
RAIRO-Theor. Inf. Appl. 46 (2012) 261–289 Available online at:

DOI: 10.1051/ita/2012003 www.rairo-ita.org

A GRAPHICAL REPRESENTATION OF RELATIONAL
FORMULAE WITH COMPLEMENTATION ∗

Domenico Cantone
1
, Andrea Formisano

2
,

Marianna Nicolosi Asmundo
1

and Eugenio Giovanni Omodeo
3

Abstract. We study translations of dyadic first-order sentences into
equalities between relational expressions. The proposed translation
techniques (which work also in the converse direction) exploit a graph-
ical representation of formulae in a hybrid of the two formalisms. A
major enhancement relative to previous work is that we can cope with
the relational complement construct and with the negation connec-
tive. Complementation is handled by adopting a Smullyan-like uniform
notation to classify and decompose relational expressions; negation is
treated by means of a generalized graph-representation of formulae in
L+, and through a series of graph-transformation rules which reflect
the meaning of connectives and quantifiers.

Mathematics Subject Classification. 68Q40, 68T15, 03C10.

1. Introduction

The possibility to exploit map calculus for mechanical reasoning can be grasped
from [24], where Tarski and Givant show how to reformulate most axiomatic

Keywords and phrases. Algebra of binary relations, quantifier elimination, graph
transformation.

∗ This research is partially supported by GNCS-10, GNCS-11, and PRIN-08 projects, and
by grants 2009.010.0336 and 2010.011.0403. We would like to thank the anonymous referees
for their useful suggestions.
1 Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria 6,
95125 Catania, Italy. cantone@dmi.unict.it; nicolosi@dmi.unict.it

2 Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123
Perugia, Italy. formis@dmi.unipg.it
3 Dipartimento di Matematica e Informatica, Università di Trieste, Via Valerio 12/1, 34127
Trieste, Italy. eomodeo@units.it

Article published by EDP Sciences c© EDP Sciences 2012

http://dx.doi.org/10.1051/ita/2012003
http://www.rairo-ita.org
http://www.edpsciences.org

262 D. CANTONE ET AL.

systems of set theory as equational theories based on a relational language devoid
of quantifiers. Map calculus [16] cannot represent per se an alternative to predicate
calculus. As for expressive power, it corresponds in fact to a fragment of first-order
logic endowed with only three individual variables and with binary predicates only.
As for deductive power, it is semantically incomplete; that is, there are semanti-
cally valid equations which are not derivable within it. Moreover, predicate logic
has acquired such an unquestioned status of de facto standard as to make one re-
luctant to adopt the map formalism in its stead, in spite of the greater conciseness
of the latter. Nonetheless, map calculus can be applied in synergy with predicate
calculus, inside theorem provers or proof assistants, as an inferential engine to be
used in the activities of proof-search and model building [1,13,18]. In fact, thanks
to its pure equational and algebraic character (as well as to the absence of quan-
tification), the mechanization of map calculus can benefit from well-established
specific proof-technology developed through several decades of scientific research.
The availability of cross-translation algorithms between predicate logic and map
calculus comforts one in foreseeing combined approaches to (first-order) theorem
proving. In this frame of mind, the reasoning activity should develop by switching
between two different levels. On the one hand, deduction can proceed at a ‘higher
level ’ by exploiting well-known proof-technology for first-order logic. On the other
hand, the first-order level might invoke the ‘lower level ’ equational reasoner.

In developing the needed translation techniques (and to increase readability), it
is useful to design algorithms allowing one to represent map formulae in a visually
alluring way, so as to exploit the immediate perspicuity of graphics.

The translation of formulae in both directions, between predicate logic and map
calculus, has been addressed in [4,5], where an algorithm for translating formulae
of dyadic predicate logic into map calculus and an algorithm for converting map
expressions into a graphical representation have been presented. Both algorithms
are based on suitably defined graphs and are in fact specified by means of graph-
transformation rules. One of them is designed to treat existentially quantified
conjunctions of literals, the other to treat map expressions involving the constructs
of relational intersection, composition, and conversion.

In this paper the techniques introduced in [4, 5] are extended, so as to treat
formulae which involve the negation connective and expressions involving the re-
lational complement construct. This allows us to get a graphical representation of
any map expression, and to process any formula of dyadic predicate logic with the
aim of getting an equivalent map equation. This goal is not always achieved: the
algorithm which we will present sometimes fails to find the sought translation even
if it exists. This apparent drawback, which also affected the earlier versions of the
algorithm, stems from an unsurmountable limiting result [22], namely the fact that
no algorithm can establish in full generality whether a given first-order sentence
in n+ 1 variables is logically equivalent to some other sentence in n variables.

The enhanced techniques in this paper have been obtained by extending
Smullyan’s unifying notation, originally devised for formulae of predicate logic,

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 263

to cover map expressions too. Moreover, we enrich the notion of directed multi-
graph associated in [5] with formulae and map expressions, so that:
• the multigraph is not necessarily connected: it is partitioned into disjoint sub-

graphs, its components, which, in their turn, are not necessarily connected;
• nodes are labeled with sets of variables (instead of with single variables);
• a relation � is introduced between edges and components of the multigraph

(intuitively, such a relation associates each disjunctive subformula with sub-
graphs representing the complements of its disjuncts).

Organization of the paper. Section 2 introduces the two languages to be
treated, namely the deductive formalism L× for algebraic logic and Tarski’s ex-
tension L+ of traditional dyadic first-order predicate logic with the constructs of
L×; moreover, we review here the basic toolkit for syntactic manipulation (syntax
tree, occurrence, extended Smullyan’s classification of formulae, etc.). Section 3
offers a way of representing formulae in L+ through specialized multigraphs. Sec-
tion 4 pinpoints a number of meaning-preserving transformation rules for such
multigraphs; and Sections 5 and 6 provide algorithms which, by applying these
rules in a rather rigid order, translate L× into the traditional sublanguage of L+

and, conversely (but only in favorable cases), translate formulae of L+ into L×.
Section 7 relates the translation techniques proposed in this paper with others,
found in the literature.

2. The languages L×
and L+

L× is an equational language devoid of variables where one can state proper-
ties of dyadic relations, maps, over an unspecified, yet fixed, domain U of dis-
course. Its basic ingredients are three constants 0, 1, ι ; a collection of map letters
p1, p2, p3, . . .; dyadic constructs ∩, ∪, ; of map intersection, map union, and map
composition; and the monadic constructs and � of map complementation and
conversion. (Further defined constructs, such as relational sum †, can be intro-
duced, e.g. by putting P †Q=Def P ;Q). A map expression is any term P , Q, R, . . .
built up from this signature in the usual manner.4 A map equality is a writing of
the form Q=R, where both Q and R are map expressions.

Once a nonempty domain U has been fixed, the map constants 0, 1, and ι are
always interpreted by putting: 0� =Def ∅, 1� =Def U2 =Def U×U , and ι� =Def {[a, a] :
a ∈ U}. A specific interpretation �, based on U , is determined by associating
subsets p�1 , p

�
2 , p

�
3 , . . . of U2 with the map letters pi. Then, on the basis of the

usual evaluation rules:
(Q∩R)� =Def { [a, b] ∈ Q� : [a, b] ∈ R� }
(Q∪R)� =Def { [a, b] ∈ U2 : [a, b] ∈ Q� or [a, b] ∈ R� }
(Q;R)� =Def { [a, b] ∈ U2 : some c exists s.t. [a, c] ∈ Q� and [c, b] ∈ R� }

(Q)� =Def { [a, b] : [a, b] ∈ U2 \Q� }
(Q�)� =Def { [b, a] : [a, b] ∈ Q� } ,

4To improve readability, in writing expressions we often adopt implicit priorities. Namely, we
assume that constructs are ordered in decreasing priority as follows: , �, ;, ∩, †, ∪.

264 D. CANTONE ET AL.

each map expression P comes to designate a specific map P�, and each equality
Q=R turns out to be either true or false. Two expressions Q and R are equivalent
if for every interpretation � it holds that Q� = R�.

The language L+ is a variant of a first-order dyadic predicate language. Let Var
be a collection of symbols of variables (ranging over U). An atomic formula of L+

has either the form xPy or the form Q=R, where x, y are individual variables in
Var and Q,R stand for map expressions. Given an atomic formula F of the first
form, Map(F) denotes the map expression P of F . (For instance, Map(xR;Qy) =
R;Q.) Propositional connectives and existential/universal quantifiers are employed
as usual, save that we treat ∧ and ∨ as connectives of variable arity.

We assume as known the notions of: syntax tree of a well-formed expression
of L+ (in short, wfe), literal, (immediate) subformulae of a given formula, sentence,
and so on.5 Precise definitions can be found in [8, 12].

It is convenient to assume that the individual variables in Var are arranged
in a sequence 〈. . ., x−2, x−1, x0, x1, x2, . . .〉 whose two subsequences Var− =
〈x−1, x−2, . . .〉 and Var+ = 〈x1, x2, . . .〉 are used as repositories of bound and
free variables in formulae of L+, respectively. We reserve the variable x0 for a
special rôle, to be explained in Section 6. Variables indexed by an odd (resp., even)
negative number will play the role of existentially (resp., universally) quantified
variables. When it is not necessary to insist on such conventions we will use the
metavariables x, y, z, . . ., that, as mentioned above, stand for generic variables in
Var .

We define a variable assignment a : Var+ → U to be a mapping associating
elements of U with free variables. The interpretation �, introduced above to in-
terpret map expressions, can be extended to Boolean connectives and quantifiers
as usual to define the semantics of formulae of L+. We write (ϕ)�,a to denote the
Boolean value resulting from the application of the interpretation � and of the
variable assignment a to a given formula ϕ of L+. We say that ϕ is satisfied by
an interpretation � and a variable assignment a if (ϕ)�,a is true; ϕ is satisfied by
an interpretation �, that is (ϕ)� is true, if (ϕ)�,a is true, for every assignment a.
Two sentences ϕ and ψ are logically equivalent if (ϕ)� is true if and only if (ψ)�

is true, for every interpretation �.

2.1. A deductive apparatus for L×

Following [24], it is possible to introduce an inferential apparatus for L×. To
this aim, a collection Λ× of equality schemes is chosen as logical axioms. Figure 1
shows a possible choice for Λ×. Given a collection E of map equalities, let Θ×(E)
be the smallest collection of equalities which both fulfills the inclusion

Λ× ∪ E ∪ {P=P : P is a map expression } ⊆ Θ×(E)
and enjoys the following closure property: When P =Q and R=S both belong to

5The definitions of syntax tree, occurrence, and position adopted in this paper are based on
the connectives and quantifiers of predicate logic. Map expressions occurring in formulae of L+

are regarded as meta-expressions and their internal structure is ignored.

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 265

P∪Q = Q∪P P ;ι = P
P � (Q � R) = (P � Q) � R P�� = P

P∪Q∪P∪Q = P (P � Q)� = Q� � P�

(P∪Q);R = (P ;R)∪(Q;R) (P�;P ;Q)∪Q = Q
1 = ι∪ι 0 = 1

P∩Q = P∪Q P †Q = P ;Q

with � ∈ {∪, ;}

Figure 1. An axiomatic system for L×.

Θ×(E), and R occurs in Q and/or in P , then any equality obtainable from P=Q
by replacement of some occurrences of R by an occurrence of S belongs to Θ×(E).

