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ON ABELIAN REPETITION THRESHOLD

ALEXEY V. SAMSONOV! AND ARSENY M. SHUR!

Abstract. We study the avoidance of Abelian powers of words and
consider three reasonable generalizations of the notion of Abelian power
to fractional powers. Our main goal is to find an Abelian analogue of the
repetition threshold, i.e., a numerical value separating k-avoidable and
k-unavoidable Abelian powers for each size k of the alphabet. We prove
lower bounds for the Abelian repetition threshold for large alphabets
and all definitions of Abelian fractional power. We develop a method es-
timating the exponential growth rate of Abelian-power-free languages.
Using this method, we get non-trivial lower bounds for Abelian repeti-
tion threshold for small alphabets. We suggest that some of the obtained
bounds are the exact values of Abelian repetition threshold. In addi-
tion, we provide upper bounds for the growth rates of some particular
Abelian-power-free languages.

Mathematics Subject Classification. 68Q70, 68R15.

1. INTRODUCTION

The study of avoidable powers of words has more than a centennial history since
the paper by Thue [17]. Recall that for any finite word w its 2nd power (or square)
is just the word ww, denoted by w?, its 3rd power (or cube) is w® = www, and
so on. Further, the notion of integral power of a word can be easily generalized to
non-integral powers as follows. If w is a word, |w| is its length, § > 1 is a number,
then w?” is a unique prefix v of the infinite word www ..., whose length satisfies
the conditions |v|/|w|] > 8, (Jv] = 1)/|w| < B. A word u is [-free, if none of its
factors, including w itself, is a 3-power. A G-power is said to be k-avoidable if there
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are infinitely many (§-free words (or, equivalently, an infinite S-free word) over the
k-letter alphabet, and k-unavoidable otherwise.

For any k-letter alphabet (k > 2), the repetition threshold is the number RT (k)
which separates k-unavoidable and k-avoidable powers of words. Famous Dejean’s
conjecture [8] states that RT'(3) = 7/4, RT(4) = 7/5, and RT(k) = k/(k — 1)
otherwise. The recent proof of this conjecture (see [4,7,14]) closed a whole chapter
in combinatorics on words but also opened a way to new challenging problems. One
of these problems is to obtain a similar characterization of power-free languages
in the Abelian case.

Abelian powers of words were first considered by Erdos [10] as a natural gen-
eralization of “usual” powers. The word wiws...w, is an Abelian nth power, if
each of the words wo, ..., w, is an anagram of w;. Equivalently, one can say that
w) = Wy = ... = W, in any commutative semigroup, or that ws, ..., w, share the
same Parikh vector. It is clear that, in contrast with the usual powers, there are
several ways to generalize the notion of Abelian power to fractional exponents.
Below we define weak, semistrong and strong Abelian fractional powers and then
work with all three definitions.

The avoidability of Abelian integral powers is well studied. It is easy to check
that Abelian squares are 3-unavoidable and Abelian cubes are 2-unavoidable. On
the other hand, the language of all quaternary Abelian-square-free words is infi-
nite [11] and even has exponential growth [3,12]. The same is true for ternary
Abelian-cube-free and binary Abelian-4-free languages, see [9] for infiniteness
and [1, 6] for exponential growth. The corresponding estimates for the number
of quaternary Abelian-square-free, ternary Abelian-cube-free, and binary Abelian-
4-free words are £2(1,02306™), £2(1,02930™), and £2(1,04427™), respectively. These
estimates give very rough lower bounds for the exponential growth rates of these
languages. In this paper, we give upper bounds for these growth rates; these bounds
look more reliable to represent the actual growth of the studied languages. Our
bounds are obtained by implementation of a more general method we present in
this paper.

Once a definition of Abelian fractional power is chosen, Abelian repetition
threshold can be defined in the same way as the “usual” repetition threshold.
We study the values of Abelian repetition threshold for all alphabets and three
different definitions of Abelian fractional power. The paper contains both analytic
and computer-assisted results.

A method to obtain upper bounds for the growth rates of power-free languages
is proposed in [16]. On the base of this method we construct our main instrument,
which is a method to obtain upper bounds for the growth rates of Abelian-power-
free languages.

2. PRELIMINARY CONSIDERATIONS

We omit basic definitions on words and languages, assuming that the reader is
familiar with them. Let X = {1,..., k} be an alphabet and w € X* be an arbitrary
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k-ary word. The Parikh vector p'(w) is the vector of length k whose ith component

equals the number of occurrences of the letter ¢ in w, for any ¢ = 1,... k. If
v € X*, then the notation p'(w) < p'(v) means that the ith component of p'(w) is
not greater than the ith component of p'(v), for any i = 1,... k.

A language L C X* is factorial if it is closed under taking factors of its words. A
word w is forbidden for a given language L if it is not a factor of any word from L.
The set of all minimal (with respect to the factor order) forbidden words for L is
called the antidictionary of L. A factorial language L C X with the antidictionary
M satisfies the equalities L = X* — X*MX* M = YL N LY N (X* — L). Thus,
each antidictionary determines a unique factorial language, which is regular if the
antidictionary is also regular (in particular, finite).

