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A NOTE ON MAXIMUM INDEPENDENT SETS
AND MINIMUM CLIQUE PARTITIONS IN UNIT DISK

GRAPHS AND PENNY GRAPHS: COMPLEXITY
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Abstract. A unit disk graph is the intersection graph of a family
of unit disks in the plane. If the disks do not overlap, it is also a
unit coin graph or penny graph. It is known that finding a maximum
independent set in a unit disk graph is a NP-hard problem. In this
work we extend this result to penny graphs. Furthermore, we prove
that finding a minimum clique partition in a penny graph is also NP-
hard, and present two linear-time approximation algorithms for the
computation of clique partitions: a 3-approximation algorithm for unit
disk graphs and a 2-approximation algorithm for penny graphs.
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Introduction

Given a family F of objects, the intersection graph of F is the graph whose
vertices are in a one-to-one correspondence with the objects of F in such a way
that there exists an edge joining two vertices if and only if the corresponding
objects intersect. A unit disk is a disk of diameter one in the euclidean plane.
Two unit disks intersect if the distance between their centers is less than or equal
to one. Two unit disks overlap if the distance between their centers is strictly less
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than one. A graph G is a unit disk graph if it is the intersection graph of a family
of unit disks. When the disks do not overlap, G is also a unit coin graph, or penny
graph. A realization of a unit disk graph (resp. penny graph) G is a family F of
unit disks (resp. non-overlapping unit disks) such that G is the intersection graph
of F .

Intersection graphs of geometric objects have received much attention since the
70’s. In this context, unit disk graphs and penny graphs appear in the modeling
of several problems [3,4,6,8,16,18–20], especially with the appearance of wireless
sensor networks. In a natural model for such networks, sensor nodes are ver-
tices of a graph, and two vertices are adjacent if and only if the sensing areas
of the corresponding sensor nodes intersect, which implies that they are able to
exchange messages. Typically, sensors are identical, leading to a unit disk graph
model. Clustering is an important aspect in many applications for wireless sensor
networks. As explained in [20], sensor nodes must be grouped by some similarity
or proximity criteria, so that the number of groups (clusters) is minimized. Min-
imum clique partition is a kind of clustering where sensor nodes are grouped to
form cliques, where each clique indicates mutual proximity.

In [6], Clark et al. proved that the independent set problem is NP-complete
when restricted to unit disk graphs. This intractability result motivated the search
for approximation algorithms, particularly for PTASs (polynomial-time approxi-
mation schemes). In [18], Marathe et al. point out that given a unit disk graph G,
the size of a maximum independent set in G[N(v)] (the subgraph of G induced by
the set of neighbors of v) is at most 3 if, in some realization of G, v is associated
to a disk whose center has the smallest x-coordinate. This fact is used to design
a simple greedy approximation algorithm which constructs an independent set S
as follows: repeatedly find a vertex v with the property described above, add v
to S and remove v ∪ N(v) from G. This algorithm has an approximation ratio
of 3 and runs in O(n6) time. Since recognizing unit disk graphs is NP-Hard [4]
and the complexity of constructing a realization of a unit disk graph is still an
open question, most algorithms demand a realization as input. The algorithm
by Marathe et al. does not, but if a realization of the input graph is given, its
complexity decreases to O(n2).

In [16], Hunt III et al. present an approximation scheme for finding independent
sets in unit disk graphs. The algorithm takes a realization as input, and produces
a solution with size at least ( k

k+1 )2 times the optimal size, where k is the smallest
integer such that ( k

k+1 )2 ≥ 1 − ε, for a given ε > 0. The total running time
of the algorithm is nO(k2). The adopted strategy consists basically of generating
independent sets for several “representative” subgraphs (“shifting strategy” [1]),
and taking the best solution over all the subgraphs. In each subgraph, the solution
is the union of several exact partial solutions.