An equation Q=R is said to be derivable from E, if Q=R belongs to Θ×(E).
In principle, this notion of derivability can be mechanized by exploiting any

equational theorem prover. An approach of this kind is proposed in [18, 19].
As mentioned, the availability of an inferential machinery for L× calls for cross-

translation algorithms between predicate logic and map calculus. This combination
enables one to design efficient first-order theorem provers based on a relational core
inference-engine. In this frame of mind, [14, 19] propose a viable instrumentation
of equational set-reasoning. The next example emphasizes this point.

Example 2.1. In this example we provide an equational proof of a set-theoretical
result holding in any (weak) set theory that satisfies the axiom of regularity [25].
This axiom states that: ‘Every nonempty set x contains an element y which is
disjoint from x’ and can be formulated in predicative calculus as follows:

(∀x)(∃m)
(
(¬(∃ y)y ∈ x) ∨ (

m ∈ x ∧ ¬(∃ y)(y ∈ m ∧ y ∈ x)
))

.

In Section 6 (Ex. 6.2) we will obtain this relational translation of the axiom of reg-
ularity: 1;(1; ∈ ∩1;(∈ ∩∈� ; ∈)) = 1. The theorem we want to prove states that:
‘Under regularity, any nonempty transitive set has the empty set as element ’. A
set s is said to be transitive if it contains all the members of its members, i.e.,
if it holds that (∀x)((∃y)(x ∈ y ∧ y ∈ s) → x ∈ s). Such a property can be ren-
dered in L× by means of the expression: ι∩∈�; ∈ ; ∈. Hence, proving the theorem
amounts to showing that the inclusion (1;∈∩ι∩∈�; ∈ ; ∈)⊆ (1; ∈;∈) belongs to
Θ×({1;(1; ∈ ∩1;(∈ ∩∈� ; ∈)) = 1}).6 A proof of this fact has been reported, for
instance, in [19]. Figure 2 lists the chain of equalities leading to such result.

2.2. Occurrences

A wfe E occurs within another wfe F at position ν, where ν is a node in the
syntax tree TF for F , if the subtree of TF rooted at the node ν is identical to the
syntax tree for E. In such a case, we also say that the node ν is an occurrence of

6Here we are using P⊆Q as a shorthand notation for P∩Q=0.

266 D. CANTONE ET AL.

1; ∈ ∩ ι∩∈�; ∈ ; ∈ = 1;(∈ ∩∈� ; ∈)∩ ι∩∈�; ∈ ; ∈
= (1; ∈ ∪ 1; ∈);(∈ ∩∈� ; ∈)∩ ι∩∈�; ∈ ; ∈
= (1; ∈ ;(∈ ∩∈� ; ∈) ∪ 1; ∈;(∈ ∩∈� ; ∈))∩ ι∩∈�; ∈ ; ∈
= 1; ∈ ;(∈ ∩∈� ; ∈) ∩ ι∩∈�; ∈ ; ∈∪ 1; ∈;(∈ ∩∈� ; ∈) ∩ ι∩∈�; ∈ ; ∈
= 0∪ 1; ∈;(∈ ∩∈� ; ∈) ∩ ι∩∈�; ∈ ; ∈
= 1; ∈;(∈ ∩∈� ; ∈)∩ ι∩∈�; ∈ ; ∈ ⊆ 1; ∈;(∈ ∩∈� ; ∈) ⊆ 1; ∈; ∈

where P⊆Q is a shorthand notation for P∩Q=0

Figure 2. Equational proof for Example 2.1.

E (and also an occurrence of the lead symbol of E) in F and that the path from
the root of TF to ν is its occurrence path.

An occurrence of E within F can be conveniently coded by a sequence over
the set N+ of all positive integers, representing the positions within its siblings of
each node in the occurrence path. Specifically, the set Pos of the positions in (the
syntax tree of) any wfe F can be defined recursively as follows:

(1) The empty word λ is in Pos(F);
(2) if F is an atomic formula xRy, where x, y ∈ Var , then Pos(F) = {λ, 1, 2};
(3) if F = ϕ1∧· · ·∧ϕn or F = ϕ1∨· · ·∨ϕn and π ∈ Pos(ϕi), for some i ∈ {1, . . . , n},

then i.π ∈ Pos(F);
(4) if F = ¬ψ, or F = (∀x)ψ, or F = (∃x)ψ and π ∈ Pos(ψ), then 1.π ∈ Pos(F).

Given any wfe F , the occurrences at given positions of subformulae or subterms of
F in F are determined as follows. We put F |λ = F . In case F is an atomic formula
xRy, we put F |1 = x and F |2 = y. If F = ϕ1 ◦ · · · ◦ ϕn, with ◦ ∈ {∧,∨}, we put
F |i.π = ϕi|π, for i ∈ {1, . . . , n}. Finally, if F = ¬ψ, or F = (∀x)ψ, or F = (∃x)ψ,
we put F |1.π = ψ|π. Thus, the label of a node ν at position π in the syntax tree
TF of a wfe F (denoted lbl(F, π)) is the lead symbol of F |π.

We indicate by PFE the collection of all positions π ∈ Pos(F) such that F |π = E.
If |PFE | = 1, where | · | denotes the cardinality operator, we may use πFE to denote
the position of the unique occurrence of E in F . We write PE and πE in case F is
clear from the context.

It is convenient to establish an ordering ≺ over the set Pos(ϕ) of positions in a
formula ϕ such that for any π1, π2 ∈ Pos(ϕ) and n1, n2 ∈ N+

• if π1 = π2 · η for some sequence η of positive integers, then π1 ≺ π2;
• if π1 = π · n1 · π′, π2 = π · n2 · π′′, and n1 < n2, then π1 ≺ π2.

Plainly, ≺ is a well-ordering. Thus, we can define an operation min that selects
from any nonempty set X ⊆ Pos(ϕ) its minimum relative to the ordering ≺.

An occurrence ν of a wfe E within a formula F is positive if its occurrence path
deprived of its last node contains an even number of nodes labeled by the negation
symbol ¬. Otherwise, the occurrence is said to be negative.

Let F be a wfe, π a position in F , and let E be a formula if F |π is a formula,
and a term otherwise. Also, let F [π/E] be the wfe obtained from F by replacing

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 267

F |π at position π by E, so that we have F [π/E]|π=E. In case π= η · n is not
an element of Pos(F) but π′ = η · (n−1) is, F [π/E] adds a new subformula E
to F and a new position π to Pos(F) (plainly, in this case lbl(F, η) must have a
variable arity).

Given two wfes E and F , we write F = F [E] to stress that the occurrences of
E in F play a significant rôle. Moreover, if E′ is another formula, by F [E/E′] we
denote the wfe resulting from F when each occurrence of E in F is replaced by a
distinct copy of E′.

Example 2.2. Consider for instance the formula F = xPy ∧ zQw. We have that
F [2/xRy] = xPy∧xRy. Position 3 does not belong to Pos(F), but position 2 does
(in fact F |2 = zQw); thus F [3/wSy] = xPy ∧ zQw ∧wSy.

2.3. Uniform notation for formulae and relational expressions

We adopt Smullyan’s unifying notation [23] to classify and decompose formulae
of L+. Formulae are partitioned into four categories: conjunctive, disjunctive, uni-
versal, and existential formulae (called α-, β-, γ-, and δ-formulae, respectively). In
particular, δ-formulae are those of the form (∃x)ϕ and ¬(∀x)ϕ, whereas γ-formulae
are those of the form (∀x)ϕ and ¬(∃x)ϕ. Although either of the connectives ∧,∨
is clearly redundant in the triad ¬,∧,∨, treating the two on a par is a key for
streamlining the translation method; especially so in a blended context where the
relational constructs of complementation, intersection, and union must be han-
dled too. Analogous uniformity considerations justify our parallel treatment of
existential and universal quantifiers on the one hand, and of map composition and
Peircean sum † on the other.

Given a δ-formula δ, the notation δ0(x) will be used to denote the formula ϕ,
if δ is of the form (∃x)ϕ, or to denote the formula ¬ϕ, if δ is of the form ¬(∀x)ϕ.
We will refer to δ0(x) as the instance of δ and to x as the quantified variable of δ.
Likewise, for any γ-formula γ, γ0(x) denotes the formula ϕ or ¬ϕ, according to
whether γ has the form (∀x)ϕ or ¬(∃x)ϕ, respectively. We allow generalized n-ary
α- and β-formulae. To each of them, one can associate its components as shown in
Table 1. In general, map expressions, occurring as atomic formulae of L+, possess
an internal structure. For the purpose of representing it with graphs, it is helpful
to extend Smullyan’s notation to relational constructs. We classify and decompose
atomic formulae as shown in Table 2, by exploiting these axiom schemata [24]:

(∀x)(∀y)(xA∪By ≡ xAy ∨ xBy) (∀x)(∀y)(xAy ≡ ¬xAy)
(∀x)(∀y)(xA;By ≡ (∃z)(xAz ∧ zBy)) (∀x)(∀y)(xA�y ≡ yAx).

Remark 2.3. In the rest of the paper, without loss of generality, we assume that
all formulae are written in standardized form. Namely, we assume that all quanti-
fiers are moved inward so as to minimize their scope (but, without rewriting the
quantified subformulae). Moreover, we impose that bound variables are renamed
so that, for each two positions π1, π2, of distinct quantifications Q x−i and Q x−j
in a formula ϕ, it holds that π1 ≺ π2 iff j > i. Note that, as a consequence, distinct
occurrences of quantifiers in ϕ always bind different variables (in Var−).

268 D. CANTONE ET AL.

Table 1. α-formulae (left), β-formulae (right), and their components.

α α1 . . . αn β β1 . . . β2

ϕ1 ∧ · · · ∧ ϕn ϕ1 . . . ϕn ϕ1 ∨ · · · ∨ ϕn ϕ1 . . . ϕ1

¬(ϕ1 ∨ · · · ∨ ϕn) ¬ϕ1 . . . ¬ϕn ¬(ϕ1 ∧ · · · ∧ ϕn) ¬ϕ1 . . . ¬ϕn
¬¬ϕ ϕ

Table 2. Classification of atomic formulae of L+.

Conjunctive xαy = xR∩Sy xα1y = xRy xα2y = xSy (∧)

atoms, α-atoms xαy = xR∪Sy xα1y = xRy xα2y = xSy (¬∨)

xαy = xRy xα1y = xRy (¬¬)

Disjunctive xβy = xR∪Sy xβ1y = xRy xβ2y = xSy (∨)

atoms, β-atoms xβy = xR∩Sy xβ1y = xRy xβ2y = xSy (¬∧)

Atoms of xδαy = xR;Sy xδα1
0 z = xRz zδα2

0 y = zSy (∃∧)

type δα xδαy = xR † Sy xδα1
0 z = xRz zδα2

0 y = zSy (¬∀∨)

where z is existentially quantified (δα ≡ (∃z)δα0 (z) ≡ (∃z)(δα1
0 (z) ∧ δα2

0 (z)))

Atoms of xγβy = xR;Sy xγβ1
0 z = xRz zγβ2

0 y = zSy (¬∃∧)

type γβ xγβy = xR † Sy xγβ1
0 z = xRz zγβ2

0 y = zSy (∀∨)

where z is universally quantified (γβ ≡ (∀z)γβ0 (z) ≡ (∀z)(γβ10 (z) ∨ γβ20 (z)))

Atoms of type κ xκy = xR�y yκ1x = yRx xκy = xR�y yκ1x = yRx

Example 2.4. Considering Remark 2.3, the formula
(∀ x)(∃m)

(
(¬(∃ y)y ∈ x) ∨ (

m ∈ x ∧ ¬(∃ y)(y ∈ m ∧ y ∈ x)
))

(cf., Ex. 2.1) can be rewritten in a standardized form as follows
(∀ x−2)

(
(¬((∃ x−4) x−4 ∈ x−2)) ∨ (∃ x−5)(x−5 ∈ x−2 ∧ ¬(∃ x−6)(x−6 ∈ x−5 ∧ x−6 ∈ x−2))

)
,

where x and m are rewritten as x−5 and x−2, resp., whereas x−4 and x−6 replace
the two uses of the variable y. Note, moreover, that the quantification (∃ x−5) is
moved inward since x−5 does not occur in the first disjunct.

