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SOME PROBLEMS IN AUTOMATA THEORY
WHICH DEPEND ON THE MODELS OF SET THEORY

Olivier Finkel1

Abstract. We prove that some fairly basic questions on automata
reading infinite words depend on the models of the axiomatic system
ZFC. It is known that there are only three possibilities for the cardi-
nality of the complement of an ω-language L(A) accepted by a Büchi
1-counter automaton A. We prove the following surprising result: there
exists a 1-counter Büchi automaton A such that the cardinality of the
complement L(A)− of the ω-language L(A) is not determined by ZFC:
(1) There is a model V1 of ZFC in which L(A)− is countable. (2) There
is a model V2 of ZFC in which L(A)− has cardinal 2ℵ0 . (3) There is a

model V3 of ZFC in which L(A)− has cardinal ℵ1 with ℵ0 < ℵ1 < 2ℵ0 .
We prove a very similar result for the complement of an infinitary ratio-
nal relation accepted by a 2-tape Büchi automaton B. As a corollary,
this proves that the continuum hypothesis may be not satisfied for com-
plements of 1-counter ω-languages and for complements of infinitary ra-
tional relations accepted by 2-tape Büchi automata. We infer from the
proof of the above results that basic decision problems about 1-counter
ω-languages or infinitary rational relations are actually located at the
third level of the analytical hierarchy. In particular, the problem to
determine whether the complement of a 1-counter ω-language (respec-
tively, infinitary rational relation) is countable is in Σ1

3\(Π1
2∪Σ1

2). This
is rather surprising if compared to the fact that it is decidable whether
an infinitary rational relation is countable (respectively, uncountable).
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1. Introduction

In computer science one usually considers either finite computations or infinite
ones. The infinite computations have length ω, which is the first infinite ordinal.
The theory of automata reading infinite words, which is closely related to infinite
games, is now a rich theory which is used for the specification and verification of
non-terminating systems, see [10,22].

Connections between automata theory and set theory have arosen in the study
of monadic theories of well orders. For example, Gurevich et al. proved in [11]
that the monadic theory of ω2, where ω2 is the second uncountable cardinal, may
have different complexities depending on the actual model of ZFC (the commonly
accepted axiomatic framework for set theory in which all usual mathematics can
be developped), and the monadic theory of ω2 is in turn closely related to the
emptiness problem for automata reading transfinite words of length ω2. Another
example is given by [20], in which Neeman considered some automata reading much
longer transfinite words to study the monadic theory of some larger uncountable
cardinal.

However, the cardinal ω2 is very large with respect to ω, and therefore the
connections between automata theory and set theory seemed very far from the
practical aspects of computer science. Indeed one usually thinks that the finite
or infinite computations appearing in computer science are “well defined” in the
axiomatic framework of mathematics, and thus one could be tempted to consider
that a property on automata is either true or false and that one has not to take care
of the different models of set theory (except perhaps for the continuum hypothesis
CH which is known to be independent from ZFC).

In [5] we have recently proved a surprising result: the topological complexity
of an ω-language accepted by a 1-counter Büchi automaton, or of an infinitary
rational relation accepted by a 2-tape Büchi automaton, is not determined by the
axiomatic system ZFC. In particular, there is a 1-counter Büchi automaton A
(respectively, a 2-tape Büchi automaton B) and two models V1 and V2 of ZFC
such that the ω-language L(A) (respectively, the infinitary rational relation L(B))
is Borel in V1 but not in V2.

We prove in this paper other surprising results, showing that some basic ques-
tions on automata reading infinite words actually depend on the models of ZFC.
In particular, we prove the following result: there exists a 1-counter Büchi au-
tomaton A such that the cardinality of the complement L(A)− of the ω-language
L(A) is not determined by ZFC. Indeed it holds that:

(1) there is a model V1 of ZFC in which L(A)− is countable;
(2) there is a model V2 of ZFC in which L(A)− has cardinal 2ℵ0 ;
(3) there is a model V3 of ZFC in which L(A)− has cardinal ℵ1 with ℵ0 < ℵ1 <

2ℵ0 .
Notice that there are only these three possibilities for the cardinality of the com-
plement of an ω-language accepted by a Büchi 1-counter automaton A because the
ω-language L(A) is an analytic set and thus L(A)− is a coanalytic set, see [13],
page 488.
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We prove a very similar result for the complement of an infinitary rational
relation accepted by a 2-tape Büchi automaton B. As a corollary, this proves that
the continuum hypothesis may be not satisfied for complements of 1-counter ω-
languages and for complements of infinitary rational relations accepted by 2-tape
Büchi automata.