Remark 2.1. Infinite regular languages contain arbitrarily big powers of words.
If the antidictionary of an infinite language L is finite, then L is regular and
cannot be a power-free language. Hence, infinite power-free (or Abelian-power-
free) languages have infinite antidictionaries.

The “size” of a language L can be expressed by its combinatorial complexity,
which is the function Cr(n) = |X™ N L|. Growth rate of L roughly describes
the behaviour of combinatorial complexity and is defined by the equality a(L) =
limsup,, . (Cr(n))'/™. If a regular language L is given by a deterministic finite
automaton (dfa) A with the property that each vertex is visited during at least one
successful computation, then «(L) coincides with the Frobenius root (or spectral
radius) of the adjacency matrix of A. This result is probably folklore; a short proof
of it can be found in [15]. The dfa’s with the mentioned property are said to be
consistent.

2.1. ABELIAN POWERS

Let m > 2 be an integer. As we have said above, an Abelian m-power is a word
of the form wyws...w,,, where w; is an anagram of w; for 2 < ¢ < m, or, in
other words, p'(w1) = ... = p'(wy,). Now we extend this definition to the rational
numbers in the range (1,00). Let § > 1, |w1| = ¢, m = | 8], t = [{B}¢], where {5}
stands for the fractional part of 3. Consider a word of the form w = wy ... w,,v,
where w1 ...w,, is an Abelian m-power and |v| = t. Throughout this paper, the
terms root and tail with respect to Abelian power denote the words w; and v
respectively. Clearly, to call the word w an Abelian [-power we should impose
an additional restriction upon the Parikh vector of the tail. We consider three
different such restrictions, thus obtaining three definitions of Abelian fractional
power. Let pref(u,) be the prefix of length [ of the word w.

A weak Abelian B-power is a word w of the form described above such that
P (v) < p(wr). That is, the tail is a prefix of an anagram of the root.

A strong Abelian (-power is a word w of the form described above such that
p(v) = p(pref(wi,t)). That is, the tail is an anagram of a prefix of the root.
However, in this definition we clearly distinguish the root among all words wj;,
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since the tail does not depend on the order of letters in w; for 2 < i < m.
After swapping w; and ws the word may lose (or gain) its property of being a
strong Abelian power. For example, the word abccabba is a strong Abelian 8/3-
power, while the word cab abc ba is not. To remedy this, we introduce the following
definition:

A semistrong Abelian (-power is a word w of the form described above such
that p'(v) <V,_15, P'(pref(w;,t)), where \/ is the operation of taking maximum
componentwise. Thus, all w;’s are used symmetrically in the restriction imposed
upon the tail, like in the definition of the weak powers.

Remark 2.2.

(1) For integral values of § all three definitions are equivalent to the definition of
the integral Abelian power;

(2) for B < 2 the definitions of strong and semistrong Abelian S-powers are equiv-
alent;

(3) every strong Abelian S-power is also a semistrong Abelian S-power, and every
semistrong Abelian B-power is also a weak Abelian S-power.

Example 2.3. The word abccba ac is a semistrong Abelian (8/3)-power and is
also a weak Abelian (8/3)-power, but not a strong Abelian (8/3)-power, because
ac is not a permutation of ab. The word abcaa is not even a weak Abelian (5/3)-
power, but is a strong, semistrong and weak Abelian (5/4)-power.

Remark 2.4. There are several possible “symmetrizations” of the notion of
strong Abelian G-power. The above notion of semistrong Abelian S-power uses
the “weakest” restriction on p(v). It will be seen in Section 4 that the suggested
values of Abelian repetition threshold coincide for strong and semistrong powers.
So, if we are aimed at Abelian repetition threshold, it makes no sense to study
other symmetrizations.

A common weakness of all studied notions of Abelian fractional powers is the
lack of symmetry under reversal: the reversal of an Abelian S-power is not nec-
essarily an Abelian B-power, except for the case of strong/semistrong powers if
(6 < 2. But any reversal-preserving “version” of Abelian fractional power should
have two tails (on the left and on the right), and thus does not correlate with the
notion of integral Abelian power. For example, an Abelian 3-power can have the
form vy wjwave instead of wywews (here the tails v1 and vy have the total length
equal to the length of the root). As a result, avoidance properties of such “two-
tailed Abelian powers” do not relate to the properties of integral Abelian powers.
Since we are interesting just in the avoidance properties, we exclude two-tailed
Abelian powers from consideration.

