
RAIRO-Theor. Inf. Appl. 45 (2011) 35–58 Available online at:

DOI: 10.1051/ita/2011010 www.rairo-ita.org

ENUMERATED TYPE SEMANTICS FOR THE CALCULUS
OF LOOPING SEQUENCES ∗

Livio Bioglio
1

Abstract. The calculus of looping sequences is a formalism for de-
scribing the evolution of biological systems by means of term rewrit-
ing rules. In this paper we enrich this calculus with a type discipline
which preserves some biological properties depending on the minimum
and the maximum number of elements of some type requested by the
present elements. The type system enforces these properties and typed
reductions guarantee that evolution preserves them. As an example,
we model the hemoglobin structure and the equilibrium between cell
death and division: typed reductions prevent undesirable behaviors.

Mathematics Subject Classification. 03B15, 68Q42, 68Q55,
68Q65, 92C42.

1. Introduction

In the last few years, formalisms for the description and analysis of biologi-
cal systems have been introduced and investigated, see [13]. These formalisms
allow the study of biological systems by using methods, such as static analysis,
model checking or quantitative computer simulations, which are practically un-
known to biologists. Among the many formalisms that have either been applied to
or inspired from biological systems, the most notable are: automata-based mod-
els [1,10], rewrite systems [8,12], and process calculi [7,13–15]. Automata-based
models permit the direct use of many verification tools such as model checkers;
rewrite systems describe biological systems with a notation that can be easily un-
derstood by biologists; by means of process calculi the behavior of systems can be
studied componentwise.

Keywords and phrases. System biology, predictive modelling, CLS, type systems.

∗ This research is founded by the BioBITs Project (Converging Technologies 2007, area:
Biotechnology-ICT), Regione Piemonte.
1 Dipartimento di Informatica, Università di Torino, Torino, Italy; biogliol@di.unito.it

Article published by EDP Sciences c© EDP Sciences 2011

http://dx.doi.org/10.1051/ita/2011010
http://www.rairo-ita.org
http://www.edpsciences.org

36 L. BIOGLIO

In [4,5,11], Milazzo et al. introduced a formalism, called Calculus of Looping
Sequences (CLS for short), for describing biological systems and their evolution.
CLS combines rewrite systems, being based on term rewriting, and process calculi,
using features such as a commutative parallel composition operator, and semantic
notions such as bisimulations.

Homeostasis is the property of a system that regulates its internal environment
and tends to maintain stable conditions that are optimal for survival: when this
equilibrium is disturbed, built-in regulatory devices respond to establish again the
balance. Different living organisms have some homeostatic mechanism to maintain
some conditions in specific ranges: the human body, like in all the warm-blooded
animals, maintain a near-constant body temperature using mechanisms such as
vasodilation and vasoconstriction, and microorganisms maintain the iron presence
above a minimum level to maintain life but up to a maximum level to avoid iron
toxicity. In biology a huge number of elements are made up of a certain number of
different subcomponents: proteins are composed by different domains, some pro-
teins are multimers, rybosomes are a mixture of RNA and proteins, etc. Monomers
are molecules that may become chemically bounded to other monomers to form
a polymer: for example, antibodies can be monomers, dimers or pentamers, the
Triose phosphate isomerase, an enzyme essential for efficient energy production,
is a dimer of identical subunits, and the Glutamate dehydrogenase 1, a mitochon-
drial matrix enzyme with a key role in the nitrogen and glutamate metabolism, is
a hexamer.

In [2,3,6,9] different type disciplines for CLS are presented. The type discipline
in [6,9] preserves some biological properties deriving from the fact that certain
elements may require the presence and the absence of others. With the type system
introduced in [6,9], it is not possible to model constraints involved in homeostasis
and polymers, because not only elements require the presence or absence of others,
but they require that the numbers of these elements are in given intervals. In the
type system introduced in this paper, we assume that for each element we fix the
minimum and the maximum number of other elements that the element requires.
We enrich CLS with a type discipline and typed reductions that guarantee the
soundness of reduction rules with respect to the properties of biological systems
deriving from the minimum and the maximum requested numbers of elements.
This type discipline is a generalization of the one in [6,9].

The remainder of the paper is organized as follows. In Section 2 we introduce
the calculus of looping sequences. In Section 3 we develop the type discipline for
the minimum and the maximum requested elements and we embed it into the
semantics of the calculus. In Section 4 we use the machinery of principal typing
to infer the type constraints of rewrite rules, and check their applicability. In
Section 5 we use our typing discipline to describe the hemoglobin structure and
to regulate the equilibrium between cell death and division. Finally, in Section 6
we draw some conclusions.