In the proof of these results, we consider the largest thin (i.e., without perfect
subset) effective coanalytic subset of the Cantor space 2ω, whose existence was
proven by Kechris in [15] and independently by Guaspari and Sacks. An important
property of C1 is that its cardinal depends on the models of set theory. We use
this fact and some constructions from recent papers [3,4] to infer our new results
about 1-counter or 2-tape Büchi automata.

Combining the proof of the above results with Shoenfield’s absoluteness theorem
we get that basic decision problems about 1-counter ω-languages or infinitary
rational relations are actually located at the third level of the analytical hierarchy.
In particular, the problem to determine whether the complement of a 1-counter ω-
language (respectively, infinitary rational relation) is countable is in Σ1

3\(Π1
2∪Σ1

2).
This is rather surprising if compared to the fact that it is decidable whether
an infinitary rational relation is countable (respectively, uncountable). As a by-
product of these results we get a (partial) answer to a question of Castro and
Cucker about ω-languages of Turing machines.

The paper is organized as follows. We recall the notion of counter automata in
Section 2. We expose some results of set theory in Section 3, and we prove our
main results in Section 4. Concluding remarks are given in Section 5.

Notice that the reader who is not familiar with the notion of ordinal in set
theory may skip part of Section 3 and just read Theorems 3.3 and 3.5 in this
section. The rest of the paper relies mainly on the set-theoretical results stated in
Theorem 3.5.

2. Counter automata

We assume the reader to be familiar with the theory of formal (ω-)languag-
es [25,26]. We recall the usual notations of formal language theory.

If Σ is a finite alphabet, a non-empty finite word over Σ is any sequence x =
a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length of x
is k, denoted by |x|. The empty word has no letter and is denoted by λ; its length
is 0. Σ� is the set of finite words (including the empty word) over Σ.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ = a1 . . . an . . . is an ω-word over Σ,
we write σ(n) = an, σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.

The usual concatenation product of two finite words u and v is denoted u · v
(and sometimes just uv). This product is extended to the product of a finite word
u and an ω-word v: the infinite word u.v is then the ω-word such that:

(u · v)(k) = u(k) if k ≤ |u| , and (u · v)(k) = v(k − |u|) if k > |u|.
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The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language V over
an alphabet Σ is a subset of Σω, and its complement (in Σω) is Σω − V , denoted
V −.

We now recall the definition of k-counter Büchi automata which will be useful
in the sequel.

Let k be an integer ≥ 1. A k-counter machine has k counters, each of which
containing a non-negative integer. The machine can test whether the content of
a given counter is zero or not. And transitions depend on the letter read by the
machine, the current state of the finite control, and the tests about the values of
the counters. Notice that in this model some λ-transitions are allowed. During
these transitions the reading head of the machine does not move to the right, i.e.
the machine does not read any more letter.

Formally a k-counter machine is a 4-tuple M=(K,Σ, Δ, q0), where K is a
finite set of states, Σ is a finite input alphabet, q0 ∈ K is the initial state, and
Δ ⊆ K × (Σ ∪ {λ}) × {0, 1}k × K × {0, 1,−1}k is the transition relation. The
k-counter machine M is said to be real time iff: Δ ⊆ K × Σ × {0, 1}k × K ×
{0, 1,−1}k, i.e. iff there are no λ-transitions.

If the machine M is in state q and ci ∈ N is the content of the ith counter Ci

then the configuration (or global state) of M is the (k + 1)-tuple (q, c1, . . . , ck).
For a ∈ Σ ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ Nk such that cj = 0 for j ∈ E ⊆

{1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ Δ where ij = 0
for j ∈ E and ij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) �→M (q′, c1 + j1, . . . , ck + jk).
Thus the transition relation must obviously satisfy if (q, a, i1, . . . , ik, q′, j1, . . . , jk)∈
Δ and im = 0 for some m ∈ {1, . . . , k} then jm = 0 or jm = 1 (but jm may not
be equal to −1).

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configura-
tions r = (qi, ci1, . . . , cik)i≥1 is called a run of M on σ, starting in configuration
(p, c1, . . . , ck), iff:

(1) (q1, c11, . . . c
1
k) = (p, c1, . . . , ck);

(2) for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, ci1, . . . c
i
k) �→M

(qi+1, c
i+1
1 , . . . ci+1

k ) and such that either a1a2 . . . an . . . = b1b2 . . . bn . . . or
b1b2 . . . bn . . . is a finite word, prefix (i.e. initial segment) of a1a2 . . . an . . .

