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ON ABELIAN VERSIONS OF CRITICAL
FACTORIZATION THEOREM ∗

Sergey Avgustinovich1, Juhani Karhumäki2, 3

and Svetlana Puzynina1, 2, 3

Abstract. In the paper we study abelian versions of the critical fac-
torization theorem. We investigate both similarities and differences
between the abelian powers and the usual powers. The results we ob-
tained show that the constraints for abelian powers implying periodicity
should be quite strong, but still natural analogies exist.
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1. Introduction

One of the main results of combinatorics on words, the critical factorization
theorem, relates local periodicities of a word to its global periodicity. It was first
proved by Césari and Vincent, and in the present form it is due to Duval [2,5]. This
theorem states, roughly speaking, a connection between local and global periods
of a word; the local period at any position of the word is defined as the shortest
repetition centered in this position. The theorem says that the global period of a
word is the maximum of its local periods.

In [9] Mignosi et al. proposed a different notion of a local period: a local period
at a position related to order ρ is defined as the length of the shortest repetition of
order ρ to the left from this position. In such a definition of local periods squares
are not enough to ensure the global periodicity, but the threshold is surprisingly
given by the golden ratio ϕ. Namely, if every sufficiently long prefix of an infinite
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word has a ϕ2-repetition as a suffix, then the sequence is ultimately periodic. The
quantity ϕ2 is optimal in the sense that the claim does not hold true for any real
number less than ϕ2. In a related paper [6] bounded periods were considered.
The authors established strict borderlines for periods of squares distinguishing
ultimate periodicity from non-periodicity. See Ph.D. thesis of Lepistö [7] for further
results. Powers immediately to the right from each position were recently studied
by Saari [11].

In combinatorics of words, abelian analogs of classical problems are often con-
sidered, such as abelian complexity, abelian avoidance, abelian powers and their
generalizations [1,10]. The purpose of our note is to find abelian analogues of crit-
ical factorization theorem. We seek for constraints for abelian powers enforcing a
word to be (ultimately) periodic. Our results show that such constraints should
be quite strong, but still natural analogies exist. In particular, for every integer
k we construct non-periodic words having bounded 2k-powers centered at every
position. We provide bounds for periods in abelian squares enforcing periodicity.
In addition, we study abelian powers in Sturmian and Thue-Morse words.

2. Preliminaries

2.1. Critical factorization theorem and its variations

In this section we present necessary definitions and results concerning classical
critical factorization theorem.

Given a finite non-empty set Σ (called an alphabet), we denote by Σ∗, Σω and
ΣZ, the set of finite words, the set of (right) infinite words, and the set of biinfinite
words over the alphabet Σ, respectively. For a finite word u = u1u2 . . . un with
n ≥ 1 and ui ∈ Σ, we denote the length n of u by |u|. The empty word will be
denoted by ε and we set |ε| = 0. A finite word z is a factor of a finite or infinite
word w if w = uzv for some words u, v. In the special case u = ε (resp. v = ε),
we call z a prefix (resp. suffix ) of w. We say that a biinfinite word w is periodic, if
there exists a finite word v such that w = vZ. A right infinite word w is ultimately
periodic, if for some finite words u and v we can write w = uvω; w is purely periodic
(or briefly periodic) if u = ε; |v| is a period of v.

Given a word w and an integer i such that w = uv, |u| = i, define z to be the
shortest suffix of w1u which is also a prefix of vw2 for suitable w1 and w2. The
word z is the shortest repetition word in w centered at position i. If w1 = w2 = ε,
then at this position we have a “proper” square, otherwise we have a “virtual”
square. The local period at position i is defined as the length of z. The critical
factorization theorem states that the global period of w is the maximum of all
local periods. We are interested in consequences of this theorem for infinite words
(see e.g. [8], pp. 296–297):

Theorem 2.1. A biinfinite word w is periodic if and only if there exists an integer
l such that w has at every position a centered square with period at most l.
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Theorem 2.2. A right infinite word w is periodic if and only if there exists an
integer l such that w has at every position a (virtual) centered square with period
at most l.