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 37

2. Overview on calculus of looping sequences

In this paper we refer to the definition of CLS formalism in [4].
We assume a possibly infinite alphabet E of symbols ranged over by a, b, c, . . .

Definition 2.1 (patterns). Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
∣∣ (SP)L �P ∣∣ P |P ∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP ∣∣ x̃
∣∣ x

where a is a generic element of E , and X , x̃ and x are term variables, sequence
variables and element variables, respectively. Terms are patterns without variables.

In CLS we have a sequencing operator · , a looping operator ()L, a parallel
composition operator | and a containment operator � . Sequencing can be
used to concatenate elements of the alphabet E . The empty sequence ε denotes
the concatenation of zero symbols. A term can be either a sequence or a looping
sequence (that is the application of the looping operator to a sequence) containing
another term, or the parallel composition of two terms. By definition, looping
and containment are always applied together, hence we can consider them as a
single binary operator ()L � which applies to one sequence and one pattern, and
we call this binary operator loop. A compartment is any parallel composition of
one or more terms. Given a loop (S)L �P , the compartment P is called the inner
compartment of the looping sequence. We denote by χ a generic variable, i.e. χ
stands for X , x̃ or x.

In CLS we may have syntactically different terms representing the same struc-
ture. We introduce a structural congruence relation to identify such terms.

Definition 2.2 (structural congruence). The structural congruence relations ≡S
and ≡T are the least congruence relations on sequences and on terms, respectively,
satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S
S1 ≡S S2 implies S1 ≡T S2 and (S1)

L �P ≡T (S2)
L �P

P1 |P2 ≡T P2 |P1 P1 | (P2 |P3) ≡T (P1 |P2) |P3 P | ε ≡T P
(ε)L � ε ≡T ε (S1 · S2)

L �P ≡T (S2 · S1)
L �P.

In the following, for simplicity, we will use ≡ in place of ≡T .

A containment operator makes the inner compartment invisible from the out-
side. We say that an element a is present in a sequence S if S ≡ S′ ·a ·S′′ for some
S′, S′′. An element a is present in a compartment P if P ≡ P ′ |P ′′ for some P ′, P ′′

and either P ′ = S or P ′ = (S)L � for some S, and in both cases a is present in S.
Starting from a term, its behavior depends on rewrite rules: they are pairs of

patterns, with the first term describing the portion of the system in which the
event modelled by the rule may occur, and the second term describing how that

38 L. BIOGLIO

portion of the system changes when the event occurs. Using variables, a rule
will be applicable to all terms which can be obtained by properly instantiating
its variables. An instantiation is a partial function that maps variables to terms,
preserving their kinds: term variables, sequence variables and element variables
are mapped into terms, sequences and elements, respectively. Given a pattern P ,
let Pσ denote the term obtained by replacing all occurrences of each variable χ
appearing in P by the corresponding term σ(χ). We denote by Σ the set of all the
possible instantiations, and by V ar(P) the set of variables appearing in P . Now
we can formally define rewrite rules.

Definition 2.3 (rewrite rules). A rewrite rule, �, is a pair of patterns, denoted
by P1 �→P2, where P1 �≡ ε and such that V ar(P2) ⊆ V ar(P1).

Example 2.1. Examples of rewrite rules are
(1) a �→ b and (2) (d)L � (b |X) �→ b | (d)L �X .

Rule (1) says that one element a turns into one element b, and rule (2) says that
one element b exits from a looping sequence containing only the element d. A
rule can also be a pair of terms, like rule (1), because terms are patterns without
variables.

A rewrite rule P1 �→P2 states that a term P1σ, obtained by instantiating vari-
ables in P1 by some instantiation function σ ∈ Σ, can be transformed into the
term P2σ.

Rewrite rules can be applied to terms only if they occur in a legal context:

Definition 2.4 (contexts). Contexts C are defined as:

C ::= �
∣∣ C |T ∣∣ T |C ∣∣ (S)L �C

where T is a term and S is a sequence. The context � is called the empty context.
We denote by C the infinite set of contexts.

By definition, every context contains a single hole �. Given C1, C2 ∈ C, C1[C2]
denotes the context obtained by replacing � with C2 in C1. Given C ∈ C and a
term T , C[T] denotes the term obtained by replacing � with T in C.

The semantics of CLS is defined as follows.

Definition 2.5 (semantics). Given a finite set of rewrite rules R, the semantics
of CLS is the least relation closed with respect to ≡ and satisfying the following
(set of) rules:

� = P1 �→ P2 ∈ R P1σ �≡ ε σ ∈ Σ C ∈ C
C[P1σ] −→ C[P2σ]

.

