satisfaction relation |=, and write
A, q |=D X to denote A, q |= ϕD

X .

2.4. Timed behavioral relations and characteristic formulae

We now recall the standard definitions of timed simulation and timed bisimu-
lation. These definitions are given for TTS and can thus be used for ERA .

Definition 2.9 (timed simulation and timed bisimulation). Consider two
TTSS1 = 〈Q1, q

1
0 , Σ,→1〉 and S2 = 〈Q2, q

2
0 , Σ,→2〉. A timed simulation be-

tween S1 and S2 is a relation R ⊆ Q1×Q2 such that whenever q1Rq2 and α ∈ Σ∪�,
then:

• If q1
α−→1 q′1 then there exists q′2 ∈ Q2 such that q2

α−→2 q′2 and q′1Rq′2.

A relation R is a timed bisimulation between S1 and S2 iff the relations R and R−1

are timed simulations.

For states q1, q2, we write q1 ≺ q2 (resp. q1 ∼ q2) if and only if there exists a timed
simulation (resp. a timed bisimulation) R with q1Rq2.

Finally, we say that a TTSS2 simulates a TTSS1 (resp. S1 and S2 are timed
bisimilar) whenever there exists a timed simulation (resp. a timed bisimulation)
between S1 and S2 such that the pair (q1

0 , q2
0) of their initial states belongs to the

relation R, and then we write S1 ≺ S2 (resp. S1 ∼ S2). We naturally extend these
notations to ERA :

Definition 2.10. Let A and B be two ERA . A simulates B (A ≺ B) iff SA ≺ SB.
A and B are timed bisimilar (A ∼ B) iff SA ∼ SB.

Note that in an ERA , invariants reduce the possible delay transitions. In a
location without invariant, any delay transition is possible, even if it leads to a
deadlock configuration. Thus, if two configurations (�, v) and (�′, v′) are bisimilar,
this implies that � owns a non-trivial invariant iff �′ does.

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 77

Definition 2.11 (characteristic formulae). Let A be an ERA . We say that a
sentence ϕ ∈ ERL is a characteristic formula for A if and only if, according to the
behavioural relation considered, the following equivalence holds:

Timed Similarity: ∀B ∈ ERA ,A ≺ B ⇐⇒ B |= ϕ
Timed Bisimilarity: ∀B ∈ ERA ,A ∼ B ⇐⇒ B |= ϕ

The following standard result relates similarity with language inclusion.

Proposition 2.12. Let A1 and A2 be two ERA , we have the following implica-
tions:

(i) if A1 ≺ A2, then L(A1) ⊆ L(A2),
(ii) if A2 is deterministic and L(A1) ⊆ L(A2), then A1 ≺ A2.

3. On the use of ERL for characterizing timed

bisimilarity

As the logic ERL has been introduced to describe behaviours related to events,
it is natural to try to write in this logic characteristic formulae for timed bisim-
ilarity for ERA . We prove in this section that it is in general not possible to
express timed bisimilarity for ERA in the logic ERL. We also discuss which syn-
tactic restrictions have to be imposed on ERA to allow ERL to characterize timed
bisimilarity. Finally, we recall an attempt of such construction which can be found
in Sorea’s thesis [18] and detail why it is erroneous.

3.1. Impossibility result for ERL

It would be rather easy to prove that the logic ERLcannot express timed bisim-
ilarity for ERAwith invariants, as this logic cannot quantify over time elapsing
transitions independently of the firing of a discrete transition. We prove here a
stronger result by showing that the logic ERL cannot express timed bisimilarity
for two subclasses of ERA lazy. As we will see, the logic ERL lacks a way to require
the existence of a discrete transition for all the time successors satisfying some
clock constraint. We will use this remark to prove the following main result:

Theorem 3.1. The logic ERL cannot express timed bisimilarity for ERA . More
precisely, ERL cannot characterize timed bisimilarity for the classes ERA lazy

(d,∞) and

ERA lazy
(∞,M) for any d, M ≥ 1.

Proof. We consider the ERAwithout invariants A and A′ depicted in Figure 1.
We will prove that there exists no ERL formula characterizing A (resp. A′) up to
timed bisimilarity among the class ERA lazy

(∞,1) (resp. ERA lazy
(1,∞)). By contradiction,

we assume that there exists a formula ϕ ∈ ERL characterizing the ERA , and then

78 O.L. NGUENA TIMO AND P.-A. REYNIER

� �′
0 ≤ xa ≤ 1

a

A
0 ≤ xa

a

A′

xa = 1
a

A′′

Figure 1. Three ERAA, A′ and A′′.

proceed in the two following steps:

1. use the underlying untimed structure of the ERA to transform ϕ into a formula
with a simpler structure;

2. build an ERAwhich is not timed bisimilar to the original ERA , but still sat-
isfies ϕ.

To simplify the presentation, we assume that A and A′ are defined over the
alphabet restricted to letter a, but the result would hold for any alphabet.

1. Simplification of the formula ϕ. Consider a formula Φ such that X is a
free variable of Φ. As usual with the Kozen’s μ-calculus, the semantics �Φ�BV of
formula Φ can be viewed as a function �Φ(X)�BV : 2Q → 2Q which maps a subset
of Q into another subset of Q. According to the definition of the semantics of
ERL , it is easy to verify that such a function is monotonic over the complete
lattice 2Q. By Knaster–Tarski theorem, we have the following equalities:

�μX.Φ�BV =
⋃
i≥0

�Φi(ff)�BV ; �νX.Φ�BV =
⋂
i≥0

�Φi(tt)�BV

where

⎧⎨
⎩

�Φ0(ff)�BV = �ff�BV = ∅
�Φ0(tt)�BV = �tt�BV = Q
�Φi+1(λ)�BV = �Φ(X)�BV[X:=�Φi(λ)�BV]

with λ ∈ {ff, tt}, and i ∈ N.

As mentioned before, we can assume that all variables of sentences of ERLare
guarded, i.e. are under the scope of the operator 〈·〉 or [·]. A consequence is
that when interpreting fixpoints over structures without loops, one can restrict
above infinite disjunctions and conjunctions up to the maximal length of ex-
ecutions of the structure. For an ERAwhose maximal depth5 is 1 (such as A
and A′), we can replace in ϕ the fixpoint operators by the above equations with
index i ranging over the set {0, 1, 2}. We denote by Unfold1 this operation, and
by ERA depth≤1 the set of ERAwhose maximal depth is smaller or equal to 1.
Then, we have:

∀B ∈ ERA depth≤1, B |= ϕ ⇐⇒ B |= Unfold1(ϕ). (3.1)

Thus, the outermost operators of the formula Unfold1(ϕ) belong to the set
{∨,∧, 〈·〉, [·]}. We can then transform the formula Unfold1(ϕ) in a standard
disjunctive normal form and write Unfold1(ϕ) =

∨k
i=1

∧mi

j=1 Φi,j where every

5 The maximal depth of an ERAdenotes the length of a longest sequence of consecutive edges.

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 79

formula Φi,j has as outermost operator either 〈·〉 or [·]. Consider now the case
of the ERAA (the case of A′ is similar). As A is of maximal depth 1 and is
naturally timed bisimilar to itself, it satisfies this formula in its initial config-
uration qA0 , and thus there exists i ∈ {1, . . . , k} such that A, qA0 |= Φi,j for any
j ∈ {1, . . . , mi}. To ease the reading, we omit in the sequel the index i. Up to
a reordering of the formulae Φj , we can suppose that there exists an index p
such that a formula Φj has as outermost operator the operator 〈·〉 if and only
if j ≤ p. These last transformations can be done similarly for A′.