Theorem 2.3. A right infinite word w is ultimately periodic if and only if there
exists n0 such that for every n ≥ n0 there exists a suffix of w1 . . . wn that is
also a prefix of wn+1wn+2 . . ., i.e., for every n ≥ n0 there exists a proper central
square.

These theorems show relations between the local and the global regularities,
where the local regularity means centered powers, and the global regularity means
the (ultimate) periodicity.

In [6,9] by local periods the authors mean powers immediately to the left from
each position. Denote by prefk(w) a prefix of w of length k. For a rational number
k ≥ 1, we say that a word w is a kth power if there exists a word v such that
w = vk, where vk denotes the word v′v′′ with v′ = v�k� and v′′ = pref|v|(k−�k�)v =
pref(|w|−�k�|v|)v. Next we say that w contains a repetition of order ρ ≥ 1 if it
contains as a factor a kth power with k ≥ ρ. Note that here ρ is allowed to be any
real number ≥ 1. We say that w has a ρ-suffix, if w contains a repetition of order
ρ as its suffix.

A remarkable result of Mignosi et al. [9] connects ρ-suffices with periodicity:

Theorem 2.4. A right-infinite word w is ultimately periodic if and only if there
exists n0 such that for every n ≥ n0 the word prefn(w) has a ϕ2-suffix, where
ϕ = (1 +

√
5)/2.

As also shown in [9], Theorem 2.4 is optimal:

Theorem 2.5. For any real number ε > 0 there exists a natural number n0 > 0
such that for any n ≥ n0 the prefix of length n of the infinite Fibonacci word has
a (ϕ2 − ε)-suffix.

In [6] powers with bounded periods are considered. Let ρ ≥ 1 be a real number
and p ≥ 1 an integer. An infinite word w is (ρ, p)-repetitive if there exists an
integer n0 such that each prefix of w of length at least n0 ends with a repetition
of order ρ of a word of length at most p. It is clear that (ρ, p)-repetitivity implies
(ρ, p′)-repetitivity for any p′ ≥ p and (ρ′, p)-repetitivity for any ρ′ ≤ ρ. The goal
of the paper [6] is to establish connections between (ρ, p)-repetitive and ultimately
periodic words. In the paper it is proved, that there exist non-ultimately periodic
(2, 5)-repetitive words, and all such words are described. Moreover, the pair (2, 5)
is optimal in the sense that any (ρ, p)-repetitive word with ρ > 2 and p = 5 or
ρ = 2 and p = 4 is ultimately periodic.

2.2. Definitions and notation

We continue by fixing some terminology for abelian repetitions. Given a finite
word u ∈ Σ∗ and a ∈ Σ, we let |u|a denote the number of occurrences of the letter
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a in u. Two words u and v in Σ∗ are abelian equivalent if and only if |u|a = |v|a
for all a ∈ Σ. It is easy to see that abelian equivalence is indeed an equivalence
relation on Σ∗. An abelian k-power is a non-empty word of the form u = v1v2 . . . vk

where the words vi are pairwise abelian equivalent. In this case we refer to |v1| as
the length of an abelian period of u (or briefly period).

Let w be a biinfinite word over an alphabet Σ. For integer i, by a position
i in a word w we mean a position between wi and wi+1. Let k, l be integers.
We say that w is (k, l)-abelian central repetitive (or briefly (k, l)-ACR), if it has
a centered abelian 2k-power with length of period at most l at every position.
Formally, it means that for every i there exists l′ ≤ l such that wi−l′k+1 . . . wi+l′k
is an abelian 2k-power. We say that w is (k, l)-abelian right (resp. left) repetitive,
if it has an abelian k-power with length of period at most l immediately to the
right (resp. left) from every position, i.e., for every i there exists l′ ≤ l such that
the word wi+1 . . . wi+l′k (resp. wi−l′k+1 . . . wi) is an abelian k-power. We will refer
to (k, l)-abelian right (resp. left) repetitive words as (k, l)-ARR (resp. (k, l)-ALR)
for brevity. It is easy to see that a periodic biinfinite word with the period l is
(k, l)-ACR, ALR and ARR for every k. Notice also that a (k, l)-ACR word is
(k, l)-ARR and ALR as well. It is easy to see that a word having at every position
a centered abelian square of fixed length is periodic, and the same holds for left
and right squares.