Given a set of rewrite rules R, the behavior of a term T is the tree of terms to
which T may reduce.

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 39

Example 2.2. Starting from the term
(d)L � (c | a | a | a | a)

we can apply the rules in Example 2.1, obtaining, among the others, the following
reductions

(d)L � (c | a | a | a | a) −→ (d)L � (c | a | a | a | b) −→ (d)L � (c | a | a | b | b)
−→ b | (d)L � (c | a | a | b) −→ b | (d)L � (c | a | b | b)
−→ b | b | (d)L � (c | a | b) −→ b | b | b | (d)L � (c | a)
−→ b | b | b | (d)L � (c | b) −→ b | b | b | b | (d)L � (c).

3. Type discipline

Let T be a finite set of basic types: we classify every element in E with a
unique element of T . We use Γ to denote this classification. When there is no
ambiguity, we denote the type associated with an element a by ta. In general,
different elements can have the same basic type, so for example ta = tb can hold.
We assume the existence of two functions, mn : T ×T → N and mx : T ×T →
N + {∞} for every ordered pair of basic types (t1, t2). These functions indicate
the minimum and maximum (also infinity) number of elements of basic type t2

that can be present with one or more elements of basic type t1. We use infinity
to mean the absence of a maximum limit, not to mean that there are infinite
elements. For example, mn(ta, tb) = 3 means that if some elements of basic type
ta are present, then there must be also present at least 3 elements of basic type
tb, and mx(ta, tb) = 5 means that if some elements of basic type ta are present,
then there can be also present at most 5 elements of basic type tb. If we consider
both constraints, then the number of elements of basic type tb in presence of some
elements of basic type ta must be between 3 and 5. We also consider mn(t, t)
and mx(t, t), i.e. the minimum and maximum number of elements of basic type
t allowed by the presence of one element of basic type t. We assume that both do
not include the presence of the element of basic type t: for example, mn(t, t) = 1
means that one element of type t requires at least another element of the same
basic type, and mx(t, t) = 3 means that one element of type t tolerates at most
3 other elements of the same basic type.

We consider only local properties: elements influence each other if they are
either present in the same compartment or one is present in the looping sequence
and the other is present in the inner compartment of a containment operator. Note
that the elements in a looping sequence are influenced by the elements present in
the same compartment and also by the elements present in its inner compartment.
We will write ‘an element a requires n elements b’ if n = mn(ta, tb), and ‘an
element a tolerates m elements b’ if m = mx(ta, tb). The functions mn and mx
cannot be arbitrary, they must satisfy some consistency requirements.

Definition 3.1 (consistent basic types). A system composed by a set of basic
types T and the functions mn and mx is consistent if:

(1) ∀ t1, t2 ∈ T mn(t1, t2) ≤ mx(t1, t2);

40 L. BIOGLIO

(2) ∀ t1, t2 ∈ T mx(t1, t2) = 0 =⇒ mn(t2, t1) = 0;
(3) ∀ t1, t2 ∈ T mn(t1, t2) > 0 =⇒ mx(t2, t1) > 0.

The meaning of the conditions stated in Definition 3.1 is:
(1) the minimum number of elements of basic type t2 required by the elements

of basic type t1 must be lower than the maximum number of elements of
the same basic type t2 tolerated by the elements of basic type t1;

(2) if the elements of basic type t1 do not tolerate elements of basic type t2,
then the elements of basic type t2 cannot require elements of basic type
t1.

(3) if the elements of basic type t1 require the presence of a certain number
of elements having basic type t2, then the elements of basic type t2 must
tolerate elements of basic type t1.

Note that intolerance is not symmetric: the elements of a basic type t1 can tolerate
elements of basic type t2 also if elements of basic type t2 are intolerant versus
elements of basic type t1.

Example 3.1. The system
T = {ta, tb, tc}

where mn, mx are:
mn ta tb tc
ta 0 0 0
tb 0 0 1
tc 1 0 0

mx ta tb tc
ta ∞ 0 1
tb ∞ ∞ ∞
tc ∞ 1 ∞

is consistent, because every pair of basic types respects the constrains in Defini-
tion 3.1.

The present type discipline is a refinement of the P/R type discipline for CLS
proposed in [6,9]. In the P/R type discipline each basic type t is associated with a
pair of sets of basic types (Rt, Et), where t �∈ Rt ∪ Et and Rt ∩ Et = ∅, saying that
the presence of elements of basic type t requires the presence of elements whose
basic type belongs to Rt and forbids the presence of elements whose basic type
belongs to Et. We can express the sets R and E of the P/R type discipline by means
of the functions mn and mx. Given a basic type t, we have mn(t, t) = 0 and
mx(t, t) = ∞, for every basic type t′ ∈ Rt we have mn(t, t′) = 1 and mx(t, t′) =
∞, whereas for every basic type t′′ ∈ Et we have mn(t, t′′) = mx(t, t′′) = 0.