2. Construction of an ERAB. In this second part, we prove the existence
of an ERAwhich is not bisimilar to A (resp. to A′), but which satisfies the
ERL formula. This ERA is defined over Σ = {a} and contains exactly two
locations, denoted respectively �1 and �′1, such that the first one is initial. We
denote by qB0 = (�1, 0) the initial configuration of B.
• Case of A. We detail the construction of an ERAB ∈ ERA lazy

(∞,1). In the
sequel, we will define a finite set of rational numbers F ⊆ Q≥0 ∩ [0, 1].
We add exactly one edge (�1, gf , a, �′1) for each f ∈ F , with the constraint
gf defined as xa = f . It is easy to verify that A and B are not timed
bisimilar as there necessarily exists some point in the interval [0, 1] that
does not belong to F . We now detail how we build the set F to ensure that
B, qB0 |= ϕ. For each j ∈ {1, . . . , p}, we can write Φj = 〈gj , a〉ξj for some
constraint gj and formula ξj . By construction, we have A, qA0 |= Φj , and

thus there exists a delay δ ∈ � such that the steps qA0
δ−→ (�, δ) a−→ (�′, 0)

exist in A with A, (�′, 0) |= ξj . Note that independently of the delay after
which the a-labelled edge is fired, the configuration reached is the same. As
the constraint gj is defined with rational numbers and as the constraint of
the edge between � and �′ is 0 ≤ x1 ≤ 1, we can choose δj ∈ Q≥0 ∩ [0, 1]

such that qA0
δj−→ (�, δj)

a−→ (�′, 0) with A, (�′, 0) |= ξj . Finally, the finite set
of rational values F is defined as F = {δj | 1 ≤ j ≤ p}.
It remains to prove that the ERAB satisfies the formula ϕ. As the maximal
depth of B is 1, and using property (3.1), it is sufficient to prove that for
any j, we have B, qB0 |= Φj . First consider formulae Φj for j > p. In this case
the formula is of the form [gj, a]ξj . Then the property holds because any
a-labelled edge firable from qB0 in B also exists in A, leading to identical
configurations (�′, 0) and (�′1, 0), with no actions available in �′ and �′1.
Second, we consider a formula Φj with j ≤ p. In this case, the choice of the

delay δj ∈ F ensures that the transitions qB0
δj−→ (�1, δj)

a−→ (�′1, 0) exist in B
and as A, (�′, 0) |= ξj , we also have B, (�′1, 0) |= ξj .

• Case of A′. We now detail the construction of an ERAB′ ∈ ERA lazy
(1,∞). As

above, we can write, for each 1 ≤ j ≤ p, Φj = 〈gj , a〉ξj for some constraint gj

and formula ξj . We denote by M the maximal constant appearing in some
constraint gj . Then, we add to B′ a single edge (�1, g, a, �′1) with g defined
as 0 ≤ xa ≤ �M� + 1. Note that we have in particular M < �M�+ 1.

80 O.L. NGUENA TIMO AND P.-A. REYNIER

It is then easy to verify that all existential formulae Φj , with j ≤ p, are
satisfied, due to the choice of M , and that all universal formulae Φj , j > p,
are satisfied because all behaviours of B′ do exist in A′. Hence B′ satis-
fies formula ϕ. However, it is easy to verify that A′ and B′ are not timed
bisimilar.

Finally, we have proved that there exists B ∈ ERA lazy
(∞,1) such that B |= ϕ holds

while A and B are not timed bisimilar, thus yielding a contradiction (similarly
for B′ ∈ ERA lazy

(1,∞) w.r.t. A′). Thus, ERL cannot characterize timed bisimilarity

among the subclasses ERA lazy
(∞,1) ERA lazy

(1,∞). �

3.2. When can ERL characterize timed bisimilarity?

On the granularity of constants. Consider first ERAwithout invariants as we will
discuss this aspect in a second paragraph. We have proved in Theorem 3.1 that
ERL cannot in general characterize ERA(without invariants) up to timed bisim-
ilarity. Let us discuss how the nature of constants used in ERA impacts on this
result. We consider in this paper a general model of ERAwhich allows any non-
negative rational number (sometimes constants are restricted to natural numbers).
Theorem 3.1 establishes two settings in which ERL fails to characterize timed
bisimilarity:

1. if constants allowed include (bounded) rational numbers with arbitrarily large
denominators (class ERA lazy

(∞,1));

2. if constants allowed include unbounded natural numbers (class ERA lazy
(1,∞)).

In particular, point (2) proves that ERL is not expressive enough for the (standard)
setting of ERA involving natural numbers only.

To complete this picture, we will prove a positive result in Section 5.3. We
establish that for any fixed granularity (d, M), the logic ERL can characterize the
class ERA lazy

(d,M) up to timed bisimilarity. Intuitively, this results follows from the

fact that all automata of the class ERA lazy
(d,M) share a common set of regions. Then

the ERL formula expresses timed bisimilarity based on these regions.

On the role of invariants. As ERL quantifies simultaneously on delay transitions
and on discrete transitions, it cannot distinguish two ERAwhich would only differ
by the possible delay transitions. To avoid this difficulty, one could introduce a
weaker definition of timed bisimilarity, in which any delay transition must be
followed by a discrete transition. We believe that such a definition would allow to
extend the results presented in the previous paragraph to ERAwith invariants.

3.3. On the construction proposed in [18]

In [18], the author addresses the problem of constructing characteristic bisim-
ilarity formulae for ERAwith integer constants and without invariants using

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 81

ERL formulae with greatest fixpoints. We recall here the proposed construction
and explain why it fails.

Before presenting the construction, we introduce some additional notations.
Given an ERAwithout invariants A = 〈L, �0, Σ, E〉, a location � ∈ L and a letter
a ∈ Σ, we define:

• the set of a-labelled edges leaving �:
Out(�, a) = {(�, g, a′, �′) ∈ E | a = a′};

• the disjunction of clock constraints of a-labelled edges leaving �:
En(�, a) =

∨{g | ∃(�, g, a, �′) ∈ Out(�, a)};
• the set of locations reached by an a from location �:

F(�, a) = {�′ | ∃(�, g, a, �′) ∈ Out(�, a)}.
The formulae defined in [18] are constructed as follows. One considers a variable
ΦA(�) for each location � ∈ L, and then the greatest solution of the system asso-
ciated with the declaration D defined by:

ΦA(�) D=
∧

a∈Σ

⎛
⎜⎝

∧
(,g,a,	′)∈Out(,a)〈g, a〉ΦA(�′)

∧[En(�, a), a]
(∨

	′∈F(,a) ΦA(�′)
)

∧[¬En(�, a), a]ff

⎞
⎟⎠ . (3.2)

These definitions should verify the following correctness property: for any
ERAB, one has B |=D ΦA(�0) if and only if A ∼ B.

Note that the right-hand side formulae of the equations use disjunctions and
negations of clock constraints. They can be rewritten in the syntax of ERL using
the property [g1 ∨ g2, a]ϕ ≡ [g1, a]ϕ ∧ [g2, a]ϕ.