3. Central abelian powers

In this section we study central abelian powers. In particular, contrary to the
usual critical factorization theorem, we will prove that there exist infinite non-
periodic words with bounded central abelian powers at every position. To build
such words, we will need some auxiliary notation.

Let w be a biinfinite word. Let every letter wi be a centre of an arithmetic
progression of one letter of length at least 2k+1 with difference at most l, i.e., for
every i there exists l′ ≤ l such that ωi = ωi+l′ = ωi−l′ = ωi+2l′ = ωi−2l′ = . . . =
ωi+kl′ = ωi−kl′ . Then we say that w is (k, l)-arithmetically centered. In the further
text, we will write that w contains a central arithmetic progression at position i,
if wi, which is a letter immediately to the left from the position i, is a centre of
an arithmetic progression.

Let Σ = {a1, . . . , an} be an alphabet. Denote by μΣ the generalized Thue-Morse
morphism:

μΣ(a1) = a1a2 . . . an,

μΣ(a2) = a2a3 . . . ana1,

. . .

μΣ(an) = ana1 . . . an−1.

Notice that μ = μ{0,1} is the usual Thue-Morse morphism, and its fixed point is
the Thue-Morse word.
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Lemma 3.1. Let w be a (k, l)-arithmetically centered word over an alphabet Σ.
Then μΣ(w) is (k, |Σ|l)-ACR word.

Proof. Consider a position i in μΣ(w). If i = |Σ|m for an integer m, then we have
a central abelian 2k-power with length of period |Σ|. The period coincides with a
full image of some letter, so in the period all letters from the alphabet are used
once. For i = |Σ|m + r, 0 < r < |Σ|, if w contains at the position m a central
arithmetic progression of length 2k + 1 with difference l′ ≤ l, then μΣ(w) contains
at the position i a central abelian 2k-power with length of period |Σ|l′. The period
includes l′ − 1 full images of letters and two pieces of image of a letter wm at the
beginning and at the end of the period, these two pieces constitute full image of
the letter. So in the abelian period every letter is used l′ times. �

Theorem 3.2. For every integer k, there exists a biinfinite non-periodic (k, l)-
ACR word with l = 2(k + 1)2.

Proof. Lemma 3.1 implies that it is enough to build a (k, l/2)-arithmetically cen-
tered word. We build it as follows:

wi =

⎧⎪⎨
⎪⎩

1, if i is not divisible by (k + 1),
0, if i = j(k + 1), j is not divisible by (k + 1),
?, if i is divisible by (k + 1)2.

(3.1)

Here ? means that we can use either 0 or 1.
To prove that this word is (k, l/2)-arithmetically centered, we consider sepa-

rately letters from each group from (3.1). Every wi = 1 with i not divisible by
(k + 1) is a center of an arithmetic progression with difference (k + 1). Every
wi = 0 with i = j(k + 1), j is not divisible by k + 1, is a center of an arithmetic
progression with difference l/2. Every ? = 0 is a center of an arithmetic progres-
sion with difference (k + 1), every ? = 1 is a center of an arithmetic progression
with difference 1.

Applying the Thue-Morse morphism to this sequence, we obtain a (k, l)-ACR
word. �

There are some remarks to be made about the construction from Theorem 3.2.

Remark 3.3. The construction gives uncountably many non-periodic
(k, 2(k + 1)2)-ACR words.

