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ON THE DECIDABILITY OF SEMIGROUP FREENESS ∗
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Abstract. This paper deals with the decidability of semigroup free-
ness. More precisely, the freeness problem over a semigroup S is de-
fined as: given a finite subset X ⊆ S, decide whether each element
of S has at most one factorization over X. To date, the decidabilities
of the following two freeness problems have been closely examined. In
1953, Sardinas and Patterson proposed a now famous algorithm for
the freeness problem over the free monoids. In 1991, Klarner, Birget
and Satterfield proved the undecidability of the freeness problem over
three-by-three integer matrices. Both results led to the publication of
many subsequent papers. The aim of the present paper is (i) to present
general results about freeness problems, (ii) to study the decidability of
freeness problems over various particular semigroups (special attention
is devoted to multiplicative matrix semigroups), and (iii) to propose
precise, challenging open questions in order to promote the study of
the topic.
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1. Introduction

We first introduce basic notation and definitions; the organization of the paper
is more precisely described in Section 1.3.
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As usual, N, Z, Q, R, and C denote the semiring of naturals, the ring of integers,
the field of rational numbers, the field of real numbers, and the field of complex
numbers, respectively. For all m, n ∈ Z, �m,n� denotes the set of all k ∈ N such
that m ≤ k ≤ n. Unless otherwise stated, the additive and multiplicative identity
elements of any semiring are simply denoted 0 and 1, respectively. The letter O
denotes any matrix whose entries are all 0.

A word is a finite sequence of symbols called its letters. The empty word is
denoted ε. For every word w, the length of w is denoted |w|; for every symbol
a, |w|a denotes the number of occurrences of a in w. An alphabet is a (finite or
infinite) set of symbols. The canonical alphabet is the binary alphabet {0, 1}.

1.1. Free semigroups and codes

1.1.1. Definitions

A semigroup is a set equipped with an associative binary operation. Unless
otherwise stated, semigroup operations are denoted multiplicatively.

Definition 1.1 (code). Let S be a semigroup and let X be a subset of S. We say
that X is a code if the property

x1x2 . . . xm = y1y2 . . . yn ⇐⇒ (x1, x2, . . . , xm) = (y1, y2, . . . , yn)

holds for any integers m, n ≥ 1 and any elements x1, x2, . . . , xm, y1, y2, . . . ,
yn ∈ X .

Note that (x1, x2, . . . , xm) = (y1, y2, . . . , yn) means that both m = n and xi = yi

for every i ∈ �1,m�. Informally, a set is not a code iff its elements satisfy a non-
trivial equation. Or, in other words, a subset X of a semigroup S is a code iff no
element of S has more than one factorization over X .

For every semigroup S and every subset X ⊆ S, X+ denotes the closure of X
under the semigroup operation: X+ is the subsemigroup of S generated by X ,
and as such, it is equipped with the semigroup operation induced by the operation
of S.

Definition 1.2 (free semigroup). A semigroup S is called free if there exists a
code X ⊆ S such that S = X+.

In other words, a semigroup is free iff it is generated by a code.
A semigroup with an identity element is called a monoid. Many semigroups

mentioned in the paper are monoids. For every monoid M and every subset X ⊆
M , X� denotes the set X+ augmented with the identity element of M . A monoid
M is called free if there exists a code X ⊆M such that M = X�.
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Remark 1.3. No monoid is a free semigroup.

1.1.2. Illustration

Let Σ be an alphabet. The set of all words over Σ is a free monoid under
concatenation with ε as identity element and Σ as generating code. In accordance
with our notation, this monoid is denoted as usual Σ�. In the same way, the set
of all non-empty words over Σ equals Σ+ and is a free semigroup. Both examples
of free monoid and free semigroup are canonical (see Sect. 1.4.3).

A subset of Σ� is called a language over Σ. In the context of combinatorics on
words, the term “code” was originally introduced to denote those languages that
are codes under concatenation. This particular topic has been widely studied [4].
A prefix code over Σ is a subset X ⊆ Σ+ such that for every x ∈ X and every
s ∈ Σ+, xs /∈ X . It is clear that any prefix code is a code under concatenation.

Example 1.4. Consider the semigroup W := {0, 1}�. The three subsets
{00, 01, 10, 11}, {01, 011, 11} and {0n1 : n ∈ N} of W are codes under concate-
nation, but {01, 10, 0} is not: 0(10) = (01)0.

For any two semigroups S1 and S2, define the direct product of S1 and S2 as the
Cartesian product S1×S2 equipped with the componentwise semigroup operation
derived from the operations of S1 and S2: for any two elements (x1, x2) and (y1, y2)
of S1 × S2, the product (x1, x2)(y1, y2) is defined as (x1y1, x2y2).

Example 1.5. Consider the semigroup W × W. Both subsets {(0, 1), (1, 0)} and
{(0, 0), (1, 01), (01, 10)} of W × W are codes under componentwise concatenation
but {(0, 0), (1, 101), (01, 01)} is not: (0, 0)(1, 101)(01, 01) = (01, 01)(0, 0)(1, 101).

Let D be a semiring and let Dd×d denote the set of all d-by-d matrices over D:
Dd×d is a semiring under the usual matrix operations, so in particular, Dd×d is a
multiplicative semigroup.

Example 1.6. Consider the semigroup N2×2. Let k be an integer greater than 1.
The subsets {[

k i
0 1

]
: i ∈ �0, k − 1�

}

and {[
1 1
0 1

]
,

[
1 0
1 1

]}

of N2×2 are codes under matrix multiplication [11] but{[
1 0
0 2

]
,

[
1 3
0 1

]}
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is not: [
1 3
0 1

] [
1 0
0 2

]
=
[
1 0
0 2

] [
1 3
0 1

] [
1 3
0 1

]
.

1.2. Freeness problems

Our aim is to study the decidability of freeness problems over various semi-
groups:

Definition 1.7. Let S be a semigroup with a recursive underlying set. The free-
ness problem over S, denoted Free

[
S
]
, is: given a finite subset X ⊆ S, decide

whether X is a code. For every integer k ≥ 1, define Free(k)
[
S
]

as the following
problem: given a k-element subset X ⊆ S, decide whether X is a code.

For every integer k ≥ 1, Free(k)
[
S
]

is a restriction of Free

[
S
]
.

Remark 1.8. Let S be a semigroup with a recursive underlying set. Free

[
S
]

should not be confused with the following problem, which is not the concern of
the paper: given a finite subset X ⊆ S, decide whether X+ is a free semigroup.
For any a, b ∈ S such that {a, b} is a code, {a, b, ab} is not a code but {a, b, ab}+

is a free semigroup. In general, for every subset of X ⊆ S, the semigroup X+ is
free iff there exists a code Y ⊆ X such that X ⊆ Y +.

Let us now present some relevant examples of freeness problems.

Example 1.9. The decidability of Free

[
Σ�

]
for any finite alphabet Σ was

proven by Sardinas and Patterson in 1953. Efficient polynomial-time algorithms
were proposed afterwards [4].

Example 1.10. For any alphabet Σ and any x, y ∈ Σ� with x �= y, the following
three assertions are equivalent:

(1) {x, y} is not a code,
(2) xy = yx, and
(3) there exist s ∈ Σ� and p, q ∈ N such that x = sp and y = sq [4, 32, 33].

More generally, let Σ1, Σ2, . . . , Σd be d alphabets, and let x = (x1, x2, . . . , xd)
and y = (y1, y2, . . . , yd) be two elements of Σ�

1 ×Σ�
2 × · · ·×Σ�

d . The 2-element set
{x,y} is not a code iff xiyi = yixi for every i ∈ �1, d�. Hence, if Σi is finite for
every i ∈ �1, d� then Free(2)

[
Σ�

1 ×Σ�
2 × · · · ×Σ�

d

]
is decidable. In Section 7, we

prove that Free

[
W × W

]
is undecidable.

Example 1.11. For each integer d ≥ 1, Free(1)
[
Qd×d

]
is decidable in polyno-

mial time [35] (see also Sect. 2). However, Klarner, Birget, and Satterfield proved in
1991 that Free

[
N3×3

]
is undecidable. More precisely, Free(k)

[
N3×3

]
is decidable

for at most finitely many integers k ≥ 1 [11, 22] (see also Sect. 7).
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1.3. Contribution

The paper is divided into eight sections.

Section 1

In the remainder of this section, we first state some useful, basic facts about
semigroup morphisms (Sect. 1.4). Then, a list of previously studied problems re-
lated to the combinatorics of semigroups is presented to broaden the discussion
(Sect. 1.5).

Section 2

A square matrix X is called torsion if there exist two integers p, q ≥ 1 such
that Xp = Xp+q; equivalently, X is torsion iff the singleton {X} is not a code
under matrix multiplication. Problems related with matrix torsion are thoroughly
studied.

Section 3

We first prove that for any semigroup S and any subset X ⊆ S with cardi-
nality greater than 1, X is not a code iff the elements of X satisfy a non-trivial
balanced equation. We then explore the consequences of the latter statement. The
most interesting of them is that, for every integer d ≥ 1, Free

[
Qd×d

]
reduces to

Free

[
Zd×d

]
.

Section 4

We show that Free

[
GL(2,Z)

]
is decidable, and that for every finite alphabet

Σ, Free

[
FG(Σ)

]
is decidable in polynomial time, where FG(Σ) denotes the free

group over Σ. The latter result generalizes Example 1.9. Both proofs rely on
automata theory.

Section 5

We first show that the following seemingly obvious statement is wrong: for any
semigroup S with a recursive underlying set and any integer k ≥ 1, the decidability
of Free(k + 1)

[
S
]

implies the decidability of Free(k)
[
S
]
. We then prove that,

for any semigroup S with a computable operation, either Free(k)
[
S
]

is decidable
for every integer k ≥ 2, or Free(k)

[
S
]

is undecidable for infinitely many integers
k ≥ 2.

Section 6

The decidability of Free

[
N2×2

]
is a very exciting but difficult open ques-

tion [8, 11, 15, 30]. New ideas to tackle the problem are proposed.
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Section 7

We prove that both Free(k)
[
W × W

]
and Free(k)

[
N3×3

]
are undecid-

able for every integer k ≥ 13. The undecidabilities of Free(13)
[
W × W

]
and

Free(13)
[
N3×3

]
where previously unknown.

Section 8

We complete the picture of undecidability for freeness problems over matrix
semigroups: we prove that Free(7 + h)

[
N6×6

]
, Free(5 + h)

[
N9×9

]
, Free(4 +

h)
[
N12×12

]
, Free(3 + h)

[
N18×18

]
, and Free(2 + h)

[
N36×36

]
are undecidable for

every h ∈ N.

Open questions

Relevant open questions are stated all along the paper.

1.4. Semigroup morphisms

1.4.1. Definition

Let S and S′ be two semigroups. A function σ : S → S′ is called a morphism if
for all x, y ∈ S, σ(xy) = σ(x)σ(y). Note that even if both S and S′ are monoids,
a morphism from S to S′ does not necessarily map the identity element of S to
the identity element of S′: “morphism” always means “semigroup morphism” but
not necessarily “monoid morphism”. The following two claims are explicitly or
implicitly used many times throughout the paper.

Claim 1.12 (universal property). Let Σ be an alphabet and let S be a semigroup.
For any function s : Σ → S, there exists exactly one morphism σ : Σ+ → S such
that σ(a) = s(a) for every a ∈ Σ.

Claim 1.13. Let S and S′ be two semigroups, let σ : S → S′ be a morphism, and
let X be a subset of S. The following two assertions are equivalent:

(1) σ is injective on X and σ(X) is a code;
(2) σ is injective on X+ and X is a code.

1.4.2. Freeness problems as morphism problems

Let S be a semigroup with a recursive underlying set and let Σ be a finite
alphabet. Although the set of all functions from Σ+ to S has the power of the
continuum whenever S is non-trivial, the restriction of σ to Σ provides a finite
encoding of σ for any morphism σ : Σ+ → S. From now on such encodings are
considered as canonical. Hence, Free

[
S
]

can be restated as follows: given a finite
alphabet Σ and a morphism σ : Σ+ → S, decide whether σ is injective. In the
same way, for every positive integer k, an alternative formulation of Free(k)

[
S
]

is: given an alphabet Σ with cardinality k and a morphism σ : Σ+ → S, decide
whether σ is injective.
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1.4.3. The free semigroup and the free monoid structures

A bijective morphism is called an isomorphism. The inverse function of any
isomorphism is also an isomorphism. A semigroup S is free iff for some alphabet
Σ, there exists an isomorphism from Σ+ onto S. A monoid M is free iff for some
alphabet Σ, there exists an isomorphism from Σ� onto M . Given a monoid M
and an alphabet Σ, every morphism from M to Σ� maps the identity element
of M to the empty word. Since W contains infinite codes, e.g., the prefix code
{0n1 : n ∈ N}, we may state:

Claim 1.14. For any finite or countable alphabet Σ, there exists an injective
morphism from Σ� to W.

1.5. Other decision problems

The decision problems that are stated in this section are related to the combi-
natorics of semigroups. Although they do not play any crucial role in the paper, it
is interesting to compare their properties with the ones of the freeness problems.

1.5.1. Mortality [40]

Let S be a semigroup. A zero element of S is an element z ∈ S such that zs =
sz = z for every s ∈ S. No semigroup has more than one zero element. For every
semigroup S with a recursive underlying set and a zero element, let Mortal

[
S
]

denote the following problem: given a finite subset X ⊆ S, decide whether the zero
element of S belongs to X+; for every integer k ≥ 1, Mortal(k)

[
S
]

denotes the
restriction of Mortal

[
S
]

to input sets X of cardinality k.

1.5.2. Boundedness [7]

Let d be a positive integer. A subset X ⊆ Cd×d is called bounded if there exists
a positive constant M such that the modulus of any entry of any matrix in X is
less than M . Let S be a recursive subset of Qd×d. Let Bounded

[
S
]

denote the
following problem: given a finite subset X ⊆ S, decide whether X+ is bounded;
for every integer k ≥ 1, Bounded(k)

[
S
]

denotes the restriction of Bounded

[
S
]

to input sets X of cardinality k.