Before proving that the construction is not correct, we give some intuition on
how it fails. To express bisimilarity for a finite state automaton A, the standard
approach consists in building a formula ΦA(q) for each state q of A, and con-
sidering the greatest solution of this system. Roughly, this formula verifies that
any behaviour of A can be performed, and conversely that any possible behaviour
corresponds to some of A. More formally, the standard formula for state q looks
like:

ΦA(q) =
∧

a∈Σ

⎛
⎜⎝

⎛
⎜⎝

∧

q
a−→q′∈A

〈a〉ΦA(q′)

⎞
⎟⎠ ∧

⎛
⎜⎝[a]

∨

q
a−→q′∈A

ΦA(q′)

⎞
⎟⎠

⎞
⎟⎠ . (3.3)

This is how characteristic formulae for bisimilarity are defined for instance in [1,12].
In the construction of [18], the first conjunct corresponds to the first part of (3.3)
while the two other conjuncts correspond to the second part of (3.3). But we
can see that both parts are not well encoded. In the first one, notice that the
constraint 〈g, a〉ΦA(�′) implies the existence of at least one time successor in g
that corresponds to the edge while all time successors in g should be able to
fire this edge. In the second part, it is required that all a-successors occurring in
En(�, a) correspond to some a-successor of �. But the a-successors of � may have

82 O.L. NGUENA TIMO AND P.-A. REYNIER

�0

�1 �2

�3

0 ≤ xa ≤ 1,
a

1 ≤ xa ≤ 2,
a

xa = 0,
a

B

0 ≤ xa ≤ 2,
a

1 ≤ xa ≤ 2,
a

xa = 0,
a

B′

Figure 2. Non-bisimilarity because of overlapping edges.

different clock constraints, and thus should not be all allowed in the whole set
En(�, a). We will see in Section 5 that the first point can be solved using the richer
logic WTμ , and that the second point can be solved using the region construction.

We provide a counter-example exhibiting the first aspect. Consider the two
ERAA and A′′ depicted in Figure 1. It is easy to see that A and A′′ are not timed
bisimilar. Let us write the characteristic formulae for A (Σ = {a}) according
to (3.2):

ΦA(�) = 〈0 ≤ xa ≤ 1, a〉[tt, a]ff ∧ [0 ≤ xa ≤ 1, a][tt, a]ff ∧ [xa > 1, a]ff.

We have A′′ |=D ΦA(�), which shows that the construction is not correct. More
precisely, this is due to the incompleteness of the first part of the formula of (3.2).

To illustrate the second aspect, consider the two ERAdepicted in Figure 2. It
is easy to verify that B and B′ are not timed bisimilar. However, the formulae for
the ERAB according to (3.2) (with Σ = {a}) are:

ΦB(�0) = 〈0 ≤ xa ≤ 1, a〉ΦB(�1) ∧ 〈1 ≤ xa ≤ 2, a〉ΦB(�2)
∧[0 ≤ xa ≤ 2](ΦB(�1) ∨ ΦB(�2)) ∧ [xa > 2, a]ff

ΦB(�1) = 〈xa = 0, a〉ΦB(�3) ∧ [xa = 0, a]ΦB(�3) ∧ [xa > 0, a]ff
ΦB(�2) = [tt, a]ff
ΦB(�3) = [tt, a]ff

One can verify that B′ |=D ΦB(�0) and thus the construction fails. It is worth
noticing here that this is due to the constraint [0 ≤ xa ≤ 2](ΦB(�1)∨ΦB(�2)) which
is not enough restrictive.

4. A µ-calculus for event-recording automata

We present here a weak timed μ-calculus for ERA that has been introduced
in [13], and which is called WTμ . This stands for Weak Timed μ-calculus, as it
can be seen as a timed μ-calculus (as Tμ [10] or Lν [12]) devoted to the weak
class of timed systems represented by ERA . Its definition differs from ERL in that

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 83

it separates delay successors and discrete successors, as it is done for instance in
the logic Lν . We prove in this section that it is strictly more expressive than the
logic ERLand that it preserves the good model-checking properties of ERL. We
will show in the next section that it allows one to express timed (bi)similarity for
ERA .

4.1. The logic WTμ

Definition 4.1 (syntax). Let Σ be a finite alphabet and Var be a finite set of
variables. A formula ϕ of WTμ is generated using the following grammar:

ϕ ::= tt | ff | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | 〈g〉ϕ | [a]ϕ | [g]ϕ | μX · ϕ | νX · ϕ

where g ∈ C(Σ), a ∈ Σ and X ∈ Var.

As for the logic ERL , we use auxiliary assignment functions, and the notions
of free variable, bound variable, and sentence.

Definition 4.2 (semantics). For a given ERAA = 〈L, �0, Σ, E, I〉 with associated
TTSSA = 〈Q, q0, Σ,→〉, a given formula ϕ ∈ WTμ , and an assignment function
V : Var → P(Q), the set of states satisfying the formula, denoted by �ϕ�AV , is
inductively defined as follows:

�〈a〉ϕ�AV := {(�, v) ∈ Q | ∃(�, g, a, �′) ∈ E s.t. v |= g and
(�′, v′) ∈ �ϕ�AV , where v′ = v[xa := 0]}

�〈g〉ϕ�AV := {(�, v) ∈ Q | ∃δ ∈ � s.t. v + δ |= g and (�, v + δ) ∈ �ϕ�AV }
�[a]ϕ�AV := {(�, v) ∈ Q | ∀(�, g, a, �′) ∈ E, v |= g ⇒

(�′, v′) ∈ �ϕ�AV , where v′ = v[xa := 0]}
�[g]ϕ�AV := {(�, v) ∈ Q | ∀δ ∈ �, v + δ |= g ⇒ (�, v + δ) ∈ �ϕ�AV }

�μX.ϕ�AV := ∩{Q′ ⊆ Q | �ϕ�AV[X:=Q′] ⊆ Q′}
�νX.ϕ�AV := ∪{Q′ ⊆ Q | Q′ ⊆ �ϕ�AV[X:=Q′]}.

The cases of atomic and Boolean formulae are as in Definition 2.7. We also use
shortcuts [Σ] and 〈Σ〉 which respectively stand for

∧
a∈Σ[a] and

∨
a∈Σ〈a〉.

Note that formulae of the form [a]tt or [g]tt (with g satisfiable) are equivalent
to tt, as their semantics are defined by an implication whose right-hand side is tt.

4.2. Expressiveness

We start with the following definition:

Definition 4.3. Given two sentences ϕ and ϕ′ in ERL ∪WTμ , we say that they
are equivalent if and only if, for any ERAA, we have A |= ϕ ⇐⇒ A |= ϕ′.
We say that a logic L2 is more expressive than a logic L1 if for any sentence in L1,
there exists an equivalent sentence in L2.

84 O.L. NGUENA TIMO AND P.-A. REYNIER

Then we can state the following property:

Proposition 4.4. Given a sentence ϕ ∈ ERL , we denote by ϕ̂ the sentence of
WTμ obtained by substituting any operator [g, a] (resp. 〈g, a〉) by the two operators
[g][a] (resp. 〈g〉〈a〉). Then ϕ and ϕ̂ are equivalent.

Proof. Proceeding by induction on the length of the formula ϕ, the result directly
follows from the definitions. �

We now prove the following theorem which states that, as expected, the logic
WTμ increases the expressive power of ERL :

Theorem 4.5. The logic WTμ is strictly more expressive than the logic ERL (even
for ERAwithout invariants).

Proof. First, Proposition 4.4 proves that the logic WTμ is more expressive than
the logic ERL.

Second, we have to prove that the converse is false. We will prove (Th. 5.5) that
it is possible to express timed bisimilarity for ERA in the logic WTμ . Together
with Theorem 3.1 which states that it is not possible to express in ERL timed
bisimilarity for ERA , this yields the result. �

Note that this result holds for all subclasses of ERA that ERLcannot charac-
terize up to timed bisimilarity. In particular, this entails that WTμ is strictly more
expressive than ERLon the class of ERA involving only natural numbers, i.e. the
class ERA (1,∞).

