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UNDECIDABILITY OF INFINITE POST
CORRESPONDENCE PROBLEM

FOR INSTANCES OF SIZE 8

Jing Dong
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Abstract. The infinite Post Correspondence Problem (ωPCP) was
shown to be undecidable by Ruohonen (1985) in general. Blondel and
Canterini [Theory Comput. Syst. 36 (2003) 231–245] showed that ωPCP
is undecidable for domain alphabets of size 105, Halava and Harju
[RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ωPCP is
undecidable for domain alphabets of size 9. By designing a special
coding, we delete a letter from Halava and Harju’s construction. So
we prove that ωPCP is undecidable for domain alphabets of size 8.

Mathematics Subject Classification. 03D35, 03D40, 68R15.

1. Introduction

An instance of the Post Correspondence Problem (PCP , for short) consists of
two morphisms h, g : A∗ → B∗, where A and B are two finite alphabets. If the
cardinality |A| = n, we say that the size of the instance (h, g) is n, and we denote
it as PCP (n). If there is a nonempty word w ∈ A∗ such that h(w) = g(w), then
we call w a solution of (h, g). In the PCP, it is asked whether or not an instance
(h, g) has a solution.

The PCP is an undecidable problem in its general form; see Post [6]. It was
proved that the PCP (2) is decidable by Ehrenfeucht et al. [2]; see also [4].
On the other hand, Matiyasevich and Sénizergues proved in [5] that PCP(7) is
undecidable.
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We denote the empty word by ε. For any finite alphabet Σ and two strings
u, v ∈ Σ∗, we denote u � v, if u is a prefix of v, i.e., there exists w ∈ Σ∗ such that
v = uw (we also denote w = u−1v); and denote v �u, if u is a suffix of v, i.e., there
exists s ∈ Σ∗ such that v = su (we also denote s = vu−1). Given an instance (h, g)
of PCP, an infinite word w = a1a2 . . . over A with ai ∈ A for each i = 1, 2, . . .,
we call w an infinite solution of the instance (h, g), if for any finite prefix u of w,
either h(u) � g(u) or g(u) � h(u).

The infinite PCP (ωPCP , for short) is to determine whether or not a given
instance of the PCP has an infinite solution. Ruohonen proved in [7] that ωPCP is
undecidable. Blondel and Canterini [1] used undecidability of the halting problem
of the Turing machine and proved that the ωPCP is undecidable for instances
of size 105, or in short, ωPCP(105) is undecidable. It was proved by Halava and
Harju [3] using undecidability of the termination problem of 3-rule semi-Thue
systems that the ωPCP(9) is undecidable.

In this paper we shall prove that the ωPCP(8) is undecidable. As in [3], our
proof relies on the undecidability of semi-Thue system.

A semi-Thue system T = (Σ,R) consists of an alphabet Σ = {a1, . . . , an} and
a relation R ⊆ Σ∗ ×Σ∗, the elements of which are called the rules of T . For any
two words w1, w2 ∈ Σ∗, we write w1 →T w2, if there are x, y ∈ Σ∗ and (u, v) ∈ R
such that

w1 = xuy, w2 = xvy.

For any word w0 ∈ Σ∗, if there does not exist any infinite sequences of words
w1, w2, . . . such that wi →T wi+1 for all i ≥ 0, then we say that T terminates on
w0. The termination problem asks if w0 ∈ TERMINATET , where

TERMINATET = {w0 ∈ Σ∗ | T does not terminate on w0}.

Theorem 1.1 (see [5]). There exists a 3-rule semi-Thue system with an undecid-
able termination problem.

Halava and Harju proved

Theorem 1.2 (see [3]). If the termination problem is undecidable for a semi-Thue
system T with n rules, then the ωPCP is undecidable for instances of size n+ 6.