The run r is said to be complete when a1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run r, In(r) is the set of all states entered infinitely often during r.
A complete run r of M on σ, starting in configuration (q0, 0, . . . , 0), will be

simply called “a run of M on σ”.

Definition 2.1. A Büchi k-counter automaton is a 5-tuple M = (K,Σ,Δ, q0, F ),
where M′ = (K,Σ,Δ, q0) is a k-counter machine and F ⊆ K is the set of
accepting states. The ω-language accepted by M is: L(M) = {σ ∈ Σω |
there exists a run r of M on σ such that In(r) ∩ F �= ∅}

The class of ω-languages accepted by Büchi k-counter automata is denoted
BCL(k)ω .The class of ω-languages accepted by real time Büchi k-counter automata
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will be denoted r-BCL(k)ω . The class BCL(1)ω is a strict subclass of the class
CFLω of context free ω-languages accepted by Büchi pushdown automata.

We recall now the definition of classes of the arithmetical hierarchy of ω-
languages, see [25]. Let X be a finite alphabet. An ω-language L ⊆ Xω belongs
to the class Σn if and only if there exists a recursive relation RL ⊆ (N)n−1 ×X�

such that:

L = {σ ∈ Xω | ∃a1 . . .Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL},

where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order).
An ω-language L ⊆ Xω belongs to the class Πn if and only if its complement
Xω −L belongs to the class Σn. The class Σ1

1 is the class of effective analytic sets
which are obtained by projection of arithmetical sets. An ω-language L ⊆ Xω

belongs to the class Σ1
1 if and only if there exists a recursive relation RL ⊆ N ×

{0, 1}� ×X� such that:

L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}.

Then an ω-language L ⊆ Xω is in the class Σ1
1 iff it is the projection of an ω-

language over the alphabet X × {0, 1} which is in the class Π2. The class Π1
1 of

effective co-analytic sets is simply the class of complements of effective analytic
sets.

Recall that a Büchi Turing machine is just a Turing machine working on infinite
inputs with a Büchi-like acceptance condition, and that the class of ω-languages
accepted by Büchi Turing machines is the class Σ1

1 of effective analytic sets [2,25].
On the oher hand, one can construct, using a classical construction (see for
instance [12]), from a Büchi Turing machine T , a 2-counter Büchi automaton
A accepting the same ω-language. Thus one can state the following proposition.

Proposition 2.2. An ω-language L ⊆ Xω is in the class Σ1
1 iff it is accepted by

a non deterministic Büchi Turing machine, hence iff it is in the class BCL(2)ω.

3. Some results of set theory

We recall that the reader who is not familiar with the notion of ordinal in set
theory may skip part of this section: the main results in this section, which will
be used later in this paper, are stated in Theorems 3.3 and 3.5.

We now recall some basic notions of set theory which will be useful in the sequel,
and which are exposed in any textbook on set theory, like [13].

The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the axiom
of choice AC. The axioms of ZFC express some natural facts that we consider
to hold in the universe of sets. For instance a natural fact is that two sets x and
y are equal iff they have the same elements. This is expressed by the axiom of
extensionality:

∀x∀y [ x = y ↔ ∀z(z ∈ x↔ z ∈ y) ].
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Another natural axiom is the pairing axiom which states that for all sets x and y
there exists a set z = {x, y} whose elements are x and y:

∀x∀y [ ∃z(∀w(w ∈ z ↔ (w = x ∨ w = y)))].

Similarly the power set axiom states the existence of the set of subsets of a set
x. Notice that these axioms are first-order sentences in the usual logical language
of set theory whose only non logical symbol is the membership binary relation
symbol ∈. We refer the reader to any textbook on set theory for an exposition of
the other axioms of ZFC.

A model (V, ∈) of an arbitrary set of axioms A is a collection V of sets, equipped
with the membership relation ∈, where “x ∈ y” means that the set x is an element
of the set y, which satisfies the axioms of A. We often say “the model V” instead
of “the model (V, ∈)”.

We say that two sets A and B have same cardinality iff there is a bijection from
A onto B and we denote this by A ≈ B. The relation ≈ is an equivalence relation.
Using the axiom of choice AC, one can prove that any set A can be well-ordered
so there is an ordinal γ such that A ≈ γ. In set theory the cardinal of the set A
is then formally defined as the smallest such ordinal γ.

The infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The cardinal
ℵα is also denoted by ωα, when it is considered as an ordinal. The first infinite
ordinal is ω and it is the smallest ordinal which is countably infinite so ℵ0 = ω
(which could be written ω0). There are many larger countable ordinals, such
as ω2, ω3, . . . , ωω, . . . ωωω

, . . . The first uncountable ordinal is ω1, and formally
ℵ1 = ω1. In the same way ω2 is the first ordinal of cardinality greater than ℵ1,
and so on.