4.3. Model-Checking

We consider the model checking problem of WTμ sentences on ERAmodels. This
problem consists in deciding, given a WTμ sentence ϕ and an ERAA, whether the
relation A |= ϕ holds. The rest of this section is devoted to the proof of the
following theorem:

Theorem 4.6. The Model-Checking problem of WTμ on ERA is EXPTIME -
complete, even for the fragment of WTμ restricted to greatest fixpoints.

EXPTIME -hardness: As WTμ is more expressive than ERL , this result follows from
the EXPTIME -hardness of the Model-Checking problem of ERL on ERA(see [18]).
For the sake of completeness, and as this result is only sketched in [18], we present
here a complete proof.

We adapt the proof of [2] to encode the acceptance problem of a word w0 by a
Linear Bounded Alternating Turing Machine (LBATM) M which is EXPTIME -
complete [7]. One can assume w.l.o.g that the alphabet of M is {a, b}, and let
n = |w0|. Configurations of M are triples (q, w, i) where i ≤ n denotes the position
of the tape head. A transition (q, α, α′, δ, q′) of M can be fired from (q, w, i) iff
w[i] = α. Then, it writes α′ instead, and moves left or right according to δ. As M

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 85

is alternating, Q is partitioned into Qor and Qand. A configuration (q, w, i) with
q ∈ Qor (resp. q ∈ Qand) is winning iff q = qf or there exists an accepting successor
configuration (resp. if all its successor configurations are accepting).
As we want to build an ERAA while the construction of [2] is done for timed
automata, we make some modifications to control the resets of clocks. Locations
of A are pairs (q, i) ∈ Q × N, where i denotes the position of the tape head. The
value of cell i of the tape is encoded by the relative values of two clocks, say xai

and xbi . The alphabet of A thus contains Σ = {ai, bi | 1 ≤ i ≤ n}. We add a
letter τ not in Σ. A transition (q, α, α′, δ, q′) is represented in A by the transitions
(q, i)

gi,σi−−−→ (q′, i′), where:

1. gi is xai < xbi ∧ xτ = 1 if α = a, and gi is xai > xbi ∧ xτ = 1 otherwise;
2. σi = xai if α′ = a, and σi = xbi otherwise;
3. i′ = i + 1 if δ = R and i < n, and i′ = i − 1 if δ = L and i > 1.

To force time elapsing between two transitions corresponding to moves of M,
we use letter τ and add transitions (q, i)

xτ=1,τ−−−−−→ (q, i) for any location (q, i). The
initialization of the clocks to represent the word w0 can be done using a sequence of
transitions ui interleaved by transitions labelled by τ . Finally, we use the following
WTμ formula, with only greatest fixpoints:

ϕ = [tt][u1][τ] . . . [tt][un][τ].νX.([accept]ff ∧ [tt][Σ][τ]〈tt〉〈Σ〉〈τ〉X)
where accept denotes a special letter only firable from the final state of M. Then
one can prove that M accepts w0 iff A �|= ϕ. Note that the size of A and ϕ are
polynomial in the sizes of M and w0.

Remark 4.7. As in [2], the hardness proof could be done without diagonal
constraints.

EXPTIME -membership: This easily follows from the EXPTIME -membership of the
model-checking of the logic L+

μ,ν over timed automata [2], as timed automata
extend ERA . However, to obtain precise complexity results, we present here a
direct proof.

We first state the following Lemma:

Lemma 4.8. Let Σ be a finite alphabet. Let A ∈ ERA , ϕ ∈ WTμ be a formula
without fixpoint quantifier and let K denote the maximal integer constant of A
and ϕ. Denote by X1, . . . , Xn the free variables of ϕ and let V be an assignment
function over these variables such that for any i, V(Xi) is a union of regions in
RK(A). Then, the semantics �ϕ�AV is also a union of regions of RK(A).

Proof. We proceed by induction on the length of ϕ and consider the type of ϕ:

• ϕ = tt or ϕ = ff. The result follows as QA and ∅ are both a union of regions.
• ϕ = ϕ1 ∧ϕ2 or ϕ = ϕ1 ∨ϕ2. The result follows from the induction property as

the set of union of regions is closed under Boolean operations.
• ϕ = Xi for some i ∈ {1, . . . , n}. Then �ϕ�AV = V(Xi) and the result follows

from the hypothesis on V .

86 O.L. NGUENA TIMO AND P.-A. REYNIER

• ϕ = 〈g〉ϕ′ or ϕ = [g]ϕ′ with g ∈ C(Σ). By induction property the semantics
�ϕ′�AV is a union of regions. Then, the result follows from the time-abstract
bisimulation property of clock regions which implies that the time predecessors
of a clock region is a union of clock regions.

• ϕ = 〈a〉ϕ′ or ϕ = [a]ϕ′ with a ∈ Σ. By induction property the semantics
�ϕ′�AV is a union of regions. Then, the result follows from the time-abstract
bisimulation property of regions which implies that the predecessors of a region
by a discrete transition is a union of regions.

This concludes the proof. �

This entails the following lemma:

Lemma 4.9. Let Σ be a finite alphabet. Let A ∈ ERA , and ϕ be a sentence in
WTμ . Denote by K the maximal integer constant of A and ϕ. Then the semantics
of ϕ over A, �ϕ�A, is a union of regions of RK(A). In other terms, we have:

∀� ∈ LA, ∀v, v′ ∈ �Σ s.t. v �K v′,A, (�, v) |= ϕ ⇐⇒ A, (�, v′) |= ϕ.

Proof. As the semantics of formulae of WTμ are monotonic functions, Knaster–
Tarski theorem implies that fixpoint formulae can be evaluated using formally
infinite intersections and unions given by:

�μX.ϕ�AV =
⋃
i≥0

�μX.ϕi�AV , �νX.ϕ�AV =
⋂
i≥0

�νX.ϕi�AV .

As ∅ and Q are both a union of regions, Lemma 4.8 entails that the iterative
evaluation of fixpoints leads also to unions of regions. As the number of regions is
finite, these evaluations terminate, returning also a union of regions. �

The proof of Lemma 4.9 thus shows that the model checking problem can
be solved symbolically using regions. To obtain results on complexity issues, we
reduce the model checking problem to an equivalent model checking problem
for standard μ-calculus working on regions. Therefore, we define the semantics
of WTμ over RK(A). The only operators for which the semantics is non standard
are the following:

�〈g〉ϕ�
RK (A)
V =

{
(�, r) ∈ RK(A) | ∃r′ ∈ RK(Σ) s.t. (�, r) τ−→ (�, r′), r′ ⊆ �g�

and (�, r′) ∈ �ϕ�
RK(A)
V

}

�[g]ϕ�
RK(A)
V =

{
(�, r) ∈ RK(A) | ∀r′ ∈ RK(Σ) s.t. (�, r) τ−→ (�, r′),

if r′ ⊆ �g�then (�, r′) ∈ �ϕ�
RK(A)
V

}
.

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 87

Then, we can prove the correctness of this semantics as in [10, 12]:

∀v ∈ �Σ ,A, (�, v) |= ϕ ⇐⇒ RK(A), (�, [v]) |= ϕ.