1.5.3. Semigroup membership

For every semigroup S with a recursive underlying set, let Member

[
S
]

denote
the following problem: given a finite subset X ⊆ S and an element a ∈ S, decide
whether a ∈ X+; for every integer k ≥ 1, Member(k)

[
S
]

denotes the restriction
of Member

[
S
]

to those instances (X, a) such that the cardinality of X equals k.

1.5.4. Semigroup finiteness

Let Finite

[
S
]
denote the following problem: given a finite subset X ⊆ S, decide

whether X+ is finite; for every integer k ≥ 1, Finite(k)
[
S
]

denotes the restriction
of Finite

[
S
]

to input sets X of cardinality k.
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1.5.5. Generalized Post correspondence problem [14]

Let GPCP denote the following problem: given a finite alphabet Σ, two mor-
phisms σ, τ : Σ� → W, and s, s′, t, t′ ∈ W, decide whether there exists w ∈ Σ�

such that sσ(w)s′ = tτ(w)t′; for every integer k ≥ 1, GPCP(k) denotes the re-
striction of GPCP to those instances (Σ, σ, τ, s, s′, t, t′) such that the cardinality
of Σ equals k.

2. The case of a single generator

Definition 2.1. Let S be a semigroup. An element s ∈ S is called torsion if it
satisfies the following four equivalent conditions.

(1) The singleton {s} is not a code;
(2) there exist two integers p and q with 0 < p < q such that sp = sq;
(3) the semigroup

{
s, s2, s3, s4, . . .

}
has finite cardinality;

(4) the sequence (s, s2, s3, s4, . . . ) is eventually periodic.

For any semigroup S with a recursive underlying set, Free(1)
[
S
]

is the comple-
mentary problem of Finite(1)

[
S
]
.

2.1. Matrix torsion over the complex numbers

The next theorem characterizes those complex square matrices that are torsion.
The proof uses the following basic fact from linear algebra:

Lemma 2.2 (Theorem 3.3.6 in [25]). Let M be a complex square matrix and let λ
be an eigenvalue of M . The multiplicity of λ as a root of the minimal polynomial
of M equals the maximum order of a Jordan block of M corresponding to λ.

Theorem 2.3. Let d be a positive integer and let M ∈ Cd×d. The following four
assertions are equivalent.

(i) The matrix M is torsion;
(ii) there exist v ∈ �0, d� and a finite set U of roots of unity such that the minimal

polynomial of M over C equals

zv
∏
u∈U

(z− u);

(iii) there exist a diagonal matrix D and a nilpotent matrix N such that every
eigenvalue of D is a root of unity and[

D O
O N

]

is a Jordan normal form of M ;
(iv) there exists an integer n ≥ 2 such that Md = Mnd.



ON THE DECIDABILITY OF SEMIGROUP FREENESS 363

Proof. (i) =⇒ (ii). Assume that assertion (i) holds. Then, there exist two integers
p and q with 0 ≤ p < q such that Mp = M q. Let μ(z) denote the minimal
polynomial of M . Since M q−Mp is a zero matrix, μ(z) divides zq−zp = zq−p(zp−
1). Therefore, μ(z) can be written in the form μ(z) = zv

∏
u∈U (z − u) with v ∈

�0, q − p� and U ⊆ {u ∈ C : up = 1}. Moreover, the Cayley-Hamilton theorem
implies that μ(z) divides the characteristic polynomial of M which is of degree d,
so v is not greater than d. We have thus shown assertion (ii).
(ii) =⇒ (iii). The equivalence (ii) ⇐⇒ (iii) follows from Lemma 2.2.
(iii) =⇒ (iv). Assume that assertion (iii) holds. Then, there exist a non-

singular matrix P , a diagonal matrix D, and a nilpotent matrix N such that every
eigenvalue of D is a root of unity and

M = P

[
D O
O N

]
P−1.

Let m be a positive integer such that λm = 1 for every eigenvalue λ of D: Dm is
an identity matrix, and thus D(m+1)d = (Dm)d

Dd = Dd. Moreover, N (m+1)d and
Nd are equal to the same zero matrix, and thus

M (m+1)d = P

[
D(m+1)d O

O N (m+1)d

]
P−1 = P

[
Dd O
O Nd

]
P−1 = Md.

Hence, assertion (iv) holds with n := m+ 1.
(iv) =⇒ (i). The implication (iv) =⇒ (i) is trivial. �

Let us now turn to matrices with rational entries. The next proposition charac-
terizes those two-by-two rational matrices that are torsion.

Lemma 2.4. Let φ denote Euler’s totient function: for every integer n ≥ 1, φ(n)
equals the number of k ∈ �1, n� such that k and n are coprime. For every integer
n ≥ 1, φ(n) = 2 is equivalent to n ∈ {3, 4, 6}.
Proof. Let n be an integer greater than 6. Let T denote the set of all k ∈ �1, n�
such that k and n are coprime. Let r, m ∈ N be such that n = 2rm and m is odd. If
m ∈ {1, 3} then {1, 5, n−1} is 3-element subset of T ; if m ≥ 5 then {1,m−2, n−1}
is a 3-element subset of T . Hence, φ(n) is greater than 2 for every integer n > 6.
Besides, we have φ(1) = φ(2) = 1, φ(3) = φ(4) = φ(6) = 2, and φ(5) = 4, so the
lemma holds. �

Recall that for each integer n ≥ 1, the degree of the nth cyclotomic polynomial,
denoted Φn(z), equals φ(n).

Proposition 2.5. Let i denote the imaginary unit and let ζ := 1
2 + i

√
3

2 :

• ζ and ζ5 = 1
2 − i

√
3

2 are the primitive sixth roots of unity;
• i and −i are the primitive fourth roots of unity; and
• ζ2 = − 1

2 + i
√

3
2 and ζ4 = − 1

2 − i
√

3
2 are the primitive cube roots of unity.
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For every M ∈ Q2×2, M is torsion iff one of the following ten matrices is a Jordan
normal form of M :

[ 0 0
0 0 ], [ 0 1

0 0 ], [ 1 0
0 0 ],

[−1 0
0 0

]
, [ 1 0

0 1 ],
[−1 0

0 −1

]
,
[

1 0
0 −1

]
,
[

ζ2 0

0 ζ4

]
,
[

i 0
0 −i

]
, or

[
ζ 0

0 ζ5

]
.

Proof. It is easy to check that the ten matrices listed above are torsion, so the “if
part” holds true. Let us now prove the “only if part”.

Assume that M is torsion. Theorem 2.3 implies that M is nilpotent or diag-
onalizable (over C). If M is nilpotent then either M equals [ 0 0

0 0 ], or [ 0 1
0 0 ] is the

Jordan normal form of M . Hence, we may assume that M is diagonalizable for the
rest of the proof. Let χ(z) denote the characteristic polynomial of M .

First, assume that χ(z) is reducible over Q. Since χ(z) is of degree 2, the eigen-
values ofM are rational numbers. Besides, Theorem 2.3 implies that every non-zero
eigenvalue of M is a root of unity. Since −1 and +1 are the only rational roots of
unity, the eigenvalues of M lie in the set {−1, 0,+1}. Hence, one of the following
six matrices is a Jordan normal form of M : [ 0 0

0 0 ], [ 1 0
0 0 ],

[−1 0
0 0

]
, [ 1 0

0 1 ],
[−1 0

0 −1

]
, or[

1 0
0 −1

]
.

Second, assume that χ(z) is irreducible over Q. Then, χ(z) is a cyclotomic poly-
nomial. Besides, it follows from Lemma 2.4 than the only cyclotomic polynomials
of degree 2 are:

(1) Φ3(z) = z2 + z + 1 = (z− ζ2)(z − ζ4);
(2) Φ4(z) = z2 + 1 = (z− i)(z + i); and
(3) Φ6(z) = z2 − z + 1 = (z− ζ)(z − ζ5).

Therefore, one of the following three matrices is a Jordan normal form of M :[
ζ2 0

0 ζ4

]
,
[

i 0
0 −i

]
, or

[
ζ 0

0 ζ5

]
. �

Note that
[

ζ2 0

0 ζ4

]
,
[

i 0
0 −i

]
, and

[
ζ 0

0 ζ5

]
are the Jordan normal forms of the integer

matrices
[

0 −1
1 −1

]
,
[

0 −1
1 0

]
, and

[
0 −1
1 1

]
, respectively.

2.2. The matrix torsion problem

Definition 2.6. Define the Matrix Torsion problem as: given an integer d ≥ 1
and a matrix M ∈ Qd×d, decide whether M is torsion.

For every integer d ≥ 1, the complementary problem of Free(1)
[
Qd×d

]
is a

restriction of Matrix Torsion.

Theorem 2.7 (Mandel and Simon [35]). There exists a computable function r : N\
{0} → N \ {0} such that for every integer d ≥ 1 and every matrix M ∈ Qd×d,
Md = Md+r(d) iff M is torsion.

It follows from Theorem 2.7 that:

(1) Matrix Torsion is decidable and
(2) for each integer d ≥ 1, Free(1)

[
Qd×d

]
is decidable in polynomial time.
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However, r is not polynomially bounded so the proof of the following theorem
requires other ideas:

Theorem 2.8. The Matrix Torsion problem is decidable in polynomial time.

Proof. The Matrix Power problem is: given an integer d ≥ 1 and two matrices
A, B ∈ Qd×d, decide whether there exists n ∈ N such that An = B. Note that for
each integer d ≥ 1, Member(1)

[
Qd×d

]
is a restriction of Matrix Power. Kannan

and Lipton showed that Matrix Power is decidable in polynomial time [29], so
it suffices to show that there exists a polynomial-time many-one reduction from
Matrix Torsion to Matrix Power.

Let (d,M) be an instance of Matrix Torsion. Define two matrices A, B ∈
Q(d+2)×(d+2) by:

A :=
[
Md O
O N2

]
where N2 :=

[
0 1
0 0

]

and

B :=
[
Md O
O O2

]
where O2 :=

[
0 0
0 0

]
.

Clearly, (d+ 2, A,B) is an instance of Matrix Power and (d+ 2, A,B) is com-
putable from (d,M) in polynomial time. Let n ∈ N. Since Nn

2 = O2 is equivalent
to n ≥ 2, An = B is equivalent to the conjunction of Mnd = Md and n ≥ 2.
It thus follows from Theorem 2.3 that: (d + 2, A,B) is a yes-instance of Matrix

Power iff (d,M) is a yes-instance of Matrix Torsion. �

At this point, it is interesting to briefly discuss about power boundedness.

Definition 2.9. A complex square matrix M is called power bounded if the semi-
group

{
M,M2,M3,M4, . . .

}
is bounded. Define the Matrix Power Bounded-

ness problem as: given an integer d ≥ 1 and a matrix M ∈ Qd×d, decide whether
M is power bounded.

For every integer d ≥ 1, Bounded(1)
[
Qd×d

]
is a restriction of Matrix Power

Boundedness.

Proposition 2.10. The Matrix Power Boundedness problem is decidable.

Proof. LetM be a complex square matrix. Let μ(z) denote the minimal polynomial
of M : the roots of μ(z) are the eigenvalues of M . Put ν(z) := gcd(μ(z), μ′(z)):
the roots of ν(z) are the multiple roots of μ(z). It is easy to see that M is power
bounded iff the following two conditions are met:

(i) every root of μ(z) has modulus at most 1 and
(ii) every root of ν(z) has modulus less than 1.
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Now, consider the case where every entry of M is in Q. Then, μ(z) and ν(z)
are computable from M in polynomial time [29]. Therefore, deciding whether M
is power bounded reduces to checking conditions (i) and (ii). This can be achieved
using Tarski’s decision procedure [46]. �

We conjecture that Matrix Power Boundedness is decidable in polynomial
time.

2.3. The morphism torsion problem

Definition 2.11. For any alphabet Σ, let hom(Σ�) denote the set of all mor-
phisms from Σ� to itself. Define the Morphism Torsion problem as: given a
finite alphabet Σ and a morphism σ ∈ hom(Σ�), decide whether σ is torsion
(under function composition).

The size of an instance (Σ, σ) of Morphism Torsion equals
∑

a∈Σ (1 + |σ(a)|).

Definition 2.12 (incidence matrix). Let Σ be a finite alphabet, let d denote
the cardinality of Σ, and let a1, a2, . . . , ad be such that Σ = {a1, a2, . . . , ad}:
a1a2 · · · ad is a permutation of Σ. The incidence matrix of σ relative to a1a2 . . . ad

is defined as ⎡
⎢⎢⎢⎣
|σ(a1)|a1

|σ(a2)|a1
· · · |σ(ad)|a1|σ(a1)|a2

|σ(a2)|a2
· · · |σ(ad)|a2

...
...

. . .
...

|σ(a1)|ad
|σ(a2)|ad

· · · |σ(ad)|ad

⎤
⎥⎥⎥⎦ .

The incidence matrix of σ relative to a1a2 . . . ad belongs to Nd×d; for all i, j ∈ �1, d�,
its (i, j)th entry equals the number of occurrences of ai in σ(aj).

Claim 2.13. Let Σ be a finite alphabet. For each σ ∈ hom(Σ�), let Pσ denote
the incidence matrix of σ relative to some fixed permutation of Σ.

(i) Equality PσPτ = Pστ holds for all σ, τ ∈ hom(Σ�);
(ii) for each P ∈ Nd×d, there exist at most finitely many τ ∈ hom(Σ�) such that

Pτ = P .

Theorem 2.14. The Morphism Torsion problem is decidable in polynomial
time.

Proof. By Theorem 2.8, it suffices to show that there exists a polynomial-time
many-one reduction from Morphism Torsion to Matrix Torsion. The idea is
to prove that a morphism is torsion iff its incidence matrix is torsion.

Let (Σ, σ) be an instance of Morphism Torsion. Let d denote the cardinality
of Σ. For each τ ∈ hom(Σ�), let Pτ denote the incidence matrix of τ relative to
some fixed permutation of Σ. Clearly, (d, Pσ) is an instance of Matrix Torsion

and (d, Pσ) is computable from (Σ, σ) in polynomial time.
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Let us check that (Σ, σ) is a yes-instance of Morphism Torsion iff (d, Pσ) is
a yes-instance of Matrix Torsion. It follows from Claim 2.13 (i) that Pn

σ = Pσn

for every n ∈ N. Therefore, if σ is torsion then Pσ is torsion. Conversely, assume
that Pσ is torsion. Then, the set of matrices P := {Pσ, P

2
σ , P

3
σ , P

4
σ , . . . } is finite,

so by Claim 2.13 (ii), there exist at most finitely many τ ∈ hom(Σ�) such that
Pτ ∈ P . Since Pσn ∈ P for every integer n ≥ 1, the set

{
σ, σ2, σ3, σ4, . . .