The continuum hypothesis CH says that the first uncountable cardinal ℵ1 is
equal to 2ℵ0 which is the cardinal of the continuum. Gödel and Cohen have proved
that the continuum hypothesis CH is independent from the axiomatic system
ZFC, i.e., that there are models of ZFC + CH and also models of ZFC + ¬ CH,
where ¬ CH denotes the negation of the continuum hypothesis [13].

Let ON be the class of all ordinals. Recall that an ordinal α is said to be a
successor ordinal iff there exists an ordinal β such that α = β + 1; otherwise the
ordinal α is said to be a limit ordinal and in this case α = sup{β ∈ ON | β < α}.

The class L of constructible sets in a model V of ZF is defined by L =⋃
α∈ON L(α), where the sets L(α) are constructed by induction as follows:

(1) L(0) = ∅,
(2) L(α) =

⋃
β<α L(β), for α a limit ordinal, and

(3) L(α + 1) is the set of subsets of L(α) which are definable from a finite
number of elements of L(α) by a first-order formula relativized to L(α).

If V is a model of ZF and L is the class of constructible sets of V, then the class
L is a model of ZFC + CH. Notice that the axiom (V=L), which means “every
set is constructible”, is consistent with ZFC because L is a model of ZFC +
V=L.
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Consider now a model V of ZFC and the class of its constructible sets L ⊆ V
which is another model of ZFC. It is known that the ordinals of L are also the
ordinals of V, but the cardinals in V may be different from the cardinals in L.

In particular, the first uncountable cardinal in L is denoted ℵL
1 , and it is in

fact an ordinal of V which is denoted ωL
1 . It is well-known that in general this

ordinal satisfies the inequality ωL
1 ≤ ω1. In a model V of the axiomatic system

ZFC + V= L the equality ωL
1 = ω1 holds, but in some other models of ZFC the

inequality may be strict and then ωL
1 < ω1: notice that in this case ωL

1 < ω1 holds
because there is actually a bijection from ω onto ωL

1 in V (so ωL
1 is countable in

V) but no such bijection exists in the inner model L (so ωL
1 is uncountable in L).

The construction of such a model is presented in [13], page 202: one can start from
a model V of ZFC + V=L and construct by forcing a generic extension V[G]
in which ωV

1 is collapsed to ω; in this extension the inequality ωL
1 < ω1 holds.

We assume the reader to be familiar with basic notions of topology which may
be found in [18,19,22,25]. There is a natural metric on the set Σω of infinite words
over a finite alphabet Σ containing at least two letters which is called the prefix
metric and is defined as follows. For u, v ∈ Σω and u �= v let δ(u, v) = 2−lpref(u,v)

where lpref(u,v) is the first integer n such that the (n+ 1)st letter of u is different
from the (n+1)st letter of v. This metric induces on Σω the usual Cantor topology
in which the open subsets of Σω are of the form W ·Σω, for W ⊆ Σ�. A set L ⊆ Σω

is a closed set iff its complement Σω − L is an open set.

Definition 3.1. Let P ⊆ Σω, where Σ is a finite alphabet having at least two
letters. The set P is said to be a perfect subset of Σω if and only if:

(1) P is a non-empty closed set, and
(2) for every x ∈ P and every open set U containing x there is an element

y ∈ P ∩ U such that x �= y.

So a perfect subset of Σω is a non-empty closed set which has no isolated points.
It is well known that a perfect subset of Σω has cardinality 2ℵ0 , i.e. the cardinality
of the continuum (see [19], p. 66).

Definition 3.2. A set X ⊆ Σω is said to be thin iff it contains no perfect subset.

The following result was proved by Kechris [15] and independently by Guaspari
and Sacks.

Theorem 3.3 (see [19], p. 247). (ZFC) Let Σ be a finite alphabet having at least
two letters. There exists a thin Π1

1-set C1(Σω) ⊆ Σω which contains every thin,
Π1

1-subset of Σω. It is called the largest thin Π1
1-set in Σω.

An important fact is that the cardinality of the largest thin Π1
1-set in Σω de-

pends on the model of ZFC. The following result was proved by Kechris, and
independently by Guaspari and Sacks (see [14], p. 171).