In [20], Pirwani and Salavatipour describe a robust polynomial time approxi-
mation scheme for the computation of clique partitions in unit disk graphs. If the
input graph G (with edge-lengths) is a unit disk graph, their algorithm returns a
clique partition of G with size 1+ε times the optimum; otherwise, it either outputs
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a clique partition with no performance guarantee or detects that G is not a unit
disk graph. In the same work, the authors describe a (2 + ε)-approximation algo-
rithm for a weighted version of the clique partition problem in unit disk graphs,
assuming that they are given in standard form (no realization is provided); this
result improves the previous 8-approximation ratio described in [21] for the un-
weighted clique partition problem in unit disk graphs (given in standard form).

Typically, for a desired ε > 0, the running time of a polynomial time approxi-
mation scheme depends upon a factor nf(1/ε). An alternative for high polynomial
running times is to devise simple approximation algorithms with low time complex-
ity. This is what we develop in Section 3. Of course, any approximation algorithm
designed for unit disk graphs maintains its performance when applied to a penny
graph. One interesting, general question is thus to find examples of problems for
which the more restricted structure and additional theoretical properties of penny
graphs may lead to algorithmic improvements. We show in Section 3 that the
clique partition problem fits into this context.

Other studies on penny graphs are described in the sequel. The sum coloring
problem, which consists of finding a proper coloring that minimizes the sum of
the colors (positive integers) over all vertices, is NP-hard for penny graphs [5].
The edge extremal problem for penny graphs, which aims to find the maximum
number E(n) of edges of a penny graph on n vertices, was originally posed by
Reutter [22] and Erdös [9], and solved by Harborth [15]; Harborth found the
expression E(n) = �3n−√

12n − 3�, which corresponds to the maximum possible
number of tangency points that can be obtained when arranging n equal-sized
coins on a plane surface.

We now summarize the contributions of this work. In Section 1, we extend
Clark’s result [6] by proving that the independent set problem remains NP-complete
when restricted to the class of penny graphs. In Section 2, we also prove the NP-
completeness of the clique partition problem when restricted to penny graphs, thus
answering the open question of determining the complexity of the clique partition
problem for unit disk graphs (see [23], p. 316). Finally, in Section 3, we present
two approximation algorithms for finding clique partitions: a 3-approximation al-
gorithm for unit disk graphs which runs in time linear in the size of the complement
of the input graph, and a 2-approximation algorithm for penny graphs which runs
in O(n) time, where n is the number of vertices of the input graph.

An extended abstract of this work has previously appeared in [7].

Description of the problems

In the sequel, we give the formal definitions of the problems dealt with in this
work.

independent set [12]
Instance: A Graph G = (V, E) and a positive integer k ≤ |V |.
Question: Does G contain an independent set of size at least k,

i.e., a subset V ′ ⊆ V such that |V ′| ≥ k and no two vertices in
V ′ are joined by an edge in E?
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vertex cover [12]
Instance: A Graph G = (V, E) and a positive integer k ≤ |V |.
Question: Is there a vertex cover of size at most k for G, i.e., a

subset V ′ ⊆ V such that |V ′| ≤ k and for each edge (u, v) ∈ E
at least one of u, v belongs to V ′?

clique partition [12]
Instance: A Graph G = (V, E) and a positive integer k ≤ |V |.
Question: Is there a clique partition of size at most k for G, i.e.,

a collection V1, V2, . . . , V� of disjoint subsets of V such that
� ≤ k, ∪�

i=1Vi = V , and each Vi is a clique? (The cliques are
not necessarily maximal.)

planar 3sat [10]
Instance: A set of variables U and a collection of clauses Q over

U such that each clause contains at most three literals and the
undirected graph GQ = (V, E) is planar, where V = U ∪Q and
E = {(ui, Qj) | ui ∈ Qj or ui ∈ Qj}.