However, the semantics of WTμ over RK(A) does not exactly match this of stan-
dard mu-calculus. This is due to inclusion testing between r′ and �g�. To solve this
problem, we can for instance introduce atomic propositions corresponding to the
clocks constraints g ∈ C(Σ) of the formula ϕ. A predicate g is satisfied in a region
(�, r) if and only if the inclusion r ⊆ �g� holds. Then, we can write the following
equivalences:

〈g〉ϕ ≡ 〈τ〉(g ∧ ϕ); [g]ϕ ≡ [τ](g → ϕ) ≡ [τ](¬g ∨ ϕ).

Note that the number of atomic propositions introduced for a formula ϕ ∈ WTμ

is linear in the size of this formula. Another approach consists in enlarging the
alphabet to include the clock constraints. This approach is described in [13].

Finally, we obtain the reduction desired to a model checking problem of the
standard mu-calculus over the region automaton. This problem, for a mu-calculus
formula ϕ and a finite structure S, can be solved in time O((|S|×|ϕ|)n+1), where n
is the number of alternations of greatest and least fixpoints quantifiers in ϕ [19].
As the size of RK(A) is in |A|×2O(|Σ|. log K|Σ|), and n is in O(|ϕ|), we obtain that
the model checking problem of WTμ over ERA is in EXPTIME , with a precise time
complexity.

5. Characteristic formulae constructions

We describe in this section characteristic formulae constructions in the logic
WTμ to express timed similarity and timed bisimilarity for ERAwith invariants.
In the sequel, we consider an ERAA = 〈LA, �A0 , Σ, EA, IA〉 over the alphabet Σ.
Let � ∈ LA and a ∈ Σ, we first introduce an operation, denoted Split(�, a), re-
lated to the determinization of ERA . Split(�, a) returns a finite set of constraints
{g1, . . . , gn} ⊆ C(Σ) such that:

(i) it partitions the constraint En(�, a):
⋃

i�gi� = �En(�, a)� and ∀i �= j, �gi� ∩
�gj� = ∅;

(ii) its elements “match” the clock constraints of a-labelled edges leaving �: ∀i ∈
{1, . . . , n}, ∀(�, g, a, �′) ∈ EA, �gi� ⊆ �g� or �gi� ∩ �g� = ∅.

We do not investigate here how such an operator can be defined as it is not the
purpose of this work. It can for instance be defined using the region construction,
and then be optimized using some merging operations on zones. It is worth noticing
that in the worst case, the size of Split(�, a) may be 2O(|Σ| log K|Σ|), with K the
largest integer constant of A (due to the region construction). However, if the
ERAA is deterministic, then its size is linear in the size of Out(�, a). Indeed,
the determinism implies that the clock constraints of a-labelled edges leaving �
are disjoint.

88 O.L. NGUENA TIMO AND P.-A. REYNIER

5.1. Characteristic formulae for timed bisimilarity

Definition 5.1. We define a declaration D∼A associating a formula to each loca-
tion � of A, and consider the greatest solution of this system of fixpoint equations.

Φ∼A(�) D∼A=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∧
a∈Σ

∧
(,g,a,	′)∈EA

[g]〈a〉 Φ∼A(�′) (C1)

∧
[IA(�)] Φ∼A(�) (C2)

∧ ∧
a∈Σ

∧
g∈Split(,a)

[g][a]
∨

(,g′,a,	′)∈EA|�g�⊆�g′�

Φ∼A(�′) (C3)

∧ ∧
a∈Σ

[¬En(�, a)][a]ff (C4)

∧
[¬IA(�)] ff. (C5)

Note that the right-hand side formulae of the equations use disjunctions and nega-
tions of clock constraints. They can be rewritten in the syntax of WTμ using the
property that [g1 ∨ g2]ϕ is equivalent to [g1]ϕ ∧ [g2]ϕ (see [13]).

Before proving the correctness of this construction, we give some intuition on
its definition. Let B be an ERAand analyze how these formulae constrain B. The
parts C1 and C2 express the simulation constraints (A ≺ B), while the three other
constraints express the converse (B ≺ A). More precisely, note that C1 requires
that any discrete transition of A also exists in B: for any transition in A and
for all delays after which it is firable, there exists a corresponding transition in B
leading to a bisimilar configuration. This combination of a universal quantification
over delays with an existential quantification over discrete successors was missing
in ERL , as shown in Section 3. In the converse direction, discrete transitions are
encoded in C3 and C4. C4 states that a transition labelled by a can only happen
in B when it is possible in A. C3 uses the decomposition Split(�, a) of the clock
constraint En(�, a) to express that any a transition in B corresponds to some a
transition of A firable from the same valuation. Finally, C2 and C5 handle the case
of delay transitions.

Example 5.2. We illustrate this definition on the ERAB introduced in Section 3
to show that the construction of [18] is erroneous. This ERA is depicted in Figure 2.
Applying the previous definition leads to the following equation for location �0:

Φ∼B(�0) =

⎧⎨
⎩

[0 ≤ xa ≤ 1]〈a〉Φ∼B(�1) ∧ [1 ≤ xa ≤ 2]〈a〉Φ∼B(�2)
∧ [0 ≤ xa < 1][a]Φ∼B(�1) ∧ [xa = 1][a](Φ∼B(�1) ∨ Φ∼B(�2))
∧ [1 < xa ≤ 2][a]Φ∼B(�2) ∧ [2 < xa][a]ff.

Observe the splitting of the constraint 0 ≤ xa ≤ 2, obtained by the decomposition
Split. This corrects the corresponding constraint of the construction of [18] (see
Sect. 3) which was [0 ≤ xa ≤ 2, a](Φ∼B(�1) ∨ Φ∼B(�2)).

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 89

Remark 5.3 (on the satisfiability of WTμ). In [13], the satisfiability problem is
proved to be decidable for a large fragment of WTμ , which contains restrictions
on the nesting of operators. It is easy to verify that the characteristic formulae
constructed above for ERAare, if the ERAdo not contain invariants, elements of
this fragment.

Remark 5.4 (on the size of characteristic formulae Φ∼A). Due to the use of
the operator Split, these characteristic formulae are in the worst case of size
|A| × 2O(|Σ| log K|Σ|) where K is the largest integer constant of A, whereas if A is
deterministic, then their size is linear in the size of A. Compared with the con-
struction proposed in [1] which yields formulae whose size is linear in that of the
automaton, this complexity may seam to be non-optimal. However, we believe
that this exponential blow-up is not avoidable, and detail now why. Characteristic
formulae of [1] compare the clock valuation with the guards of edges after the dis-
crete firing, and can then conclude a posteriori which edges may have been fired.
For ERA , once a discrete transition labelled by a has been fired, one can not re-
cover the value of clock xa before this firing, as it has been reset. This observation
motivated the introduction of the Split operator, which underlies the worst-case ex-
ponential size. Moreover, note that this exponential blow-up has no consequences
on the theoretical time complexity of timed bisimilarity checking (see Cor. 5.6),
as formulae of linear size would lead to the same complexity.

The following result states the correctness of the previous construction.

Theorem 5.5. Let A and B be two ERA over Σ and consider � and m two loca-
tions of A and B respectively. Then for any valuation v ∈ �Σ, we have:

(�, v) ∼ (m, v) ⇐⇒ B, (m, v) |=D∼A Φ∼A(�)

In particular, we have: A ∼ B ⇐⇒ B |=D∼A Φ∼A(�A0)

Proof. To prove Theorem 5.5 we establish successively the two implications:

⇐ If B, (m, v) |=D∼A Φ∼A(�), then we have (�, v) ∼ (m, v).
⇒ If (�, v) ∼ (m, v), then B, (m, v) |=D∼A Φ∼A(�) holds.