3. Graphical representation of formulae of L+

In this section we extend the techniques of [4, 5] for representing map expres-
sions as well as identities of the form P = 1 and, more generally, formulae of L+,
by means of directed multigraphs. Our extension calls into play the negation con-
nective (¬) and the relational complement construct (), which lie well beyond
the scope of the original proposals.

We will make use of (labeled) directed multigraphs allowing multiple edges and
self-loops. More specifically, a directed multigraph G = (V, (E,m)) consists of a set
of nodes V , a set of edges E ⊆ V ×V , and a multiplicity function m : E → N\{0}.
Labels are associated with nodes and edges by means of two labeling functions,
lNode : V → X and lEdge : E → Y , respectively (for some fixed sets X and Y).

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 269

Let G = (V, (E,m)), G1 = (V1, (E1,m1)), . . . , Gn = (Vn, (En,mn)) be n + 1
directed multigraphs such that V1, . . . , Vn are nonempty, V1∪· · ·∪Vn = V , Vi∩Vj =
∅ when i �= j, E1 ∪ · · · ∪ En = E, and m((u, v)) = mi((u, v)) iff (u, v) ∈ Ei. Then
S = {G1, . . . , Gn} is said to be a partition of G, and G1, . . . , Gn are said to be
the components of G. In case none of the components Gi admits a partition other
than itself, S is said to be the most refined partition of G into components, and
G1, . . . , Gn are said to be the most refined components of G.

Let ϕ be a formula of L+. We can assume ϕ to be constructed out of atomic
formulae of the form xPy. In fact, any equality atom Q = R can be rewritten
as x1;((Q∪R)∩Q∩R);1y. We say that ϕ is represented by the labeled directed
multigraph Gϕ = (Vϕ, (Eϕ,mϕ)) if the following conditions hold:
(1) the labeling function lNode : Vϕ → (pow(Var(ϕ))∪{{x} : x ∈ Var−}) asso-

ciates sets of variables of ϕ with nodes of Gϕ. In particular, the nodes v ∈ Vϕ
such that lNode(v)∩Var− �= ∅ are called the bound nodes of Gϕ, and the nodes
v ∈ Vϕ such that lNode(v) ⊆ Var+ are called the free nodes of Gϕ;

(2) the labeling function lEdge : Eϕ → (pow(L×) ∪ {{ψ} : ψ ∈ L+}) associates
with each edge either a set of map expressions or a singleton containing a
disjunctive formula of L+ devoid of quantifiers. For each edge (u, v) ∈ Eϕ, its
multiplicity is mϕ((u, v))=Def |lEdge((u, v))|;

(3) the multigraph is endowed with a relation � induced over the most refined
components of Gϕ such that Gi is said to be in relation � with Gj , and we
write Gi � Gj , if there is an edge (u, u′) of Gi and two vertices v, v′ in Vj such
that lNode(v) ⊆ lNode(u), lNode(v′) ⊆ lNode(u′), and either lEdge((u, u′))
contains a β-atom (resp., γβ-atom) ψ and Gj represents a formula logically
equivalent to the complement of ψ, or lEdge((u, u′)) contains a β-formula with
a component ψ such that Gj represents a formula equivalent to the negation
of ψ.7 In such cases, we also say that ψ is in relation � with Gj . The most
refined components, Gj , of Gϕ such that there is no Gi in relation � with Gj
are called top components of Gϕ;

(4) each most refined component Gi is annotated with a variable signGi assuming
either value ‘+’ or ‘−’. If Gi � Gj , signGj = opp(signGi), where opp is such
that opp(+) = − and opp(−) = +. Every top component Gi has signGi = +;

(5) in a graph Gϕ every most refined component represents either a subformula
of ϕ or its negation. Let χ be a subformula of ϕ occurring positively (resp.,
negatively) in ϕ, and let ξ be the subformula obtained from χ by dropping
the quantifiers in χ (for instance, for χ = (∀x−2)(x1Rx−2 ∨ x−2Sx2), we have
ξ = (x1Rx−2 ∨ x−2Sx2)). Then, χ is represented in Gϕ as follows:
• if ξ is an atomic formula xPy, Gχ consists of an edge (u, v) with lNode(u) =

{x}, lNode(v) = {y}, and lEdge((u, v)) = {P} (resp., lEdge((u, v)) = {P}),
if signGχ = +. Otherwise, lEdge((u, v)) = {P} (resp., lEdge((u, v)) = {P}).

7The intuition behind the relation � is that an edge labeled with either a β-formula, or a
β-atom, or a γβ-atom ‘calls’ other graph components which, taken together, represent the dual
of the formula. The decomposition is done according to Table 1.

270 D. CANTONE ET AL.

• if ξ is an α-formula (resp., β-formula), Gχ is a multigraph having as com-
ponents the multigraphs representing the components of ξ, if their sign
is ‘+’. Otherwise, Gχ is a graph with only one edge (u, v), such that
lEdge((u, v)) = {¬ξ}, lNode(u) is the set of the left variables in the atomic
formulae of ξ, and lNode(v) is the set of the right variables in the atomic
formulae of ξ;

• if ξ is a β-formula (resp., α-formula), Gχ consists of just one edge (u, v)
such that lEdge((u, v)) = {ξ}, lNode(u) is the set of the left variables in the
atomic formulae of ξ, and lNode(v) is the set of the right variables in the
atomic formulae of ξ, if signGχ = +; otherwise Gχ is a multigraph having
as components the multigraphs representing the components of ¬ξ.

(6) Let χ be a subformula of ϕ. If Gχ has as components the multigraphs repre-
senting χ or its negation, and signGχ = + (resp., signGχ = −), nodes labeled
with the same singleton set {z} can be identified, provided they are free nodes
or when z is an existential (resp., universal) variable. Moreover, if there is a
component of Gχ, Gi, representing a β-atom (resp., γβ-atom) ψ, and a compo-
nent Gj representing a formula ψ′ equivalent to ψ (obtained from ψ by applying
the axioms of Sect. 2.3) and ψ, ψ′ occur in χ in the same conjunction, Gj can
be removed from Gχ and the component G̃j representing the complement of
ψ′ is introduced by putting Gi � G̃j and signG̃j = opp(signGi).

A multigraph Gψ can be identified with the formula ψ it represents. For this
reason, its meaning is defined to be (ψ)�,a. Two representation graphs Gϕ and Gψ
are said to be equivalent if they have the same meaning for every interpretation
� and for every variable assignment a. In case the formula ϕ is atomic, say xPy,
with a slight abuse of notation we say that Gϕ represents P .

A multigraph Gϕ, representing a formula ϕ, is in simple form if (a) each of its
edges is labeled with either a β-atom, or a γβ-atom, or a β-formula, or a map
letter, or the complement of a map letter, (b) every component of Gϕ representing
a β-formula is in relation� with the components representing the complement of
each of its disjuncts, and (c) every component of Gϕ representing a β-atom or a
γβ-atom is in relation � with the component representing its complement.

Example 3.1. Let ϕ1 = xP ∩Qy. Gϕ1 is the directed multigraph depicted in Fig-
ure 3 having Vϕ1 = {u0, v0}, Eϕ1 = {(u0, v0)},mϕ1((u0, v0)) = 1, lEdge((u0, v0)) =
{P ∩Q}, lNode(u0) = {x} and lNode(v0) = {y}.

Let ϕ2 = xP ;Qy∨zR∪Sw. Gϕ2 is the multigraph with components G0, G1, and
G2 shown in Figure 3. The component G0 is in relation � with both G1 and G2.
In particular, lNode(u0) = {x, z} includes both lNode(u1) = {x} and lNode(u2) =
{z}. lNode(v0) = {y, w} includes both lNode(v1) = {y} and lNode(v2) = {w}.

Figure 4 shows a representation of the atom x01; ∈ ∩1;(∈ ∩∈� ; ∈)x−2. Each
complemented subexpression is in relation� with a component of the multigraph.
(For clarity we split the multiple edge between nodes u5 and u3 into two arcs).

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 271

u0 v0
{P ∩Q}{x} {y}Gϕ1

G0: u0 v0

G1: u1 v1 G2: u2 v2

{xP ;Qy ∨ zR∪Sw}

{P ;Q} {R∪S}

{x, z} {y, w}

{x} {y} {w}{z}

� �Gϕ2

Figure 3. The multigraphs Gϕ1 and Gϕ2 associated with ϕ1 =
xP ∩Qy and ϕ2 = xP ;Qy ∨ zR∪Sw, resp. (see Ex. 3.1).

u1 v1 u6 u7 v6

u4 v2 v3

u2 u3 u5

{
1; ∈ ∩1;(∈ ∩∈� ; ∈)

}

{x0} {x−2}

{x0}

{x−2}

{x−4}

{x−5}
{x−6}

{x−2}

{x0}
{x−5}

{x−2}

{∈} {∈}

{∈� ; ∈}

{∈}

{1}
{1}

{∈}

{1;(∈ ∩∈� ; ∈)}

�

�

�
Figure 4. Graphical representation for Example 3.1.

4. Graph-transformation rules

In [5] some graph-transformation rules have been introduced which are meaning
preserving, in the sense that they transform a given multigraph Gψ into a multi-
graph Gψ′ such that ψ′ is equivalent to ψ. Let us adapt them to the more general
context we are analyzing in this paper:
(1) if u and v belong to the same more refined component, 1 can be added to or

removed from lEdge((u, v));
(2) an edge (u, v) with lEdge((u, v)) = {P} can be replaced by an edge (v, u)

with lEdge((v, u)) = {Q}, if either P ≡ Q
�

, or Q ≡ P
�

, or P ≡ Q ≡ ι;
(3) if there are two expressions α1, α2 ∈ lEdge((u, v)), for two nodes u and v, it

is possible to replace them by a single relational expression α ≡ α1 ∩ α2, i.e.,
lEdge((u, v)) can be updated to (lEdge((u, v)) \ {α1, α2}) ∪ {α}. Analogously,
any relational expression P ∈ lEdge((u, v)) can be replaced by the expression P ,
i.e., lEdge((u, v)) can be updated to (lEdge((u, v)) \ {P})∪ {P}. In both cases
the converse replacement is also possible;

(4) if (u, v) is an edge of a most refined component Gi labeled with a β-atom or
a γβ-atom, say xPy, and Q is equivalent to P , a component Gj representing
xQy such that Gi � Gj can be added or removed;

(5) if (u, v) is an edge of a most refined component with sign ‘+’ (resp., ‘−’) such
that lEdge((u, v)) ⊇ {δα}, a new bound node s labeled with a new existentially
(resp., universally) quantified variable can be introduced together with two
edges (u, s) and (s, v) such that lEdge((u, s)) = {δα1 } and lEdge((s, v)) = {δα2 }.