}
is finite,

and thus σ is torsion. �
Corollary 2.15. For any finite alphabet Σ, Free(1)

[
hom(Σ�)

]
is decidable in

polynomial time.

Open question 1 (Richomme [43]). For any finite alphabet Σ with cardinality
greater than 1 and any integer k > 1, the decidability of Free(k)

[
hom(Σ�)

]
is

open.

The decidability of Free(2)
[
hom(W)

]
is tackled in Section 6.3.

3. Balanced equations

This section centers on the consequences of the following lemma:

Lemma 3.1. Let S be a semigroup and let X be a subset of S with cardinality
greater than 1. The set X is not a code iff there exist x, x′ ∈ X and z, z′ ∈ X+

such that x �= x′ and zxzx′z′ = zx′z′xz.

Proof. The “if part” is clear. Let us prove the “only if part”.
Let Σ be an alphabet and let σ : Σ+ → S be a morphism such that σ induces a

bijection from Σ onto X . Assume that X is not a code. By Claim 1.13, σ is non-
injective. Therefore, there exist w, w′ ∈ Σ+ such that w �= w′ and σ(w) = σ(w′).

First, assume that w is not a prefix of w′ and that w′ is not a prefix of w. Then,
there exist a, a′ ∈ Σ and u, v, v′ ∈ Σ� such that a �= a′, w = uav, and w′ = ua′v′:
u is the longest common prefix of w and w′. Note that u, v, or v′ may be the
empty word. It is easy to see that σ(a), σ(a′), σ(vau), and σ(v′au) are suitable
choices for x, x′, z, and z′, respectively.

Second, assume that w is a proper prefix of w′. Then, there exists a ∈ Σ such
that wa is a prefix of w′. Since Σ and X are equinumerous, the cardinality of Σ
is greater than 1, and thus there exists b ∈ Σ such that a �= b. Clearly, we have
σ(wb) = σ(w′b), wb is not a prefix of w′b, and w′b is not a prefix of wb. Therefore,
the second case reduces to the first case.

Third, assume that w′ is a proper prefix of w. Since w and w′ play symmetric
roles, the third case reduces to the second case. �

For each y ∈ X+, the factorizations of y overX are in one-to-one correspondence
with the preimages of y under σ. Let x̄, x̄′ ∈ Σ and z̄, z̄′ ∈ Σ+ be such that
x = σ(x̄), x′ = σ(x̄′), z = σ(z̄), and z′ = σ(z̄′). Equation zxzx′z′ = zx′z′xz is
“balanced” in the sense that the word z̄x̄z̄x̄′z̄′, which corresponds to a factorization
of the left-hand side, is a permutation of the word z̄x̄′z̄′x̄z̄, which corresponds to
a factorization of the right-hand side.
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3.1. Cancellation

Definition 3.2 (cancellation). Let S be a semigroup and let s ∈ S. We say that s
is left-cancellative in S if for all u, v ∈ S, su = sv implies u = v. In the same way,
we say that s is right-cancellative in S if for all u, v ∈ S, us = vs implies u = v. We
say that s is cancellative in S if s is both left-cancellative and right-cancellative in
S.

Example 3.3. Let X be a (finite or infinite) set and let S denote the set of
all functions from X to itself. Clearly, S is a semigroup under function composi-
tion. The left-cancellative elements of S are the injections, the right-cancellative
elements of S are the surjections, and the cancellative elements of S are the bijec-
tions.

The first useful corollary of Lemma 3.1 is:

Lemma 3.4. Let S be a semigroup and let X be a subset of S such that the
cardinality of X is greater than 1 and every element of X is left-cancellative in S.
The set X is not a code iff there exist x, x′ ∈ X and z, z′ ∈ X+ such that x �= x′

and xz = x′z′.

Proof. The “if part” is clear. It remains to prove the “only if part”.
Assume that X is not a code. By Lemma 3.1, there exist x, x′ ∈ X and t,

t′ ∈ X+ such that txtx′t′ = tx′t′xt. Since t is left-cancellative, equality xz = x′z′

holds with z := tx′t′ and z′ := t′xt. �

Lemma 3.4 is extensively used throughout the paper. The following example
shows that Lemma 3.4 does not hold without any cancellation property:

Example 3.5. Let

X :=
[
4 2
2 1

]
and X ′ :=

[
1 2
2 4

]
.

The set {X,X ′} is not a code under matrix multiplication because XXX ′X =
XX ′XX . Besides, the row matrix L :=

[−1 2
]

satisfies LX =
[
0 0

]
and LX ′ =[

3 6
]
. For all Z, Z ′ ∈ {X,X ′}+, we thus have LXZ =

[
0 0

]
while the entries of

LX ′Z ′ are positive. Therefore,XZ and X ′Z ′ are distinct for all Z, Z ′ ∈ {X,X ′}+,

3.2. Direct products of semigroups

Given two semigroups S and T such that T is commutative, let us characterize
those subsets of S × T that are codes.

Lemma 3.6. Let S and T be two semigroups and let Z be a subset of S ×T such
that T is commutative and the cardinality of Z is greater than 1. Let α : S×T → S
be defined by: α(s, t) := s for every (s, t) ∈ S × T . The set Z is a code iff the
following two conditions are met: α is injective on Z and α(Z) is a code.
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Proof. The “if part” follows from Claim 1.13. It remains to prove the “only if
part”.

First, assume that α is non-injective on Z. Then, there exist x ∈ S and y, y′ ∈ T
such that y �= y′, (x, y) ∈ Z, and (x, y′) ∈ Z. Since (x, y) and (x, y′) commute, Z
is not a code.

Second, assume that α(Z) is not a code. By Lemma 3.1, there exist (x, y),
(x′, y′) ∈ Z and (u, v), (u′, v′) ∈ Z+ such that x �= x′ and uxux′u′ = ux′u′xu.
Now, remark that vyvy′v′ = vy′v′yv because T is commutative. Hence, we have

(u, v)(x, y)(u, v)(x′, y′)(u′, v′) = (u, v)(x′, y′)(u′, v′)(x, y)(u, v),

and thus Z is not a code. �

To complete Lemma 3.6, let us characterize those elements of S × T that are
torsion: for every (s, t) ∈ S × T , (s, t) is torsion iff both s and t are torsion.

Lemma 3.7. Let S and T be two semigroups and let y ∈ Y . For every subset
X ⊆ S such that the cardinality of X is greater than 1, X ×{y} is a code iff X is
a code.

Proof. Although T is not necessarily commutative, T ′ :=
{
y, y2, y3, y4, . . .

}
is a

commutative subsemigroup of T such that X × {y} ⊆ S × T ′. The desired result
can thus be deduced from Lemma 3.6. �
Theorem 3.8. Let S and T be two non-empty semigroups with recursive under-
lying sets and let k be an integer greater than 1. If Free(k)

[
S × T

]
is decidable

then both Free(k)
[
S
]

and Free(k)
[
T
]

are decidable.

Proof. Let y be a fixed element of T . For each k-element subset X ⊆ S, X × {y}
is a k-element subset of S × T , and according to Lemma 3.7, X is a code iff
X × {y} is a code. Hence, there exists a many-one reduction from Free(k)

[
S
]

to
Free(k)

[
S × T

]
. In the same way, Free(k)

[
T
]

reduces to Free(k)
[
S × T

]
. �

The converse of Theorem 3.8 is false in general: for instance, Free

[
W
]

is decid-
able (see Ex. 1.9) while Free(k)

[
W × W

]
is undecidable for every integer k ≥ 13

(see Sect. 7). An interesting partial converse is:

Lemma 3.9. Let S and T be two semigroups with recursive underlying sets and let
k be an integer greater than 1. If Free(k)

[
S
]

is decidable and if T is commutative
then Free(k)

[
S × T

]
is decidable.

Proof. It follows from Lemma 3.6 that Free(k)
[
S × T

]
reduces to

Free(k)
[
S
]
. �

Theorem 3.8 and Lemma 3.9 deserve further comments. By Theorem 5.1 below,
there exists a commutative (semi)group T with a recursive underlying set such that
Free(1)

[
T
]

is undecidable. However, Free(1)
[{1}+ × T

]
is decidable because no

element of {1}+×T is torsion. Hence, it is essential to assume k > 1 in Theorem 3.8.
Moreover, Free(1)

[{ε} × T
]

is undecidable while Free(1)
[{ε}] is decidable, so it

is also essential to assume k > 1 in Lemma 3.9.
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Definition 3.10. For each d ∈ N, let W×d denote the semigroup obtained as
the direct product of d copies of W: W×0 = {ε}, W×1 = W, W×2 = W × W,
W×3 = W × W × W, etc.

Theorem 3.11. Let n be a positive integer and let Σ1, Σ2, . . . , Σn be n finite
alphabets. Let d denote the number of i ∈ �1, n� such that the cardinality of Σi is
greater than 1. For every integer k ≥ 1, Free(k)

[
Σ�

1 ×Σ�
2 ×· · ·×Σ�

n

]
is decidable

iff Free(k)
[
W×d

]
is decidable.

Proof. We only need to consider the case where k > 1 because both problems
are trivially decidable in the case where k = 1. Moreover, for each permutation
(i1, i2, . . . , in) of �1, n�, Σ�

1 × Σ�
2 × · · · × Σ�

n and Σ�
i1 × Σ�

i2 × · · · × Σ�
in

are iso-
morphic: the function mapping each (w1, w2, . . . , wn) ∈ Σ�

1 × Σ�
2 × · · · × Σ�

n to
(wi1 , wi2 , . . . , win) is an isomorphism. Therefore, we may assume without loss of
generality that the cardinality of Σi is greater than 1 for every i ∈ �1, d�, or equiv-
alently, that Σ�

i is commutative for every i ∈ �d + 1, n�. Hence, it follows from
Lemma 3.9 that Free(k)

[
Σ�

1 × Σ�
2 × · · · × Σ�

n

]
is decidable iff Free(k)

[
S
]

is
decidable, where S := Σ�

1 ×Σ�
2 × · · · ×Σ�

d .
For each i ∈ �1, d�, let φi : W → Σ�

i be an injective morphism, e.g., φi can be
any morphism extending an injection from {0, 1} to Σi. The function mapping
each (u1, u2, . . . , ud) ∈ W×d to (φ1(u1), φ2(u2), . . . , φd(ud)) is an injective mor-
phism from W×d to S; it induces a one-one reduction from Free(k)

[
W×d

]
to

Free(k)
[
S
]
. Hence, the “only if part” of the theorem holds.

For each i ∈ �1, d�, let ψi : Σ�
i → W be an injective morphism (see Claim 1.14).

The function mapping each (v1, v2, . . . , vd) ∈ S to (ψ1(v1), ψ2(v2), . . . , ψd(vd))
is an injective morphism from S to W×d; it induces a one-one reduction from
Free(k)

[
S
]

to Free(k)
[
W×d

]
. Hence, the “if part” of the theorem holds. �

3.3. Rational matrices versus integer matrices

The following lemma generalizes Lemma 3 in [11]:

Lemma 3.12. Let d be a positive integer, let X be a subset of Cd×d with cardi-
nality greater than 1, and let λ : X → C \ {0}. The set X is a code under matrix
multiplication iff the following two conditions are met:

(i) {λ(X)X : X ∈ X} is a code under matrix multiplication and
(ii) for all X, Y ∈ X , X �= Y implies λ(X)X �= λ(Y )Y .

Proof. Let Z := {(X,λ(X)) : X ∈ X}. By Lemma 3.6, Z is a code iff X is a code.
Let Z ′ := {(λ(X)X,λ(X)) : X ∈ X}. By Lemma 3.6, Z ′ is a code iff conditions (i)
and (ii) are met. Let Č := C \ {0}. Let σ : Cd×d × Č → Cd×d × Č be defined by:
σ(X, a) := (aX, a) for every (X, a) ∈ Cd×d × Č. Remark that σ(Z) = Z ′, σ is
injective, and σ is a morphism: σ(XY, ab) = ((aX)(bY ), ab) = σ(X, a)σ(Y, b) for
all X , Y ∈ Cd×d and all a, b ∈ Č. Therefore, Z is code iff Z ′ is a code. We have
thus proven that the following four assertions are equivalent: X is a code, Z is a
code, Z ′ is a code, and conditions (i) and (ii) are met. �
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Let X := [ 2 0
0 2 ], Y := [ 1 0

0 1 ], X := {X,Y }, λ(X) := 1, and λ(Y ) := 2. Note
that λ(X)X = λ(Y )Y . Clearly, {λ(X)X,λ(Y )Y } = {X} is a code under matrix
multiplication but X is not. Hence, condition (ii) is crucial for the “if part” of
Lemma 3.12.

The main result of the section is now easy to prove:

Theorem 3.13. For all integers k, d ≥ 1, Free(k)
[
Qd×d

]
is decidable iff

Free(k)
[
Zd×d

]
is decidable.

Proof. The “only if part” holds because Free(k)
[
Zd×d

]
is a restriction of

Free(k)
[
Qd×d

]
. Moreover, Free(1)

[
Qd×d

]
is decidable by Theorems 2.7 or 2.8.

Hence, to conclude the proof of the theorem, it suffices to show that there exists
a many-one reduction from Free(k)

[
Qd×d

]
to Free(k)

[
Zd×d

]
in the case where

k > 1.
For each finite subset X ⊆ Qd×d, let t(X ) denote the smallest integer n ≥ 1

such that nX ∈ Zd×d for every X ∈ X . For each instance X of Free(k)
[
Qd×d

]
,

X ′ := {t(X )X : X ∈ X} is an instance of Free(k)
[
Zd×d

]
, X ′ is computable from

X , and by Lemma 3.12, X is a yes-instance of Free(k)
[
Qd×d

]
iff X ′ is a yes-

instance of Free(k)
[
Zd×d

]
. �

To conclude the section, let us discuss whether analogues of Theorem 3.13
hold for mortality, boundedness, and semigroup membership. First, for all in-
tegers k, d ≥ 1, Mortal(k)

[
Qd×d

]
is decidable iff Mortal(k)

[
Zd×d

]
is de-

cidable: the many-one reduction from Free(k)
[
Qd×d

]
to Free(k)

[
Zd×d

]
pre-

sented in the proof of Theorem 3.13 is also a many-one reduction from
Mortal(k)

[
Qd×d

]
to Mortal(k)

[
Zd×d

]
. Note in passing that the decidability of

Mortal(k)
[
Qd×d

]
is still open for several pairs (d, k) of positive integers [9, 22].