Question: Is there a truth assignment that satisfies Q?
planar 3sat3

Instance: A set of variables U and a collection of clauses Q over
U such that each clause contains at most three literals, each
variable occurs at most three times in Q, and the undirected
graph GQ = (V, E) is planar, where V = U ∪ Q and E =
{(ui, Qj) | ui ∈ Qj or ui ∈ Qj}.

Question: Is there a truth assignment that satisfies Q?

1. independent set restricted to penny graphs

Let G = (V, E). Clearly, V ′ ⊆ V is a vertex cover of G if and only if V \V ′ is
an independent set of G. Thus, we first show that vertex cover restricted to
penny graphs is NP-complete, based on the ideas presented in [6] (Thm. 4.1). We
need the following result:

Lemma 1.1. [24] A planar graph G = (V, E) with maximum degree 4 can be
efficiently embedded in the plane using O(|V |) area (number of unit cells) in such
a way that its vertices are at integer coordinates and its edges are drawn so that
they are made up of vertical and horizontal line segments.

Theorem 1.2. vertex cover restricted to penny graphs is NP-complete.

Proof. The problem is clearly in NP. The reduction is done from vertex cover

restricted to planar graphs with maximum degree 3, which was shown to be NP-
complete by Garey and Johnson in [11]. From a planar graph G = (V, E) with
maximum degree 3, we construct a penny graph G′ = (V ′, E′) such that there is a
vertex cover S of G satisfying |S| ≤ k if and only if there is a vertex cover S′ of G′

satisfying |S′| ≤ k′, where k′ is defined using the following idea. Consider a drawing
of G in the plane according to Lemma 1.1 (see Figs. 1a and 1b). Lemma 1.1 is
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precisely the tool we need to construct (a realization of) G′, as follows: create a
black disk for each vertex in V , and represent each edge (x, y) ∈ E by an even path
Pxy consisting of 4lxy white disks, where lxy is the length of an edge between the
vertices x and y (see Fig. 1c). In order to achieve the value 4lxy, local displacements
in the disks can be made when necessary, as shown in Figure 2. Note that the
number of vertices of G′ is |V | +

∑
(x,y)∈E 4lxy. Define k′ = k +

∑
(x,y)∈E 2lxy ;

as we shall see, this is a suitable value to set up the reduction. To conclude
the proof, let S be a vertex cover of G satisfying |S| ≤ k. Construct S′ from S
by considering the |S| black discs corresponding to the vertices of S, plus 2lxy

alternating white disks for each edge (x, y) ∈ E. Clearly, S′ is a vertex cover of G′

satisfying |S′| ≤ k′. Conversely, let S′ be a vertex cover of G′ satisfying |S′| ≤ k′.
Analyze S′ by looking at the discs corresponding to its vertices. For each edge
(x, y) ∈ E, note that at least 2lx,y alternating white discs are necessary, in G′, to
cover the path Pxy linking the black discs corresponding to x and y. Hence, S′

contains at least k′−k vertices corresponding to white discs. In addition, for each
such path Pxy, there must exist a disc (other than those 2lxy white discs) covering
the contact between the black disc corresponding to x (or y), and the white disc
adjacent to it in Pxy. We can assume without loss of generality that such an
additional disc is black, that is, it corresponds to vertex x (or y). This means that
the remaining k vertices of S′ correspond to black discs, i.e., original vertices of
G. Define S by taking such k vertices. It is clear that, for each edge (x, y) ∈ E,
one of x, y is necessarily in S, for otherwise one of the discs corresponding to x, y
would not have been covered in S′, a contradiction. Therefore, S is a vertex cover
of G satisfying |S| ≤ k. �

Corollary 1.3. independent set restricted to penny graphs is NP-complete.

2. clique partition restricted to penny graphs

In this section we prove the NP-completeness of clique partition for penny
graphs. We need first the following lemma:

Lemma 2.1. planar 3sat3 is NP-complete.