272 D. CANTONE ET AL.

Then, lEdge((u, v)) is updated to lEdge((u, v)) \ {δα}. Conversely, let (u, s),
(s, v) be the only edges of a most refined component of sign ‘+’ (resp., ‘−’)
involving the node s, and such that lEdge((u, s)) = {δα1 } and lEdge((s, v)) =
{δα2 }. If s is a bound node labeled with a singleton {z} and z is an existential
(resp., universal) variable, these edges can be removed and lEdge((u, v)) is
updated to lEdge((u, v)) ∪ {δα};

(6) let lNode(v) and lNode(u) be singletons. If lEdge((u, v)) = {ι}, where either
lNode(v) = lNode(u), or any of v and u is a bound node of degree 1, the edge
(u, v) can be removed. If either lNode(v) = lNode(u), or any of v and u is a
new bound node, the edge (u, v) can introduced with lEdge((u, v)) = {ι};

(7) an isolated node may be removed.
The rules just presented are applied to define the tactics used in the graph-
fattening algorithm of Section 5 which constructs a multigraph in simple form
representing the internal structure of a map expression, and in the graph-thinning
algorithm of Section 6 which tries to construct a quantifier-free formula equivalent
to the input formula together with its representation graph.

Correctness of the rules (1), (3), (5), (6), and (7) can be verified as in [5], and rule
(2) can be proved correct by applying an axiom of Section 2.3. To prove correctness
of rule (4), assume Gi represents ϕ = ψ[xR∪Sy] (resp., ψ[xR†Sy]). Then Gi � Gj
represents ϕ′ = ψ[xR ∪ Sy ∧ (xRy ∨ xSy)] (resp., ψ[xR † Sy ∧ (∀z)(xRz ∨ zSy)]).
By the axioms of Section 2.3, ϕ and ϕ′ are logically equivalent, so that Gi and
Gi � Gj are equivalent. Hence rule (4) is meaning preserving.

5. The graph-fattening algorithm

We now present an algorithm that allows one to graphically represent the inter-
nal structure of a map expression P (i.e., of a formula xPy of L+). This extends
the one presented in [5], unable to deal with map complementation and map union.

Let us consider the map expression P as an atomic formula xPy of L+. The
multigraph G representing xPy has only one edge (s0, s1) with lEdge((s0, s1)) =
{P}. The nodes s0 and s1, called source and sink, respectively, represent in G the
two arguments of xPy (hence, we have lNode(s0) = {x} and lNode(s1) = {y}).

The graph-fattening algorithm takes as input G and proceeds nondeterminis-
tically and recursively by selecting one of the tactics listed below. After a finite
number of steps, the input graph G is transformed into an equivalent, maximally
expanded multigraph (in simple form) which unwinds the internal structure of P .
Equivalence between the input and the output graph can be checked by noticing
that all the tactics considered are derived from the graph transformation rules of
Section 4 and, therefore, they are meaning preserving.

The construction can proceed recursively, by obtaining the subgraph represent-
ing an expression as combination of the graphs representing its subexpressions.
In this way one starts by generating the components relative to each map letter.
Then the tactics (2)–(5) are applied until all constructs in the given expression
have been considered.

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 273

G0: u0 v0

G1: u1 v1

{P∪Q}

{P ,Q}

�

Figure 5. Result of the graph-fattening algorithm applied to P∪Q.

(1) G consists of a single edge from s0 to s1, such that lEdge((s0, s1)) = {P};
(2) P is of type κ and G, s1, s0 (with source and sink exchanged) represents κ1;
(3) P is of type δα, the disjoint graphs G′, s0, s′2 and G′′, s′′2 , s1 represent δα1

0 and
δα2
0 , respectively. Then G, s0, s1 is obtained from G′ and G′′ by ‘gluing’ together
s′2 and s′′2 to form a single node; if signG = + (resp., signG = −), s′2 is labeled
with a singleton containing an existential (resp., universal) variable;

(4) P is of type α, the disjoint graphs G′, s′0, s
′
1 and G′′, s′′0 , s

′′
1 represent α1 and

α2, respectively. Then G is obtained from G′ and G′′ by gluing s′′0 to s′0 to form
s0, and s′′1 to s′1 to form s1. In case P = α1, G, s0, s1 coincide with G′, s′0, s

′
1,

representing α1;
(5) P is either of type β or γβ , the graph G′, s0, s1 consists of a single edge from
s0 to s1 such that lEdge((s0, s1)) = {P}, the graph G′′, s′′0 , s

′′
1 represents an

atomic formula of type α or δα whose complement is equal to P , and G′ � G′′.
Then G, s0, s1, representing P , is the graph with components G′ and G′′.

Example 5.1. The multigraph resulting from the application of the graph-
fattening algorithm to the map expression P∪Q is shown in Figure 5.

Figure 4 shows the maximally expanded multigraph produced by the algorithm
for the atomic formula x01; ∈ ∩1;(∈ ∩∈� ; ∈)x−2. (For clarity, the multiple edge
between nodes u5 and u3 is split into two distinct arcs).

6. The graph-thinning algorithm

Our aim in what follows is to determine, out of a given formula ϕ of L+, an
equivalent quantifier-free formula ψ. In case ψ = xRy, where x, y ∈ Var+, we
say that R is a map translation of ϕ. If x, y are both in Var−, depending on the
quantifiers bounding x, y, we can obtain an equality equivalent to ϕ as shown in
Table 3. A translation can be obtained also when just only one among x, y is free.
For instance, (∃x)xRy can be rendered as z1;Ry, where z is a new free variable.

A simpler version of this problem has been analyzed and solved in [5], by de-
signing an algorithm (called graph-thinning algorithm) that seeks a quantifier-free
formula of L+ equivalent to a given existentially quantified conjunction ϕ of lit-
erals of the form xPy. According to its original specification, such an algorithm
contains as a preliminary step the construction of a labeled multigraph Gϕ, its
normalization (i.e., elimination of loop edges), the fusion of multiple edges, and
the application, up to stabilization, of two rules named bypass and bigamy.

274 D. CANTONE ET AL.

Table 3. Relational translation of (Q1 x)(Q2 y)(xRy), depending
on the quantifiers Q1 and Q2.

Q1 Q2 Translation Q1 Q2 Translation
∃ ∃ 1;R;1 = 1 ∀ ∃ R;1 = 1
∃ ∀ 1;R = 1 ∀ ∀ R = 1

The extension of the graph-thinning algorithm we introduce in this paper does
no longer resort to a preliminary construction of Gϕ. Instead, it transforms the
input formula ϕ directly, by operating on its positions with the purpose of deriving,
at the same time, both ψ and Gψ . As said, the output formula ψ is required to
be of the form xRy. Note that our algorithm may fail in achieving its goal. This
does not mean that ϕ does not admit a quantifier-free translation in L+, it simply
witnesses the incompleteness of the algorithm in solving a problem which is, in
fact, undecidable [22, 24].

Let us denote by P the set of all the positions that one must analyze to derive
the formula ψ and to construct the graph Gψ . P is initially set equal to Pos(ϕ),
the set of all the positions in ϕ. We construct a sequence of formulae ψ(0), ψ(1), . . .
and a sequence of multigraphs

G
(0)
ψ = (V (0)

ψ , (E(0)
ψ ,m

(0)
ψ)), G(1)

ψ = (V (1)
ψ , (E(1)

ψ ,m
(1)
ψ)), . . .

such that for a certain index k ∈ N, ψ(k) = ψ and G(k)
ψ = Gψ . To construct the two

sequences we start by putting ψ(0) = ϕ, and by defining G(0)
ψ as the graph having

V
(0)
ψ = E

(0)
ψ = {}. Then, ψ(i+1) is obtained from ψ(i), and G(i+1)

ψ is obtained from

G
(i)
ψ , by extracting the ≺-minimal position n left in P and performing one of the

following transformations, depending on the form of ψ(i)|n, for i ∈ {0, 1, . . .}.
(1) If ψ(i)|n is a variable, let ψ(i+1) = ψ(i) and G(i+1)

ψ = G
(i)
ψ ;

(2) if ψ(i)|n is an atomic formula xRy, let ψ(i+1) = ψ(i). Then, construct a graph
Gn = (En, Vn), with distinguished nodes un, vn, En = {(un, vn)}, and Vn =
{un, vn}. Put lNode(un) = {ψ(i)|n.1} = {x}, lNode(vn) = {ψ(i)|n.2} = {y}, and
lEdge((un, vn)) = {R}. If ψ(i)|n occurs positively (resp., negatively) in ψ(i),
put signGn=+ (resp., signGn=−). G(i+1)

ψ is obtained from G
(i)
ψ by introducing

in G(i)
ψ the component Gn, that is V (i+1)

ψ = V
(i)
ψ ∪ Vn and E(i+1)

ψ = E
(i)
ψ ∪En;

(3) if ψ(i)|n = (∃x)χ and x does not occur in χ, then we put ψ(i)|n = ψ(i)|n.1
and ψ(i+1) = ψ(i). Otherwise, if x occurs only once in χ, and it occurs in a
subformula of the form xRw (resp., wRx), then we replace in χ such subformula
with x01;Rw (resp., wR;1x0). In Gn.1, the expression R labelling the edge is
replaced by 1;R (resp., R;1) whereas x0 replaces x in the node label. Finally,
we put ψ(i)|n = ψ(i)|n.1 and ψ(i+1) = ψ(i). In both cases, the multigraph G(i+1)

ψ

results from G
(i)
ψ by calling Rename(Gn.1, n), which renames the component

Gn.1 as Gn. (The procedure Rename is listed in Sect. A.1);

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 275

G1.1: u1.1 v1.1 G2.1: u1.2 v1.2

G1 after the transformation:

G1.1: u1.1 v1.1 G2.1: u1.2 v1.2

{R} {Q ∩ ι}

{R} {Q}

{x1} {x2} {x−1}{x1}

{x1} {x2} {x1}{x1}

Figure 6. An application of the normalization step.

(4) let ψ(i)|n = χ1 ∧ . . . ∧ χk, where k > 1. Each χi is either an atomic formula,
or an α-formula, or a β-formula. ψ(i+1) and G

(i+1)
ψ are obtained by executing

the following steps.
Step 1. The first step eliminates from ψ(i)|n every χj which is an α-formula by

attaching all the components of χj directly to ψ(i)|n. This operation is called
collapse of χj in ψ(i)|n (its implementation is described in Appendix A).
After the application of this step, the components of ψ(i)|n, χ1, . . . , χm,
can be either atomic formulae or β-formulae. Because of the ordering ≺
defined on P , the corresponding graphs Gn.1, . . . Gn.m have already been
constructed. Thus, Gn is the graph having Gn.1, . . . , Gn.m as most refined
components. For an example of collapse step, see Figure 7 and Example 6.1.

Step 2. The normalization step eliminates from ψ(i)|n atomic formulae with
identical left and right arguments, and removes the corresponding ‘loop
edges’ from Gn. (The details of the normalization step are described in
Sect. A.3, Appendix A). A graphical illustration of the normalization step
for the formula x1Rx2 ∧ x1Qx1 is given in Figure 6 (see also Ex. 6.1).