To introduce our idea, we first sketch the proof of Theorem 1.2 in [3].
As a start, any semi-Thue system has an equivalent 2-letter alphabet semi-Thue

system with some special coding.
Let T = (Σ,R) be a semi-Thue system. We can assume that Σ is binary. Indeed,

for Σ = {a1, a2, . . . , ak}, define a coding ϕ : Σ∗ → {a, b}∗ by

ϕ(ai) = abia, i = 1, . . . , k. (1.1)

Then let R′ = {(ϕ(u), ϕ(v))|(u, v) ∈ R} be a new set of rules, and define T ′ =
({a, b}, R′). We see that ω →T ω

′ in T if and only if ϕ(ω) →T ′ ϕ(ω′) in T ′.
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Note that ϕ(TERMINATET ) is a strict subset of TERMINATET ′ , and the
latter may have more complex structure than the former. So, for simplicity, we
define the termination problem of T ′ with coding ϕ as

TERMINATET ′,ϕ = {ϕ(w0) | w0 ∈ Σ∗, T ′ does not terminate on ϕ(w0)}.
Hence ϕ(TERMINATET ) = TERMINATET ′,ϕ. It follows that the termination
problem of T is undecidable, if and only if the termination problem of T ′ with
coding ϕ is undecidable.

Halava and Harju [3] showed that, for any word u ∈ {a, b}∗ with coding ϕ
defined in (1.1), they can construct an instance of PCP (h, g), so that T ′ does not
terminate on u if and only if (h, g) has an infinite solution. Their construction is
as follows.

Given any two alphabets Y, Z and a nonempty word s ∈ Z∗, define morphisms
ls, rs : Y ∗ → (Y ∪ {s})∗ by ls(a) = sa and rs(a) = as for all letters a ∈ Y . Here,
we require Y and Z be disjoint.

Let T = ({a, b}, R) be a semi-Thue system with R = {t1, t2, . . . , tn} such that
ti = (ui, vi) and ui, vi are encoded by ϕ. For any word u ∈ Σ∗ encoded by ϕ,
they constructed an instance of PCP of size n + 6, i.e., Φ(u) = (h, g), where the
morphisms h, g : ({a1, a2, b1, b2, d,#} ∪R)∗ → {a, b, d,#}∗ are defined by

h(a1) = dad, g(a1) = add,
h(a2) = dda, g(a2) = add,
h(b1) = dbd, g(b1) = bdd,
h(b2) = ddb, g(b2) = bdd,
h(d) = ldd(u)dd#d, g(d) = dd,
h(#) = dd#d, g(#) = #dd,
h(ti) = d−1ldd(vi), g(ti) = rdd(ui), for i = 1, . . . , n.

(1.2)

In the special case of vi = ε, define h(ti) = d.
And then, they proved that each infinite solution of (h, g) can only take the

form
dw1#w2#w3# . . . , (1.3)

where for all j, wj = xjtijyj for some tij ∈ R, xj ∈ {a1, b1}∗ and yj ∈ {a2, b2}∗.
After proving that (h, g) has an infinite solution (1.3) if and only if T does

not terminate on u, they obtained that, for any n-rule semi-Thue system, the
termination problem is reduced to an ωPCP of alphabet size n+ 6.

Our observation starts from wj . It is interesting to analysis the structure of
wj = xjtijyj . It is composed of three parts. We call tij the rule part; xj , the left
part; yj , the right part. In the left part, they used the alphabet {a1, b1}, while in
the right part, they used the alphabet {a2, b2}.

Our idea is to combine b1 and b2 to one letter. It needs some adjustment to
make this combination work.

First of all, we change the coding of alphabet. Suppose T1 = (Σ1, R1) is a
semi-Thue system with Σ1 = {a1, . . . , ak}. We define

Γ = {abbaa(bb)i+1a | 1 ≤ i ≤ k}, (1.4)
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and a coding ψ : Σ1 → Γ such that, for any i = 1, . . . , k,

ψ(ai) = abbaa(bb)i+1a,

where we call abba the guide gadget, and a(bb)i+1a the distinguish gadget of ψ(ai).
Let R = {(ψ(u), ψ(v))|(u, v) ∈ R1} = {ti|i = 1, . . . , n} be a new set of rules,

where ti = (ui, vi). Define T = ({a, b}, R), then T is also a semi-Thue system. It
is straightforward that for any word u ∈ Σ∗

1 , T1 terminates on u if and only if T
terminates on ψ(u).

Now we can define our reduction. For any u coded by ψ, i.e., u ∈ Γ ∗, we define
Ψ(u) = (h1, g1), an instance of PCP, by

h1, g1 : ({d, a1, a2, b1,#} ∪R)∗ → {d, a, b,#}∗

with
h1(a1) = a, g1(a1) = a,
h1(b1) = bb, g1(b1) = bb,
h1(a2) = baab, g1(a2) = aabb,
h1(d) = d#uabba, g1(d) = d,
h1(#) = #ab, g1(#) = #abb,
h1(ti) = (ab)−1vi, g1(ti) = (abb)−1ui, for i = 1, . . . , n.