Remark 3.4. Note that instead of the Thue-Morse morphism we can also apply
the general Thue-Morse morphism for an alphabet Σ, |Σ| > 2. In this case we
obtain a (k, |Σ|(k + 1)2)-ACR word over Σ.

Remark 3.5. Let w be a (k, l)-ACR word over an alphabet Σ. Consider an
alphabet Σ′ satisfying |Σ′| < |Σ|, and a surjective map ϕ : Σ → Σ′. Then the
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word ϕ(w) is a (k, l)-ACR word over Σ′. This construction allows to construct
non-periodic (k, l)-ACR words from non-periodic (k, l)-ACR words over a larger
alphabet.

Theorem 3.6. There exists a biinfinite non-periodic word w, such that for every
integer k there exists l such that w is a (k, l)-ACR word.

Proof. We build the word using the construction from Theorem 3.2 and the Toeplitz
construction [3,12]. Recall the definition of Toeplitz words. Let ? be a letter not
in Σ. For a word w ∈ Σ(Σ∪?)∗, let

T0(w) =?ω, Ti+1(w) = Fw(Ti(w)),

where Fw(u), defined for any u ∈ (Σ∪?)ω , is the word obtained from wω by
replacing the sequence of all occurrences of ? by u; in particular, Fw(u) = wω if
w contains no ?.

Clearly,
T (w) = lim

i→∞
Ti(w) ∈ Σω

is well-defined, and it is referred to as the Toeplitz word determined by the pattern
w. Let p = |w| and q = |w|? be the length of w and the number of ?s in w,
respectively. Then T (w) is called a (p, q)-Toeplitz word.

We modify this construction as follows. First we build a (1, l1)-ACR word using
the construction from Theorem 3.2. Notice that all elements in it except ? are
centres of infinite arithmetic progressions. Now we build a (2, l2)-ACR word, using
this construction, and put this word on the places of ? of previously built (1, l1)-
ACR word. Continuing this line of reasoning to infinity, we obtain a non-periodic
binary word, such that for every integer k there exists l such that w is a (k, l)-ACR
word. �

Theorems 3.2 and 3.6 actually show differences between usual powers and
abelian powers. Contrary to Theorem 2.1, they give the existence of non-periodic
words having central abelian powers. To obtain conditions implying periodicity,
we have to set quite strong constraints for the powers.

If in Theorem 3.6 we reverse quantifiers “there exists l” and “for every k”, then
we obtain an opposite result:

Theorem 3.7. Let w be a biinfinite word. If there exists an integer l such that
for every k the word w is a (k, l)-ACR, then w is periodic.

Proof. Since for every k there exists an abelian centered k-power of length not
greater than l, we take k = l!. Then for every position i there exists li ≤ l such
that at this position we have a 2l!-power of length li. So, multiplying period by
l!/li, we obtain a 2li-power (and so also 2-power since 1 ≤ li) with period l!.
Therefore, w has a central 2-power of length l! at every position. As mentioned
above, a word having at every position a central abelian square with a fixed period
is periodic. �
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The proof of Theorem 3.7 implies that it can be formulated in the following
form:

Theorem 3.8. Let w be a biinfinite non-periodic (k, l)-ACR word. Then k < l!.

Example 3.9. Here we consider a family of non-periodic (1, 8)-ACR words ob-
tained by the construction described in Theorem 3.2.

First we build a (1, 4)-arithmetically centered word:

wi =

⎧⎪⎨
⎪⎩

1, if i is not divisible by 2,

?, if i = 4j, j ∈ Z,

0, otherwise.
(3.2)

Instead of each ? one can use either 0 or 1. It is easy to see that each letter is a
centre of an arithmetic progression of length 1, 2 or 4.

Applying the Thue-Morse morphism

ϕ(0) = 01, ϕ(1) = 10

to this sequence, we obtain (1, 8)-ACR word.