Step 3. The fusion operation replaces in ψ(i)|n occurrences of atomic formu-
lae involving the same variables (as xRy and xSy, for instance) with a single
atomic formula having as map expression the intersection of the map ex-
pressions of the considered formulae (i.e., xR∩Sy). This, in Gn, amounts to
replacing single edge components Gn.j , Gn.k, labeled with a map expression
and such that lNode(un.j)∪ lNode(vn.j) = lNode(un.k)∪ lNode(vn.k), with a
unique component whose edge is labeled with the relational intersection of
the map expressions labeling their edges. (More details on the fusion step
are given in Sect. A.4, Appendix A).

Step 4. The bypass and bigamy rules, and then the normalization and fusion
operations, are repeatedly applied to ψ(i)|n and Gn till stability is reached,
that is, until ψ(i)|n and the graph Gn cannot be modified anymore. Then
ψ(i+1) = ψ(i) and G

(i+1)
ψ = G

(i)
ψ . Let us briefly introduce the bypass and

the bigamy rules (see Sects. A.5 and A.6 of Appendix A for the correspond-
ing pseudo-code). Let ψ(i)|n occur positively (resp., negatively) in ψ(i). The
bypass rule can be applied to any two atomic formulae of ψ(i)|n, say xRz
and zSy, that share an existential (resp., universal) variable z that does
not occur elsewhere in ψ(i), in case no universal (resp., existential) quan-
tifier is in the scope of the quantifier binding z. If the preconditions of
the rule are satisfied, the two formulae are replaced by an atomic formula

276 D. CANTONE ET AL.

G2: u2 v2

G1.1: u1.1 v1.1 G1.2: u1.2 v1.2

G after the transformation:

G2: u2 v2

G1: u1 v1 G3: u3 v3

{R}

{S}

{Q ∩ ι}

{R}

{S}

{Q ∩ ι}

{x1} {x2}

{x2}{x1}

{x−1}{x1}

{x1} {x2}

{x2}{x1}

{x−1}{x1}
G1

Figure 7. A description of an application of the collapse step.

xR;Sy. The multigraph Gn is modified accordingly, by eliminating the com-
ponents representing xRz and zSy, and introducing a component represent-
ing xR;Sy. An example of application of the bypass rule is illustrated in
Figure 9.

The bigamy rule can be applied if there is a quantified variable x occurring
only once in ψ(i), and specifically in ψ(i)|n. If x is existentially quantified and
occurs in ψ(i)|n as the left (right) argument of an atomic formula, say xRy
(resp., yRx), if there is in ψ(i)|n an atomic formula wSy or ySw, and if no
universal quantifier lies in the scope of the quantifier of x, then w1x (resp.,
x1w) can be added to ψ(i)|n. The multigraph Gn is modified accordingly
by introducing a component representing the new atomic formula. On the
other hand, if x is universally quantified, the occurrence of xRy (resp., yRx)
in ψ(i)|n is simply replaced by w0†Ry (resp., y0†Rw). Let k be the position
of the conjunct of ψ(i)|n we are considering, then the labels of the left (right)
node and of the edge of the component Gn.k are modified accordingly. An
example of application of the bigamy rule is shown in Figure 10. Note that
the bigamy rule may cause (in the existential case) a growth of the formula
at hand. This growth, however, enables a subsequent application of the
bypass rule (involving the variable x) and of the fusion step.

(5) If ψ(i)|n = ¬χ, we can distinguish the following cases:
(a) if χ is an atomic formula xRy, the negation in front of χ is removed, R is

complemented, ψ(i)|n is set equal to xRy, and ψ(i+1) = ψ(i). Gn is a single
edge multigraph such that En = {(un, vn)}, Vn = {un, vn}, lNode(un) =
{x}, lNode(vn) = {y}, lEdge((un, vn)) = {R}, and signGn = opp(signGn·1).
Finally, G(i+1)

ψ = (G(i) \ {Gn.1}) ∪ {Gn};
(b) if χ is a conjunction, ψ(i+1) = ψ(i) and G(i+1)

ψ = G
(i)
ψ ∪{Gn}, where Gn is

obtained as follows. Vn = {un, vn} and En = {(un, vn)}, un is labeled with
the set of left variables of the atomic formulae in χ, vn is labeled with the
set of right variables of the atomic formulae in χ, lEdge((un, vn)) = {¬(χ)}.
Each multigraph Gn.1.i, representing a component χi of χ, is renamed as

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 277

Gn.i (see procedure Rename in Sect. A.1, Appendix A). Then Gn is put in
relation � with all of them and signGn = opp(signGn·i);

(c) Double negation and complementation are treated in the usual way, sim-
plifying the formula χ and the multigraph representing it.

(6) If ψ(i)|n = χ1 ∨ . . . ∨ χk, we put ψ(i)|n = ¬(¬χ1 ∧ . . . ∧ ¬χk) and P =
P∪{n, n.1, n.1.1, . . . n.1.k}. Moreover, we apply the procedure Rename to each
graph Gn.i obtaining Gn.1.i.1, for i ∈ {1, . . . , k}. Now the minimal position to
be processed is n.1.1 (a negation, thus falling in the previous cases);

(7) if ψ(i)|n = (∀x)χ, we put ψ(i)|n = ¬(∃x)¬χ and P = P ∪ {n, n.1, n.1.1}. The
minimal position to be processed is m = n.1.1, ψ(i)|m is a negation of a formula
and therefore it is treated as outlined in case (5).

Example 6.1. To better illustrate the steps introduced in item (4), let us con-
sider the formula ϕ = (x1Rx2 ∧ x1Qx1) ∧ x1Sx2. If we disregard the positions of
the variables in ϕ, the set of positions of ϕ is {λ, 1, 2, 1.1, 1.2}. According to the
ordering ≺, after the construction of the components G1.1 and G1.2 relative to
the subformulae ϕ|1.1 = x1Rx2 and ϕ|1.2 = x1Qx1 (item 2 of the graph-thinning
algorithm), the subformula ϕ|1 = x1Rx2 ∧ x1Qx1 is analyzed and the normaliza-
tion step is applied to x1Qx1. As a result we have ψ(4)|1 = x1Rx2 ∧ x1(Q ∩ ι)x−1,
where x−1 is a new existentially quantified variable (cf., the function newOddVar
in the procedure Normalize in Sect. A.3) and the corresponding component G1

is a multigraph constituted of two components, G1.1 and G1.2, as shown in Fig-
ure 6. After the construction of the graph representing ψ(4)|2 = x1Sx2, the formula
ψ(5)|λ = ψ(5) = (x1Rx2 ∧ x1(Q ∩ ι)x−1) ∧ x1Sx2 is analyzed. Through an appli-
cation of the collapse step, ψ(6) = x1Rx2 ∧ x1Sx2 ∧ x1(Q ∩ ι)x−1, G1.1 and G1.2

are renamed to G1 and G3, respectively. G(6)
ψ is a multigraph with components

G1, G2, and G3. A graphical description of the collapse step is given in Fig-
ure 7. Next, the application of the Fusion procedure to ψ(6) yields the formula
ψ(7) = x1(R ∩ S)x2 ∧ x1(Q ∩ ι)x−1 and the multigraph G(7)

ψ with components G1

and G2 shown in Figure 8. Notice that, the two nodes u1 and u2 can be merged
together, so as to form a single node u labeled by {x}. This allows one to obtain an
alternative graph representation of ψ(7). Such a multigraph G is shown in Figure 8.

Example 6.2. We illustrate now a complete execution of the graph-thinning al-
gorithm applied to the first-order formulation ψ of the regularity axiom [25]

ψ = (∀ x−2)
(
(¬((∃ x−4) x−4 ∈ x−2))∨

(∃ x−5)(x−5 ∈ x−2 ∧ ¬(∃ x−6)(x−6 ∈ x−5 ∧ x−6 ∈ x−2))
)
,

where we renamed the bound variables as described in Section 2 (cf., Rem. 2.3 and
Exs. 2.1 and 2.4). For simplicity, let us ignore the applications of rule (1) of the thinning
algorithm. Hence, except for variables positions, the ≺-minimal position to be considered
is n1 = 1.1.1.1, corresponding to the subformula x−4 ∈ x−2. By rule (2) we obtain

ψ(1) = ψ and G
(1)
ψ = Gn1 , as depicted in Figure 11.

The complete sequence of transformations performed by the thinning algorithm are
reported in Figures 11 and 12: for the i-th step of the algorithm we indicate the ana-
lyzed position ni, the corresponding subformula ψ|ni , the rule applied by the algorithm,

278 D. CANTONE ET AL.

G1: u1 v1 G2: u2 v2

{R ∩ S} {Q ∩ ι}{x1} {x2} {x−1}{x1}

G: v1 u v2

{R ∩ S} {Q ∩ ι}{x1}{x2} {x−1}

Figure 8. Two alternatives for the multigraph G
(7)
ψ , both rep-

resenting the formula ψ(7) = x1(R ∩ S)x2 ∧ x1(Q ∩ ι)x−1.

Gj̄: uj̄ v̄j Gk: uk vk

Gj̄ after the transformation:

uj̄ vk

{R;S}

{R} {S}{y} {x} {x} {z}

{y} {z}

Figure 9. An application of the bypass rule.

Gk : uk vk Gd: ud vd

The bigamy introduces Gq:

uq vq

{R} {S}

{1}

{x} {y} {y} {w}

{x} {w}

Figure 10. An application of the bigamy rule.

and the resulting ψ(i) and G
(i)
ψ . The sequence of steps yields the desired translation:

(∀ x−2) (x01; ∈ ∩1;(∈ ∩∈� ; ∈) x−2).

6.1. Termination and correctness of the graph-thinning algorithm

Termination of the graph-thinning algorithm can be checked by making the
following considerations. The number of subformulae analyzed and the number of
intermediate multigraphs constructed to produce the final formula and multigraph
are finite. This is so because the set of positions of the input formula Pos(ϕ) is
finite and each position can be extracted a finite number of times. Moreover, it
is easy to verify that each possible operation to transform an intermediate for-
mula and an intermediate multigraph are finite too. In doing this one can benefit
from considering the pseudo-code reported in the Appendix. In particular, the
procedures described by the rules (1)–(3) and (5)–(7) of the algorithm, originate a
finite number of steps because they involve the construction of a new component
of the multigraph with only one edge (i.e., rules (2), (5.a), and (5.b)), the elim-
ination/introduction of a (finite) component in the multigraph (i.e., rules (5.a),
and (5.b)), a recursive renaming of the components of a (finite) multigraph by the
procedure Rename (i.e., rules (3), (5.b)). The steps described in item (4), namely
collapse, normalization, fusion, bypass, and bigamy, cause the execution of a finite

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 279

n1 = 1.1.1.1. ψ|n1 = x−4 ∈ x−2. By rule (2), we have ψ(1) = ψ and G
(1)
ψ = Gn1 :

Gn1 : un1 vn1 signGn1
= −

{∈}
{x−4} {x−2}

n2 = 1.1.1. ψ(1)|n2 = (∃ x−4)x−4 ∈ x−2. By rule (3), since x−4 occurs once in ψ(1)|n2.1, we have
ψ(2) = (∀ x−2)(¬x01; ∈ x−2 ∨ (∃ x−5)(x−5 ∈ x−2 ∧ ¬(∃ x−6)(x−6 ∈ x−5 ∧ x−6 ∈ x−2)))

G
(2)
ψ = Gn2 : un2 vn2 signGn2

= −
{1; ∈}

{x0} {x−2}

n3 = 1.1. ψ(2)|n3 = ¬ x01; ∈ x−2. By rule (5.a), we have
ψ(3) = (∀ x−2)(x01; ∈x−2 ∨ (∃ x−5)(x−5 ∈ x−2 ∧ ¬(∃ x−6)(x−6 ∈ x−5 ∧ x−6 ∈ x−2)))

G
(3)
ψ = Gn3 : un3 vn3 signGn3

= +

{1; ∈}
{x0} {x−2}

n4 = 1.2.1.1. ψ(3)|n4 = x−5 ∈ x−2. By rule (2), we have ψ(4) = ψ(3) and G
(4)
ψ = Gn3 , Gn4 .