(1.5)

In the special case of vi = ε, we define h1(ti) = ba, g1(ti) = (abb)−1uiabba. Without
loss of generality, we suppose that ui �= ε (otherwise, TERMINATET,ψ = Γ ∗ and
hence decidable). We call # the separating letter, d the initial letter, and ti the
rule letters.

We will prove that T does not terminate on u if and only if Ψ(u) has an infinite
solution with prefix d, and then we can prove

Theorem 1.3. If there is a semi-Thue system with n rules having an undecidable
termination problem, then ωPCP is undecidable for instances of size n+ 5.

By Theorems 1.1 and 1.3, we have

Corollary 1.4. ωPCP is undecidable for instances of size 8.

Whether ωPCP is undecidable for instances of size 3 ≤ n ≤ 7 is still open.
The same argument as in [3] yields that, by Theorem 4.1 of [1] and Corollary 1.4,

the isolation threshold problem for the probabilistic finite automata with two let-
ters and 32 states and the isolated threshold existence problem for probabilistic
finite automata with two letters and 220 states, are undecidable.

2. Proof of Theorem 1.3

For any u ∈ {a, b}∗ with coding ψ, i.e., u ∈ Γ ∗, where Γ is defined in (1.4), we
prove first that T does not terminate on u if and only if (h1, g1) has an infinite
solution starting from letter d, where h1, g1 are defined in (1.5). And then we
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construct an instance (h2, g2) so that T does not terminate on u if and only if
(h2, g2) has an infinite solution (without limitation on the starting letter).

(i) Assume that T does not terminate on u, i.e., there exists a sequence (wi)i≥1

such that
u = w1 →T w2 →T w3 →T . . . , (2.1)

where u = w1 = x1ui1y1 and wj = xj−1vij−1yj−1 = xjuijyj for all j ≥ 2.
Since g1(a1) = a, g1(b1) = bb, for any string x ∈ Γ ∗, there exists a unique x̃ ∈

{a1, b1}∗ such that g1(x̃) = x. Letting α(x) = x̃, the mapping α : Γ ∗ → {a1, b1}∗
is well defined. For example, we have α(abbaabbbba) = a1b1a1a1b1b1a1. Note that,

g1(α(x)) = h1(α(x)) = x.

Since g1(a2) = aabb, g1(b1) = bb, for any non-empty string x ∈ Γ ∗, there
exists a unique string x̃ ∈ {a2, b1}∗ such that g1(x̃) = (abb)−1xabb. Letting
β(x) = x̃, the mapping β : Γ ∗ → {a2, b1}∗ is well defined. For example, let
x = abbaabbbbaabbaabbbbbba, we have β(x) = a2b1a2a2b1b1a2, where guide gadget
disappears. Note that

g1(β(x)) = (abb)−1xabb, h1(β(x)) = (ab)−1xab.

Let us start from d. We have g1(d) = d and

h1(d) = d#uabba = d#x1ui1y1abba.

To match #x1ui1y1abba, we see

if vi1 �= ε, g1(#β(x1)ti1α(y1)a1b1a1) = #x1ui1y1abba,
h1(#β(x1)ti1α(y1)a1b1a1) = #x1vi1y1abba;

if vi1 = ε, g1(#β(x1)ti1 [(a1b1a1)−1α(y1)a1b1a1]) = #x1ui1y1abba,
h1(#β(x1)ti1 [(a1b1a1)−1α(y1)a1b1a1]) = #x1vi1y1abba.

(2.2)

Define δ : Γ ∗ → {a1b1a1, ε} as, for any x ∈ Γ ∗, if x = ε then δ(x) = a1b1a1,
otherwise δ(x) = ε. So we can summarize the above two cases as

g1(#β(x1)ti1 [δ(vi1 )−1y1a1b1a1]) = #x1ui1y1abba,
h1(#β(x1)ti1 [δ(vi1 )−1y1a1b1a1]) = #x1vi1y1abba = #x2ui2y2abba.

(2.3)

Note that in case of vi1 = y1 = ε, we have δ(vi1)
−1y1a1b1a1 = ε. Analogous to (2.2)

and (2.3), we define for any j ≥ 1,

sj = β(xj)tij [δ(vij )
−1α(yj)a1b1a1]. (2.4)

Then we have

g1(#sj) = #xjuijyjabba,
h1(#sj) = #xjvijyjabba = #xj+1uij+1yj+1abba.