Second, Bounded(2)
[
Q47×47

]
is undecidable [5], but for every integer d ≥ 1,

Bounded

[
Zd×d

]
is decidable: Bounded

[
Zd×d

]
is in fact the same problem as

Finite

[
Zd×d

]
and the latter is decidable [26,35]. Third, it is still unknown whether

there exist positive integers k0 and d0 satisfying the following two properties: Mem-

ber(k0)
[
Qd0×d0

]
is undecidable and Member(k0)

[
Zd0×d0

]
is decidable.

4. Subsemigroups of groups

Automata over monoids, and in particular automata over the free group, have
been widely studied [17, 44]. In this section, we first prove that for any group G
with a recursive underlying set, Free

[
G
]

reduces to an automata theory problem
(Thm. 4.8). We then use this reduction to show that both GL(2,Z) and the free
group have decidable freeness problems (Cors. 4.9 and 4.14).

Remark 4.1. Let G be a group with a recursive underlying set. Free

[
G
]

should
not be confused with the following problem, which is not the concern of the paper:
given a finite subset X ⊆ G, decide whether the subgroup of G generated by X is
a free group with basis X .
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Definition 4.2 (automaton). LetX be a set. An automaton overX is a quadruple
A = (Q,E, I, T ) where Q is a set, I and T are subsets of Q, and E is a subset
of Q ×X × Q. The elements of Q are the states of A, the elements of E are the
transitions of A, the elements of I are the initial states of A, and the elements of
T are the terminal states of A. We say that A is finite if Q and E are finite. A
transition (p, s, q) ∈ E is usually denoted p s−−→ q.

Finite automata over finite alphabets play a central role in theoretical computer
science; they are termed “nondeterministic automata” or simply “automata” in
most of the literature. According to our definition, an automaton over X is also an
automaton over any superset ofX . In particular, for any alphabetΣ, an automaton
over Σ is also an automaton over the free monoid Σ�.

Definition 4.3 (acceptance). Let M be a monoid, let A be an automaton over
M , and let s be an element of M . We say that A accepts s if for some integer
n ∈ N, there exist n+ 1 states q0, q1, . . . , qn and n elements s1, s2, . . . , sn ∈ M
meeting the following requirements: s = s1s2 . . . sn, q0 is an initial state of A, qn
is a terminal state of A, and qi−1

si−−→ qi is a transition of A for every i ∈ �1, n�.
Define the behavior of A as the set of those elements of M that are accepted
by A.

For every automaton A = (Q,E, I, T ) over M such that I ∩ T �= ∅, it follows
from Definition 4.3 that A accepts the identity element of M .

Let Σ be a finite alphabet. Every finite automaton over Σ� can be transformed
in polynomial time into a finite automaton over Σ ∪ {ε} with the same behavior:
simply split each transition labeled with a word of length greater than 1. Moreover,
every finite automaton over Σ ∪ {ε} can be transformed in polynomial time into
a finite automaton over Σ with the same behavior (Sect. 2.5 in [24]).

Remark 4.4 (Kleene’s theorem). Let M be a monoid. A subset of M is called
rational if it equals the behavior of some finite automaton over M . We claim that
the set of all rational subsets of M equals the closure of the set of all finite subsets
of M under set union, set product, and star. If M = Σ� for some finite alphabet
Σ then our claim is simply Kleene’s theorem (Sect. 3.2 in [24]). The generalization
to an arbitrary monoid is straightforward [44].

Definition 4.5. For every monoid M with a recursive underlying set, define Ac-

cept

[
M
]

as the following problem: given a finite automaton A over M and an
element s ∈M , decide whether A accepts s.

Note that Accept

[
M
]

is also known as the rational subset problem for M [28]
and as the rational membership problem over M [17].

Example 4.6 (Sect. 4.3.3 in [24]). For any finite alphabet Σ, Accept

[
Σ�

]
is

decidable in polynomial time.
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A group is a monoid G in which every element is invertible. The identity element
of G is denoted 1G. The inversion in G is the function from G onto itself that maps
each element g ∈ G to its inverse g−1. For every x ∈ G, x is torsion iff there exists
an integer n ≥ 1 such that xn = 1G.

Lemma 4.7.

(i) Let M be a monoid with a recursive underlying set. If Accept

[
M
]

is decid-
able then the operation of M is computable.

(ii) Let G be a group with a recursive underlying set. If the operation of G is
computable then the inversion in G is computable.

Proof. Let x, y ∈M . Let Ax,y be the automaton over {x, y} defined by:

• I, Q, and T are the states of Ax,y;
• I

x−−→ Q and Q
y−−→ T are the transitions of Ax,y;

• I is the unique initial state of Ax,y; and
• T is the unique terminal state of Ax,y.

Clearly, the behavior of Ax,y equals {xy}. Now, assume that Accept

[
M
]

is de-
cidable. To compute the result of the operation xy, first compute Ax,y, and then
examine the elements of M one after another until finding the one that is accepted
by Ax,y. We have thus proven part (i).

Let us now turn to part (ii). Let g, h ∈ G. To decide whether h is the inverse of
g, it suffices to compute the operation gh and then check whether the result equals
1G. Hence, the inverse of any element of G is computable by inspection. �

Theorem 4.8. Let G be a group with a recursive underlying set.

(i) If the inversion in G is computable in polynomial time and if Accept

[
G
]

is
decidable in polynomial time then Free

[
G
]

is decidable in polynomial time;
(ii) if Accept

[
G
]

is decidable then Free

[
G
]

is decidable.

Proof. We do not show that there exists a many-one reduction from Free

[
G
]

to
Accept

[
G
]
.

First, consider a finite subset X ⊆ G with cardinality greater than 1. For every
x ∈ G, let Ax be the automaton over G defined by:

• I, Q, and T are the states of Ax;
• the transitions of Ax are I

x−−→ Q, Q 1G−−−→ T, and for each y ∈ X , Q
y−−→ Q and

T
y−1

−−−→ T;
• I is the unique initial state of Ax; and
• T is the unique terminal state of Ax.

The behavior of Ax equals
{
xzz′−1 : (z, z′) ∈ X� ×X�

}
. It thus follows from

Lemma 3.4 that X is not a code iff there exist x, x′ ∈ X such that x �= x′

and Ax accepts x′. If the inversion in G is computable in polynomial time then
Ax is computable from x and X in polynomial time. If Accept

[
G
]

is decidable
then Ax is computable from x and X by Lemma 4.7.
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Second, consider an element x ∈ G. Let B be the automaton over G defined by:

• I and T are the states of B;
• I

x−−→ T and T
x−−→ T are the transitions of B;

• I is the unique initial state of B; and
• T is the unique terminal state of B.

The behavior of B equals
{
x, x2, x3, x4, . . .

}
. Therefore, x is torsion iff B accepts

1G. Moreover, B is clearly computable from x in polynomial time.
The theorem follows from the preceding discussion. �

The proof of Theorem 4.8 deserves two observations. First, the result still holds
even if Accept

[
G
]

is restricted to those instances (A, s) such that the automaton
A has at most 3 states. Second, we claim that if the inversion in G is computable
(in polynomial time) then there exists a (polynomial-time) many-one reduction
from the complementary problem of Free

[
G
]

to Accept

[
G
]
. The verification is

left to the reader.
The general linear group of degree d over Z is denoted GL(d,Z):

GL(d,Z) =
{
X ∈ Zd×d : det(X) = ±1

}
.

Equivalently, GL(d,Z) is the set of all matrices X ∈ Zd×d such that X has an
inverse in Zd×d. Choffrut and Karhumäki have shown that Accept

[
GL(2,Z)

]
is

decidable [12]. Hence, it follows from Theorem 4.8 (ii):

Corollary 4.9. Free

[
GL(2,Z)

]
is decidable.

Let us now turn to the free group. To properly deal with this algebraic structure,
we introduce the notion of semi-Thue system. (Semi-Thue systems are also involved
in Sect. 7.1).

Definition 4.10 (semi-Thue system). A semi-Thue system is a pair T = (Σ,R)
where Σ is an alphabet and R is a subset of Σ� × Σ�. The elements of R are
the rules of T . The immediate accessibility under T is the binary relation over
Σ� defined by: for every x, y ∈ Σ�, y is immediately accessible from x under T
iff there exist (s, t) ∈ R and z, z′ ∈ Σ� such that x = zsz′ and y = ztz′. The
reflexive-transitive closure of the immediate accessibility under T is simply called
the accessibility under T .

For the rest of the section, overlining is construed as a purely formal operation
on the symbols. In fact, for each symbol a, ā is a symbol which is distinct from a;
moreover, if a and b are distinct symbols then ā and b̄ are also distinct symbols.

Let Σ be an alphabet. Define Σ̄ := {ā : a ∈ Σ}: the alphabets Σ and Σ̄ are
equinumerous and disjoint. Given two words x and y over Σ ∪ Σ̄, we say that x
freely reduces to y if y is accessible from x under the semi-Thue system(

Σ ∪ Σ̄, {(aā, ε) : a ∈ Σ} ∪ {(āa, ε) : a ∈ Σ}) .
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A word w over Σ∪Σ̄ is called freely reduced if there does not exist any a ∈ Σ such
that aā or āa occurs in w. Let f :

(
Σ ∪ Σ̄)� × (

Σ ∪ Σ̄)� → (
Σ ∪ Σ̄)� be defined

by: for all words x and y over Σ ∪ Σ̄, f(x, y) is the unique freely reduced word
over Σ ∪ Σ̄ to which xy freely reduces. The free group over Σ, denoted FG(Σ),
can be defined as follows: its underlying set is the set of all freely reduced words
over Σ ∪ Σ̄ and its operation is induced by f . A more detailed introduction to the
free group can be found in [34].

Assume now that Σ is finite. The underlying set of FG(Σ) is then recursive.
Accept

[
FG(Σ)

]
can be restated as follows: given a finite automaton A over

Σ ∪ Σ̄ ∪ {ε} and a freely reduced word s over Σ ∪ Σ̄, decide whether there exists
a word s′ over Σ ∪ Σ̄ such that A accepts s′ and s′ freely reduces to s.

Definition 4.11. Let Σ be an alphabet and let A = (Q,E, I, T ) be an automaton
over Σ ∪ Σ̄ ∪ {ε}.

A free reducibility of A is an element (p, q) ∈ Q×Q for which there exists a ∈ Σ
such that the automaton (Q,E, {p}, {q}) accepts aā or āa. We say that A is freely
reduced if for every free reducibility (p, q) of A, p ε−−→ q belongs to E.

Let F denote the set of all subsets F ⊆ Q×{ε}×Q such that (Q,E∪F, I, T ) is
freely reduced. Note that F is non-empty because Q×{ε}×Q ∈ F . The automaton
Ã := (Q,E ∪⋂

F∈F F, I, T ) is called the free reduction of A.

Colloquially, Ã is the smallest freely reduced “super-automaton” of A.

Theorem 4.12 (Algorithm 1.3.7 in [17], see also [3,16]). Let Σ be a finite alphabet.
For every finite automaton A over Σ ∪ Σ̄ ∪ {ε},
(i) Ã is computable from A in polynomial time and
(ii) the behavior of Ã is the closure of the behavior of A under free reduction.

Theorem 4.12 (ii) could be stated as follows: for every word x over Σ ∪ Σ̄, Ã
accepts x iffA accepts a word overΣ∪Σ̄ that freely reduces to x. From Example 4.6
and Theorem 4.12, we deduce:

Corollary 4.13. For any finite alphabet Σ, Accept

[
FG(Σ)

]
is decidable in

polynomial time.

From Theorem 4.8 (i) and Corollary 4.13 we deduce:

Corollary 4.14. For any finite alphabet Σ, Free

[
FG(Σ)

]
is decidable in poly-

nomial time.

5. Number of generators

The section begins with two natural questions:

Open question 2. Does there exist a semigroup S∞ with a recursive underly-
ing set and satisfying the following two properties: Free

[
S∞

]
is undecidable and

Free(k)
[
S∞

]
is decidable for every integer k ≥ 1?



376 J. CASSAIGNE AND F. NICOLAS

Open question 3. Let K denote the set of all integers k ≥ 1 such that there
exists a semigroup Sk with a recursive underlying set and satisfying the following
two properties: Free(k)

[
Sk

]
is decidable and Free(k + 1)

[
Sk

]
is undecidable. Is

the cardinality of K finite?

Combining Example 1.11 above and Corollary 8.6 below, we get that 1 ∈
K: N36×36 is a suitable choice for S1. Combining Example 1.10 above and
Theorem 7.19 below, we get that K ∩ �2, 12� �= ∅: for some k ∈ �2, 12�, W × W is
a suitable choice for Sk.

The following theorem states the existence of bizarre (semi)groups:

Theorem 5.1. There exists an abelian group G with a computable operation such
that Free(1)

[
G
]

is undecidable.

Proof. Let M be a universal Turing machine [24]; note that the input alphabet
of M equals {0, 1}. Let f : W → N ∪ {∞} be defined by: for each w ∈ W, f(w)
equals the running time of M on input w. Note that f(w) is non-zero for every
w ∈ W: any Turing machine that decides a non-trivial language must read at least
one letter of each input word before halting. The following problem is decidable:
given w ∈ W and n ∈ N, decide whether f(w) ≥ n.