2.2. ABELIAN-POWER-FREE LANGUAGES

Abelian exponent of a word w € X* is the maximal rational number 3 such
that w is an Abelian B-power. A word w is called Abelian-3-free (Abelian-3+-free)
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if all its factors have Abelian exponents less than § (respectively, at most [3).
It is convenient to use only the term [-free, assuming that 3 belongs to the set
of “extended rationals”. This set consists of all rational numbers and all such
numbers with a plus; the number ™ covers x in the usual < order in a way that the
inequalities y < x and y < " are equivalent. By Abelian-3-free languages we mean
the languages of all Abelian-3-free words over a given alphabet. These languages
are factorial and are called Abelian-power-free languages. We consider three types
of Abelian-power-free languages (weak, semistrong and strong), corresponding to
the three definitions of fractional Abelian powers. When necessary, we add the
attribute strong (semistrong, weak) to any of the defined notions to specify the
type of Abelian power.

To compare these definitions, it is reasonable to compare the sizes of the cor-
responding Abelian-power-free languages. Thus, we need a method for estimating
the growth rates of the Abelian-power-free languages for weak, semistrong and
strong Abelian powers. First, recall the method of [16] for power-free languages.

2.3. ESTIMATING GROWTH RATES OF POWER-FREE LANGUAGES

To obtain the upper bounds for the growth rates of factorial languages one
can use languages with finite antidictionary as follows. Let L C X* be a factorial
language with the antidictionary M. Consider a family {M;} of finite subsets of
M such that

MiCM,C---CM;C---CM, MiUMaU---UM;U---= M.
Denote by L; the factorial language over X' with the antidictionary M;. One has
LC---CL;C---CLy, ILyNnlen---NL;N---=1L.

It is not hard to show that the sequence {«(L;)} decreases and converges to a(L).
Since the languages L; are regular, the number «(L;) can be found with any degree
of precision. Increasing i, one can make the upper bound arbitrarily close to «(L).

Thus, to obtain an upper bound for a(L) one should make three steps. First,
build the antidictionary M; for the chosen . Second, convert this antidictionary
into a consistent deterministic finite automaton (dfa) recognizing L;. And finally,
calculate the number a(L;).

For a power-free (say, O-free) language these steps can be made as follows. We
define M; to be the set of all minimal forbidden words u” such that |u| < i, cal-
culate M; by some advanced search procedure and store it as a trie. Then we use
a modification of the Aho-Corasick algorithm for pattern matching to convert the
trie into the consistent dfa recognizing L;. Finally, we calculate «(L;) with any
prescribed precision by an efficient (linear in the size of the automaton) iterative
algorithm. A rather complicated but very useful trick allows one to improve the
above scheme, shrinking the sizes of the trie and the automaton by the factor
of almost |X|! This trick can be adopted for any factorial language L which is
symmetric in the sense that v € L implies o(u) € L for any permutation o of the
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alphabet. This property allows one to represent any equivalence class of symmetric
words by a single word. So, we build only the words from the antidictionary which
are lexicographically minimal in their symmetry classes (these words form a “sub-
trie” of the whole trie) and represent the transitions in the whole automaton by
transitions between the vertices of this subtrie. In what follows, the words forming
this subtrie are referred to as lexmin words.

The mentioned algorithms for the second and third steps can be used for any
symmetric factorial language. However, the first step can vary significantly for
different subclasses of factorial languages.

In practice, the described method for power-free languages works well enough,
allowing one to construct and handle huge automata in a short time. So, if we can
efficiently organize the first step for Abelian-power-free languages, we will get a
very powerful instrument.

3. LOWER BOUNDS FOR ABELIAN REPETITION THRESHOLD

Like Dejean in [8], we begin the study of the Abelian repetition threshold with
the lower bounds. Let X = {1,...,k}. We prove uniform lower bounds for both
strong and weak Abelian repetition threshold (denoted by ART(k) and ART,,(k),
respectively). In view of the numerical results of Section 4, it looks highly prob-
able that our bound for ART (k) is exact, while the bound for ART,, (k) can be
improved. In what follows, we prove:

Theorem 3.1. ART,(k) > Z%2 for all k > 5.

3
Let w = wy ... wy, € X* where wy,...,w,, are letters in Y. We say that a
factor w of the word w is an Il-factor if |u| = I. The jth I-factor is the factor

Wj ... Wj4i—1. For any j, the jth and (j + 1)th [-factors of w are called successive.
We need two lemmas.

Lemma 3.2. Suppose that k > 4, w € X* is a strong (=semistrong) Abelian-£=2 -

k-3
free word.

(1) Each (k — 2)-factor of w consists of (k — 2) different letters;
(2) at least one of any two successive (k — 1)-factors of w consists of (k — 1)
different letters.

Proof.

(1) Let w = wy ... wy,. If w; = wj, ¢ < j, then w;...w; is an Abelian
power. Since w is Abelian—%—free, we get j — i > k — 2, whence the result;

(2) let u = w; ... witgp—2 and v = Wit1 ... Wi+k—1 be two successive (k — 1)-
factors of w. Since w and v are Abelian-3-free, it follows from (1) that the first
(k — 2) letters of u are different, as well as the last (k — 2) letters of both u
and v. Suppose that both u and v contain equal letters. This can happen only if
w; = Witk—2 and w;4+1; = wi+k—1, which implies that the word w; ... w;1x—1 is a
strong Abelian %—power. Since kEQ > ’;—:g for k > 4, w is not Abelian—’,j%g—free,
and we get a contradiction. Hence, either u or v consists of different letters. O

J—itl
G—i
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According to Lemma 3.2, the k-ary z%g—free words have two types of (k — 1)-
factors: quasipermutations, consisting of different letters, and repeats, in which the
first and the last letter coincide. By permutation we mean a k-factor consisting of
k different letters.