Let us denote by QA and QB the set of configurations of A and B respectively.
Proof of ⇐. We consider the relation R ⊆ QA × QB defined as R =
{((�, v), (m, v)) | B, (m, v) |=D∼A Φ∼A(�)} and show that it is a timed bisimu-
lation. In other terms, we must verify the conditions of Definition 2.9.

(i) Step in A. Consider σ ∈ Σ∪� such that (�, v) σ−→ (�′, v′) in A, and show that
there exists m′ ∈ LB such that (m, v) σ−→ (m′, v′) in B and (�′, v′)R(m′, v′).
We distinguish two cases according to the nature of σ.
• If σ = a ∈ Σ. Then there exists a transition (�, g, a, �′) ∈ EA correspond-

ing to this firing. In particular, we have v |= g and v′ = v[xa := 0]. By
hypothesis, we have B, (m, v) |=D∼A Φ∼A(�). In particular the transition

90 O.L. NGUENA TIMO AND P.-A. REYNIER

of A corresponds to a conjunct in part C1 of Φ∼A(�), and we thus have
B, (m, v) |=D∼A [g]〈a〉Φ∼A(�′). As v |= g, this implies the existence of
a step (m, v) a−→ (m′, v′′) in B, with B, (m, v′′) |=D∼A Φ∼A(�′). The se-
mantics of ERA implies that v′′ = v[xa := 0], and hence v′′ = v′, which
concludes this case.

• If σ = δ ∈ �. Then we have (�, v) δ−→ (�, v + δ) in A what implies
that v + δ |= IA(�). Part C2 of Φ∼A(�) then implies the existence of the
transition (m, v) δ−→ (m, v+δ) in B, such that B, (m, v+δ) |=D∼A Φ∼A(�),
as desired.

This shows that the relation R is a timed simulation between A and B.
(ii) Step in B. Conversely, we show that the relation R−1 is a timed simulation

between B and A. As above, let us consider σ ∈ Σ ∪ � such that (m, v) σ−→
(m′, v′) in B, and show that there exists �′ ∈ LA such that (�, v) σ−→ (�′, v′)
in A and (�′, v′)R(m′, v′). Again, we distinguish two cases according to the
nature of σ.
• If σ = a ∈ Σ. By hypothesis, we have B, (m, v) |=D∼A Φ∼A(�).

In particular, part C4 of this formula is satisfied what implies that
v |= En(�, a). Then, as Split(�, a) partitions the constraint En(�, a),
there exists a unique clock constraint g ∈ Split(�, a) such that v |= g.
The corresponding conjunct of part C3 implies that B, (m′, v′) |=D∼A∨

(,g′,a,	′)∈EA|�g�⊆�g′� Φ∼A(�′). The second property of Split(�, a) implies,
as �g� is not empty, that there exists a transition (�, g′, a, �′) ∈ EA such
that B, (m′, v′) |=D∼A Φ∼A(�′) and with �g� ⊆ �g′�. As a consequence, we
have v |= g′ and then (�, v) a−→ (�′, v′′) in A, with v′′ = v[xa := 0] = v′,
which concludes this case.

• If σ = δ ∈ �. Then we have (m, v) δ−→ (m, v + δ) in B. Part C5 of formula
Φ∼A(�) implies that v+δ |= IA(�). Thus, the transition (�, v) δ−→ (�, v+δ)
exists in A. Moreover, since v+ δ |= IA(�), part C2 of the formula Φ∼A(�)
implies that (m, v + δ) |=D∼A Φ∼A(�), as desired.

This concludes the proof that R−1 is also a timed simulation between B and
A, and thus R is a timed bisimulation as desired. This concludes the proof
of the first implication.

Proof of ⇒. Recall that the characteristic formulae Φ∼A(�) are defined as the
greatest solution of a system of inequalities. Using the notion of coinduction [16],
any solution of these inequalities also satisfies these formulae. We consider the
assignment function V over the variables Φ∼A(�) defined by V(Φ∼A(�)) = {(m, v) ∈
QB | (�, v) ∼ (m, v)} for any � ∈ LA. It is then sufficient to prove the following
inclusions:

∀� ∈ LA, �Φ∼A(�)�BV ⊆ �D∼A(Φ∼A(�))�BV . (5.1)

Let (m, v) ∈ �Φ∼A(�)�BV (that is such that (�, v) ∼ (m, v)). The proof proceeds by
considering each conjunct ξ of D∼A(Φ∼A(�)).

(i) ξ = [g]〈a〉Φ∼A(�′) for some transition (�, g, a, �′) ∈ EA. We distinguish be-
tween whether this transition can be fired from the configuration (�, v) or

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 91

not. If it cannot be fired from (�, v), that is ∀δ ∈ �, v + δ �|= g, then
we trivially have B, (m, v) |= ξ. Otherwise, there exists a delay δ ∈ �

such that v + δ |= g. Then, we have (�, v + δ) a−→ (�′, v′) in A, with
v′ = (v + δ)[xa := 0]. By bisimulation property and by time determinism, we
have that (�, v + δ) ∼ (m, v + δ) and then that there exists a configuration
(m′, v′′) of B such that (m, v + δ) a−→ (m′, v′′) in B and (�′, v′) ∼ (m′, v′′).
Semantics of ERA implies that v′ = v′′ and thus the result follows since, by
definition of V , we have (m′, v′) ∈ �Φ∼A(�′)�BV .

(ii) ξ = [IA(�)]Φ∼A(�). For any δ ∈ � such that v + δ |= IA(�), we have (�, v) δ−→
(�, v+δ) in A. By bisimulation property and time determinism, we then have
(�, v + δ) ∼ (m, v + δ). This concludes this case.

(iii) ξ = [g][a]
∨

(,g′,a,	′)∈EA|�g�⊆�g′� Φ∼A(�′), for some clock constraint g ∈
Split(�, a). Consider, if some exists, a delay δ ∈ � such that v + δ |= g

and (m, v) δ−→ (m, v + δ) a−→ (m′, v′) in B. Then, we must show that the fol-
lowing holds: B, (m′, v′) |=D∼A

∨
(,g′,a,	′)∈EA|�g�⊆�g′� Φ∼A(�′). First, we have

by bisimulation and time determinism that (�, v) δ−→ (�, v + δ) exists in A
and that (�, v + δ) ∼ (m, v + δ) holds. Bisimulation then implies that there
exists a transition (�, v + δ) a−→ (�′, v′′) in B such that (�′, v′′) ∼ (m′, v′). This
implies that there exists a transition (�, g′, a, �′) in EA such that v + δ |= g′.
By the second property of Split(�, a), this implies that �g� ⊆ �g′�, and thus
this transition belongs to the disjunction of ξ. In particular, we thus have
B, (m′, v′) |=D∼A Φ∼A(�′), as required.

(iv) ξ = [¬En(�, a)][a]ff. By contradiction, assume that the property is not sat-
isfied, that is, there exists a delay δ ∈ � such that v + δ �∈ En(�, a) and
(m, v + δ) a−→ (m′, v′) in B for some configuration (m′, v′). By bisimulation,
an a-labelled transition is also firable from the configuration (�, v + δ). This
is in contradiction with v + δ �∈ En(�, a).

(v) ξ = [¬IA(�)]ff. By contradiction, assume that the property is not satisfied,
that is, there exists a delay δ ∈ � such that v + δ �|= IA(�) and (m, v) δ−→
(m, v + δ) in B. By bisimulation, we also have (�, v) δ−→ (�, v + δ) in B. This
is in contradiction with v + δ �|= IA(�).