Let G be the set of all g : W → Z such that {w ∈ W : g(w) �= 0} is finite and
−f(w) < g(w) < f(w) for every w ∈ W. Remark that G is a recursive set. Let us
equip G with the computable abelian group operation ⊕ defined by:

(g ⊕ h)(w) :=

⎧⎪⎨
⎪⎩
g(w) + h(w) − 2f(w) + 1 if g(w) + h(w) ≥ f(w)
g(w) + h(w) + 2f(w) − 1 if g(w) + h(w) ≤ −f(w)
g(w) + h(w) otherwise

for every g, h ∈ G and every w ∈ W.
It remains to prove that Free(1)

[
G
]

is undecidable. Let w ∈ W. Let g ∈ G be
defined by: g(w) := 1 and g(v) := 0 for every v ∈ W \ {w}. Clearly, g generates a
subgroup of G with cardinality 2f(w)−1. Therefore, the following three assertions
are equivalent: g is torsion, f(w) �= ∞, and M halts on input w. Hence, there exists
a many-one reduction from the halting problem to Free(1)

[
G
]
. �

For any commutative semigroup S with a recursive underlying set and any inte-
ger k ≥ 2, Free(k)

[
S
]

is trivially decidable. Hence, by Theorem 5.1, there exists
a group G with a recursive underlying set satisfying the following two properties:
Free(1)

[
G
]

is undecidable and Free(k)
[
G
]

is decidable for every integer k ≥ 2.

Open question 4. Does there exist a semigroup S with a recursive underlying
set and an integer k ≥ 2 satisfying the following two properties: Free(k)

[
S
]

is
undecidable and Free(k + 1)

[
S
]

is decidable?
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5.1. Regular behaviors

Theorem 5.1 identifies a “misbehavior” of the freeness problems. The next
proposition ensures that a large class of problems related to the combinatorics
of semigroups are well-behaved.

For any set S, let P(S) denote the power set of S.

Proposition 5.2. Let S be a semigroup with a recursive underlying set, let A be a
recursive set, and let Y be a subset of P(S)×A. For every integer k ≥ 1, let D(k)
denote the following problem: given a k-element subset X ⊆ S and an element
a ∈ A, decide whether (X+, a) ∈ Y. Let F denote the following problem: given a
finite subset X ⊆ S and an element a ∈ A, decide whether (X, a) ∈ Y. Assume
that the operation of S is computable and that F is decidable. One of the following
two assertions holds:

(1) for every integer k ≥ 1, D(k) is decidable;
(2) there exists an integer l ≥ 1 such that

• D(k) is decidable for every integer k with 1 ≤ k < l and
• D(k) is undecidable for every integer k ≥ l.

Proof. Let (X, a) be an instance of D(k). First, assume that X is not a sub-
semigroup of S. Then, there exist x, x′ ∈ X such that xx′ /∈ X . Remark that
(X ∪ {xx′}, a) is an instance of D(k+ 1). Moreover, we have (X ∪ {xx′})+ = X+.
Therefore, (X, a) is a yes-instance of D(k) iff (X ∪ {xx′}, a) is a yes-instance of
D(k + 1). Second, assume that X is a subsemigroup of S. Then, (X, a) is a yes-
instance of D(k) iff (X, a) is a yes-instance of F.

It follows from the preceding discussion that D(k + 1) is decidable only if D(k)
is decidable. Therefore, the desired result holds. �

Proposition 5.2 easily applies to semigroup membership problems: if A = S and
if Y equals the set of all (X, a) ∈ P(S) × S such that a ∈ X then D(k) equals
Member(k)

[
S
]
. Let us now show that Proposition 5.2 also applies to mortality,

semigroup finiteness, and semigroup boundedness problems by selecting A := {a}.
Let Z be the set of all X ∈ P(S) such that the zero element of S belongs to
X ; in the case where Y = Z × {a}, D(k) is equivalent to Mortal(k)

[
S
]
. Let

F be the set of all finite subsets of S; in the case where Y = F × {a}, D(k) is
equivalent to Finite(k)

[
S
]
. Let d be a positive integer and let B be the set of all

bounded subsets of Qd×d; in the case where S = Qd×d and Y = B × {a}, D(k) is
equivalent to Bounded(k)

[
Qd×d

]
. Lastly, consider the case where S = W × W,

A = W × W × W × W, and Y equals the set of all (X, (s, s′, t, t′)) ∈ P(S) × A
such that sxs′ = tyt′ for some (x, y) ∈ X ∪ {(ε, ε)}. Then, D(k) is equivalent to
GPCP(k).

GPCP(2) is decidable [21] and GPCP(5) is undecidable [22], so there exists
l ∈ �3, 5� such that for every integer k ≥ 1, GPCP(k) is decidable iff k < l. Let
us illustrate the cases of semigroup finiteness, semigroup boundedness, mortality,
and semigroup membership problems with results drawn from the literature. Let
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d be a fixed positive integer. Finite

[
Qd×d

]
is decidable [26, 35], so for every in-

teger k ≥ 1, Finite(k)
[
Qd×d

]
is decidable. Bounded(1)

[
Qd×d

]
is decidable by

Proposition 2.10 and Bounded(2)
[
Q47×47

]
is undecidable [5], so for every integer

k ≥ 1, Bounded(k)
[
Q47×47

]
is decidable iff k = 1. Mortal(1)

[
Zd×d

]
is decidable

because for every M ∈ Zd×d, {M} is a yes-instance of Mortal(1)
[
Zd×d

]
iff Md is

a zero matrix. On the other hand, Mortal(7)
[
Z3×3

]
is undecidable [22]. There-

fore, there exists l0 ∈ �2, 7� such that for every integer k ≥ 1, Mortal(k)
[
Z3×3

]
is

decidable iff k < l0. Member(1)
[
Qd×d

]
is decidable [29] and Member(k)

[
S
]

can
be seen as a generalization of Mortal(k)

[
S
]

for every integer k ≥ 1 and every
semigroup S with a recursive underlying set and a zero element. Therefore, there
exists l1 ∈ �2, l0� such that Member(k)

[
Z3×3

]
is decidable iff k < l1.

5.2. The case of the freeness problem

Although Proposition 5.2 does not apply to freeness problems in any obvious
way, the answer to Question 4 might as well be “no”. Such an eventuality is
supported by the next theorem, whose proof relies on the following gadget:

Definition 5.3. Let S be a semigroup. For every integer d ≥ 1, every element
x ∈ S, and every subset Y ⊆ S define

Cd(x, Y ) := {xd} ∪
d−1⋃
i=0

xiY.

The simplest non-trivial instance of the gadget is C2(x, {y}) = {x2, y, xy}. The
following two lemmas establish the main properties of the gadget.

Lemma 5.4. Let d be a positive integer, let a be a symbol, and let Σ be an alphabet
such that a /∈ Σ.

(i) Assume that Σ is finite. Let k denote the cardinality of Σ. The cardinality
of Cd(a,Σ) equals kd+ 1.

(ii) The language Cd(a,Σ) is a prefix code.
(iii) Every non-empty word over {a} ∪ Σ that does not end with a belongs to

Cd(a,Σ)+.

Proof. Parts (i) and (ii) are clear. Let (n, b) ∈ N×Σ. Write n in the form n = qd+r
with q ∈ N and r ∈ �0, d−1�. Since ad and arb belong to Cd(a,Σ), anb = (ad)q(arb)
is an element of Cd(a,Σ)+. Put L := {anb : (n, b) ∈ N ×Σ}. We have just proven
L ⊆ Cd(a,Σ)+. It follows L+ ⊆ Cd(a,Σ)+. Since L+ equals the set of all non-
empty words over {a} ∪Σ that do not end with a, part (iii) holds. �

In fact, it is easy to see that Cd(a,Σ)+ = ({a} ∪Σ)�
Σ{ad}� ∪ {ad}+.

Lemma 5.5. Let S be a semigroup, let d be a positive integer, let x be an element
of S, and let Y be a finite subset of S such that x /∈ Y . Let k denote the cardinality
of Y . The set {x} ∪ Y is a code iff the following two conditions are met: the
cardinality of Cd(x, Y ) equals kd+ 1 and Cd(x, Y ) is a code.
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Proof. The “only if part” follows from Lemmas 5.4 (i) and 5.4 (ii): if {x} ∪ Y is
a code then x can be thought as the symbol a and Y as the alphabet Σ. Let us
now prove the “if part”.

Let Σ be an alphabet with cardinality k, let a be a symbol such that a /∈ Σ, and
let σ : ({a} ∪Σ)+ → S be a morphism such that σ(a) = x and σ(Σ) = Y . Clearly,
σ maps Cd(a,Σ) onto Cd(x, Y ). Assume that the cardinality of Cd(x, Y ) equals
kd+ 1 and that Cd(x, Y ) is a code. Then, by Lemma 5.4 (i), σ induces a bijection
from Cd(a,Σ) onto Cd(x, Y ), and subsequently, it follows from Claim 1.13 that σ
is injective on Cd(a,Σ)+. Let u, v ∈ ({a} ∪Σ)+ be such that σ(u) = σ(v). Let
b ∈ Σ. On the one hand, we have σ(ub) = σ(vb), and on the other hand, both ub
and vb belong to Cd(a,Σ)+ by Lemma 5.4 (iii). Since σ is injective on the latter
set, we get ub = vb, which implies u = v. We have thus shown that σ is injective.
Therefore, {x} ∪ Y is a code by Claim 1.13. �

Theorem 5.6. Let S be a semigroup with a computable operation and let k and
d be positive integers. If Free(kd + 1)

[
S
]

is decidable then Free(k + 1)
[
S
]

is
decidable.

Proof. It follows from Lemma 5.5 that there exists a many-one reduction from
Free(k + 1)

[
S
]

to Free(kd+ 1)
[
S
]
. �

If Free(k0)
[
S
]

is undecidable for some integer k0 ≥ 2 then it follows from
Theorem 5.6 that Free(1 + (k0 − 1)d)

[
S
]

is undecidable for every integer d ≥ 1.

Corollary 5.7. Let S be a semigroup with a computable operation.

(i) If there exists an integer k ≥ 2 such that Free(k)
[
S
]

is decidable then
Free(2)

[
S
]

is decidable;
(ii) if there exists an odd integer k ≥ 3 such that Free(k)

[
S
]

is decidable then
Free(3)

[
S
]

is decidable.

6. Two-by-two matrices

The most exciting open questions about the decidability of freeness problems
arise from two-by-two matrix semigroups [8, 11, 15, 30].

It is noteworthy that matrix mortality is also tricky in dimension two. In 1970,
Paterson introduced Mortal

[
Z3×3

]
and showed that the problem is undecid-

able [40]. Since then, the decidability of Mortal

[
Z2×2

]
has been repeatedly re-

ported as an open question [9, 20, 22, 31, 38, 45]. The only partial results obtained
so far are: Mortal(2)

[
Z2×2

]
is decidable [9] and Mortal

[
Nd×d

]
is decidable for

each integer d ≥ 1 [6].
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6.1. Toward undecidability

Although the decidabilities of Free

[
N2×2

]
, Free

[
Z2×2

]
, and Free

[
Q2×2

]
are

still open, Bell and Potapov have proven that Free(7)
[H2×2

]
is undecidable,

where

H :=

⎧⎪⎨
⎪⎩
⎡
⎢⎣
x y z t
−y x −t z
−z t x −y
−t −z y x

⎤
⎥⎦ : x, y, z, t ∈ Q

⎫⎪⎬
⎪⎭

is the skew field of rational quaternions [2]. Besides, it follows from Theorem 2.7
that Free(1)

[H2×2
]

is decidable: for every M ∈ H2×2, M is torsion iff M8 =
M8+r(8). A natural question is thus:

Open question 5. Does there exist a commutative semiring D with a recursive
underlying set and satisfying the following two properties: Free(1)

[
D2×2

]
is de-

cidable and Free

[
D2×2

]
is undecidable?

Let D be a semiring with a recursive underlying set such that Free(1)
[
D2×2

]
is decidable. Then, the set of those elements of D that are torsion under multi-
plication is recursive: for every t ∈ D, t is torsion under multiplication iff [ t 0

0 1 ]
is torsion under matrix multiplication. Moreover, the set of those elements of D
that are torsion under addition is also recursive: for every t ∈ D, t is torsion under
addition iff [ 1 t

0 1 ] is torsion under matrix multiplication. Hence, the decidability of
Free(1)

[
D2×2

]
nicely polices D.

Let K be an extension field of Q with degree d. Since there exists an injective
ring homomorphism from K to Qd×d [27], Theorem 2.7 ensures that for every
M ∈ K2×2, M is torsion iff M2d = M2d+r(2d). Therefore, Free(1)

[
K2×2

]
is

decidable. Proving the undecidability of Free

[
K2×2

]
for some field extension K

of Q with finite degree would solve Question 5 and be a significant advance towards
proving the undecidability of Free

[
Q2×2

]
.

Let us now introduce a more general question than Question 5.

Lemma 6.1. Let A be a commutative ring and let X ∈ A2×2 be such that the
determinant of X equals 0.

(i) For every Y ∈ A2×2, equality XXYX = XYXX holds;
(ii) the matrix X is torsion iff its trace is torsion under multiplication.

Proof. Let t denote the trace of X .
The characteristic polynomial of X equals z2 − tz, so X2 = tX by the Cayley-

Hamilton theorem. It follows that XXYX = tXY X = XYXX for every Y ∈
A2×2, and thus part (i) holds.

Let us now turn to part (ii). On the one hand, we have Xn+1 = tnX for every
n ∈ N. Therefore, t is torsion only if X is torsion. On the other hand, the trace of
Xn equals tn for every integer n ≥ 1. Therefore, X is torsion only if t is torsion.
We have thus shown part (ii). �
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Part (i) of Lemma 6.1 previously appeared in [11].
Let K be a field. The general linear group of degree d over K is denoted

GL(d,K):
GL(d,K) =

{
X ∈ Kd×d : det(X) �= 0

}
.

Assume that the underlying set of K is recursive and that the addition and the
multiplication of K are computable. By Lemma 4.7 (ii), the additive inversion in
K and the multiplicative inversion in K \ {0} are also computable. In particular,
determinants of matrices over K are computable, and thus GL(d,K) is a recursive
set.

Proposition 6.2. Let K be a field with computable operations. Free

[
K2×2

]
is

decidable iff Free

[
GL(2,K)

]
is decidable

Proof. The “only if part” is trivial since GL(2,K) is a subsemigroup of K2×2. Let
us now prove the “if part”.