Notice that the bound is optimal, i.e., if w is a biinfinite non-periodic (1, l)-ACR
word, then l ≥ 8. The nonexistence of non-periodic (1, l)-ACR words for l < 8
was proved with a technical case study. It was also checked with a computer (and
we are grateful for computer experiments to A. Saarela and K. Saari). Notice that
here we have a big difference compared to usual squares. For usual squares the
central factorization theorem (Thms. 2.1, 2.2) says that bounded central squares
imply periodicity. For abelian squares we have to put an additional condition on
lengths of abelian squares to enforce periodicity. However, this result for lengths
of abelian squares distinguishing periodicity and non-periodicity is similar to the
results from [6] on bounded left squares implying periodicity, which we mentioned
in Section 2.1.

Remark 3.10. We emphasize that all statements from this paragraph can be
reformulated for right infinite words as follows. In these statements instead of
“periodicity” we can write “ultimate periodicity”, and we suppose that all condi-
tions for abelian repetitions hold starting from some position. For example, the
word w ∈ Σω is (k, l)-ACR, if there exists i0 such that for every i ≥ i0 there is a
central 2k-power with length of period at most l at position i.

4. Right and left abelian powers

In this section we discuss abelian powers occurring immediately to the right
(resp., to the left) from each position. Similarly to usual powers, right and left
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abelian powers give weaker conditions for periodicity than central abelian powers.
However, some conditions can be derived to guarantee it.

Note first, that for every k there exist non-periodic biinfinite (k, 2(k+1)2)-ARR
(ALR) words. Moreover, there exists a non-periodic biinfinite word, such that for
every k there exists l for which w is a (k, l)-ARR (ALR) word. This follows from
Theorems 3.2, 3.6 and an observation that every (k, l)-ACR word is (k, l)-ARR
and ALR. So, the results of the previous section imply that l equal to 2(k + 1)2

is enough for the existence of non-periodic (k, l)-ARR (ALL) words. Actually for
right (resp. left) k-powers a smaller bound for l exists:

Theorem 4.1. There exist biinfinite non-periodic (k, k + 1)-ARR (ALR) words.

Proof. We will prove that every w of the form {01k−1, 01k}ω is a (k, k + 1)-ARR
(ALR) word.

Denote a = 01k−1, b = 01k, then w ∈ {a, b}ω. To prove this theorem, we will
check that every position starts with an abelian k-power of length 1, k or k + 1
depending on its location in a or b. Consider a position i in an arbitrary occurrence
of b. Let after this occurrence of b in w we have a factor consisting of j letters b
and k − j letters a.

At the position i = 0 we have a right k-power with length of period k. To prove
it, first note that the number of occurrences of the letter 0 in the factor of length
k2 starting at position 0 does not depend on j and is equal to k. Any factor of
length k of w contains at most one 0, hence we have an abelian right k-power with
an abelian period 01k−1.

The position i = 1 starts with a right k-power with length of period 1.
For 1 < i < k + 1, j < i − 1 we have at the position i a right k-power with

length of period k. The factor of length j(k + 1) + (k − j)k starting at position
k + 1 and consisting of j letters b and k − j letters a contains k letters 0. The
suffix of length k − 1 of this factor is 1k−1, so if we cut this suffix, then we get
that the factor v of length j(k + 1) + (k − j)k − (k − 1) = k2 − k + 1 + j starting
at position k + 1 contains k letters 0. So the factor of length k2 starting at the
position i is obtained from v by adding 1k+1−i in the beginning and 1i−j−2 in the
end. So it contains k letters 0. Any factor of length k + 1 of w contains at least
one 0, hence we have an abelian right k-power with abelian period 01k−1.

If j ≥ i−1, then the position i starts with a right k-power with length of period
k + 1. As above, the factor of length j(k + 1) + (k − j)k starting at position k + 1
and consisting of j letters b and k − j letters a contains k letters 0. The suffix of
length k − 1 of this factor is 1k−1. The factor of length k(k + 1) starting at the
position i is obtained from v by adding 1k+1−i in the beginning and cutting suffix
1j−i+1, and thus also contains k letters 0. Any factor of length k of w contains at
most one 0, hence we have an abelian right k-power with abelian period 01k.