Gn4 : un4 vn4 signGn4
= +

{∈}
{x−5} {x−2}

n5 = 1.2.1.2.1.1.1. ψ(4)|n5 = x−6 ∈ x−5. By rule (2), we have ψ(5) = ψ(4) and G
(5)
ψ = Gn3 , Gn4 , Gn5 .

Gn5 : un5 vn5 signGn5
= −

{∈}
{x−6} {x−5}

n6 = 1.2.1.2.1.1.2. ψ(5)|n6 = x−6 ∈ x−2. By rule (2), we have ψ(6) = ψ(5), G
(6)
ψ = Gn3 , Gn4 , Gn5 , Gn6 .

Gn6 : un6 vn6 signGn6
= −

{∈}
{x−6} {x−2}

n7 = 1.2.1.2.1.1. ψ(6)|n7 = x−6 ∈ x−5 ∧ x−6 ∈ x−2. By rule (4.bypass), we have G
(7)
ψ = Gn3 , Gn4 , Gn7

and ψ(7) = (∀ x−2)(x01; ∈x−2 ∨ (∃ x−5)(x−5 ∈ x−2 ∧ ¬(∃ x−6)(x−5 ∈� ; ∈ x−2)))

Gn7 : un7 vn7 signGn7
= −

{∈� ; ∈}
{x−5} {x−2}

n8 = 1.2.1.2.1. ψ(7)|n8 = (∃ x−6)x−5 ∈� ; ∈ x−2. By rule (3), since x−6 does not occur in ψ(7)|n8.1,

ψ(8) = (∀ x−2)(x01; ∈x−2 ∨ (∃ x−5)(x−5 ∈ x−2 ∧ ¬x−5 ∈� ; ∈ x−2)) and G
(8)
ψ = Gn3 , Gn4 , Gn8 , with:

Gn8 : un8 vn8 signGn8
= −

{∈� ; ∈}
{x−5} {x−2}

n9 = 1.2.1.2. ψ(8)|n9 = ¬ x−5 ∈� ; ∈ x−2. By rule (5.a), we have

ψ(9) = (∀ x−2)(x01; ∈x−2 ∨ (∃ x−5)(x−5 ∈ x−2 ∧ x−5∈� ; ∈x−2)) and G
(9)
ψ = Gn3 , Gn4 , Gn9 , with:

Gn9 : un9 vn9 signGn9
= +

{∈� ; ∈}
{x−5} {x−2}

n10 = 1.2.1. ψ(9) |n10 = x−5 ∈ x−2 ∧ x−5∈� ; ∈x−2. By rule (4.fusion), we have

ψ(10) = (∀ x−2)(x01; ∈x−2 ∨ (∃ x−5)(x−5 ∈ ∩∈� ; ∈x−2)) and G
(10)
ψ = Gn3 , Gn10 , with:

Gn10 : un10 vn10 signGn10
= +

{∈ ∩∈� ; ∈}
{x−5} {x−2}

n11 = 1.2. ψ(10) |n11 = (∃ x−5)(x−5 ∈ ∩∈� ; ∈x−2). By rule (3), since x−5 occurs once in ψ(10) |n11.1,

we have ψ(11) = (∀ x−2)(x01; ∈x−2 ∨ x01;(∈ ∩∈� ; ∈)x−2) and G
(11)
ψ = Gn3 , Gn11 , with:

Gn11 : un11 vn11 signGn11
= +

{1;(∈ ∩∈� ; ∈)}
{x0} {x−2}

Figure 11. A run of the thinning algorithm for Example 6.2.

280 D. CANTONE ET AL.

n11 = 1.2. ψ(10)|n11 = (∃ x−5)(x−5 ∈ ∩∈� ; ∈x−2). By rule (3), since x−5 occurs once in ψ(10) |n11.1,

we have ψ(11) = (∀ x−2)(x01; ∈x−2 ∨ x01;(∈ ∩∈� ; ∈)x−2) and G
(11)
ψ = Gn3 , Gn11 , with:

Gn11 : un11 vn11 signGn11
= +

{1;(∈ ∩∈� ; ∈)}
{x0} {x−2}

n12 = 1. ψ(11)|n12 = x01; ∈x−2 ∨ x01;(∈ ∩∈� ; ∈)x−2. By rule (6) we obtain G
(12)
ψ = Gn13.1, Gn14.1

and 3 new positions are introduced: n13 = 1.1.1, n14 = 1.1.2, and n15 = 1.1.

Moreover, ψ(12) = (∀ x−2)¬(¬x01; ∈x−2 ∧ ¬x01;(∈ ∩∈� ; ∈)x−2) and G
(12)
ψ = Gn13.1, Gn14.1,

where Gn13.1 and Gn14.1 are obtained by renaming Gn3 and Gn11 :

Gn13.1: un13.1 vn13.1 signGn13.1
= +

{1; ∈)}
{x0} {x−2}

Gn14.1: un14.1 vn14.1 signGn14.1
= +

{1;(∈ ∩∈� ; ∈)}
{x0} {x−2}

Two applications of rule (5.a), w.r.t. the positions n13 = 1.1.1 and n14 = 1.1.2, and an application of

rule (4.fusion) yield ψ(14) = (∀ x−2)¬(x01; ∈ ∩1;(∈ ∩∈� ; ∈)x−2) and

G
(15)
ψ = Gn15 : un15 vn15 signGn15

= −
{1; ∈ ∩1;(∈ ∩∈� ; ∈)}

{x0} {x−2}

n16 = 1. ψ(15)|n16 = x01; ∈ ∩1;(∈ ∩∈� ; ∈)x−2. By rule (5.a), we reach the final graph G
(16)
ψ = Gn16 :

Gn16 : un16 vn16 signGn16
= +

{1; ∈ ∩1;(∈ ∩∈� ; ∈)}
{x0} {x−2}

Then, the translation of ψ can be expressed as the equation: 1;1; ∈ ∩1;(∈ ∩∈� ; ∈) = 1.

Figure 12. A run of the thinning algorithm (see also Fig. 11 and
Ex. 6.2).

number of steps as well. In fact, considering the pseudo-code in the Appendix,
observe that their loops are executed a finite number of times only. Moreover,
each single instruction of their code describes an operation (analogous to the ones
mentioned above) that can be executed in a finite number of steps.

Correctness of the graph-thinning algorithm is stated by the following theorem:

Theorem 6.3. Let ϕ be a formula of L+. If the graph-thinning algorithm termi-
nates successfully with input ϕ yielding as output the quantifier-free formula ψ of
L+and the multigraph Gψ, then:
1. ϕ and ψ are logically equivalent, that is (ϕ)� is true iff (ψ)� is true;
2. the multigraph Gψ represents ψ.

Proof. We prove the first part of the theorem by showing that the property
‘ψ(i) and ψ(i+1) are logically equivalent, for every i ∈ {0, . . . , k − 1}’ is an invari-
ant for the algorithm. The proof is by induction on i, and by case distinction since
it has to take into account all the local transformations that can be performed
on the intermediate formulae by the procedures of the graph-thinning algorithm.
Each transformation step is justified by the axiom schemata of Section 2.3 together

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 281

with some other well-known laws of first-order logic. In particular, an atomic for-
mula (rule (2)), or a negated conjunction (rule (5.b)), ψ(i)|n = ψ(i+1)|n, and thus
the property holds. If ψ(i)|n is an existential formula (rule (3)), equivalence is
preserved because when the quantified variable does not occur in ψ(i)|n, the quan-
tifier can simply be removed. On the other hand, if the quantified variable occurs
just once in ψ(i)|n, ψ(i+1)|n is obtained from ψ(i)|n by applying an instance of
the axiom schema (∀x)(∀y)(xR;1y) ≡ (∃z)(xRz ∧ z1y). Analogously, if ψ(i)|n is
a negated atom (rule (5.a)), the property holds by applying one of the axioms
of Section 2.3, whereas, if it is a double negated formula (rule (5.c)) by elemen-
tary rules of propositional logic. If ψ(i)|n = χ1 ∨ · · · ∨ χn, rule (6) is applied and
ψ(i+1) = ψ(i)[n/¬(¬χ1∧· · ·∧¬χn)]. Clearly, since χ1∨· · ·∨χn ≡ ¬(¬χ1∧· · ·∧¬χn),
the property holds. If ψ(i)|n = (∀x)χ, the proof is carried out as for case (6) and
we do not report it. If ψ(i)|n = χ1 ∧ · · · ∧ χn, we apply rule (4). In this case we
have to show correctness of the four steps of rule (4). This amounts to considering
the procedures collapse, normalization, fusion, bypass, and bigamy. We prove that
equivalence is preserved for the fusion step only. The proof is similar in the other
cases. The fusion step selects in ψ(i)|n atomic conjuncts of the forms xRy and
xSy and replaces them with the conjunct xR ∩ Sy. By the axioms of Section 2.3,
the resulting formula is equivalent to ψ(i)|n and thus the property is satisfied. To
prove that the second part of the theorem holds, it suffices to verify that Gψ is
constructed so as to fulfill the conditions described in Section 3 and defining the
graph representation of a formula. �

7. Related work

During the last decades, several authors proposed and investigated graphical
techniques applied to map calculus. Generally the proposed approaches support
some form of inference mechanism, possibly exploited in specific contexts. An
example is given in [2, 3] where the authors develop relational-based methods to
formalize, design, and verify hardware circuits. This goal is achieved by developing
a correspondence between two representations of circuits, one based on pictorial
devices and another relying on the relational framework. Consequently, a natural
relational semantics for pictures/circuits is easily obtained. High-level operations
on pictures/circuits are rendered through transformation rules that ultimately
reflect the semantics of the map constructs.

In [10, 11], a graphical representation of expressions by means of diagrams is
proposed. In this case, only the fragment of L× not involving complementation
(and excluding union and relational sum †, as well) is considered. A notion of re-
duction for the expressions of this language is given in terms of morphisms between
diagrams. The paper also provides interesting results regarding normalization and
decidability properties. The graphical framework proposed in [11] is closely related
to the well-known class of series-parallel networks [9]. In a sense, the properties of
the diagrammatic framework of [11] reflect analogous properties of those networks.

282 D. CANTONE ET AL.

Another graphical calculus enabling representation and visual reasoning on
mathematical formulae is proposed in [6]. Also in this case, the fragment of lan-
guage taken into account is devoid of complementation. The proposed treatment
of composition and intersection of maps, largely coincides with the one of [5, 17],
that we have enhanced above. Actually, the graph-transformation rules described
in [6] have a large overlap with the ones of our graph-fattening algorithm (when
restricted to intersection, composition, and conversion).