Assume that Free

[
GL(2,K)

]
is decidable. Let us explain how to decide whether

a finite subset X ⊆ K2×2 is a code. The case where X is a subset of GL(2,K) is
trivial. If X is not a subset of GL(2,K) and if the cardinality of X is greater than
1 then X is not a code by Lemma 6.1 (i). It remains to deal with the case where
X = {X} for some X /∈ GL(2,K). We rely on Lemma 6.1 (ii). Let t denote the
trace of X . If t = 0 then X is torsion (and even nilpotent). If t �= 0 then [ t 0

0 1 ]
belongs to GL(2,K), and moreover, X is torsion iff [ t 0

0 1 ] is torsion. �

Note that the decidability of Free

[
GL(2,Q)

]
is not trivially implied by

Corollary 4.9: the structure of GL(2,Q) is far more complicated than the one
of GL(2,Z).

Corollary 6.3. Let K be a field with computable operations. If Free

[
K2×2

]
is

undecidable then Accept

[
K2×2

]
is undecidable.

Proof. Assume that Accept

[
K2×2

]
is decidable. Then, its restriction

Accept

[
GL(2,K)

]
is decidable. Since GL(2,K) is a group, it follows from

Theorem 4.8 (ii) that Free

[
GL(2,K)

]
is decidable. Thus, Proposition 6.2 ensures

that Free

[
K2×2

]
is decidable. �

The reader who conjectures that the answer to Question 5 is “yes” might want
to first tackle:

Open question 6. Does there exist a commutative semiring D with a recursive
underlying set and satisfying the following two properties: Free(1)

[
D2×2

]
is de-

cidable and Accept

[
D2×2

]
is undecidable?

6.2. Toward decidability

This section focuses on the following open question.

Open question 7 ([8, 11]). Is Free(2)
[
N2×2

]
decidable?

Note that if Free(k)
[
N2×2

]
is decidable for some integer k ≥ 2 then, by

Corollary 5.7 (i), Free(2)
[
N2×2

]
is decidable.
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6.2.1. Two upper-triangular matrices

For each semiring D and each integer d ≥ 1, let Tri(d,D) denote the set of all
d-by-d upper-triangular matrices over D: Tri(d,D) is a subsemiring of Dd×d, so in
particular, Tri(d,D) is a multiplicative semigroup. For instance, Tri(2, D) is the
set of all matrices of the form [ a b

0 c ] with a, b, c ∈ D.

Open question 8. Is Free(2)
[
Tri(2,N)

]
decidable?

For all integers k, d ≥ 1, Free(k)
[
Tri(d,Q)

]
is decidable iff Free(k)

[
Tri(d,Z)

]
is decidable: the proof is the same as for Theorem 3.13. In particular,
Free(2)

[
Tri(2,Q)

]
is decidable iff Free(2)

[
Tri(2,Z)

]
is decidable. Put

Dλ :=
[
λ 0
0 1

]
and Tλ :=

[
λ 1
0 1

]
.

for each λ ∈ C.

Example 6.4. The sets {D2, T2}, {D2, T3}, and
{
D2/7, T3/4

}
are codes under

matrix multiplication [11].

Example 6.5. The sets
{
D2, T1/2

}
and

{
D2/3, T−3/5

}
are not codes un-

der matrix multiplication since D2T1/2 = [ 1 2
0 1 ] = T1/2D2T1/2D2 [11] and

D2/3T−3/5D2/3T−3/5 =
[

4/25 2/5
0 1

]
= T−3/5T−3/5D2/3D2/3 [15].

Let Π denote the set of all (λ, μ) ∈ C × C such that {Dλ, Tμ} is not a code
under matrix multiplication. One reason why it might be easier to deal with trian-
gular matrices is that Free(2)

[
Tri(2,Q)

]
reduces to recognizing Π ∩ (Q×Q) [11].

Moreover, for all λ, μ ∈ C \ {0, 1}, the following four assertions are equivalent:
(λ, μ) ∈ Π , (μ, λ) ∈ Π , (λ−1, μ−1) ∈ Π , and (μ−1, λ−1) ∈ Π [11].

Two partial algorithms for recognizing Π ∩ (Q×Q) have been proposed [11,15].
The latest one, which is by Gawrychowski, Gutan, and Kisielewicz [15], seems
more efficient in practice: it solves the following example much faster than the
older algorithm.

Example 6.6. Put D := D2/3 and T := T3/5. The set {D,T } is not a code under
matrix multiplication because both products

DTTTTTTTTTTDDTDDTDDDDDDDDDD

and
TTDDDDDDTTDDTDTDTDDTTDDTDTT

are equal to [
32768

6591796875
242996824
146484375

0 1

]
.

Note that D and T satisfy no shorter non-trivial equation [15].

In addition to showing a surprising combinatorial explosion, Example 6.6
answers an open question from [8,11].
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6.2.2. One upper-triangular and one lower-triangular matrix

Put

Aλ :=
[
1 λ
0 1

]
and Bλ :=

[
1 0
λ 1

]

for each λ ∈ C. Let Λ denote the set of all λ ∈ C such that {Aλ, Bλ} is not a
code under matrix multiplication. The study of Λ was initiated by Brenner and
Charnow [10]. Our motivation to continue is that Free(2)

[
Q2×2

]
is decidable only

if Λ ∩ Q is recursive. We first prove that Λ = −Λ.

Lemma 6.7. For every λ ∈ C, {Aλ, Bλ} is a code under matrix multiplication iff
{A−λ, B−λ} is a code under matrix multiplication.

Proof. For every group G and every subset X ⊆ G, X is a code iff
{
x−1 : x ∈ X

}
is a code. Since A−1

λ = A−λ and B−1
λ = B−λ for every λ ∈ C, the desired result

holds. �

Let us now prove that every element of Λ∩R is comprised between −1 and +1
exclusive.

Proposition 6.8. For every real number λ with |λ| ≥ 1, {Aλ, Bλ} is a code under
matrix multiplication.

Proof. By Lemma 6.7, we only have to prove that {Aλ, Bλ} is a code for every
real number λ ≥ 1.

Let A denote the set of all [ x
y ] ∈ R2×1 such that 0 < y < x. Let B denote the set

of all [ x
y ] ∈ R2×1 such that 0 < x < y. Remark that for all real numbers x, y > 0,

Aλ [ x
y ] belongs to A while Bλ [ x

y ] belongs to B. Let M , N ∈ {Aλ, Bλ}�. From the
previous remark, we deduce that AλM [ 1

1 ] belongs to A while BλN [ 1
1 ] belongs to

B. Since A ∩ B = ∅, we have AλM �= BλN . The desired result now follows from
Lemma 3.4. �

Note that Λ contains complex numbers with moduli 1 or more. For instance,
the imaginary unit, denoted i, belongs to Λ because

AiBiAi =
[
0 i
i 0

]
= BiAiBi.

Moreover, 3i / 2 also belongs to Λ because

AABBABBABA =
[−41 / 4 33i / 8

33i / 8 25 / 16

]
= BABAABAABB ,

with A := A3i/2 and B := B3i/2.
Finally, let us prove the main result of the section: the supremum of Λ ∩ Q

equals 1.
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Lemma 6.9 (Brenner and Charnow [10]). Let λ be a real number. If there exist
two integers m, n ≥ 1 such that

λ2 =
mn−m− n− 1

mn
(6.1)

then {Aλ, Bλ} is not a code under matrix multiplication.

Proof. Let m, n ∈ Z. It is easy to check that Am
λ = Amλ, Bn

λ = Bnλ,

AλB
n
λA

m
λ Bλ =

[
mnλ4 + (m+ n+ 1)λ2 + 1 mnλ3 + (m+ 1)λ

mnλ3 + (n+ 1)λ mnλ2 + 1

]
,

and

BλA
m
λ B

n
λAλ =

[
mnλ2 + 1 mnλ3 + (m+ 1)λ

mnλ3 + (n+ 1)λ mnλ4 + (m+ n+ 1)λ2 + 1

]
.

It follows that AλB
n
λA

m
λ Bλ = BλA

m
λ B

n
λAλ iff mnλ2 + 1 = mnλ4 + (m + n +

1)λ2 + 1. Therefore, BλA
m
λ B

n
λAλ = AλB

n
λA

m
λ Bλ holds whenever m and n satisfy

equation (6.1). �

For each integer n ≥ 3, put λn :=
√

1 − 2n−1 − n−2. On the one hand, λn tends
to 1 as n tends to infinity, and on the other hand, it follows from Lemma 6.9 that
λn ∈ Λ: consider the special case where m = n in Equation (6.1). We have thus
proven that the supremum of Λ ∩ R equals 1. However, λn is irrational.

Proposition 6.10. For every real number δ > 0, there exists λ ∈ Q such that
1 − δ < λ < 1 and {Aλ, Bλ} is not a code under matrix multiplication.

Proof. Let (n0, n1, n2, n3, . . . ) be the sequence of integers inductively defined by:
n0 = 3, n1 = 6 and nk+2 = 6nk+1 − nk − 6 for every k ∈ N. It is easy to check
that:

nk =
3
4

(
(3 + 2

√
2)

k
+ (3 − 2

√
2)

k
)

+
3
2

for every k ∈ N. Hence, nk is positive for every k ∈ N and

λk := 1 − nk+1 + nk + 3
2nk+1nk

is a rational number that tends to 1 as k tends to infinity.
Now, remark that the bivariate polynomial

p(x, y) := x2 + y2 − 6xy+ 6x+ 6y + 9

satisfies:
p(6x− y− 6, x) = p(x, y) (6.2)

and (
1 − x + y + 3

2xy

)2

− xy− x− y− 1
xy

=
p(x, y)
4x2y2

· (6.3)
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Relying on Equation (6.2), it is easy to check by induction that p(nk+1, nk) = 0
for every k ∈ N. Therefore, Equation (6.3) ensures that

λ2
k =

nk+1nk − nk+1 − nk − 1
nk+1nk

,

and thus {Aλk
, Bλk

} is not a code by Lemma 6.9. �

Let Λ′ denote the set of all λ ∈ C such that {Aλ, Bλ, A−λ, B−λ}� is not a free
group. A large literature is devoted to the study of Λ′. It is clear that Λ ⊆ Λ′, that
−Λ′ = Λ′, and that no transcendental number belongs to Λ′. Moreover, it is well-
known that for every λ ∈ Λ′, |λ| < 2 [34]. Many rational and algebraic numbers
have been identified in Λ′ [1, 18]: in particular, sup(Λ′ ∩ R) = 2 [1]. However,
the existence of a rational number λ such that 0 < |λ| < 2 and λ /∈ Λ′ is still
open [18, 34]. Similarly, we state:

Open question 9 (Guyot [19]). Is there any rational number λ with |λ| < 1 such
that {Aλ, Bλ} is a code under matrix multiplication?

6.3. Substitutions over the binary alphabet

In this section, we examine:

Open question 10. Is Free(2)
[
hom(W)

]
decidable?

(The notation hom is introduced in Def. 2.11.) To motivate the introduction of
Question 10, let us consider the function from hom(W) to N2×2 that maps each
σ ∈ hom(W) to

Pσ :=
[|σ(0)|0 |σ(1)|0|σ(0)|1 |σ(1)|1

]

(according to Definition 2.12, Pσ is the incidence matrix of σ relative to 01). The
considered function is clearly surjective, it is a morphism by Claim 2.13 (i), and it
is “almost injective” by Claim 2.13 (ii). Therefore, the semigroups hom(W) and
N2×2 have very similar structures, and thus Questions 7 and 10 are likely similar.
However, we do not know whether Question 10 is easier or harder to solve than
Question 7.

The following claim is an immediate corollary of Claim 2.13 (i); it provides a
simple way to generate yes-instances of Free(2)

[
hom(W)

]
from yes-instances of

Free(2)
[
N2×2

]
.

Claim 6.11. Let σ, τ ∈ hom(W) be such that Pσ �= Pτ . If {Pσ, Pτ} is a code
under matrix multiplication then {σ, τ} is a code under function composition.
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For instance, let us construct four yes-intances of Free(2)
[
hom(W)

]
from Ex-

ample 6.4:

Example 6.12. For each p ∈ N, let δp, τp, τ ′p ∈ hom(W) be defined by:{
δp(0) := 0p

δp(1) := 1
,

{
τp(0) := 0p

τp(1) := 10
, and

{
τ ′p(0) := 0p

τ ′p(1) := 01
.

In the notation of Section 6.2.1, we have Pδp = Dp and Pτp = Pτ ′
p

= Tp for every
p ∈ N. It then follows from Example 6.4 and Claim 6.11 that {δ2, τ2}, {δ2, τ3},
{δ2, τ ′2}, and {δ2, τ ′3} are codes under function composition.

The next two yes-instances of Free(2)
[
hom(W)

]
cannot be obtained by ap-

plying the previous method. Note that testing the injectivity of a given element
σ ∈ hom(W) is trivial: σ is injective iff σ(01) �= σ(10) (see Ex. 1.10). Recall also
that injective functions are left-cancellative under composition (Ex. 3.3) and that
left-cancellability occurs in the hypotheses of Lemma 3.4.

Example 6.13. Let υ, υ′ ∈ hom(W) be defined by:{
υ(0) := 01

υ(1) := 011
and

{
υ′(0) := 10

υ′(1) := 110
.

For any x ∈ {0, 1}+, υ(x) begins with 0 while υ′(x) begins with 1. Therefore, for
any α, α′ ∈ hom(W), we have υα �= υ′α′ unless α(0) = α(1) = α′(0) = α′(1) = ε.
It then follows from Lemma 3.4 that {υ, υ′} is a code under function composition.
However, remark that Pυ = Pυ′ = [ 1 1

1 2 ].

Example 6.14. Let φ, μ ∈ hom(W) be defined by:{
φ(0) := 01

φ(1) := 0
and

{
μ(0) := 01

μ(1) := 10
.

Morphisms φ and μ play a central role in combinatorics of words [32, 33]; they
are usually called the Fibonacci substitution and the Thue-Morse substitution,
respectively. Let α, β ∈ {φ, μ}+. It is easy to see that α(0) and β(0) begin with
01. Therefore, (φα)(0) begins with 010 while (μβ)(0) begins with 011. It follows
that φα �= μβ. Hence, Lemma 3.4 implies that {φ, μ} is a code under function
composition. However, remark that Pφ = [ 1 1

1 0 ] �= [ 1 1
1 1 ] = Pμ and PμPμPφPμ =

PμPφPμPμ. Therefore, {Pφ, Pμ} is not a code under matrix multiplication.