Consider a position i in an arbitrary occurrence of a. If i = 0, then we have an
abelian right k-power with length of period k + 1. For i > 0 the proof is the same
as for the position i + 1 inside an occurrence of b. �

We consider separately the minimal case k = 2.
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Example 4.2. We analyze non-periodic biinfinite (2, 2)- and (2, 3)-ARR binary
words.

Let w be a (2, 2)-ARR word. If w contains the factor 010, then its suffix is
(10)ω. If w contains the factor 100, then its suffix is of the form (1100)∗(10)ω or
(1100)ω. Denote by Σ−ω the set of left infinite words. So, w is contained in the
following set of words: 0Z, (01)Z, (1100)−ω(10)ω, 0−ω(1100)ω, (0)−ω(0011)∗(01)ω,
(0)−ω(1100)∗(10)ω (up to renaming 0 and 1). Though some of these words are non-
periodic in the sense of our definition, they have a structure similar to ultimately
periodic right infinite words. So, we will say that a biinfinite word w is ultimately
periodic, if there exist finite words u, v1, v2, such that w = v−ω

1 uvω
2 .

The proof of Theorem 4.1 implies that {01, 011}Z give a family of non-periodic
biinfinite (2, 3)-ARR words. Notice that this family gives uncountably many
words.

So, in the case of right abelian squares the bound distinguishing periodic and
non-periodic words is the following: for l = 1 there exist only periodic words,
namely, words of the form aZ, where a ∈ Σ. For l = 2 there exist only periodic
and ultimately periodic words, for l ≥ 3 there exist non-periodic words. Remark
that we proved the optimality of the bound l = k + 1 for the existence of non
ultimately periodic (k, l)-ARR words for k ≤ 6 with a technical case study.

5. Examples

In this section we consider the examples of the Sturmian words and the
Thue-Morse word. These words have quite strong properties concerning the bal-
ance between number of 0’s and 1’s in factors. Therefore, they are good candidates
for non-periodic words with abelian repetitive properties.

Example 5.1 (Sturmian words). Let s be a Sturmian word. Then

• s is not (k, l)-ACR for any pair (k, l);
• for every k there exists l such that s is (k, l)-ARR.

The nonexistence of bounded centered abelian squares follows from the fact that
a Sturmian word contains factors of the form u01u, where u is a special palindromic
factor, and the lengths of bispecial palindromic factors are unbounded (see e.g. [8],
Chap. 2).

The existence of bounded right abelian powers follows from the following theo-
rem proved by Richomme et al.:

Theorem 5.2 (Thm. 6.1. in [10]). For every Sturmian word s and every positive
integer k, there exist two integers l1 and l2 such that each position in s begins in
an abelian k-power u1u2 . . . uk with abelian period l1 or l2, that is |ui| ∈ {l1, l2}.
In particular, every Sturmian word begins in an abelian k-power for all positive
integers k.
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Example 5.3 (the Thue-Morse word). For the Thue-Morse word t we will prove
that

• t is (1, 14)-ACR and not (k, l)-ACR for every k > 1 or l < 14;
• t is (2, 5)-ARR and not (k, l)-ARR for every k > 2 or l < 51.

These facts are proved using the definition of the Thue-Morse word via binary
expansion and Lemma 3.1. Recall that the Thue-Morse word can be defined in
the following way: ti = 1, if the number of ones in the binary expansion of i is
odd, and ti = 0 otherwise. In this definition the starting index is 0.