Remark 3.3. Abelian %—powers (respectively, %—powers) are forbidden for
the k-ary ’Iz;_g—free language whenever k > 5 (respectively, k > 6).

Lemma 3.4. For k > 6, any k-ary Abelian—’;—:g—free word beginning with a
quasipermutation and containing no permutations as factors has length at most
4k — 2.

Proof. Let w be a word satisfying the conditions of the lemma. Suppose that jth
and (j + 1)th (k — 1)-factors of w are quasipermutations. Then they consist of
the same letters. Hence, the (j + 2)th (k — 1)-factor of w is a repeat, otherwise w
contains an Abelian ,’:i—power, which is impossible by Remark 3.3.

Aimed at a contradiction, let |w| > 4k — 1. Then the number of (k — 1)-factors
in w is at least 3k + 1. Hence, w contains at least k repeats and also a quasiper-
mutation to the right of the kth (counting from left to right) of these repeats.
Since there are only k possible sets of letters for quasipermutations, w contains
two quasipermutations, which consist of the same letters and are not successive.
Let ith (k — 1)-factor z and jth (k — 1)-factor z of w be such quasipermutations
such that the difference j —4 > 1 is minimal. If z and Z overlap in w, they form a
factor xyZ such that xy = z and yZ = z. Obviously, |x| > 2 and Z is an anagram
of x. Thus, zyT is an Abelian S-power for some 3 > %, which is impossible by
Remark 3.3.

Now suppose that z and Z do not overlap in w. Since two successive quasiper-
mutations in w consist of the same letters, by minimality of j — i we get that the
(i + 1)th and the (j — 1)th (k — 1)-factors of w are repeats. Consider the word
U = Wj... Wjytk—2 = 2yZ. By minimality of j — 4, u contains at most k repeats,
and thus, at most 3k (k — 1)-factors. So we have |u| < 4k — 2. The word u is an
Abelian %—power. For k> 7,

[ul—

|ul k-2 k-2
> > ,
lu[—k+1~3k—1" k-3

contradicting to the fact that w is Abelian—’,j%g—free. A more detailed analysis is
needed for k = 6. We will prove that in this case the word u contains less than
2k = 12 quasipermutations. If this number is achieved, u contains five pairs of
successive quasipermutations in addition to z and z. Then the beginning of u looks
as follows, up to the renaming of letters (recall that u contains no permutations).
Under each letter, we indicate the type of the (k — 1)-factor which begins in the

position of this letter (q = quasipermutation, r = repeat):

1234526351234...
qrqqrqqrgq
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We see that u contains another anagram of z (written in boldface), a contradic-
tion with the choice of z. In fact, we proved that the sequence of (k — 1)-factors
of w has no factor qrqqrqqrq. Thus, the longest sequence of (k — 1)-factors of u is
qraqrqrgqrqraqrg. So we have |u| < 20. Therefore, u is an Abelian (4/3)-power,
while w is Abelian-(4/3)-free by conditions of the lemma. This contradiction con-
cludes the proof. O

Proof of Theorem 3.1. Suppose that the exponent ’Iz—:g is Abelian-k-avoidable, and

W is a k-ary Abelian—’,z—:g—free infinite word. First we consider the case k > 6. By
Lemmas 3.2, 3.4, infinitely many k-factors of W are permutations. Note that at
least one of any three successive k-factors of W is not a permutation (otherwise,
W contains an Abelian %—power, which is impossible by Rem. 3.3). So, we can
pick a pair of indices i,j such that ¢ + 1 < j, ith and jth k-factors of W are
permutations, and rth k-factor of W is not a permutation whenever i < r < j.

If the two chosen permutations overlap in W, they form a factor xyZ such
that |zy| = k, |z] > 2, and T is an anagram of z. This factor is an Abelian
[-power for some (3 > kf, which is impossible by Remark 3.3. On the other
hand, if these permutations do not overlap in W, then W has a factor u = zyZ
such that x and T are permutations (and hence, anagrams of each other). If we
delete the first and the last letters of u, we will get a ’Iz;_g—free word which begins
with a quasipermutation and contains no permutations as factors. By Lemma 3.4,
lu| —2 < 4k — 2, i.e. Ju| < 4k. Hence, u contains an Abelian S-power for some
(G > 4/3. This contradiction shows that W cannot exist, so the exponent ’Iz—:g is
Abelian-k-unavoidable for any k > 6.