The similarity between the following proposition and Lemma 6.1 (i) shows fur-
ther similarity between hom(W) and N2×2.

Proposition 6.15. Let σ ∈ hom(W) be such that σ is non-injective. For every
τ ∈ hom(W), equality σστσ = στσσ holds.
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Proof. Put α := σστσ and β := στσσ. Since σ is non-injective, there exist s ∈ W

and p, q ∈ N such that σ(0) = sp and σ(1) = sq (see Ex. 1.10).
First, Pσ is singular because

Pσ =
[
p |s|0 q |s|0
p |s|1 q |s|1

]
=
[|s|0|s|1

] [
p q

]
.

Therefore, we have PσPσPτPσ = PσPτPσPσ by Lemma 6.1 (i), and thus
Claim 2.13 (i) ensures that Pα = Pβ .

Second, let x ∈ W. For every ρ ∈ hom(W), we have

Pρ

[|x|0|x|1

]
=
[|ρ(x)|0|ρ(x)|1

]
,

and thus [
1 1

]
Pρ

[|x|0|x|1

]
= |ρ(x)| .

In particular, the latter equality holds for ρ = α and ρ = β, so |α(x)| = |β(x)|.
Since σ maps each element of W to a power of s, we finally get α(x) = s|α(x)||s|−1

=
s|β(x)||s|−1

= β(x). �

7. Three-by-three matrices

The aim of this section is to prove that, for every integer k ≥ 13, both
Free(k)

[
W × W

]
and Free(k)

[
N3×3

]
are undecidable.

We first check that W × W is a well-behaved semigroup in the sense of Section 5.

Proposition 7.1. Let k0 be a positive integer. If Free(k0)
[
W × W

]
is decidable

then for every k ∈ �1, k0�, Free(k)
[
W × W

]
is also decidable.

Proof. Let u, v, w ∈ W be such that {u, v, w} is a 3-element code. For instance,
1, 01, and 001 are suitable choices for u, v, and w, respectively. Let σ : W → W

be the morphism defined by: σ(0) := u and σ(1) := v. For any k-element subset
X ⊆ W × W,

X ′ := {(σ(x), σ(y)) : (x, y) ∈ X} ∪ {(w,w)}
is a (k + 1)-element subset of W × W that satisfies: X is a code iff X ′ is
a code. Hence, there exists a many-one reduction from Free(k)

[
W × W

]
to

Free(k + 1)
[
W × W

]
. �

Note that we do not know whether Proposition 7.1 still holds if W × W is
replaced with N3×3.
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7.1. Semi-Thue systems and Post correspondence problem

In this section, we revisit Claus’s reduction from the accessibility problem for
semi-Thue systems to the Post correspondence problem [13]. Semi-Thue systems
are introduced in Definition 4.10.

Definition 7.2 (accessibility problem for semi-Thue systems [42]). Let Access

denote the following problem: given a finite alphabet Σ, a subset R ⊆ Σ� × Σ�,
and two words u, v ∈ Σ�, decide whether v is accessible from u under the semi-
Thue system (Σ,R). For every integer k ≥ 1, define Access(k) as the restriction
of Access to those instances (Σ,R, u, v) such that the cardinality of R equals k.

Definition 7.3 (Post correspondence problem [41]). Let PCP denote the follow-
ing problem: given a finite alphabet Σ and two morphisms σ, τ : Σ� → W, decide
whether there exists w ∈ Σ+ such that σ(w) = τ(w). For every integer k ≥ 1,
PCP(k) denotes the restriction of PCP to those instances (Σ, σ, τ) such that the
cardinality of Σ equals k.

Remark 7.4. Strictly speaking, PCP is not a restriction of GPCP. However
GPCP is a generalization of PCP in the sense that there is a simple, natural
reduction from PCP to GPCP: for any instance (Σ, σ, τ) of PCP, (Σ, σ, τ) is a
yes-instance of PCP iff there exists a ∈ Σ such that (Σ, σ, τ, σ(a), ε, τ(a), ε) is a
yes-instance of GPCP. An even more natural idea is to transform (Σ, σ, τ) into
(Σ, σ, τ, ε, ε, ε, ε), but unfortunately, (Σ, σ, τ, ε, ε, ε, ε) is always a yes-instance of
GPCP because σ(ε) = ε = τ(ε).

Let Σ and Γ be two finite alphabets and let σ, τ : Σ� → Γ � be two morphisms.
Stricly speaking, (Σ, σ, τ) is not an instance PCP, unless Γ = {0, 1}. However, we
abuse language by identifying (Σ, σ, τ) with (Σ, γσ, γτ), where γ : Γ � → W is any
injective morphism (see Claim 1.14).

Post proved the undecidabilities of PCP and Access in 1946 and 1947, respec-
tively [41, 42]. Since then, his results have been tremendously refined:

Theorem 7.5 (Matiyasevich and Sénizergues [36]). Access(3) is undecidable.

Theorem 7.6 (Claus [13]). Let k be a positive integer. If PCP(k+4) is decidable
then Access(k) is decidable.

It follows from Theorems 7.5 and 7.6 that PCP(7) is undecidable [36]. To com-
plete the picture, let us mention that PCP(2) is decidable [21], and that the decid-
abilities of Access(1), Access(2), PCP(3), PCP(4), PCP(5), and PCP(6) remain
open.

To prove Theorem 7.6, Claus presents a many-one reduction from Access(k)
to PCP(k + 4) [13] (similar proofs can be found in [22, 23, 39]). In 2007, Halava,
Harju, and Hirvensalo remarked that Claus’s construction is freeness-friendly. In
fact, as we shall see, it turns out that for any instance (Σ, σ, τ) of PCP com-
puted by the reduction, (Σ, σ, τ) is a yes-instance of PCP iff {(σ(a), a) : a ∈ Σ}∪
{(τ(a), a) : a ∈ Σ} is not a code under componentwise concatenation.
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Definition 7.7 (Claus instance of PCP). Define a Claus instance of PCP as
a triple of the form (Σ, σ, τ), where Σ is a finite alphabet and σ, τ : Σ� →
{0, 1, b, e, d}� are morphisms meeting the requirements listed below:

• b ∈ Σ, e ∈ Σ;
• σ(a) ∈ {d0, d1}+ for every a ∈ Σ \ {b, e};
• τ(a) ∈ {0d, 1d}+ for every a ∈ Σ \ {b, e};
• σ(b) ∈ b{d0, d1}�;
• σ(e) ∈ {d0, d1}�de;
• τ(b) ∈ bd{0d, 1d}�; and
• τ(e) ∈ {0d, 1d}�e.

Strictly speaking, Claus’s original reduction [13] does not output Claus instances
in the sense of Definition 7.7, but it can be easily adapted. Other similar construc-
tions [22, 23, 39] are also adaptable.

Theorem 7.8 (Claus’s theorem revisited). Let k be a positive integer. If
PCP(k + 4) is decidable on Claus instances then Access(k) is decidable.

A full proof Theorem 7.8 can be found in an unpublished paper by the second
author [39]. Note that Theorem 7.8 can be obtained as a corollary of the following
two facts:

(1) if GPCP(k + 2) is decidable then Access(k) is decidable and
(2) if PCP(k+2) is decidable on Claus instances then GPCP(k) is decidable [23].

Combining Theorems 7.5 and 7.8 yields:

Corollary 7.9. PCP(7) is undecidable on Claus instances.

7.2. mixed modification of the Post correspondence problem

The following problem is a useful link between Free

[
W×W

]
and the restriction

of PCP to Claus instances.

Definition 7.10 (mixed modification of the PCP [11]). Let MMPCP denote the
following problem: given an instance (Σ, σ, τ) of PCP, decide whether there exist
an integer n ≥ 1, n symbols a1, a2, . . . , an ∈ Σ and 2n morphisms σ1, σ2, . . . , σn,
τ1, τ2, . . . , τn ∈ {σ, τ} such that

σ1(a1)σ2(a2) . . . σn(an) = τ1(a1)τ2(a2) . . . τn(an) (7.1)

and
(σ1, σ2, . . . , σn) �= (τ1, τ2, . . . , τn). (7.2)

For every integer k ≥ 1, MMPCP(k) denotes the restriction of MMPCP to those
instances (Σ, σ, τ) such that the cardinality of Σ equals k.
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The fundamental property of MMPCP can be stated as follows:

Claim 7.11. Let (Σ, σ, τ) be an instance of MMPCP such that σ(a) �= τ(a)
for every a ∈ Σ. (Σ, σ, τ) is a yes-instance of MMPCP iff {(σ(a), a) : a ∈ Σ} ∪
{(τ(a), a) : a ∈ Σ} is not a code under componentwise concatenation.

It is clear that every yes-instance of PCP is also a yes-instance of MMPCP.
The following proposition ensures that the converse is true for Claus instances.

Proposition 7.12. For every Claus instance (Σ, σ, τ) of PCP, (Σ, σ, τ) is a yes-
instance of MMPCP iff there exists w ∈ (Σ \ {b, e})� such that σ(bwe) = τ(bwe).

Proof. The “if part” is trivial. Let us now prove the “only if part”.
For each integer n ≥ 1, define Cn as the set of those n-tuples (ai, σi, τi)i∈�1,n�

over Σ×{σ, τ}×{σ, τ} that satisfy equation (7.1) and define C′
n as the set of those

(ai, σi, τi)i∈�1,n� ∈ Cn that satisfy condition (7.2). There exists an integer n ≥ 1
such that C′

n �= ∅ iff (Σ, {0, 1, b, e, d}, σ, τ) is a yes-instance of MMPCP.

Claim 7.13. For any (ai, σi, τi)i∈�1,n� ∈ C′
n, σ1 = τ1 implies (ai, σi, τi)i∈�2,n� ∈

C′
n−1.

Claim 7.14. For any (ai, σi, τi)i∈�1,n� ∈ C′
n, σn = τn implies (ai, σi, τi)i∈�1,n−1� ∈

C′
n−1.

Lemma 7.15. Let (ai, σi, τi)i∈�1,n� ∈ C′
n and let k ∈ �1, n − 1�. If ak = e or

ak+1 = b then (ai, σi, τi)i∈�1,k� belongs to C′
k or (ai, σi, τi)i∈�k+1,n� belongs to C′

n−k.

Proof. We only prove the statement in the case where ak = e because the case
where ak+1 = b is handled in the same way.

Put s := σ1(a1)σ2(a2) . . . σk(ak) and t := τ1(a1)τ2(a2) . . . τk(ak). We have
|σ(e)|e = |τ(e)|e = 1 and |σ(a)|e = |τ(a)|e = 0 for every a ∈ Σ \ {e}. From
that we deduce:

|s|e = |a1a2 . . . ak|e = |t|e . (7.3)

Assume that ak = e. Now, both s and t end with e. Hence, if t was a proper prefix
of s then we would have |t|e < |s|e in contradiction with Equation (7.3). In the
same way s cannot be a proper prefix of t. Therefore, s equals t. It follows that
(ai, σi, τi)i∈�1,k� ∈ Ck and (ai, σi, τi)i∈�k+1,n� ∈ Cn−k, and at least one of them
satisfies (7.2). �

Let n be the smallest positive integer such that C′
n �= ∅; let (ai, σi, τi)i∈�1,n� be

an element of C′
n. Claim 7.13 ensures

σ1 �= τ1,

and since σ1(a1) and τ1(a1) start with the same letter, we have

a1 = b.
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In the same way, Claim 7.14 ensures σn �= τn, and since σn(an) and τn(an) end
with the same letter, we have

an = e.

Furthermore, Lemma 7.15 ensures

ai �= b and ai �= e

for every i ∈ �2, n− 1�. Hence, w := a2a3 . . . an−1 belongs to (Σ \ {b, e})�.
Without loss of generality, we may assume σ1 = σ and τ1 = τ . To complete the

proof of the proposition, it suffices to show that, for every i ∈ �2, n�, σi = σ and
τi = τ . We proceed by induction. Let i, j ∈ �1, n� be such that σ = σ1 = σ2 =
· · · = σi and τ = τ1 = τ2 = · · · = τj .

(i) If σ(a1a2 . . . ai) = τ(a1a2 . . . aj) then a1a2 . . . ai = a1a2 . . . aj = bwe.
Indeed, if σ(ai) and τ(aj) end with the same letter, then ai = aj = e and
i = j = n follows.

(ii) If σ(a1a2 . . . ai) is a proper prefix of τ(a1a2 . . . aj) then σi+1 = σ.
Indeed, assume that there exists a non-empty word s such that
σ(a1a2 . . . ai)s = τ(a1a2 . . . aj). On the one hand, s starts with the same
letter as σi+1(ai+1). On the other hand, s belongs to {d0, d1}�d since
σ(a1a2 . . . ai) ∈ b{d0, d1}� while τ(a1a2 . . . aj) ∈ bd{0d, 1d}�. Hence,
σi+1(ai+1) starts with d, and σi+1 = σ follows.

(iii) If τ(a1a2 . . . aj) is a proper prefix of σ(a1a2 . . . ai) then τj+1 = τ .
Point (iii) is proven in the same way as point (ii). �

Theorem 7.16 (Halava et al. [22]). MMPCP(7) is undecidable on Claus in-
stances.

Proof. Proposition 7.12 ensures that PCP and MMPCP are equivalent on
Claus instances. Therefore, MMPCP(7) is undecidable on Claus instances by
Corollary 7.9. �

Note that the decidability of MMPCP(k) remains open for each k ∈ �2, 6�.

7.3. Proofs of the main results

We first prove that Free(k)
[
W × W

]
is undecidable for every integer k ≥ 13.

The idea is to construct a many-one reduction from MMPCP(7) on Claus instances
to Free(13)

[
W × W

]
.

Lemma 7.17. Let S be a semigroup, let X be a subset of S, let s1, t1, s2, t2 ∈ X
and let Y := (X \ {s1, t1, s2, t2}) ∪ {t2s1, s2t1, t2t1}. If X is a code then Y is also
a code.