First, we prove that the Thue-Morse word has bounded centered abelian squares
at every position. At every odd position (between blocks) t has a centered abelian
square with length of period 2. At even positions (inside blocks) centered abelian
squares with odd periods do not exist. Odd periods are impossible, since a word
of odd length to the right from an even position contains several full blocks and
a letter a immediately to the right from the position, and a word to the left from
this even position contains several full blocks and a letter ā immediately to the
left from the position. So these words cannot be abelian equivalent. It is easy to
see that t contains an abelian square at a position 2i with period 2l if and only if
t contains at the position i an arithmetic progression of length 3 with difference
l. So, it is enough to prove that every position i is the centre of an arithmetic
progression of length 3 with bounded difference. To prove it, we will consider
several cases. Denote the binary expansion of i by f(i). We will consider different
forms of f(i) and in each case we will find a number m, such that adding and
subtracting f(m) from f(i) does not change the parity of 1’s. So the elements
ti−m, ti, ti+m form an arithmetic progression of one letter.

If f(i) ends with 102j, j ≥ 1, then we take f(m) = 11. Then f(i) + f(m) ends
with 102j−211, f(i)− f(m) ends with 012j−201, the beginning is the same as f(i).

If f(i) ends with 102j+1, or 102j10, or 012j01, or 012j+1, j ≥ 1, then we take
f(m) = 110.

If f(i) ends with 012j, or 102j1, or 012j0, j ≥ 1, then we take f(m) = 11.
If f(i) ends with 102j+11, or 012j+10, j ≥ 1, then we take f(m) = 111.
If f(i) ends with 102j+110, or 012j+101, j ≥ 0, then we take f(m) = 101.
It is not difficult to check that all possible endings of f(i) are considered.

The maximal m we used is 7, f(7) = 111. It is easy to see that smaller m
is not possible in f(i) ending with 102j+11, j ≥ 1. So the Thue-Morse word is
(1, 14)-ACR word, and it is not (1, l)-ACR for l < 14.

To prove the nonexistence of bounded abelian centered 4-powers, we first notice
that at positions inside blocks periods of centered abelian 4-powers should be
even (since it holds already for squares). So in μ−1(t) there should be centered
arithmetic progressions of length 5 with bounded difference at every position,
and hence right arithmetic progressions with bounded difference of length 3. We
will prove that the existence of right bounded abelian progressions of length 3 is

1Remark that the right abelian powers for the Thue-Morse word were also studied indepen-
dently and simultaneously in [4].
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impossible. Namely, we will prove that the positions of the form i = 2j − 1 start
with arithmetic progressions of length 3 only with growing differences. Let m be
the difference of an arithmetic progression of length 3 starting in i. Notice that
f(i) = 1j, f(2m) = f(m)0. We can take i as large as needed, while m is bounded.
So for i large enough the number of 1’s in 1j + f(m) and 1j + f(m)0 differs by 1
and hence ti+m �= ti+2m.

Now we proceed to the proof of the nonexistence of bounded abelian right cubes.
Suppose that there exists l0 such that t is (3, l0)-ARR. Similarly to even periods of
centered squares inside blocks, we get for right cubes that in the positions inside
blocks the periods cannot be odd. So, if at a position 2i the Thue-Morse word
contains an abelian cube of length 2l ≤ l0, then μ−1(t) = t at the position i starts
with an arithmetic progression of length 4 with difference l ≤ l0/2, which as we
have just seen is impossible at some positions.

It remains to prove the existence of bounded right abelian squares. Between
blocks we have right abelian powers of any length with period 2. We will prove that
at positions inside blocks we have bounded squares with odd periods. Considering
μ−1(t) = t, one can see that the existence of abelian square at position 2i with
odd period l is equivalent to the condition ti = 1 − ti+l. We will prove that in
every position we can find such l ≤ 5. Suppose the converse, i.e., that there exists
a position i in which for all odd l′ ≤ 5 we do not have ti = 1 − ti+l′ , which means
ti = ti+1 = ti+3 = ti+5. Then a block begins in i + 1, i is odd, and hence in
the preimage we have t i+1

2
= t i+1

2 +1 = t i+1
2 +2. This is impossible since the Thue-

Morse word is cube-free (see e.g. [8], p. 113). The optimality of l = 5 is trivially
achieved, for example, at position 2.