Theorem 3.4 (ZFC). The cardinal of the largest thin Π1
1-set in Σω is equal to

the cardinal of ωL
1 .
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This means that in a given model V of ZFC the cardinal of the largest thin
Π1

1-set in Σω is equal to the cardinal in V of ωL
1 , the ordinal which plays the role

of the cardinal ℵ1 in the inner model L of constructible sets of V.
We can now state the following theorem which will be useful in the sequel. It

follows from Theorem 3.4 and from some constructions of models of set theory due
to Cohen (for (a)), Levy (for (b)) and Cohen (for (c)), see [13].

Theorem 3.5.
(a) There is a model V1 of ZFC in which the largest thin Π1

1-set in Σω has
cardinal ℵ1 with ℵ1 = 2ℵ0 ;

(b) There is a model V2 of ZFC in which the largest thin Π1
1-set in Σω has

cardinal ℵ0, i.e. is countable;
(c) There is a model V3 of ZFC in which the largest thin Π1

1-set in Σω has
cardinal ℵ1 with ℵ0 < ℵ1 < 2ℵ0 .

In particular, all models of (ZFC + V= L) satisfy (a). The models of ZFC
satisfying (b) are the models of (ZFC + ωL

1 < ω1).

4. Cardinality problems for ω-languages

Theorem 4.1. There exists a real-time 1-counter Büchi automaton A such that
the cardinality of the complement L(A)− of the ω-language L(A) is not determined
by the axiomatic system ZFC:

(1) there is a model V1 of ZFC in which L(A)− is countable;
(2) there is a model V2 of ZFC in which L(A)− has cardinal 2ℵ0 ;
(3) there is a model V3 of ZFC in which L(A)− has cardinal ℵ1 with ℵ0 < ℵ1 <

2ℵ0 .

Proof. From now on we set Σ = {0, 1} and we shall denote by C1 the largest thin
Π1

1-set in {0, 1}ω = 2ω.
This set C1 is a Π1

1-set defined by a Π1
1-formula φ, given by Moschovakis in [19],

page 248. Thus its complement C−
1 = 2ω−C1 is a Σ1

1-set defined by the Σ1
1-formula

ψ = ¬φ. By Proposition 2.2, the ω-language C−
1 is accepted by a Büchi Turing

machine M and by a 2-counter Büchi automaton A1 which can be effectively
constructed.

We are now going to use some constructions which were used in a previous
paper [3] to study topological properties of context-free ω-languages, and which
will be useful in the sequel.

Let E be a new letter not in Σ, S be an integer ≥1, and θS : Σω → (Σ∪ {E})ω

be the function defined, for all x ∈ Σω, by:

θS(x) = x(1) ·ES · x(2) · ES2 · x(3) · ES3 · x(4) . . . x(n) · ESn · x(n+ 1) ·ESn+1
. . .

We proved in [3] that if L ⊆ Σω is an ω-language in the class BCL(2)ω and
k = cardinal(Σ) + 2, S = (3k)3, then one can effectively construct from a Büchi
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2-counter automaton A1 accepting L a real time Büchi 8-counter automaton A2

such that L(A2) = θS(L).
On the other hand, it is easy to see that θS(Σω)− = (Σ ∪ {E})ω − θS(Σω)

is accepted by a real time Büchi 1-counter automaton. The class r-BCL(8)ω ⊇
r-BCL(1)ω is closed under finite union in an effective way, so θS(L) ∪ θS(Σω)− is
accepted by a real time Büchi 8-counter automaton A3 which can be effectively
constructed from A2.

In [3] we used also another coding which we now recall. Let K = 2 × 3 × 5 ×
7× 11× 13× 17× 19 = 9 699 690 be the product of the eight first prime numbers.
Let Γ be a finite alphabet; here we shall set Γ = Σ ∪ {E}. An ω-word x ∈ Γω is
coded by the ω-word

hK(x) = A · CK · x(1) · B · CK2 ·A · CK2 · x(2) · B · CK3

· A · CK3
· x(3) ·B . . . B · CKn

·A · CKn

· x(n) ·B . . .

over the alphabet Γ1 = Γ ∪ {A,B,C}, where A,B,C are new letters not in Γ.
We proved in [3] that, from a real time Büchi 8-counter automaton A3 accept-
ing L(A3) ⊆ Γω, one can effectively construct a Büchi 1-counter automaton A4

accepting the ω-language hK(L(A3))∪hK(Γω)−.
Consider now the mapping φK : (Γ ∪ {A,B,C})ω → (Γ ∪ {A,B,C, F})ω which

is simply defined by: for all x ∈ (Γ ∪ {A,B,C})ω,

φK(x) = FK−1 · x(1) · FK−1 · x(2) . . . FK−1 · x(n) · FK−1 · x(n+ 1) · FK−1 . . .