This concludes the proof of the property (5.1), and thus the second implication
also holds.
This concludes the proof of Theorem 5.5. �

Corollary 5.6. One can decide timed bisimilarity of two ERAA and B over Σ
in time |A| × |B| × 2O(|Σ| log K|Σ|) (K denotes the largest constant of A and B).

Proof. Using the previous theorem, this problem reduces to the model checking
problem of B against formula Φ∼A(�A0) under the declaration D∼A. Note that Φ∼A

contains only greatest fixpoints and thus is alternation-free. As there exists better
complexity results for this class (see [8]), the proof of Theorem 4.6 shows that
the time complexity of this problem is in O(|RK(B)| × |Φ∼A|). The result follows

92 O.L. NGUENA TIMO AND P.-A. REYNIER

from the size of RK(B) and previous remarks on the size of the characteristic
formulae Φ∼A. �

Note that this complexity result is more precise than the EXPTIME complexity
resulting from constructions proposed in [1]. For instance, for a fixed alphabet Σ
and if constants are encoded in unary, then timed (bi)similarity of two ERAA
and B can be checked in polynomial time. In other terms, there is no exponential
blow-up in the size of the discrete structures of A and B.

5.2. Characteristic formulae for timed similarity

Definition 5.7. We define a declaration D
A associating a formula to each loca-
tion � of A, and consider the greatest solution of this system of fixpoint equations.

Φ
A(�)
D�A=

⎧⎪⎪⎨
⎪⎪⎩

∧
a∈Σ

∧
(,g,a,	′)∈EA

[g]〈a〉 Φ
A(�′) (C′
1)

∧
[IA(�)] Φ
A(�). (C′

2)

Note that this construction leads to characteristic formulae whose size is lin-
ear in the size of A. The following result states the correctness of the previous
construction.

Theorem 5.8. Let A and B be two ERA over Σ and consider � and m two loca-
tions of A and B respectively. Then for any valuation v ∈ �Σ, we have:

(�, v) ≺ (m, v) ⇐⇒ B, (m, v) |=D�A Φ
A(�).

In particular, we have: A ≺ B ⇐⇒ B |=D�A Φ
A(�A0).

We omit the proof as it is similar to that of Theorem 5.5. As for bisimilarity, we
obtain an EXPTIMEprocedure to decide timed similarity:

Corollary 5.9. One can decide timed similarity of two ERAA and B over Σ in
time |A| × |B| × 2O(|Σ| log K|Σ|) (K denotes the largest constant of A and B).

Moreover, this procedure can also be used to decide language inclusion between
ERA . More precisely, we have:

Corollary 5.10. Given two ERAA and B, the procedure checking timed simi-
larity leads to an EXPTIME procedure to decide whether L(A) ⊆ L(B) holds or
not.

Proof. We first determinize automaton B, resulting in B′. Following [4], the
number of locations and edges of B′ is then exponential in the size of B. Using
Proposition 2.12, language inclusion reduces to A ≺ B′, and then to the model
checking problem B′ |=D�A Φ
A(�A0). Using previous analysis, this can be checked
in time |RK(B′)| × |Φ
A|. Finally, we obtain a procedure to decide this language
inclusion in time |A| × 2|B|, which belongs thus to EXPTIME . �

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 93

Note that the problem of language inclusion is PSPACE -complete [4], thus this
procedure is not optimal. However, the known algorithm [4] matching the lower
bound consists in guessing a path in the region automaton. A zone-based version
of this procedure may thus be an interesting alternative in practice.

5.3. A positive result for ERL

Following discussion of Section 3.2, we consider now the subclass of ERAwith
a fixed granularity. Let (d, M) ∈ N × N, recall that we denote by ERA lazy

(d,M) the
subclass of ERAcomposed of models without invariants and such that constants
are bounded by M , and use denominators that divide d. We prove the following
positive result:

Theorem 5.11. Let (d, M) ∈ N × N. The logic ERL can express timed
(bi)similarity for the class ERA lazy

(d,M).

Proof. Without loss of generality, we can multiply all constants by the same con-
stant and end up with ERAusing only integer constants. We thus consider the
class ERA lazy

(1,K). Let A ∈ ERA lazy
(1,K), we detail how we build a formula in ERL

which characterizes all elements in ERA lazy
(1,K) which are timed bisimilar to A. A

similar approach can be used for timed similarity. It can first be checked that
in our previous construction, WTμ characteristic formulae used to express timed
bisimilarity belong to the following grammar (recall that there are no invariants
in A):

ϕ ::= tt | ff | X | ϕ ∧ ϕ | ϕ ∨ ϕ | [g]〈a〉ϕ | [g][a]ϕ | νX · ϕ
where g ∈ C(Σ), a ∈ Σ and X ∈ Var. More precisely, g are either constraints
associated with edges (case of C1), or constraints resulting from the Split operation
(case of C3). In particular, these constraints only involve integer constants less or
equal than K. As a consequence, the constraint g is equivalent to a union of regions,
and hence the formula [g]ϕ is equivalent to the formula

∧
r|r⊆�g�[r]ϕ, where the

operator [r] is an abuse of notation, as we should use a clock constraint defining r
instead.

Note that by Proposition 4.4, we can replace the WTμ operator [r][a] by the
ERL operator [r, a]. It remains to handle the combination [r]〈a〉, where r denotes
a region. As the ERAwe consider here have the same granularity, a transition is
enabled in a valuation of a region r if and only if it is enabled in all the valuations
of r. However, we can not replace formula [r]〈a〉ϕ by formula 〈r〉〈a〉ϕ as the first
one is equivalent to tt for all valuations which have no time successors in r. We
instead have the following informal equivalence:

(�, v) |= [r]〈a〉ϕ ⇐⇒ (�, v) |= [r]ff ∨ 〈r〉〈a〉ϕ.

Note that formula [r]ff requires that v has no time successors in r. But this last
formula can not be expressed in ERL , and we can thus not obtain a direct trans-
lation. To solve this issue, we use a more complicated construction, by exhibiting

94 O.L. NGUENA TIMO AND P.-A. REYNIER

one variable for each pair (�, r) composed of a location and of a region, as it is
done in [12]. This trick allows us to decide locally whether the valuation has time
successors in a region r′. Indeed, this only depends on the current region r. The
equation for variable Φ∼A(�, r) is then:

Φ∼A(�, r) D∼A=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∧
(,g,a,	′)∈EA

∧
r′∈RK(Σ)|r′⊆�g�∧r�r′

〈r′, a〉 Φ∼A(�′, r′[xa := 0])

∧ ∧
a∈Σ

∧
r′∈RK(Σ)

[r′, a]
∨

(,g′,a,	′)∈EA|r′⊆�g′�

Φ∼A(�′, r′[xa := 0])

where the notation r � r′ means that the region r′ is a time successor of the
region r, and r′[xa := 0] denotes the region obtained from r′ by resetting xa. Note
that we specify which region is reached when firing a discrete transition. We can
then obtain the following equivalence, where B ∈ ERA lazy

(1,K) and (m, v) denotes a
configuration of B:

(�, v) ∼ (m, v) ⇐⇒ B, (m, v) |=D∼A Φ∼A(�, [v]).