Types are triples (P, L, M) of multisets over the set T of basic types, where P
(present-ms) is the multiset of basic types of present elements (the elements present
at the top level compartment of a pattern, i.e. in the outermost compartment), L
(at-least-ms) is the multiset of the basic types still required by the present elements,
and M (at-most-ms) is the multiset of the basic types still tolerated by the present
elements. Some basic definitions about multisets, taken from [16] and extended
with infinity, are reported in Figure 1.

Given a basic type t, we define its down-ms Dt as the multiset 〈T , fDt〉, where
fDt(t′) = mn(t, t′) (for t′ ∈ T), and its up-ms Ut as the multiset 〈T , fUt〉, where
fUt(t′) = mx(t, t′) (for t′ ∈ T).

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 41

• Multiset: a multiset over a set D is a pair 〈D, f〉, where f : D → N∪{∞}
is a function, called multiplicity function.

• Empty multiset: a multiset A = 〈D, fA〉 is the empty multiset, denoted
by ∅, if ∀ e ∈ D fA(e) = 0.

• Infinite multiset: a multiset A = 〈D, fA〉 is the infinite multiset, denoted
by D∞, if ∀ e ∈ D fA(e) = ∞.

• Sub-multiset: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then
A is a sub-multiset of B, denoted A ⊆ B, if ∀ e ∈ D fA(e) ≤ fB(e).

• Sum: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then their
sum, denoted A � B, is the multiset C = 〈D, fC〉 such that ∀ e ∈ D:
fC(e) = fA(e) + fB(e).

• Removal: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then the
removal of multiset B from A, denoted A�B, is the multiset C = 〈D, fC〉
such that ∀ e ∈ D fC(e) = max(fA(e) − fB(e), 0).

• Union: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then
their union, denoted A ∪ B, is the multiset C = 〈D, fC〉 such that
∀ e ∈ D fC(e) = max(fA(e), fB(e)).

• Intersection: if A = 〈D, fA〉 and B = 〈D, fB〉 are two multisets, then
their intersection, denoted A ∩ B, is the multiset C = 〈D, fC〉 such that
∀ e ∈ D fC(e) = min(fA(e), fB(e)).

• We convene that ∀ m ∈ N ∪ {∞}, ∀ n ∈ N
• m ≤ ∞ • m+ ∞ = ∞
• ∞− n = ∞ • n−∞ = 0.

Figure 1. Multiset basic definitions.

A type (P, L, M) is well formed if:

• the multiset L is a subset of the multiset M, i.e. the multiplicity of every
basic type in L is less than or equal to the multiplicity of the same basic
type in M,

• the multiset L is contained in the union of the down-ms of the types in P,
• the sum of the multisets P and M is contained in the intersection of the

up-ms of each basic type in P, taking into account the elements themselves.

For example, if a basic type in P requires 3 elements of basic type t1, and
a different basic type in P requires 5 elements of the same basic type t1, the
multiplicity of t1 in L can be any number less than or equal to 5, because there
can be elements of basic type t1 which are present, but it cannot be greater than 5.
Therefore the multiplicity of t1 in L must be not greater than the maximum of
the down-ms of the basic types in P. In multiset theory, the maximum between
multisets is their union, so the at-least-ms must be a subset of the union of the
down-ms of all the basic types in the present-ms. Since the up-ms contains the
maximum number of basic types still tolerated by the elements in the present-ms,
the sum between the at-most-ms and the present-ms must be a subset of the
intersection of the up-ms of all the basic types in the present-ms. We sum to the

42 L. BIOGLIO

Δ � ε : (∅, ∅,T∞) (Teps)
a :t ∈ Γ

(Tel)
Δ � a : ({t}, Dt, Ut)

Δ, χ : (P, L, M) � χ : (P, L, M) (Tvar)

Δ � SP : (P, L, M) Δ � SP ′ : (P′, L′, M′) (P, L, M) �� (P′, L′, M′)
(Tseq)

Δ � SP ·SP ′ : (P, L, M) � (P′, L′, M′)

Δ � P : (P, L, M) Δ � P ′ : (P′, L′, M′) (P, L, M) �� (P′, L′, M′)
(Tpar)

Δ � P |P ′ : (P, L, M) � (P′, L′, M′)