Then the ω-language φK(L(A4)) = φK(hK(L(A3))∪hK(Γω)−) is accepted by a
real time Büchi 1-counter automaton A5 which can be effectively constructed from
the Büchi 8-counter automaton A4 [3].

On the other hand, it is easy to see that the ω-language (Γ ∪ {A,B,C, F})ω −
φK((Γ ∪ {A,B,C})ω) is ω-regular and to construct a (1-counter) Büchi automa-
ton accepting it. Then one can effectively construct from A5 a real time Büchi
1-counter automaton A6 accepting the ω-language φK(hK(L(A3))∪hK(Γω)−) ∪
φK((Γ ∪ {A,B,C})ω)−.

To sum up: we have obtained, from a Büchi Turing machine M accepting the
ω-language C−

1 ⊆ Σω = 2ω, a 2-counter Büchi automaton A1 accepting the same
ω-language, a real time Büchi 8-counter automaton A3 accepting the
ω-language L(A3) = θS(C−

1 )∪θS(Σω)−, a Büchi 1-counter automaton A4 accepting
the ω-language hK(L(A3))∪hK(Γω)−, and a real time Büchi 1-counter automaton
A6 accepting the ω-language φK(hK(L(A3))∪hK(Γω)−)∪φK((Γ∪{A,B,C})ω)−.
From now on we shall denote simply A6 by A.

Therefore we have successively the following equalities:
L(A1) = C−

1 ,
L(A1)− = C1,
L(A3)− = θS(C1),
L(A4)− = hK(L(A3)−) = hK(θS(C1)),
L(A6)− = φK(hK(L(A3)−)) = φK(hK(θS(C1))).
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This implies easily that the ω-languages L(A1)−, L(A3)−, L(A4)−, and L(A6)− =
L(A)− all have the same cardinality as the set C1, because each of the maps θS ,
hK and φK is injective.

Thus we can infer the result stated in the theorem from the above Theorem 3.5.
�

The following corollary follows directly from Item (3) of Theorem 4.1.

Corollary 4.2. It is consistent with ZFC that the continuum hypothesis is not
satisfied for complements of 1-counter ω-languages (hence also for complements of
context-free ω-languages).

Remark 4.3. This can be compared with the fact that the continuum hypothesis
is satisfied for regular languages of infinite trees (which are closed under com-
plementation), proved by Niwinski in [21]. Notice that this may seem amazing
because from a topological point of view one can find regular tree languages which
are more complex than context-free ω-languages, as there are regular tree lan-
guages in the class Δ1

2\Σ1
1 ∩ Π1

1 while context-free ω-languages are all analytic,
i.e. Σ1

1-sets.

Recall that a real-time 1-counter Büchi automaton C has a finite description to
which can be associated, in an effective way, a unique natural number called the
index of C. From now on, we shall denote, as in [6], by Cz the real time Büchi
1-counter automaton of index z (reading words over Ω = {0, 1, A,B,C,E, F}).

We can now use the proofs of Theorem 3.5 and 4.1 to prove that some natural
cardinality problems are actually located at the third level of the analytical
hierarchy. The notions of analytical hierarchy on subsets of N and of classes of
this hierarchy may be found for instance in [1] or in the textbook [23].

Theorem 4.4.
(1) {z ∈ N | L(Cz)− is finite} is Π1

2-complete;
(2) {z ∈ N | L(Cz)− is countable} is in Σ1

3\(Π1
2 ∪ Σ1

2);
(3) {z ∈ N | L(Cz)− is uncountable} is in Π1

3\(Π1
2 ∪ Σ1

2).

Proof. Item (1) was proved in [6], and item (3) follows directly from item (2).
We now prove item (2). We first show that {z ∈ N | L(Cz)− is countable} is in

the class Σ1
3.

Notice first that, using a recursive bijection b : (N�)2 → N
�, we can consider

an infinite word over a finite alphabet Ω as a countably infinite family of infinite
words over the same alphabet by considering, for any ω-word σ ∈ Ωω, the family
of ω-words (σi)i≥1 such that for each i ≥ 1 the ω-word σi ∈ Ωω is defined by
σi(j) = σ(b(i, j)) for each j ≥ 1.

We can now express “L(Cz)− is countable” by the formula:

∃σ ∈ Ωω ∀x ∈ Ωω [(x ∈ L(Cz)) or (∃i ∈ N x = σi)].

This is a Σ1
3-formula because “(x ∈ L(Cz))”, and hence also “[(x ∈ L(Cz)) or (∃i ∈

N x = σi)]”, are expressed by Σ1
1-formulas.
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We can now prove that {z ∈ N | L(Cz)− is countable} is neither in the class Σ1
2

nor in the class Π1
2, by using Shoenfield’s absoluteness theorem from set theory.