The case k = 5 requires a separate analysis. This is a dull (although not very
long) case examination. So, we omit it, giving only statistics confirmed by computer
search: the antidictionary of the 5-ary (3/2)-free language contains only 49 lexmin

words, and the maximum length of the root of such a word is 10. (]

Now we move to weak Abelian powers. In what follows, we prove
Theorem 3.5. ART,, (k) > % for all k > 10.

The proof of this theorem relies on two lemmas. We say that a letter w; of the

word w is old if w; = w; for some j < i, and new rwise”.
ord w € X* is old if ; for some j < 4, and othe 2

Lemma 3.6. Suppose that k > 8, w € X* is a k-ary weak Abelian—ﬁ—fr@e word,
1<1<4, and w ends with | old letters. Then 2|w| > lk.

Proof. All | last letters of w are different, otherwise they form a weak Abelian

power of exponent at least %, which is greater than % for £ > 8. The last [
letters are old, so all of them occur somewhere in the word w; ... w),|—;. Hence,
[w]

w is a weak Abelian power of exponent = < 2, whence 2|w| > lk. O

2More rigorous, not letters themselves, but their particular occurrences are old/new; but our
loose treatment makes the proof more readable.
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Corollary 3.7. Suppose that k > 8, w = pqrs is a k-ary weak Abelian—%— ree
word, |p| = |r| = |k/2], |q| = |s| = [k/2]. Then

(1) p contains no old letters;

(2) pg contains no two successive old letters;

(3) pgr contains no three successive old letters;

(4) w = pgrs contains no four successive old letters.

Proof. If we consider a prefix of pgrs ending with a group of successive old letters,
we get the bound for the length of this group from Lemma 3.6. (]

Remark 3.8. Suppose that k > 8, w is a k-ary weak Abelian—kkj—free word, and
lw| = [£]. Then w consists of | 4] different letters.

Lemma 3.9. Suppose that k > 10, w € X* is a k-ary weak Abelian—lfj—free word,
and |w| = 2k. Then w contains all k letters from X*.

Proof. Choose a word w of length 2k in which any new letter appears as late
as possible in view of Corollary 3.7. That is, if we write w = pqrs, where |p| =
Ir| = |£] and |g| = |s| = [%], then each new letter in ¢ (in r, in s) follows one
(respectively, two and three) old letters in w. We call such a word w late. Obviously,
it is enough to prove that any late word contains k& new letters. We prove this by
induction. For the inductive base k = 10, the location of new letters in w is given
by the following on-encoding (o =old, n=new):

nnnnn onono onoon 00oNo, (3.1)

so the required statement holds. We consider “even” (k =20 —1 to 2l) and “odd”
(k =2l to 21+ 1) inductive steps separately. During even step, the length of p and
r increases, while the length of ¢ and s increases during odd step.

Even step is easy. Take the on-encoding of a late word w = pgrs of length 2k
and add n to its beginning and o to its end. If » does not end by two old letters,
then we get the on-encoding of a late word of length 2k 4 2. Otherwise, to get such
an on-encoding we should just move all the n’s to the right of these two letters by
one symbol to the left (because the first letter of s has become the last letter of r).
Anyway, a late word of length 2k + 2 = 4[ contains k + 1 new letters. We also note
that the last letter of the late word of length 41 is old (this assertion holds for the
inductive base as well).

Now we prove the odd step. Let v = p’q'r’s’ be a late word of length 2k + 2.
We take the on-encoding of a late word w = pgrs of length 2k = 41, add o and n
to its end, and compare the resulting word z € {o,n}* with the on-encoding of v.
As was shown above, the last letter of w is old:
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The word z contains k + 1 n’s. Each letter n in z, the position of which cor-
responds to the part ¢’ (part r’, part s’) of the word v, follows at least one (re-
spectively, two and three) letters o. The only possible exception is the last letter n
in z. So, if w ends with two old letters, then no exception occurs, and the position
of jth new letter in v is less than or equal to the position of jth letter n in z for
any j = 1,...,k + 1. As a result, v certainly contains k + 1 new letters, and we
are done. The case when the penultimate letter of w is new implies the exception
and is analyzed in the last part of the proof.

Assuming that the on-encoding of w ends with no, we analyze three cases
depending on the position j of the first new letter in s. If j is the second position
of s, we shift all n’s, corresponding to the part s of w, by one symbol to the left
in the word z. Since the position j — 1 in this case corresponds to the part r’ of v,
the obtained word z’ possesses the desired property: each letter n, the position of
which corresponds to the part ¢’ (part 7/, part s’) of the word v, follows at least
one (respectively, two and three) letters o. As above, we conclude that v contains
k + 1 new letters. If j is the fourth position of s, then [ = |s| is odd, because the
positions of new letters in s are equal modulo 4. Then ¢ ends with an old letter,
implying that the second letter of r is new. We shift all n’s, corresponding to the
parts r and s of w, by one symbol to the left in the word z. Repeating the above
argument, we get that v contains k£ + 1 new letters.