Proof. If X is an alphabet and if S = X+ then Y is a prefix code over X . The
general case follows. �
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The converse of Lemma 7.17 is false in general. If S = {0, 1, 2}+ and if
X = {s1, t1, s2, t2} with s1 := 01, t1 := 2, s2 := 0 and t2 := 12 then
Y = {t2s1, s2t1, t2t1} = {1201, 02, 122} is a prefix code; however, X is not a
code since s1t1 = 012 = s2t2.

Theorem 7.18. Let k be a positive integer. If Free(2k−1)
[
W×W

]
is decidable

then both PCP(k) and MMPCP(k) are decidable on Claus instances.

Proof. Let (Σ, σ, τ) be a Claus instance of PCP(k). For each w ∈ Σ�, put

sw := (σ(w), w)

and
tw := (τ(w), w).

Let X and Y denote the two subsets of {0, 1, b, e, d}� ×Σ� defined by:

X := {sa : a ∈ Σ} ∪ {ta : a ∈ Σ}

and
Y := (X \ {sb, tb, se, te}) ∪ {tesb, setb, tetb} .

Compute two injective morphisms φ : Σ� → W and ψ : {0, 1, b, e, d}� → W (see
Claim 1.14) and

Z := {(ψ(y1), φ(y2)) : (y1, y2) ∈ Y } .
It is clear that X , Y , and Z are computable from (Σ, σ, τ). Moreover, the

cardinality of X equals 2k, the cardinality of Y equals 2k−1, and Z is an instance
of Free(2k − 1)

[
W × W

]
. It remains to prove that the following five assertions

are equivalent:

(i) (Σ, σ, τ) is a yes-instance of PCP(k);
(ii) (Σ, σ, τ) is a yes-instance of MMPCP(k);
(iii) X is not a code;
(iv) Y is not a code;
(v) Z is not a code.

By Proposition 7.12, (i) and (ii) are equivalent. By Claim 7.11, (ii) and (iii)
are equivalent. By Lemma 7.17, (iv) implies (iii). Since Z is the image of Y under
an injective morphism, (iv) and (v) are equivalent.

Assume that (Σ, σ, τ) is a yes-instance of MMPCP(k). By Proposition 7.12,
there exists w ∈ (Σ \ {b, e})� such that σ(bwe) = τ(bwe). The word w satisfies
sbswse = sbwe = tbwe = tbtwte, and thus we have

(tesb)sw(setb) = (tetb)tw(tetb). (7.4)

Since tesb ∈ Y , tetb ∈ Y , sw(setb) ∈ Y +, tw(tetb) ∈ Y + and tesb �= tetb,
equation (7.4) ensures that Y is not a code. Therefore, (ii) implies (iv). �



ON THE DECIDABILITY OF SEMIGROUP FREENESS 393

Corollary 7.19. For every integer k ≥ 13, Free(k)
[
W × W

]
is undecidable.

Proof. Combining Corollary 7.9 and Theorem 7.18, we obtain that Free(13)
[
W×

W
]

is undecidable. Hence, the corollary holds by Proposition 7.1. �

By way of digression, let us briefly summarize the current knowledge about the
decidability of Free(k)

[
W×d

]
for k, d ∈ N \ {0}. On the one hand, Free(k)

[
W
]

is decidable for every integer k ≥ 1 [4], and so is Free(2)
[
W×d

]
for every integer

d ≥ 1 (Ex. 1.10). On the other hand, if Free(k)
[
W×(d+1)

]
is decidable then

Free(k)
[
W×d

]
is also decidable because there exist injective morphisms from

W×d to W×(d+1): for instance, the function mapping each (u1, u2, . . . , ud) ∈ W×d

to (u1, u2, . . . , ud, ε). Hence, it follows from Corollary 7.19 that Free(k)
[
W×d

]
is

undecidable for every (k, d) ∈ (N \ �0, 12�) × (N \ {0, 1}).
Open question 11. For each (k, d) ∈ �3, 12� × (N \ {0, 1}), the decidability of
Free(k)

[
W×d

]
is open.

Let us now return to our main plot. It remains to prove that Free(k)
[
N3×3

]
is

undecidable for every integer k ≥ 13.

Lemma 7.20 ([11, 22, 40]). There exists an injective morphism from W × W to
N3×3.

Proof. Let β : W → N be defined by: β(0) = 0, β(1) = 1, and β(uv) = β(u) +
2|u|β(v) for every u, v ∈ W. The word an . . . a2a1 is a binary expansion of the
natural number β(a1a2 . . . an) for any integer n ≥ 1 and any a1, a2, . . . , an ∈
{0, 1}. Let Φ : W × W → N3×3 be defined by:

Φ(u, v) :=

⎡
⎣2|u| 0 β(u)

0 2|v| β(v)
0 0 1

⎤
⎦

for every u, v ∈ W. It is easy to check that Φ is a morphism: Φ(uu′, vv′) =
Φ(u, v)Φ(u′, v′) for all u, u′, v, v′ ∈ W. Note that β is not injective since β(u) =
β(u0) for every u ∈ W. However, the function mapping each u ∈ W to (|u|, β(u))
is injective. Hence, Φ is injective. �

Lemma 7.20 can be easily generalized to higher dimensions: for every integer
d ≥ 1, there exists an injective morphism from W×d to N(d+1)×(d+1). However,
there is no injective injective morphism from W × W to C2×2 [11].

Theorem 7.21. Let k be a positive integer. If Free(k)
[
N3×3

]
is decidable then

Free(k)
[
W × W

]
is decidable.

Proof. Any injective morphism from W×W to N3×3 induces a one-one reduction
from Free(k)

[
W × W

]
to Free(k)

[
N3×3

]
. Hence, the desired result follows from

Lemma 7.20. �

From Corollary 7.19 and Theorem 7.21 we deduce:

Corollary 7.22. For every integer k ≥ 13, Free(k)
[
N3×3

]
is undecidable.
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8. Matrices of higher dimension

The main aim of this section is to prove that Free(2)
[
Nd×d

]
is undecidable

for some integer d ≥ 1. Although the result is not new [37], it has never been
published before.

Theorem 8.1. Let D be a semiring with a recursive underlying set and let k, d
be positive integers. If Free(k + 1)

[
Dd×d

]
is decidable then Free(kd + 1)

[
D
]

is
decidable.

Proof. We present a many-one reduction from Free(kd + 1)
[
D
]

to Free(k +
1)
[
Dd×d

]
. The construction is the same as in [37].

Let X be a (kd+ 1)-element subset of D. Write X in the form

X = {x} ∪ {yi,j : (i, j) ∈ �1, d� × �1, k�} ,

and put

M :=
[
O x
Id−1 O

]
and Nj :=

⎡
⎢⎣O

yd,j

...
y1,j

⎤
⎥⎦

for each j ∈ �1, k�. Now,

X := {M,N1, N2, . . . , Nk}

is a (k + 1)-element subset of Dd×d and X is computable from X . To complete
the proof, it remains to check the correctness statement: X is a code under the
multiplicative operation of D iff X is a code under matrix multiplication.

Recall that Tri(d,D) is the set of all d-by-d upper-triangular matrices over D
(see Sect. 6.2.1). Let φ : Dd×d → D be the function that maps a matrix to its
bottom-right entry:

φ ([ai,j ]) := ad,d .

Remark that φ induces a morphism from Tri(d,D) to D.
Let C be the following instance of the gadget introduced in Definition 5.3:

C := Cd (M, {N1, N2, . . . , Nk})

=
{
Md

} ∪
d−1⋃
i=0

{
M iN1,M

iN2, . . . ,M
iNk

}
.

Claim 8.2. C is a subset of Tri(d,D), φ(Md) = x, and φ(M i−1Nj) = yi,j for
i ∈ �1, d� and j ∈ �1, k�.
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Hence, φ induces a bijection from C onto X . In particular, C has cardinality
kd+ 1, and thus Lemma 5.5 ensures:

Claim 8.3. X is a code iff C is a code.

By Claim 1.13, since φ is injective on C, we have:

Claim 8.4. X is a code iff C is a code and φ is injective on C+.

As only the last column of the matrix N1 is nonzero, straightforward compu-
tations yield that for every P ∈ Tri(d,D), N1P = N1φ(P ). It follows that every
P , Q ∈ C+ such that φ(P ) = φ(Q) satisfy also N1P = N1Q. Hence, under the
assumption that C is a code, the morphism φ is injective on C+ because N1 is
cancellative in C+, so that:

Claim 8.5. If C is a code then φ is injective on C+.

Claims 8.3–8.5 imply the correctness statement. �

Corollary 8.6. For every h ∈ N, Free(7 + h)
[
N6×6

]
, Free(5 + h)

[
N9×9

]
,

Free(4 + h)
[
N12×12

]
, Free(3 + h)

[
N18×18

]
, and Free(2 + h)

[
N36×36

]
are unde-

cidable.

Proof. Let k and d be two positive integers. Apply Theorem 8.1 with D :=
N3×3 and identify

(
N3×3

)d×d with N3d×3d: if Free(kd + 1)
[
N3×3

]
is undecid-

able then Free(k + 1)
[
N3d×3d

]
is undecidable. Hence, Corollary 8.6 follows from

Corollary 7.22. �

In particular, Free(2)
[
N36×36

]
is undecidable.

Lemma 8.7. For any semiring D with a recursive underlying set and any integer
d ≥ 1, there exists a computable, injective morphism from Dd×d to D(d+1)×(d+1).

Proof. Map each M ∈ Dd×d to
[
M O
O 1

]
. �

Let d and k be two positive integers. If Free(k)
[
Nd×d

]
is undecidable then

it follows from Lemma 8.7 that Free(k)
[
Ne×e

]
is undecidable for every integer

e ≥ d. Table 1 summarizes our results on the decidability of Free(k)
[
Nd×d

]
as

(k, d) runs over (N \ {0})× (N \ {0, 1}). The table is to be understood as follows:
if the symbol that occurs at the intersection of row d and column k is a “D” then
Free(k)

[
Nd×d

]
is decidable, if it is a “U” then the problem is undecidable, and if

it is a “···” then the decidability of the problem is still open.
It is noteworthy that Lemma 8.7 does not hold the other way round in general.

Proposition 8.8. Let D be a semiring, let K be a field, and let d be an integer
greater than 1. There exists no injective morphism from Dd×d to K(d−1)×(d−1).

Proof. The proof is easily derived from the following two lemmas.
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Table 1. Current knowledge about the decidability of
Free(k)

[
Nd×d

]
for all pairs (k, d).

k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·

d 2 D ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· · · ·
3 D ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· U U U · · ·
4 D ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· U U U · · ·
5 D ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· U U U · · ·
6 D ··· ··· ··· ··· ··· U U U U U U U U U · · ·
7 D ··· ··· ··· ··· ··· U U U U U U U U U · · ·
8 D ··· ··· ··· ··· ··· U U U U U U U U U · · ·
9 D ··· ··· ··· U U U U U U U U U U U · · ·
10 D ··· ··· ··· U U U U U U U U U U U · · ·
11 D ··· ··· ··· U U U U U U U U U U U · · ·
12 D ··· ··· U U U U U U U U U U U U · · ·
13 D ··· ··· U U U U U U U U U U U U · · ·
14 D ··· ··· U U U U U U U U U U U U · · ·
15 D ··· ··· U U U U U U U U U U U U · · ·
16 D ··· ··· U U U U U U U U U U U U · · ·
17 D ··· ··· U U U U U U U U U U U U · · ·
18 D ··· U U U U U U U U U U U U U · · ·
19 D ··· U U U U U U U U U U U U U · · ·
20 D ··· U U U U U U U U U U U U U · · ·
21 D ··· U U U U U U U U U U U U U · · ·
22 D ··· U U U U U U U U U U U U U · · ·
23 D ··· U U U U U U U U U U U U U · · ·
24 D ··· U U U U U U U U U U U U U · · ·
25 D ··· U U U U U U U U U U U U U · · ·
26 D ··· U U U U U U U U U U U U U · · ·
27 D ··· U U U U U U U U U U U U U · · ·
28 D ··· U U U U U U U U U U U U U · · ·
29 D ··· U U U U U U U U U U U U U · · ·
30 D ··· U U U U U U U U U U U U U · · ·
31 D ··· U U U U U U U U U U U U U · · ·
32 D ··· U U U U U U U U U U U U U · · ·
33 D ··· U U U U U U U U U U U U U · · ·
34 D ··· U U U U U U U U U U U U U · · ·
35 D ··· U U U U U U U U U U U U U · · ·
36 D U U U U U U U U U U U U U U · · ·
37 D U U U U U U U U U U U U U U · · ·
38 D U U U U U U U U U U U U U U · · ·
39 D U U U U U U U U U U U U U U · · ·
40 D U U U U U U U U U U U U U U · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .
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Lemma 8.9. There exists M ∈ Dd×d such that Md �= Md−1 and Md+1 = Md.

Proof. Let M ∈ Dd×d be as follows: for all indices i, j ∈ �1, d�, the (i, j)th entry
of M equals one if j− i = 1, and zero otherwise. It is easy to see that Md−1 has a
one in its right-upper corner whereas both Md and Md+1 are zero matrices. �

Lemma 8.10. For every N ∈ K(d−1)×(d−1), Nd = Nd−1 iff there exists n ∈ N

such that Nn+1 = Nn.

Proof. The “only if part” of the statement is trivial. Let us now prove the “if part”.
Let μ(z) denote the minimal polynomial of N over K. Assume that Nn+1 = Nn.
Now, μ(z) divides zn+1 − zn = zn(z − 1). Since the degree of μ(z) is at most
d − 1, μ(z) divides in fact zd−1(z − 1) = zd − zd−1. From that we deduce Nd =
Nd−1. �

Lemma 8.10 ensures that there does not exist any matrix N ∈ K(d−1)×(d−1)

satisfying both Nd �= Nd−1 and Nd+1 = Nd. Combining the latter fact with
Lemma 8.9 yields the proposition. �

To conclude the section, we put forth an interesting open question related to
the decidabilities of Free

[
Z4×4

]
and Free

[
Q4×4

]
.

Open question 12 (Bell and Potapov [2]). Let H be as in Section 6.1. Is
Free

[H] decidable?
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