Let A be the real-time 1-counter Büchi automaton cited in Theorem 4.1 and let
z0 be its index so that A = Cz0 . Assume that V is a model of (ZFC + ωL

1 < ω1).
In the model V, the integer z0 belongs to the set {z ∈ N | L(Cz)− is countable},
while in the inner model L ⊆ V, the language L(Cz0)− has the cardinality of
the continuum: thus in L the integer z0 does not belong to the set {z ∈ N |
L(Cz)− is countable}. On the other hand, Shoenfield’s Absoluteness Theorem im-
plies that every Σ1

2-set (respectively, Π1
2-set) is absolute for all inner models of

(ZFC) (see [13], p. 490). In particular, if the set {z ∈ N | L(Cz)− is countable}
was a Σ1

2-set or a Π1
2-set then it could not be a different subset of N in the models

V and L considered above. Therefore, the set {z ∈ N | L(Cz)− is countable} is
neither a Σ1

2-set nor a Π1
2-set. �

Remark 4.5. Using an easy coding we can obtain a similar result for 1-counter
automata reading words over Σ, where Σ is any finite alphabet having at least two
letters.

Notice that the same proof gives a partial answer to a question of Castro and
Cucker. They stated in [1] that the problem to determine whether the complement
of the ω-language accepted by a given Turing machine is countable (respectively,
uncountable) is in the class Σ1

3 (respectively, Π1
3), and asked for the exact com-

plexity of these decision problems.

Theorem 4.6. The problem to determine whether the complement of the ω-
language accepted by a given Turing machine is countable (respectively, uncount-
able) is in the class Σ1

3\(Π1
2 ∪ Σ1

2) (respectively, Π1
3\(Π1

2 ∪ Σ1
2)).

We now consider acceptance of binary relations over infinite words by 2-tape
Büchi automata, firstly considered by Gire and Nivat in [9]. A 2-tape automaton
is an automaton having two tapes and two reading heads, one for each tape,
which can move asynchronously, and a finite control as in the case of a (1-tape)
automaton. The automaton reads a pair of (infinite) words (u, v) where u is on
the first tape and v is on the second tape, so that a 2-tape Büchi automaton B
accepts an infinitary rational relation L(B) ⊆ Σω

1 × Σω
2 , where Σ1 and Σ2 are two

finite alphabets. Notice that L(B) ⊆ Σω
1 × Σω

2 may be seen as an ω-language over
the product alphabet Σ1 × Σ2.

We shall use a coding used in a previous paper [4] on the topological complexity
of infinitary rational relations. We first recall a coding of an ω-word over the finite
alphabet Ω = {0, 1, A,B,C,E, F} by an ω-word over the alphabet Ω′ = Ω ∪ {D},
where D is an additionnal letter not in Ω. For x ∈ Ωω the ω-word h(x) is defined
by:

h(x) = D ·0 ·x(1) ·D ·02 ·x(2) ·D ·03 ·x(3) ·D . . .D ·0n ·x(n) ·D ·0n+1 ·x(n+1) ·D . . .
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It is easy to see that the mapping h from Ωω into (Ω∪{D})ω is injective. Let now
α be the ω-word over the alphabet Ω′ which is simply defined by:

α = D · 0 ·D · 02 ·D · 03 ·D · 04 ·D . . .D · 0n ·D · 0n+1 ·D . . .

The following result was proved in [4].

Proposition 4.7 ([4]). Let L ⊆ Ωω be in r-BCL(1)ω and L = h(L) ∪ (h(Ωω))−.
Then

R = L× {α}
⋃

(Ω′)ω × ((Ω′)ω − {α})
is an infinitary rational relation. Moreover one can effectively construct from a
real time 1-counter Büchi automaton A accepting L a 2-tape Büchi automaton B
accepting the infinitary relation R.

We can now prove our second main result.

Theorem 4.8. There exists a 2-tape Büchi automaton B such that the cardinality
of the complement of the infinitary rational relation L(B) is not determined by
ZFC. Indeed it holds that:

(1) there is a model V1 of ZFC in which L(B)− is countable;
(2) there is a model V2 of ZFC in which L(B)− has cardinal 2ℵ0 ;
(3) there is a model V3 of ZFC in which L(B)− has cardinal ℵ1 with ℵ0 < ℵ1 <

2ℵ0 .