The positive fragment of L× (where, complementation is banned) is also the
object of the investigation carried out in [7]. In this case, the framework described
in [6] is enriched by admitting expressions involving the union construct. Similarly
to our proposal, admitting union forces one to consider a collection of graphs
in place of a single graph, to represent an expression. The authors of [7] also
propose a set of rewriting rules (graph relational rules) that support a notion of
derivability within the graphical framework. The expressive power of the graph
relational calculus is shown to capture the class of formulae of positive existential
first-order logic with (at most) two free variables. This result is, clearly, in line
with [24]. Finally, we mention [20, 21] that provide a general approach to the
graphical calculi of relations introduced by [2, 6], by resorting to algebraic graph-
rewriting techniques.

8. Conclusions and future work

We have enhanced preexisting algorithms for translating dyadic first-order logic
into map calculus, which rely on a specific graph representation of map expressions.
As an outcome, we are able to deal with map expressions and with formulae
containing the relational complement construct and the negation connective.

The first algorithm, graph-fattening, constructs a maximally expanded multi-
graph representing the internal structure of a given map expression. To do this, it
decomposes the expression by a Smullyan-like unifying notation for map expres-
sions. When applied to a map expression, it provides a representation which better
conveys its meaning. The second algorithm, graph-thinning, translates formulae of
dyadic first-order logic into map expressions. It works bottom-up (w.r.t. the struc-
ture of the formula), to build up a graph which represents the output formula, and
by transforming the input formula destructively.

We plan to further improve the bypass and bigamy rules, making them more
liberal in the case of nested quantifiers, and to incorporate into that algorithm rules
that exploit semantical information such as functionality of maps (for instance, the
knowledge that an expression P denotes a single-valued relation). Such rules could
enable an otherwise unachievable translation.

A first attempt in the implementation of a proof-assistant based on the graph
representation of map expressions has been done in [15]. In that case the algo-
rithms described in [5,17] have been implemented on top of the attributed graph-
transformation system Agg. In order to validate the approach described in this
paper, an implementation of the new algorithms is due (either as a stand-alone

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 283

procedure Rename(Gn, k)
1. if (un, vn ∈ Vn) then // Rename the distinguished nodes of Gn
2. un := uk; vn := vk ;
3. endif;

4. if (¬isAtom(ψ(i)|n)) then

5. Φn := {l ∈ N : l ∈ Pos(ψ(i) |n)};
6. while (Φn 	= ∅) do
7. j := extractMin(Φn);
8. Gk.j := Rename(Gn.j , k.j);

9. G
(i)
ψ := (G

(i)
ψ \ {Gn.j}) ∪Gk.j ;

10. endwhile;
11. endif;
end procedure

Figure 13. The procedure Rename.

tool or in integration with standard theorem provers for first-order logic). These
are interesting and challenging topics for further research.

Appendix A. Details of the graph-thinning

A.1. The procedure Rename

The procedure Rename is illustrated in Figure 13. It works recursively by re-
naming the top component of Gn, if any, and all its subcomponents.

A.2. The procedure Collapse

For every χj which is a conjunction (α-formula), the procedure Collapse illus-
trated in Figure 14 adds all the conjuncts of χj directly to ψ(i)|n, and renames the
labels of the relative multigraphs and distinguished nodes, according to the new
positions in which χj occurs. The process of renaming the distinguished nodes
of every component of Gn.j (and of their subcomponents) is performed by the
recursive procedure Rename of Figure 13.

A.3. The procedure Normalize

The normalization step is illustrated in Figure 15 and works as follows. For every
conjunct χj in ψ(i)|n (line 1) that is an atomic formula of type xRx (lines 4 and 5),
it substitutes in ψ(i)|n the occurrence of xRx with x(R ∩ ι)x′, where x′ is a new
existentially quantified variable introduced by means of the function newOddVar .
Then the component Gn.j of Gn is modified (lines 8 and 9) by labeling its edge
with {(R ∩ ι)} and its nodes with {x} and {x′}, respectively.

284 D. CANTONE ET AL.

procedure Collapse(n)

1. Φn := {l|l ∈ Pos(ψ(i)|n) ∩ N}; // Positions of the conjuncts of Pos(ψ(i)|n)
2. m := |Φn|;
3. while (Φn 	= ∅) do
4. j := extractMin(Φn);

5. if (isAlpha(ψ(i)|n.j)) then // if it is an α-formula

6. Ψn := {k ∈ N : k ∈ Pos(ψ(i)|n.j)};
//replace ψ(i)|n.j in ψ(i)|n with its first conjunct

7. ψ(i) := ψ(i)[n.j/ψ(i)|n.j.1];
8. Ψn := Ψn \ {1};
9. G

(i)
ψ := G

(i)
ψ \ {Gn.j}; // modify the multigraph

10. Gn.j := Rename(Gn.j.1, n.j);

11. G
(i)
ψ := G

(i)
ψ ∪ {Gn.j};

12. while (Ψn 	= ∅) do

// enlarge ψ(i)|n adding, as new conjuncts,

// the other conjuncts of ψ(i)|n.j , and modify the multigraphs
13. k := extractMin(Ψn);

14. ψ(i) := ψ(i)[n.((k − 1) +m)/ψ(i) |n.j.k];
15. Gn.k := Rename(Gn.j.k, n.((k − 1) +m));

16. G
(i)
ψ := (G

(i)
ψ \Gn.j.k) ∪Gn.((k−1)+m));

17. endwhile;
18. m := m + (k-1);
19. endif;
20. endwhile;
end procedure

Figure 14. The procedure Collapse.

A.4. The procedure Fusion

The procedure Fusion is depicted in Figure 16. For every atomic conjunct of
ψ(i)|n, the procedure searches within ψ(i)|n for all the atoms sharing the same
variables as arguments, and merges them (lines 12–21). For each pair of conjuncts,
it operates as follows: it modifies ‘in place’ in ψ(i)|n the first conjunct (the one in-
dexed by j̄ in the code), it removes the second conjunct (the one indexed by k̄) from
ψ(i)|n, and it shifts all the remaining conjuncts one position to the left (lines 22–
27). The corresponding multigraph components are treated in an analogous way:
the first component (indicated by the index j̄) is modified, then the second one
(indicated by the index k̄) is eliminated, and finally the remaining components are
suitably renamed (because the corresponding positions in the formula have been
shifted).

A.5. The procedure Bypass

Let us describe the main steps of the procedure Bypass (Fig. 17). First the collec-
tion Φn of the positions of conjuncts of ψ(i)|n is determined. For each position j of
an atomic conjunct of ψ(i)|n, the procedure determines the set BoundVar(ψ(i)|n.j)

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 285

procedure Normalize(n)

1. Φn := {l ∈ N : l ∈ Pos(ψ(i)|n)};
2. while Φn 	= ∅ do
3. j := extractMin(Φn);

4. if (isAtom(ψ(i)|n.j)) then

5. if (ψ(i)|n.j.1 = ψ(i)|n.j.2) then

6. ψ(i)|n.j.2 := newOddVar(ψ(i));

7. ψ(i) := ψ(i)[n.j/(ψ(i)|n.j.1(Map(ψ(i)|n.j) ∩ ι)ψ(i)|n.j.2)];
8. lEdge(un.j , vn.j) := {Map(ψ(i) |n.j)};
9. lNode(vn.j) := {ψ(i)|n.j.2};
10. endif;
11. endif;
12. endwhile;
end procedure

Figure 15. The normalization procedure.

of all the variables in Var(ψ(i)|n.j) ∩ Var− that occur exactly twice in ψ(i) and
occur only in atomic conjuncts of ψ(i)|n (lines 3–5).

For every variable x in BoundVar(ψ(i)|n.j), if either x is existentially quantified,
ψ(i)|n occurs positively in ψ(i), and no universal quantifier is in the scope of the
quantifier binding x, or x is universally quantified, ψ(i)|n occurs negatively in ψ(i),
and no existential quantifier is in the scope of the quantifier binding x (this test
is performed in line 7), the code in lines 8–40 is executed. The position k of the
other conjunct in ψ(i)|n having x as argument is determined in line 9. The bypass
operation is then performed on the two conjuncts (lines 10–29). In particular,
since x occurs as one of two arguments in each one of the two disjuncts, four
cases are possible. As an example, let us describe the first of them (lines 11–13).
If ψ(i) |̄j = yRx and ψ(i)|k = xSz, the two graphs Gj̄ and Gk are merged into
a new component replacing Gj̄ that has only one edge labeled with {R;S} and
the two nodes labeled with {y} and {z}, respectively (this ‘new’ Gj̄ is depicted in
Fig. 9). The other component, Gk, is removed (line 30) from G

(i)
n . At the same

time, the formula ψ(i) is coherently modified in line 33. Since in processing the
two conjuncts, the one in position k has been removed, the remaining sequence
of conjuncts is compacted in lines 34–38 (this might involve renaming of their
distinguished nodes). Finally, the set of the positions of conjuncts of ψ(i)|n is
updated in line 39.

A.6. The procedure Bigamy

The Bigamy procedure (see Fig. 18) is applied to every bound node of Gn with
just one adjacent edge. In terms of ψ(i)|n, it applies to every quantified variable x
that occurs only once in ψ(i). For simplicity, in Figure 18 we provide a simplified
procedure that deals only with the case of an existentially quantified variable x,
occurring in ψ(i)|n as a left argument of an atomic formula. The other cases are

286 D. CANTONE ET AL.

procedure Fusion(n)

1. Φn := {l ∈ N : l ∈ Pos(ψ(i) |n)}; pp1 := {};
2. while Φn 	= ∅ do
3. j := extractMin(Φn); pp1 := pp1 ∪ {j}
4. j̄ := n.j;

5. if isAtom(ψ(i) |̄j) then

6. Expr j̄ := Map(ψ(i) |̄j);
7. Sn := Φn; pp2 := {};
8. while Sn 	= ∅ do
9. k := extractMin(Sn);

10. if (Var(ψ(i)|n.k) = Var(ψ(i) |̄j)) then
11. k̄ := n.k;

12. if (ψ(i)|k̄.1 = ψ(i) |̄j.1) then

13. Expr j̄ := Expr j̄ ∩ Map(ψ(i) |k̄);
14. else

15. Expr j̄ := Expr j̄ ∩ Map(ψ(i) |k̄)�;

16. endif;
17. lEdge((uj̄, v̄j)) := {Expr j̄};
18. Gn := Gn \ {Gk̄};
19. x1 := extract(lNode(uj̄));
20. x2 := extract(lNode(v̄j));

21. ψ(i) := ψ(i) [̄j/x1Expr j̄x2];

22. Ψ := Sn;

23. while (Ψ 	= ∅) do // ‘shift’ remaining conjuncts of ψ(i)|n
24. h := extractMin(Ψ); ψ(i) := ψ(i)[n.(h− 1)/ψ(i) |n.h];
25. Gn.(h−1) := Rename(Gn.h, n.(h− 1));

26. G
(i)
ψ := (G

(i)
ψ \Gn.h) ∪Gn.(h−1);

27. endwhile;

28. Φn := {l ∈ N : l ∈ Pos(ψ(i)|n)} \ pp1;
29. Sn := Φn \ pp2;
30. else pp2 := pp2 ∪ {k};
31. endif;
32. endwhile;
33. endif;
34. endwhile;
end procedure

Figure 16. The multiple-edge elimination procedure.

treated likewise. Let y be the variable occurring as right argument in the atom
where x occurs. In line 11 the procedure determines (if any) a second occurrence
of y in another atom of ψ(i)|n. Let d be the position of the determined atom. Then
a new component Gq, to be added to the multigraph, is created. Gq is made of a
single edge (uq, vq). The labels of the two new nodes are assigned in lines 16–21.
In particular, one of them must be {w} and the other one must be {x}, where w
is one of the two variables of the atom in position d (the other variable being y).
The label of the edge is set in line 23 to be the universal map {1}. Finally, the new
component is added to Gn, whereas the formula ψ(i)|n is updated by conjoining
the literal w1x.