Proof. planar 3sat3 is clearly in NP. We use the NP-completeness of planar

3sat [10] to prove that planar 3sat3 is NP-complete.
Given an instance I = (U,Q) of planar 3sat we define an instance I ′ =

(U ′,Q′) of planar 3sat3 in the following way. First, set U ′ = U and Q′ = Q.
Next, for each variable u in U occurring k > 3 times, we use an enforcement
strategy (see [2] and [17]) in order to limit the number of occurrences of each
variable, as follows:

(i) remove u from U ′;
(ii) add new variables u1, u2, . . . , uk to U ′;
(iii) add new clauses (u1 ∨ u2), (u2 ∨ u3), . . . , (uk−1 ∨ uk), (uk ∨ u1) to Q′;
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(a) Planar graph G with maximum degree 3
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Figure 1. vertex cover restricted to penny graphs.
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(a) Odd number of disks (b) Achieving an even number of disks

Figure 2. Local displacements in the disks.
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Figure 3. (a) Vertex u of degree k = 5 with neighbors
Qj1 , Qj2 , . . . , Qj5 in drawing D. (b) Vertices u1, u2, u3, u4, u5 and
clauses (u1∨u2), (u2∨u3), (u3∨u4), (u4∨u5), (u5∨u1) in drawing
D′.

(iv) assume that u occurs in clauses Qj1 , Qj2 , . . . , Qjk
; replace the k ocurrences

of u as follows: if u occurs positively in Qji then replace u by ui, otherwise
by ui.

In addition, let D be a plane drawing of the bipartite graph GQ corresponding
to instance I = (U,Q), and consider the neighbors Qj1 , Qj2 , . . . , Qjk

of u in D. See
an example in Figure 3a for k = 5, where Qj1 , Qj2 , . . . , Qj5 are drawn in clockwise
direction around u. A plane drawing D′ of the bipartite graph GQ′ corresponding
to instance I ′ = (U ′,Q′) can be obtained as shown in Figure 3b, where clauses
(u1 ∨u2), (u2 ∨u3), (u3 ∨u4), (u4 ∨u5), (u5 ∨u1) correspond to gray vertices. This
concludes the construction of instance I ′ of planar 3sat3.

Now we have to prove that I = (U,Q) is satisfiable if and only if I ′ = (U ′,Q′)
is satisfiable.
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Let τ be a truth assignment for U satisfying Q. We show how to define a
truth assignment τ ′ for U ′ satisfying Q′. If u occurs 3 times or less in Q, set
τ ′(u) = τ(u). Otherwise, if u occurs more than 3 times in Q, let u1, u2, . . . , uk be
the new variables which have replaced u in U ′. Note that the new clauses (u1 ∨
u2), (u2 ∨u3), . . . , (uk−1 ∨uk), (uk ∨u1) in Q′ are satisfied whenever u1, u2, . . . , uk

have the same truth value. Hence, set τ ′(ui) = τ(u), i = 1, 2, . . . , k. This proves
that I ′ = (U ′,Q′) is satisfiable.

Now let τ ′ be a truth assignment for U ′ satisfying Q′. We show how to define
a truth assignment τ for U satisfying Q. If u occurs 3 times or less in Q, set
τ(u) = τ ′(u). Otherwise, if u occurs more than 3 times in Q, note that the
existence of the clauses (u1 ∨ u2), (u2 ∨ u3), . . . , (uk−1 ∨ uk), (uk ∨ u1) in Q′ force
τ ′(u1) = τ ′(u2) = · · · = τ ′(uk). Hence, set τ(u) = τ ′(u1). This proves that
I = (U,Q) is satisfiable. �

Theorem 2.2. clique partition restricted to penny graphs is NP-complete.