As a consequence, we obtain A ∼ B ⇐⇒ B |=D∼A Φ∼A(�A0 , r0), where r0 is the
unique region containing the initial valuation. We do not detail the proof of the
above equivalence as it follows the lines of the proof of Theorem 5.5. �

Example 5.12. We illustrate this last result on the ERAB depicted in Figure 2.
Compared with the WTμ formula obtained for location �0 of this ERA in
Example 5.2, the ERL formula for this location is obtained using more variables.
For location �0, we distinguish one variable for each region. There are here 6 re-
gions, which we denote by r0, r0,1, r1, r1,2, r2 and r∞, according to the associated
intervals for clock xa. We obtain for instance for the variable Φ∼B(�0, r1) the fol-
lowing equation:

Φ∼B(�0, r1) =

⎧⎪⎪⎨
⎪⎪⎩

〈r1, a〉Φ∼B(�1, r0) ∧ 〈r1, a〉Φ∼B(�2, r0)
∧ 〈r1,2, a〉Φ∼B(�2, r0) ∧ 〈r2, a〉Φ∼B(�2, r0)
∧ [r1, a](Φ∼B(�1, r0) ∨ Φ∼B(�2, r0)) ∧ [r1,2, a]Φ∼B(�2, r0)
∧ [r2, a]Φ∼B(�2, r0) ∧ [r∞, a]ff

Note that the resulting ERL formula is only correct for ERAwithout invariants,
and with only integral constants bounded by 2, while the WTμ formula holds for
the whole class of ERA .

6. Conclusion

In this paper, we focused on the construction of characteristic formulae for
ERAup to timed (bi)similarity. After having shown that the problem could not be
solved in general in the logic ERL , we have introduced the new logic WTμ, and

ON CHARACTERISTIC FORMULAE FOR EVENT-RECORDING AUTOMATA 95

have proved that it is strictly more expressive than ERL and that its model check-
ing problem over ERA is EXPTIME -complete. We have finally provided character-
istic formulae constructions in WTμ for the whole class of ERAwith invariants.

Compared to existing results in [1] for timed automata which can also be applied
to ERAusing natural translations, we obtain procedures in the same class of com-
plexity (EXPTIME), but we state more precise complexity bounds. For instance, for
a fixed alphabet Σ and if constants are encoded in unary, then timed (bi)similarity
can be checked in polynomial time. Moreover, our algorithm for model check-
ing WTμ against ERAcan be more efficient than going through Lν and timed
automata as it involves only one copy of the event-clocks. Finally, our transla-
tion builds formulae in a subclass of WTμ for which the satisfiability problem is
decidable.

As future work, we plan to study how the fragment of WTμ with a decidable
satisfiability problem can be enlarged, for instance to be able to express controlla-
bility properties (as in [6]). We also envisage to adapt the implementation of the
procedures of [1] done in the tool CMC [11] to this framework for ERA .

References

[1] L. Aceto, A. Ingólfsdóttir, M.L. Pedersen and J. Poulsen, Characteristic formulae for timed
automata. Theor. Inf. Appl. 34 (2000) 565–584.

[2] L. Aceto and F. Laroussinie, Is your model-checker on time? On the complexity of model
checking for timed modal logics. J. Log. Algebr. Program. 52–53 (2002) 7–51.

[3] R. Alur and D. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (1994) 183–235.
[4] R. Alur, L. Fix and T.A. Henzinger, Event-clock automata: A determinizable class of timed

automata. Theor. Comput. Sci. 211 (1999) 253–273.
[5] H. Bekić, Definable operation in general algebras, and the theory of automata and flowcharts,

in Programming Languages and Their Definition, edited by C.B. Jones. Springer. Lect. Notes

Comput. Sci. 177 (1984) 30–55.
[6] P. Bouyer, F. Cassez and F. Laroussinie, Timed modal logics for real-time systems: Speci-

fication, verification and control. J. Logic Lang. Inform. 20 (2011) 169–203.
[7] A.K. Chandra, D. Kozen and L.J. Stockmeyer, Alternation. J. ACM 28 (1981) 114–133.
[8] R. Cleaveland and B. Steffen, A linear-time model-checking algorithm for the alternation-

free modal mu-calculus. Form. Method Syst. Design 2 (1993) 121–147.
[9] D. D’Souza, A logical characterisation of event clock automata. Int. J. Found. Comput.

Sci. 14 (2003) 625–640.
[10] T.A. Henzinger, X. Nicollin, J. Sifakis and S. Yovine, Symbolic model-checking for real-time

systems. Inf. Comput. 111 (1994) 193–244.
[11] F. Laroussinie and K.G. Larsen, CMC: A tool for compositional model-checking of real-time

systems, in Proc. of IFIP TC6 WG6.1 Joint Conf. on Formal Description Techniques for
Distributed Systems and Communication Protocols, FORTE XI, and Protocol Specification,
Testing and Verification, PSTV XVIII (Paris, Nov. 1998), edited by S. Budkowski, A.R.
Cavalli and E. Najm, Kluwer, IFIP Conference Proceedings 135 (1998) 439–456.

[12] F. Laroussinie, K.G. Larsen and C. Weise, From timed automata to logic – and back, in
Proc. of 20th Int. Symp. on Mathematical Foundations of Computer Science, MFCS ’95
(Prague, Aug./Sept. 1995), edited by J. Wiedermann and P. Hájek, Springer. Lect. Notes
Comput. Sci. 969 (1995) 529–539.

[13] O.L. Nguena Timo, Synthesis for a Weak Real-Time Logic, Ph.D. thesis, Université
Bordeaux 1 (2009).

96 O.L. NGUENA TIMO AND P.-A. REYNIER

[14] O.L. Nguena Timo and P.-A. Reynier, On characteristic formulae for event-recording au-
tomata, in Proc. of 6th Workshop on Fixed Points in Computer Science, FICS ’09 (Coim-
bra, Sept. 2009), edited by R. Matthes and T. Uustalu. Inst. of Cybernetics, Tallinn (2009)
70–78.

[15] J.-F. Raskin and P.-Y. Schobbens, The logic of event clocks – decidability, complexity and
expressiveness. J. Autom. Lang. Comb. 4 (1999) 247–286.

[16] D. Sangiorgi, Bisimulation: From the origins to today, in Proc. of 19th Ann. IEEE Symp. on
Logic in Computer Science, LICS ’04 (Turku, July 2004). IEEE CS Press (2004) 298–302.

[17] M. Sorea, A decidable fixpoint logic for time-outs, in Proc. of 13th Int. Conf. on
Concurrency Theory, CONCUR 2002 (Brno, Aug. 2002), edited by L. Brim, P. Jancar,
M. Křet́ınský and A. Kučera, Springer. Lect. Notes Comput. Sci. 2421 (2002) 255–271.

[18] M. Sorea, Verification of Real-Time Systems through Lazy Approximations, Ph.D. thesis,
Universität Ulm (2004).

[19] W. Thomas, Languages, automata and logic, in Handbook of Formal Languages, Beyond
Words, edited by G. Rozenberg and A. Salomaa. Springer 3 (1997) 389–455.

Communicated by Ralph Matthes and Tarmo Uustalu.
Received September 28, 2012. Accepted September 28, 2012.

	Introduction
	Preliminaries
	Timed transition systems
	Event-Recording Automata
	Event-Recording Logic
	Timed behavioral relations and characteristic formulae

	On the use of ERLfor characterizing timed bisimilarity
	Impossibility result for ERL
	When can ERLcharacterize timed bisimilarity?
	On the construction proposed in 18

	A -calculus for event-recording automata
	The logic WT
	Expressiveness
	Model-Checking

	Characteristic formulae constructions
	Characteristic formulae for timed bisimilarity
	Characteristic formulae for timed similarity
	A positive result for ERL

	Conclusion
	References