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 287

procedure Bypass(n)

1. Φn := {l ∈ N : l ∈ Pos(ψ(i)|n)};
2. while Φn
= ∅ do

3. j := extractMin(Φn); j̄ := n.j; Expr j̄ := Map(ψ(i) |̄j);
4. if isAtom(ψ(i) |̄j) then

5. BoundVar(ψ(i) |̄j) := {x ∈ (Var(ψ(i) |̄j) ∩ Var−) : |Pψ(i)
x | = |Pψ(i)|n

x ∩ (N · N)| = 2};
6. for every x ∈ BoundVar(ψ(i) |̄j) do

7. if ((∃j ∈ N : x = x−(2j+1)) ∧ OccPositively(ψ(i)|n, ψ(i)) ∧ NoScope(∀,Qx))∨
((∃j ∈ N

+ : x = x−2j) ∧ ¬OccPositively(ψ(i)|n, ψ(i)) ∧ NoScope(∃,Qx)) then

8. p := extract({s : s ∈ Pψ
(i)|n

x ,Father(s)
= j̄}); // second occurrence of x
9. k := Father(p);

10. if (x = ψ(i) |̄j.2) then // if one atom is of type yRx
11. if (p = k · 1) then // and the other one of type xSz

12. Expr j̄ := (Expr j̄;Map(ψ(i)|k));
13. lNode(v̄j) := ψ(i)|k·2;
14. else// if the other one is of type zSx

15. Expr j̄ := (Expr j̄;Map(ψ(i)|k)�);

16. lNode(v̄j) := ψ(i)|k·1;
17. endif;
18. lEdge((uj̄, v̄j)) := Expr j̄;
19. else // if one atom is of type xRy
20. if (p = k · 1) then // and the other one of type xSz

21. Expr j̄ := (Expr�j̄ ;Map(ψ(i)|k));
22. lNode(v̄j) := ψ(i)|k·2;
23. else// if the other one is of type zSx

24. Expr j̄ := (Expr�j̄ ;Map(ψ(i)|k)�);

25. lNode(v̄j) := ψ(i)|k·1;
26. endif;
27. lEdge((uj̄, v̄j)) := Expr j̄;

28. lNode(uj̄) := ψ(i) |̄j·2;
29. endif;
30. Gn := Gn \ {Gk}; // removal of Gk (it has been merged into Gj̄)
31. Ψ := {s ∈ Φn : s > k};
32. x1 := extract(lNode(uj̄)); x2 := extract(lNode(v̄j));

33. ψ(i) := ψ(i) [̄j/x1Expr j̄x2];

34. while (Ψ
= ∅) do // ‘shift’ remaining conjuncts of ψ(i)|n
35. h := extractMin(Ψ); ψ(i) := ψ(i)[n.(h− 1)/ψ(i)|n.h];
36. Gn.(h−1) := Rename(Gn.h, n.(h− 1));

37. G
(i)
ψ := (G

(i)
ψ \ Gn.h) ∪Gn.(h−1);

38. endwhile;

39. Φn := {l ∈ N : l ∈ Pos(ψ(i)|n)};
40. endif;
41. endfor;
42. endif;
43. endwhile;
end procedure

Figure 17. The procedure Bypass. It takes a position n as pa-
rameter and acts on ψ(i) and G(i)

ψ by modifying ψ(i)|n and Gn.

288 D. CANTONE ET AL.

procedure Bigamy(n)

1. Φn := {j ∈ N : j ∈ Pos(ψ(i)|n)};
2. m := |Φn|;
3. while Φn
= ∅ do
4. l := extractMin(Φn);
5. l̄ := n.l

6. if isAtom(ψ(i)|l̄) then

7. BoundVarSingle(ψ(i)|l̄) := {x ∈ Var(ψ(i)|l̄) ∩ Var− : |Pψ(i)
x | = |Pψ(i)|n

x | = 1};
8. foreach x ∈ BoundVarSingle(ψ(i)|l̄) do
9. if (∃h ∈ N : x = x−(2h+1)) ∧ NoScope(∀,Qx) then

10. p := extractMax(Pψ
(i)|n

x);

11. if (p = l̄.1 ∧ ∃d ∈ Φn : isAtom(d) ∧ (ψ(i)|l̄.2 = ψ(i)|d.1 ∨ ψ(i)|l̄.2 = ψ(i)|d.2)) then
12. q := m+ 1;
13. Vq := {uq , vq}; Eq := {(uq, vq)};
14. if (ψ(i)|l̄.2 = ψ(i)|d.1) then

15. ψ(i)|n := ψ(i)|n ∧ ψ(i)|d.21ψ(i)|l̄.1;
16. lNode(uq) := ψ(i)|d.2;
17. lNode(vq) := ψ(i)|l̄.1;
18. elseif (ψ(i)|l̄.2 = ψ(i)|d.2) then

19. ψ(i)|n := ψ(i)|n ∧ ψ(i)|d.11ψ(i)|l̄.1;
20. lNode(uq) := ψ(i)|d.1;
21. lNode(vq) := ψ(i)|l̄.1;
22. endif;
23. lEdge((uq, vq)) := {1};
24. Gn := Gn ∪ {Gq};
25. m := m+ 1;
26. endif;
27. endif;
28. endfor;
29. endif;
30. endwhile;

end procedure

Figure 18. The procedure Bigamy.

References

[1] J.G.F. Belinfante, Gödel’s algorithm for class formation, in Proc. of CADE’00, edited by
D. McAllester. Lect. Notes Comput. Sci. 1831 (2000) 132–147.

[2] C. Brown and G. Hutton, Categories, allegories and circuit design, in Proc. of 9th IEEE
Symp. on Logic in Computer Science. IEEE Computer Society Press (1994) 372–381.

[3] C. Brown and A. Jeffrey, Allegories of circuits, in Proc. of Logic for Computer Science
(1994) 56–68.

[4] D. Cantone, A. Cavarra and E.G. Omodeo, On existentially quantified conjunctions of
atomic formulae of L+, in Proc. of International Workshop on First-Order Theorem Proving
(FTP97), edited by M.P. Bonacina and U. Furbach (1997).

[5] D. Cantone, A. Formisano, E.G. Omodeo and C.G. Zarba, Compiling dyadic first-order
specifications into map algebra. Theoret. Comput. Sci. 293 (2003) 447–475.

[6] S. Curtis and G. Lowe, Proofs with graphs. Sci. Comput. Program. 26 (1996) 197–216.
[7] R. de Freitas, P.A.S. Veloso, S.R.M. Veloso and P. Viana, On graph reasoning. Inf. Comput.

207 (2009) 228–246.
[8] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in Handbook of Theoretical Computer

Science B: Formal Models and Semantics (B) (1990) 243–320.
[9] R.J. Duffin, Topology of series-parallel graphs. J. Math. Anal. Appl. 10 (1965) 303–318.

GRAPHICAL REPRESENTATION OF RELATIONAL FORMULAE 289

[10] D. Dougherty and C. Gutiérrez, Normal forms and reduction for theories of binary relations,
in Proc. of Rewriting Techniques and Applications, edited by L. Bachmair. Lect. Notes
Comput. Sci. 1833 (2000).

[11] D. Dougherty and C. Gutiérrez, Normal forms for binary relations. Theoret. Comput. Sci.
360 (2006) 228–246.

[12] M.C. Fitting, First-order Logic and Automated Theorem Proving, Graduate Texts in Com-

puter Science, 2nd edition. Springer-Verlag, New York (1996).
[13] A. Formisano and M. Nicolosi Asmundo, An efficient relational deductive system for propo-

sitional non-classical logics. JANCL 16 (2006) 367–408.
[14] A. Formisano and E.G. Omodeo, An equational re-engineering of set theories, in Selected

Papers from Automated Deduction in Classical and Non-Classical Logics, edited by R. Ca-
ferra and G. Salzer. Lect. Notes Comput. Sci. 1761 (2000) 175–190.

[15] A. Formisano and M. Simeoni, An Agg application supporting visual reasoning, in Proc. of
GT-VMT’01 (ICALP 2001), edited by L. Baresi and M. Pezzè. Electron. Notes Theoret.
Comput. Sci. 50 (2001).

[16] A. Formisano, E.G. Omodeo and M. Temperini, Goals and benchmarks for automated map
reasoning. J. Symb. Comput. 29 (2000) 259–297.

[17] A. Formisano, E.G. Omodeo and M. Simeoni, A graphical approach to relational reasoning,
in Proc. of RelMiS 2001 (ETAPS 2001), edited by W. Kahl, D.L. Parnas and G. Schmidt.
Electron. Notes Theoret. Comput. Sci. 44 (2001).

[18] A. Formisano, E.G. Omodeo and M. Temperini, Instructing equational set-reasoning with
Otter, in Proc. of IJCAR’01, edited by R. Goré, A. Leitsch and T. Nipkow (2001).

[19] A. Formisano, E.G. Omodeo and M. Temperini, Layered map reasoning: An experimental
approach put to trial on sets, in Declarative Programming, edited by A. Dovier, M.-C. Meo
and A. Omicini. Electron. Notes Theoret. Comput. Sci. 48 (2001) 1–28.

[20] W. Kahl, Algebraic graph derivations for graphical calculi, in Proc. of Graph Theoretic Con-
cepts in Computer Science, WG ’96, edited by F. d’Amore, P.G. Franciosa and A. Marchetti-
Spaccamela. Lect. Notes Comput. Sci. 1197 (1997) 224–238.

[21] W. Kahl, Relational matching for graphical calculi of relations. Inform. Sci. 119 (1999)
253–273.

[22] M.K. Kwatinetz, Problems of expressibility in finite languages. Ph.D. thesis, University of
California, Berkeley (1981).

[23] R.M. Smullyan, First-order Logic. Dover Publications, New York (1995).
[24] A. Tarski and S. Givant, A formalization of Set Theory without variables, Amer. Math. Soc.

Colloq. Publ. 41 (1987).
[25] J. von Neumann, Eine Axiomatisierung der Mengenlehre. J. Reine Angew. Math. 154 (1925)

219–240. English translation, edited by J. van Heijenoort. From Frege to Gödel: a source
book in mathematical logic, 1879–1931. Harvard University Press (1977).

Communicated by E. Moggi.
Received December 21, 2010. Accepted January 17, 2012.

	Introduction
	The languages L and L+
	A deductive apparatus for L
	Occurrences
	Uniform notation for formulae and relational expressions

	Graphical representation of formulae of L+
	Graph-transformation rules
	The graph-fattening algorithm
	The graph-thinning algorithm
	Termination and correctness of the graph-thinning algorithm

	Related work
	Conclusions and future work
	Appendix A. Details of the graph-thinning
	The procedure Rename
	The procedure Collapse
	The procedure Normalize
	The procedure Fusion
	The procedure Bypass
	The procedure Bigamy

	References