Proof. The problem is clearly in NP. Given a planar 3sat3 instance I = (U,Q),
we construct a realization of a penny graph G′ from GQ using two structures:
circuit and junction (see Fig. 4). For each variable ui we construct a circuit Ci of
disks such that Ci = Ci

1, C
i
2, . . . , C

i
ri

, Ci
1, where ri is even (ri ≥ 6) and Ci

k ∩Ci
� �= ∅

if and only if � = (k mod ri) + 1 (i.e., Ci
k and Ci

� are consecutive in the circuit).
In the remainder of this proof, assume that index � always satisfies � = (k mod
ri)+1. For each clause Qj we define a junction T j consisting of five disks as shown
in Figure 4. Three of them, Dx, Dy and Dz, are reserved for intercepting circuits
(the dotted disks in Fig. 4), as described below.

Since GQ is a planar graph with maximum degree 3, draw GQ in the plane
using Lemma 1.1. Now, construct a realization of G′ from GQ as follows. (See an
example of the construction in Figs. 5 and 6). For each Qj , place T j so that the
center of the disk Dy has the same coordinates of the vertex of GQ associated to Qj .
For each ui, draw Ci in such a way that it intercepts the junctions corresponding
to clauses containing ui or ui. More precisely: if ui occurs as a positive (resp.
negative) literal in Qj , then Ci

k and Ci
� must intercept one of the disks Dx, Dy, Dz

in T j, for some even (resp. odd) integer k. Since each edge (ui, Qj) in the drawing
of GQ is represented by a collection of line segments on the grid, the circuits are
drawn following grid segments. In order to ensure that each circuit consists of an
even number of disks and the intersections involving circuits and junctions occur as
described above, apply the displacements in Figure 2 when necessary. The radius
of the disks is conveniently chosen to guarantee that disks belonging to distinct
circuits do not intercept.

In order to cover the ri vertices in G′ corresponding to a circuit Ci, at least ri

2

cliques are needed. The five vertices in G′ corresponding to a junction T j can be
covered by two or three cliques (see Fig. 6).

Let p = 2|Q|+ ∑|U|

i=1

ri

2 . Let us prove that Q is satisfiable if and only if there is
a clique partition Z of G′ such that |Z| = p.
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. . . 

. . . 

DyDz

Dx

circuit junction

Figure 4. clique partition restricted to penny graphs: struc-
tures of reduction.

1Q

1u 3u 4u

2u

5u

2Q 3Q

4Q

Figure 5. Graph GQ constructed from Q = {(u1 ∨ u2 ∨ u3) ∧
(u3 ∨ u4 ∨ u5) ∧ (u4 ∨ u2 ∨ u5) ∧ (u1 ∨ u3 ∨ u4)}.

Suppose first that there exists a truth assignment τ for Q. We construct Z
as follows. For each circuit Ci, add to Z all the cliques corresponding to edges
(v, w) of G′ such that v corresponds to Ci

k and w corresponds to Ci
�, either for
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Q1

u 1
u 3 u 4

u 2

u 5Q2

Q3

Q4

Drawing of GQ according to Lemma 1

Realization of G′

Figure 6. Construction of G′.

k = 2, 4, . . . , ri, if τ(ui) = true, or for k = 1, 3, . . . , ri−1, if τ(ui) = false. Let us
call the former cliques as true cliques, and the latter ones as false cliques. Now,
since each Qj is satisfied by at least one literal, say x, then at least one of the
following cases occur: either x is positive, say x = ui, and thus the vertex v
corresponding to Dx can be added to the true clique corresponding to Ci

k and Ci
�;

or x = ui, and thus v can be added to the false clique corresponding to Ci
k and

Ci
�. In either case, only two additional cliques need to be added to Z to cover
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the remaining vertices associated to T j (see the cases in Fig. 6 again). Therefore,
|Z| = p.