(2.5)

Now, we see
g1(d#s1) = d#x1ui1y1abba,
h1(d#s1) = d#x1ui1y1abba#x2ui2y2abba.
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Continuing this process, we see d#s1#s2# · · · is an infinite solution of (h1, g1)
starting from letter d.

(ii) Assume that w is an infinite solution of the instance (h1, g1) starting from
letter d.

Step 1. We prove that the separating letter # occurs in w infinitely many times. In
fact, there is one occurrence of # in h1(d) and no occurrences of # in g1(d). Note
that # only appears in h1(#) = #ab and g1(#) = #abb simultaneously. Therefore
there are infinitely many occurrences of letter # in any solution of (h1, g1) that
starts from the letter d.

Step 2. We show that one can write w as

w = d#w̃1#w̃2# . . . ,

where for j ≥ 1, w̃j is of the form

w̃j = x̃jtij ỹj (2.6)

for some tij ∈ R, x̃j ∈ {a2, b1}∗, ỹj ∈ {a1, b1}∗.
Indeed, for any s ∈ {d, a1, a2, b1,#, t1, . . . , tn}∗, in the string g1(s), the letter b

always appear in pair. Therefore, by definition of h1 and especially h1(#) = #ab,
there must exist exactly one rule letter between two successive separating letters
#; the sub-word between a separating letter # and the followed rule letter are
in {a2, b1}∗, and the sub-word between a rule letter and the followed separating
letter # are in {a1, b1}∗.
Step 3. We prove that there exist sequences (xj)∞j=1, (yj)∞j=1 and (ij)∞j=1 in Γ ∗

such that for any j ≥ 1,

x̃j = β(xj), ỹj = δ(vij )
−1α(yj)a1b1a1, (2.7)

and moreover, by setting wj = xjuijyj for any j ≥ 1, we have

u = w1 →T w2 →T w3 →T . . . (2.8)

Since w is a solution of (h1, g1), we have g1(#x̃1ti1 ỹ1) = #uabba. Now, the most
important thing is whether ui1 is a substring of u. Notice that u ∈ Γ ∗, that is the
guide gadget and distinguish gadget appear alternatively in u.

To prove it, we show first that the last letter of x̃1 is a2. By the fact that
the guide gadget abba � ui1 and g1(ti1) = (abb)−1ui1 or (abb)−1ui1abba, we see
aabbbb�g1(ti1). If the last letter of x̃1 is b1, then g1(#x̃1ti1 ỹ1) contains a substring
a(bb)m+2aabbbb for some m ≥ 0, there are two continuous distinguish gadgets
without a guide gadget between them, which contradicts the fact that u ∈ Γ ∗.

The last letter of x̃1 is a2 implies that g1(#x̃1) have abb as a suffix. Notice that
abbg1(ti1 ) contains ui1 , so ui1 is a substring of u.
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Now, we can write u = x1ui1y1 with x1, y1 ∈ Γ ∗, and then

g1(x̃1) = (abb)−1x1abb, g1(ỹ1) =
{

y1abba, if vi1 �= ε,
(abba)−1y1abba, if vi1 = ε.

Since the mappings α and β are well defined, we have

x̃1 = β(x1), ỹ1 = δ(vi1 )
−1α(y1)a1b1a1,

and moreover, h1(#w̃1) = #x1vi1y1abba. Setting w1 = u = x1ui1y1, w2 = x1vi1y1,
we have

w1 →T w2.

Continue this process, we prove (2.7) and (2.8).
(iii) So we have T does not terminate on u if and only if (h1, g1) has an infinite

solution starting from the letter d. We modify the instance (h1, g1) corresponding
u to morphisms

h2, g2 : ({d, a1, a2, b1,#} ∪R)∗ → {d, a, b,#, θ}∗
h2(ξ) = lθ(h1(ξ)), g2(ξ) = rθ(g1(ξ)), ∀ξ ∈ {a1, a2, b1,#} ∪R,
h2(d) = lθ(h1(d)), g2(d) = θdθ.

We get a new instance of PCP. Since every infinite solution of (h1, g1) starting
from the letter d uses letter d only one time, we see that (h1, g1) has an infinite
solution starting from the letter d if and only if (h2, g2) has an infinite solution.
This proves Theorem 1.3.
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