It remains to consider the case when j is the third position of s. Then | = |s|
is divisible by 4. Hence, the last letter of ¢ is new. Since the last letter of ¢ and
the third letter of s are new, the third and the penultimate letters of r are also
new. Therefore, [ = |r| = 31’ + 1. Note that ¢ and s contain § and £ new letters,

respectively, while r contains Z’Tl new letters. Since [ = k/2 > 5, we have [ > 16.

Then we have Z’Tl > é, implying that w contains more than k new letters, a

contradiction. The lemma is proved. O

Proof of Theorem 8.5. Let w = uwv be a k-ary word, |u| = 2k, v = |k/2]. Aimed
at a contradiction, we assume that w is a weak Abelian—k—EQ—free word. By Re-
mark 3.8, all letters in the word v are different. By Lemma 3.9, the word u contains
all k letters. Hence, all letters of v are contained in u, so w is a weak Abelian power
of exponent M which is not less than ﬁ for £ > 10. This is impossible as

w is weak Abehan—m—free.

So, any k-ary word of length at least 2k + |k / 2| has a forbidden factor. This
means that the language of k-ary weak Abelian-=5-free words is finite, implying
ART,(k) > £5. 0

4. ANTIDICTIONARIES OF ABELIAN-POWER-FREE LANGUAGES

Now we prepare computer-assisted studies. Let 5 > 1 be an extended rational
number. In order to estimate the growth rate of the Abelian-g-free language by
the method described in Section 1.3, we should construct the antidictionary of
this language. If the language is infinite, the antidictionary is also infinite by
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Remark 2.1, so we actually construct its finite approximation. More precisely, we
find all minimal forbidden words whose root is of length at most R for some integer
R. Next lemma easily follows from the definitions of Abelian fractional powers.

Lemma 4.1. If a word w € X* is a weak (semistrong, strong) Abelian B-power
and o is a permutation of X, then o(w) is also a weak (respectively, semistrong,
strong) Abelian B-power.

Lemma 4.1 tells us that Abelian-power-free languages are symmetric. Hence, it
is not necessary to construct the whole antidictionary; we can construct just the
trie of all lexmin words instead. We store all possible roots of lexmin words in an
auxiliary queue @, iterating over roots in the order of increasing length. Note that
these roots should be lexicographically minimal words in their symmetry classes.
For convenience, we store with each word in the queue the number of different
letters in it. For each root r, we try to construct all minimal forbidden words from
it and add them to a trie which stores the lexmin words found so far. After that,
we try to extend the root by appending letters from X' to its end and push this
longer root into the queue. Then we pop another root and continue the algorithm
until all roots of length at most R are handled, see procedure ITERATE below.
Recall that ¥ = {1,...,k}. BUILD is a recursive procedure described below. Call
of BUILD at line 4 results in adding all lexmin forbidden words with the root r to
the trie.

Procedure ITERATE (outer cycle).

01. push (‘1’;1) into @
02. while () is not empty

03. pop (r;t) from @

04. BUILD(r, 7, p(1))

05. if |[r| <R

06. for each ¢ <t such that rc has no forbidden suffixes
07. push (re;t) into @

08. if t<k

09. push (r(t+1);¢t+1) into Q

10. end while

The process of constructing all minimal forbidden words from a given root
is quite time-consuming, as the number of these words can be very large. The
dependence of their lengths on the length of the root is also not trivial, as the
following lemma shows.

Lemma 4.2. If w € X* is a minimal forbidden word for an Abelian-(3-free lan-
guage and the length of its root is equal to R, then

(1) |w| =T[R-B] for weak Abelian powers;
(2) [R- 5] < |w| < R-[B] for strong or semistrong Abelian powers, and this
interval cannot be shortened in general.
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Proof. A minimal forbidden word for an Abelian-3-free language is at least an
Abelian S-power, so the lower bound for |w]| follows from definitions. To prove (1),
note that each prefix of a weak Abelian power is also a weak Abelian power with
the same root. So, if the length of the word w exceeds [R - 8], w will have a
forbidden proper prefix. This note also proves the upper bound for (2) in view of
Remark 2.2 (1). In the case of strong and semistrong Abelian powers the situa-
tion is more difficult, because not all their prefixes are Abelian powers. Thus, the
Abelian square abede bdaec of length 10 is also a minimal forbidden word for the
strong (= semistrong) Abelian-(7/5)-free language, as one can check directly. This
example proves that the upper bound in (2) is sharp. O

We construct lexmin forbidden words from a root recursively, appending letters
to the end of a current word one by one until one of three exit conditions is fulfilled:
current word is a lexmin forbidden word, current word is too long, or current word
has a forbidden proper suffix. At each step we maintain the vector p of unused
letters. When we append a letter ¢ to our word, we decrease the corresponding
component []. of p. But if by appending a letter we finish appending an anagram
of the root, the next letter can again be any letter in the root, so we make p equal
to the Parikh vector of the root. The formal description of this construction is
given by procedure BUILD whose arguments are the current word w, the root r,
and the current vector of unused letters p. IS_LABELIAN is a subroutine which checks
whether w is a (weak, semistrong, strong) Abelian power with the root 7.