Suppose now that Z is a clique partition of G′ with |Z| = p. Let us construct a
truth assignment τ for Q. Since Z contains no more than p cliques, it is easy to see
that the ri vertices corresponding to Ci are covered by exactly ri

2 cliques, for every
i, and the five vertices corresponding to T j are covered by exactly two cliques, for
every j. This means that in every junction T j one of the disks Dx, Dy, Dz is such
that its associated vertex shares a clique with two vertices corresponding to disks
Ci

k and Ci
� of some circuit Ci (observe the cases in Figs. 7 and 8). Then, if ui

occurs positively in Qj , set τ(ui) = true, otherwise set τ(ui) = false. In so doing,
every clause Qj contains at least one literal with value true. �

3. Approximation algorithms

The algorithms described in this section assume that the input graph G = (V, E)
is a unit disk graph and a realization of G is given. Write |V | = n, |E| = m and
m =

(
n
2

) − m. We may assume that the realization of G uses O(n) area (in the
extreme case G is an edgeless graph, which clearly has an O(n) area realization).
Denote by N(v) the set of neighbors of v in G, and by x(v), y(v) the coordinates
of the disk associated to vertex v in the realization of G.

3.1. Approximation algorithm for finding clique partitions

in unit disk graphs

The approximation algorithm presented in this subsection uses as a subroutine
an exact algorithm for finding optimal clique partitions in k-strip graphs for k =√

3
2 . A unit disk graph H is a k-strip graph if there exists a real value y0 such

that the centers of the disks in a realization of H are contained in the region
Sk = {(x, y) ∈ �2 | y0 ≤ y < y0 + k}. When k ≤

√
3

2 , H is also a cocomparability
graph [3]. Therefore, it is easy in this case to find a minimum clique partition of
H by simply coloring its complement H; this can be done in time linear in the size
of H [13,14].

Algorithm 1 Find an approximate clique partition of a unit disk graph G (a
realization of G is given)

1: consider a partition of the plane into horizontal strips of width
√

3
2

2: associate to each strip i a subgraph Gi induced by the vertices of G corre-
sponding to the disks whose centers lie in strip i

3: find an exact clique partition Zi for each Gi

4: return a clique partition Z = ∪Zi

We assume without loss of generality that, in the realization of G, all disk
centers have nonnegative y-coordinates, and the bottommost disk centers have
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Dz Dy
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Dz Dy
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(a) (b)

Dz Dy

Dx

Dz Dy

Dx

(c) (d)

Dz Dy

Dx

Dz Dy

Dx

(e) (f)

Figure 7. Covering a junction by cliques (represented here by
points): (a) Dx, Dy, Dz not covered by cliques in circuits; (b)
Dx, Dy, Dz already covered; (c) Dx already covered; (d) Dy al-
ready covered; (e) Dx and Dz already covered; (f) Dy and Dz

already covered. Remaining cases are analogous.
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Figure 8. Covering a clause by cliques (represented here by rect-
angles): (a) Qj is not satisfied; (b) Qj satisfied by literals x, y and
z; (c) Qj satisfied by x; (d) Qj satisfied by y; (e) Qj satisfied by
x and z; (f) Qj satisfied by y and z. Remaining cases are analo-
gous. Dotted rectangles enclose cliques used for covering circuits;
continuous rectangles enclose cliques used for covering clauses.
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y-coordinates equal to zero. In Line 1, the plane is partitioned into � horizontal
strips of width

√
3

2 each, where � = � y√
3/2

� and y is the maximum value of an
y-coordinate considering the disk centers. Every disk whose center c = (x, y)
satisfies (i − 1)

√
3

2 ≤ y < i
√

3
2 belongs to strip i, 1 ≤ i ≤ �.

For each vertex v, determining which horizontal strip the point (x(v), y(v)) lies
in takes O(1) time; thus, Line 2 take O(n) time (recall that any two disk centers
are O(n) apart). Line 3 takes O(n + m) time: if Gi contains ni vertices and mi

edges, then
∑

1≤i≤� ni = n and
∑

1≤i≤� mi ≤ m. Thus, the overall running time
of Algorithm 1 is O(n + m), that is, linear in the size of G.