We would like to emphasize that the Sturmian and the Thue-Morse words show
very different properties concerning abelian powers. While Sturmian words have
bounded right k-powers for every k, they do not have bounded centered powers
(even squares!). The Thue-Morse word has bounded centered abelian squares and
right cubes, and does not have bounded centered and right abelian 4-powers.

6. Conclusion and open questions

In this paper we studied abelian versions of critical factorization theorem. These
results lie in a streamline of research on connections between local and global reg-
ularities. We consider such problems in infinite words, where the global regularity
is specified as a periodicity, and a local regularity as an abelian central, right or
left repetitivity. We considered centered abelian powers and powers to the right
and to the left from each position. First, we proved that for every k there exist
non-periodic (k, 2(k + 1)2)-ACR words (Thm. 3.2). These results show big differ-
ences compared to usual powers (Thms. 2.1, 2.2), where bounded centered squares
imply periodicity. Secondly, we established the existence of a word having for ev-
ery k uniformly bounded centered abelian k-powers at every position, the bound
depends on k (Thm. 3.6). On the other hand, we established the nonexistence of
a word having for any k centered abelian powers bounded by a fixed l (Thm. 3.7).
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Thirdly, we found a construction for (k, k + 1)-ARR (ALR) words (Thm. 4.1).
Besides that, we studied the abelian repetitive properties of Sturmian and the
Thue-Morse words.

There remain some open questions about the abelian versions of the critical
factorization theorem. Below we summarize some of those.

Open problem 6.1. For any k, find l (depending on k) such that there exists
a non-periodic (k, l)-ACR (ARR) word, and all (k, l − 1)-ACR (ARR) words are
periodic.

For abelian squares the answer is given by Examples 3.9 and 4.2. We have
that for any k there exists an l such that a non-periodic (k, l)-ACR (ARR) word
exists (see Thms. 3.2, 4.1). The general straightforward way to obtain such l is as
follows: for every i = 2k, 4k, 6k, . . . we build the directed graph whose vertices are
all words of length i having an abelian 2k-power in the middle. There is an arc
from a vertex u to a vertex v, if v is obtained from u by deleting first letter and
adding one letter in the end of the word. Actually, this graph is a subgraph of De
Bruijn graph of order i. Each path in this graph corresponds to a word. If the
graph does not contain two intersecting cycles, then there exist only periodic words
for this length and we increase i by 2k. If it does, then there exists a non-periodic
(k, i/2k)-centered word and for the smallest such i we have l = i/2k. Remark
that this graph construction implies that if for some length we have non-periodic
words, then we have uncountably many words, since we have free choice of a cycle
at infinitely many points. But of course this way is ineffective, since the number of
all words of length i is exponential. Notice that we do not know examples which
give smaller l than constructions from Theorems 3.2, 4.1.

Open problem 6.2. Let k be an integer. Does there exist a non-periodic word
w and integers l1, l2, such that w contains a central abelian 2k-power of length l1
or l2 at every position?

Notice that the construction from Theorem 3.2 gives an example of such a word
using three periods. One period trivially implies periodicity. So two periods is an
open question. Note also that for right (left) powers the answer to the question is
given by Theorem 5.2, which implies that for every k Sturmian words have abelian
k-powers with one of two periods at every position.

Open problem 6.3. Critical factorization theorem for abelian periods.

We will say that a biinfinite word w is abelian periodic if there exists a finite word
v such that w can be written as a concatenation w = . . . vivi+1 . . ., where vi ≈ab v
for every i. The problem is to find connections between abelian periodicity and
ACR, ARR, ALR properties, i.e., find abelian analogues of the critical factorization
theorem where not only powers, but also the period is considered in the abelian
sense.
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[5] J.-P. Duval, Périodes et répetitions des mots du monoide libre. Theoret. Comput. Sci. 9

(1979) 17–26.
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