Procedure BUILD(w,r,p’) (constructing forbidden words).

01. if 1s_aBerLian(w,Tr)

02. if |w| satisfies Lemma 4.2

03. add w to the trie

04. exit procedure

05. if |w| equals the upper bound from Lemma 4.2
06. exit procedure

07. if |w| mod |r| =0

08. p=p(r)

09. for each letter ¢ such that [p]. >0

10. U = wc

11. g=7p

12. [@e =[qlc —1

13. if v has no forbidden proper suffixes
14. BUILD (u, T, )

15. end for

If the conditions at lines 1 and 2 hold, then the word w is an Abelian power with
the root r and its Abelian exponent is at least 3. The word w has no forbidden
proper factors because (a) r is Abelian-3-free by construction, see Procedure ITER-
ATE, and (b) the condition at line 13 is checked on the previous steps of recursion
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for each prefix of w which is longer than r. So, w is indeed a minimal forbidden
word and the operation at line 3 is justified.

We can easily maintain Parikh vectors of all prefixes of w. Therefore, we are able
to calculate the Parikh vector of any factor of this word, subtracting the Parikh
vectors of corresponding prefixes. This is enough to implement the subroutine
IS_ABELIAN in constant time for each of three definitions of Abelian fractional
power, assuming that | 3] is a constant.

Finally, we have to check the condition at line 13 efficiently. The following
lemmas are useful in special cases:

Lemma 4.3. If § is an integer and w € X* is an Abelian B-power, then the
reversal of w is also an Abelian B-power.

Lemma 4.4. Suppose that u,v,w € X* w and v are suffizes of w, and @ (V) is
the shortest suffix of w, which is a non-trivial weak Abelian power with the tail u
(respectively, v). If |u| < |v|, then |a| < |7].

Proof. Let v = vv. Then p'(0) > p'(v) > p'(u). It means that o is a weak Abelian
power with the tail u by definition. But @ is the shortest suffix of w with such
property, so |@| < |9]. O

Now we can formulate the main lemma, which estimates the running time of
the procedure that looks for the forbidden suffixes. We consider the size of the
alphabet as a constant.

Lemma 4.5. Let w € X*, |w| = n, f > 1. During our algorithm we can check
whether w has a suffiz with Abelian exponent at least [3:

(1) in O(n) time, if B is an integer or if B < 2 and we consider weak Abelian
powers;
(2) in O(n?) time in all other cases.

Proof. If § is an integer, then at the moment we consider w we can be sure that all
shorter forbidden words are already stored in the trie. According to Lemma 4.3,
we can check prefixes of the reversal of the word w instead of suffixes of w. So,
we read the word w backwards and replace the obtained word “on the fly” by the
lexicographically minimal equivalent word. To do this replacement in O(n) time,
we store the images of replaced letters in an array of constant size. If the image
of the current letter is undefined so far, it is set to the biggest existent image plus
one. The obtained lexmin word is then considered as an input word for the current
trie. If the trie reaches a terminal state, the forbidden prefix is detected. If the
trie cannot reach such a state, then the input word has no forbidden prefixes. This
check also takes linear time, so we are done with the integral powers.

Now suppose that § is not an integer and w has a forbidden suffix. Then its
length is determined by the lengths of its tail and its root. We just try all possible
values of these lengths (each of them does not exceed n/|3|) and check if the
resulting suffix is actually a long enough Abelian power. This check is made in
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constant time by the subroutine IS_ABELIAN we described earlier, thus giving us
quadratic time overall. If 1 < § < 2 and we consider weak Abelian powers, then,
according to Lemma 4.4, the length of a suffix cannot decrease as we increase the
length of its tail (note that Lem. 4.4 cares only about shortest Abelian powers
with the given tail). So, in this case the whole procedure takes linear time. O

5. NUMERICAL RESULTS

We present some of the results on the growth rates of Abelian power-free lan-
guages. These results are related to integral Abelian powers and fractional Abelian
powers that appear to be close to the Abelian repetition threshold. In most cases
our algorithm allowed us to build any antidictionary M; such that the correspond-
ing deterministic finite automaton (dfa) can be stored in the 2Gb memory of a
PC. It means that our method in general proved efficient.

But we discovered that the sequences of upper bounds converge to the growth
rate of the target languages extremely slow. For example, to get an upper bound for
the growth rate of the binary “usual” cube-free language, one may take R = 7 and
build a dfa with 246 vertices; the bound given by this automaton deviates by less
than 0.001 from the precise value of the growth rate. On the other hand, we have
a numerical evidence that any of our non-zero upper bounds for Abelian-power-
free languages is more than 0.01 away from the actual value. It appears that lots
of words contain only long forbidden Abelian powers. For the case of quaternary
Abelian-square-free words, this phenomenon was also observed by Kerénen [13].