Let Z∗ be a minimum clique partition of G, and let Z∗
i be the restriction of Z∗

to Gi, that is, Z∗
i = {Ci �= ∅ | Ci = C ∩ V (Gi) and C ∈ Z∗}. Since Step 3 covers

Gi optimally, |Zi| ≤ |Z∗
i |. Now, let C be a clique in Z∗. By a simple geometric

argument, the disk centers associated to the vertices of C are distributed along at
most three strips (note that, in the extreme case, the disk centers define a right
triangle whose legs have lengths 1

2 and
√

3
2 ). This implies that C is the union

of at most three disjoint cliques belonging to, say, Z∗
i−1, Z∗

i and Z∗
i+1. That is,

|Z| =
∑�

i=1 |Zi| ≤
∑�

i=1 |Z∗
i | ≤ 3|Z∗|. Hence Algorithm 1 is a 3-approximation

algorithm.

3.2. Approximation algorithm for finding clique partitions

of penny graphs

Assume that G is a penny graph. The algorithm in this subsection is a simple
greedy heuristic based on the following straightforward facts:

1. If C is a clique in a penny graph, then |C| ≤ 3.
2. If G is also a 1-strip graph, and v is a vertex with x(v) minimum, then

|N(v)| ≤ 2.
The strategy of the approximation algorithm is the same as in Algorithm 1.

Algorithm 2 Find an approximate clique partition of a penny graph G (a real-
ization of G is given)

1: consider a partition of the plane into horizontal strips of width 1
2: associate to each strip i a subgraph Gi induced by the vertices of G corre-

sponding to the disks whose centers lie in strip i
3: find an exact clique partition Zi for each Gi

4: return a clique partition Z = ∪Zi

Again, disk centers have nonnegative y-coordinates and the bottommost disk
centers have y-coordinates equal to zero. If y(v) satisfies i−1 ≤ y(v) < i, for some
i ≥ 0, then v is a vertex of Gi.

The exact clique partition Zi for Gi in Line 3 is obtained as follows. Let
vi
1, . . . , v

i
ki

be an ordering of the vertices of Gi such that x(vi
j) ≤ x(vi

j+1), for
1 ≤ j < ki. We use the lemma below.
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Lemma 3.1. Let Ci
1 be a maximal clique containing vi

1. Then Ci
1 belongs to some

minimum clique partition of Gi.

Proof. If N(vi
1) is a clique then the lemma clearly holds. Otherwise, by Facts 1

and 2, N(vi
1) = {vi

2, v
i
3} and vi

2, v
i
3 are not adjacent. In this case, either {vi

1, v
i
2}

or {vi
1, v

i
3} belongs to some minimum clique partition of Gi. �

Lemma 3.1 leads to a greedy method to compute Zi: repeatedly (i) find a
maximal clique containing the leftmost vertex in the ordering, and (ii) remove the
vertices of such a clique from the current graph. This procedure is repeated until
no more vertices are left.

Line 2 take O(n) time. By considering a partition of the plane into vertical strips
of the form j ≤ x < j +1, j ∈ Z, determining which vertical strip a disk center lies
in is immediate. In addition, at most three vertices of Gi can be associated with
a same vertical strip j (no four disk centers may simultaneously lie in j because
centers located at x = j + 1 lie in the next strip). This means that ordering
vertices associated with a same vertical strip takes O(1) time. Thus, the ordering
vi
1, . . . , v

i
ki

of the vertices of Gi can be obtained in O(ni) time, where ni is the
number of vertices of Gi. Finding a maximal clique Ci

1 containing vi
1, according

to Lemma 3.1, takes O(1) time, and thus the greedy method to compute Zi also
takes O(ni) time. Overall, Line 3 takes O(n) time, and therefore Algorithm 2
takes O(n) time.

It is easy to see that disk centers associated to the vertices of a clique C belong-
ing to a minimum clique partition Z∗ are distributed along at most two horizontal
strips of width 1. By applying the same argument as in the previous subsection,
Algorithm 2 is a 2-approximation algorithm. This result corrects the previous
result in [7].

An interesting question is to devise linear-time algorithms with better approx-
imation ratios than the described ones.
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