Proof. Let A be the real time 1-counter Büchi automaton constructed in the proof
of Theorem 4.1, and B be the 2-tape Büchi automaton which can be constructed
from A by the above Proposition 4.7. Letting L = L(A), the complement of the
infinitary rational relation R = L(B) is equal to [(Ω ∪ {D})ω − L] × {α} =
h(L−)×{α}. Thus the cardinality of R− = L(B)− is equal to the cardinality of
the ω-language h(L−), so that the result follows from Theorem 4.1. �

As in the case of ω-languages of 1-counter automata, we can now state the
following result, where Tz is the 2-tape Büchi automaton of index z reading words
over Ω′ × Ω′.

Theorem 4.9.
(1) {z ∈ N | L(Tz)− is finite} is Π1

2-complete;
(2) {z ∈ N | L(Tz)− is countable} is in Σ1

3\(Π1
2 ∪ Σ1

2);
(3) {z ∈ N | L(Tz)− is uncountable} is in Π1

3\(Π1
2 ∪ Σ1

2).

Proof. Item (1) was proved in [6]. Items (2) and (3) are proved similarly to the case
of ω-languages of 1-counter automata, using Shoenfield’s absoluteness theorem.

�
On the other hand we have the following result.

Proposition 4.10. It is decidable whether an infinitary rational relation R ⊆
Σω

1 ×Σω
2 , accepted by a given 2-tape Büchi automaton B, is countable (respectively,

uncountable).
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Proof. Let R ⊆ Σω
1 × Σω

2 be an infinitary rational relation accepted by a 2-tape
Büchi automaton B. It is known that Dom(R) = {u ∈ Σω

1 | ∃v ∈ Σω
2 (u, v) ∈ R}

and Im(R) = {v ∈ Σω
2 | ∃u ∈ Σω

1 (u, v) ∈ R} are regular ω-languages and that
one can find Büchi automata A and A′ accepting Dom(R) and Im(R) [9]. On the
other hand Lindner and Staiger have proved that one can compute the cardinal of a
given regular ω-language L(A) (see [16] where Kuske and Lohrey proved that this
problem is actually in the class PSPACE). But it is easy to see that the infinitary
rational relation R is countable if and only if the two ω-languages Dom(R) and
Im(R) are countable, thus one can decide whether the infinitary rational relation
R is countable (respectively, uncountable). �

Remark 4.11. The results given by Items (2) and (3) of Theorem 4.9 and Propo-
sition 4.10 are rather surprising: they show that there is a remarkable gap between
the complexity of the same decision problems for infinitary rational relations and
for their complements, as there is a big space between the class Δ0

1 of computable
sets and the class Σ1

3\(Π1
2 ∪ Σ1

2).

5. Concluding remarks

We have proved that amazingly some basic cardinality questions on automata
reading infinite words depend on the models of the axiomatic system ZFC.

In [5] we have proved that the topological complexity of an ω-language accepted
by a 1-counter Büchi automaton, or of an infinitary rational relation accepted by
a 2-tape Büchi automaton, is not determined by ZFC.

In [7], we study some cardinality questions for Büchi-recognizable languages of
infinite pictures and prove results which are similar to those we have obtained in
this paper for 1-counter ω-languages and for infinitary rational relations.

The next step in this research project would be to determine which properties of
automata actually depend on the models of ZFC, and to achieve a more complete
investigation of these properties.

Appendix

Proof of Theorem 3.5.
(a) In the model L, the cardinal of the largest thin Π1

1-set in Σω is equal to
the cardinal of ω1. Moreover the continuum hypothesis is satisfied thus
2ℵ0 = ℵ1: thus the largest thin Π1

1-set in Σω has the cardinality 2ℵ0 = ℵ1.
(b) Let V be a model of (ZFC + ωL

1 < ω1). Since ω1 is the first uncountable
ordinal in V, ωL

1 < ω1 implies that ωL
1 is a countable ordinal in V. Its

cardinal is ℵ0, and therefore this is also the cardinal in V of the largest
thin Π1

1-set in Σω.
(c) It suffices to show that there is a model V3 of ZFC in which ωL

1 = ω1 and
ℵ1 < 2ℵ0 . Such a model can be constructed by Cohen’s forcing: start from
a model V of ZFC + V=L (in which ωL

1 = ω1) and construct by forcing
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a generic extension V[G] in which are added ℵ2 (or even more) “Cohen’s
reals”, which are in fact ℵ2 subsets of ω. Notice that the cardinals are
preserved under this extension (see [13], p. 219), and that the constructible
sets of V[G] are also the constructible sets of V, thus in the new model
V[G] of ZFC we still have ωL

1 = ω1, but now ℵ1 < 2ℵ0 . �
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