Table 1 contains the calculated upper bounds for the growth rates of Abelian-3-
free languages for integral numbers (3. Using the described method, we were able to
build antidictionaries containing millions of words. Although the obtained bounds
are not very close to exact values, they can be used to compare the relative “sizes”
of Abelian-power-free languages, for example, the ternary cube-free language seems
to be much larger than binary 4-free one.

Table 2 is devoted to weak Abelian-power-free languages. The results listed
in the table and some additional heuristics show that languages avoiding weak
Abelian powers can have extremely large antidictionaries and still be finite. For
example, we suppose that the languages of binary Abelian-(11/3)"-free words and
ternary Abelian-(17/7)"-free words are finite, which makes finding the exact value
of Abelian repetition threshold for small alphabets quite a challenging task.

Table 3 describes the Abelian-power-free languages for semistrong Abelian pow-
ers. The antidictionary of Abelian-square-free language over ternary alphabet con-
tains only 7 lexmin words, but the ternary Abelian-27-free language seems to be
exponential in case of semistrong Abelian powers. To justify Remark 2.4, it is
enough to compare this table with Table 4.

Our last Table 4 describes strong Abelian-power-free languages. Here we can
notice substantial gaps between the growth rates (and between the sizes of rec-
ognizing automata) that are due to the “allowance” of short factors with Abelian
exponent (. For example, the allowance of a word aba results in a huge gap of more
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TABLE 1. Abelian-power-free languages for integral powers. The
columns contain (from left to right): size of the alphabet, avoided
exponent, maximum length of a root, number of lexmin words,
number of vertices in the dfa built from the trie of lexmin words,

upper bound for the growth rate.

|X| | Exponent | Root | Words Vertices | Growth rate (upper bound)
2 4 12 8767762 | 41571476 1.374164
3 3 8 6015458 | 15187934 2.371237
4 2 20 4221881 | 23653900 1.444344
5 2 10 6420827 | 16081994 3.227410
TABLE 2. Weak Abelian-power-free languages. The explanations
for the columns are the same as in Table 1.
|| | Exponent | Root Words Vertices | Growth rate (upper bound)
2 11/3 — 13029 — 0.000000
2 | (11/3)T | 25 | 22440239 | 52403705 1.055275
3 12/5 — 556 403 — 0.000000
3 17/7 24 6128 640 7500 382 1.081150
3 (17/7)Jr 25 26586 251 | 32980908 1.108788
I | (13/7)7 | — | >2105968 - 0.000000
4 15/8 31 1408013 7038 325 1.101764
4 (15/8)T 32 8069 429 39242238 1.143995
5 5/3 — 18150 — 0.000000
5 (5/3)" 16 18285948 | 31618837 1.685733
6 3/2 — 434 — 0.000000
6 | (3/2)7 16 | 7229321 | 9525614 1.493064
7 3/2 — >130486 — 0.000000
7 (3/2)T 11 | 7658103 | 4658332 3.580134
8 7/5 — 2710432 — 0.000000
8 10/7 16 28069579 | 23580728 1.506660
8 | (10/7)T | 14 | 20486766 | 16420964 2.179884
9 4/3 — >343077 — 0.000000
9 | (4/3)T 14 | 16240204 | 6943950 2471691
TABLE 3. Semistrong Abelian-power-free languages. The expla-
nations for the columns are the same as in Table 1.
|X| | Exponent | Root Words Vertices | Growth rate (upper bound)
2 11/3 — 14120 — 0.000000
2 | (11/3)T | 21 | 12706824 | 42549418 1.137926
3 27" 20 5923132 19078136 1.266646
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TABLE 4. Strong Abelian-power-free languages. The explanations
for the columns are the same as in Table 1.

|~ | Exponent | Root Words Vertices | Growth rate (upper bound)
2 18/5 — >1378225 — 0.000000
2 11/3 34 10199584 | 57443698 1.020862
2 (11/3)* 16 16393356 | 67193118 1.232531
3 2% 13 12113648 | 37673788 1.645532
4 9/5 — 25684 — 0.000000
4 (9/5)7 30 3116 205 17942923 1.175199
5 3/2 — 49 — 0,000000
5 (3/2)F 13 6999188 | 21445164 2.334839
6 | (4/3)F 91 | 9153227 | 36992553 1.482134
7 (/AT 92 | 2957234 | 12260556 1.472652
8 (6/5)" 22 3165822 10035 601 1.551357

than 2 in the growth rate for the Abelian-(3/2)"-free language over the 5-letter
alphabet. Unlike results for the weak Abelian powers, the data in Table 4 provides
a strong evidence that the corresponding exponents coincide with the actual val-
ues of Abelian repetition threshold for strong Abelian powers, so we are able to
formulate the following:

Conjecture 5.1. The Abelian repetition threshold for strong and semistrong
Abelian powers is given by

11/3, k=2,
2 k=
ART (k) =4 7 ’
R (k) 9/5, k=4,

(k—2)/(k—3), k>5.
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