Δ � SP : (P, L, M) Δ � P : (P′, L′, M′) (P′, L′, M′) � (P, L, M)
(Tcomp)

Δ � (SP)L �P : (P, L� P
′, M� P

′)

Figure 2. Typing rules.

up-ms of a basic type t the basic type itself because by definition the up-ms of
a basic type t does not take into account the presence of t. For example, let P
contain 2 elements of basic type t1, that tolerates 5 elements of the basic type t1

itself, and a basic type in P tolerates 7 elements of basic type t1. The sum of the
multiplicities of t1 in P and M must be then the minimum between 6 and 7, i.e. 6.
Since the multiplicity of t1 in P is 2, then the multiplicity of t1 in M must be less
than or equal to 4.

Definition 3.2 (well-formed types). A type (P, L, M) is well formed if L ⊆ M,
L ⊆ ⋃

t∈P Dt and P � M ⊆ ⋂
t∈P(Ut � {t}).

In the following we will consider only well-formed types.
Summarizing, the (well-formed) type of a pattern is (P, L, M), where:

• P: the number of elements of a certain basic type which are presents out
of the outermost compartment,

• L: the minimum number of elements of some basic types still required by
the present elements,

• M: the maximum number of elements of basic types still tolerated by the
present elements,

checking that the maximum limit is never exceed and the minimum limit is reached
in every compartment.
Types are assigned to patterns and terms with the typing rules in Figure 2, where
bases, assigning types to element, term and sequence variables are defined by:

Δ ::= ∅ ∣∣ Δ, x : ({t}, Dt, Ut)
∣∣ Δ, η : (P, L, M)

where η denotes a sequence or term variable. A basis is well formed if all types in
the basis are well formed.
The type of the empty sequence, (Teps) rule, has the empty multiset as present-ms,

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 43

because an empty sequence does not contain elements, the empty multiset as
at-least-ms and T∞ as at-most-ms, because the absence of elements allows the
absence of limits. The type of an element, (Tel) rule, is composed by the basic
type t as present-ms, and its down-ms and up-ms. The type of a variable, (Tvar)
rule, is given by the basis.

The type of a sequence, a parallel composition or a looping sequence is derived
from the types of the two sub-patterns. For two patterns to be combinable, the
present-ms of one must be a subset of the at-most-ms of the other, i.e. the number
of present elements in one must not exceed the maximum number of the same
elements tolerated by the other. This key condition must hold for all sub-patterns
of patterns, because the exceeding of the maximum limit for a sub-pattern makes
the whole pattern not typable. On the contrary, it is not necessary to check
whether all the minimum requests are reached, because this constraint depends on
the elements in the whole compartment and the looping sequence containing it, if
it exists: therefore this condition is checked only for a whole compartment.

Now we focus on (Tseq) and (Tpar) rules. The type of the obtained pattern
is the join of the types (P, L, M) and (P′, L′, M′) of the connected patterns defined
as follows. The present-ms of the join type is the sum of the present-ms, P � P′,
i.e. the number of one element in the new type is the sum of the numbers of the
same element in the old types. For getting the at-least-ms of the join type we
remove the present-ms of one type from the at-least-ms of the other, obtaining
for each type the number of elements required taking into account the presence of
the basic types in the present-ms of the other type. The union of these multisets
is the at-least-ms of the join type, because, as seen in the explanation of well-
formed types, the maximum of two lower limits, in multiset theory calculated by
the union, satisfies both lower limits. For the at-most-ms of the join type we do
the dual, taking the intersection of the removals, i.e. their minimum. To sum up:

Definition 3.3 (join of types). Given two well formed types (P, L, M) and (P′, L′, M′),
we define their join (P, L, M) � (P′, L′, M′) by

(P, L, M) � (P′, L′, M′) = (P � P′, (L� P′) ∪ (L′ � P), (M� P′) ∩ (M′ � P)).

The type obtained by join may be not well formed, because

• its at-least-ms could not be a subset of its at-most-ms,
• there are too many present elements of a given type, i.e. the number of

present elements of a given type exceed the number of tolerated elements
of that type.

Since we want to restrict to well-formed types, we define compatibility between
types, that impose both conditions.

Definition 3.4 (type compatibility). Two well-formed types (P, L, M) and (P′, L′, M′)
are compatible (written (P, L, M) �� (P′, L′, M′)) if (L�P′)∪(L′�P) ⊆ (M�P′)∩(M′�P),
P ⊆ M′ and P′ ⊆ M.

Compatibility of two types is a necessary and sufficient condition to get well-
formedness of the join.

44 L. BIOGLIO

Proposition 3.1. Let (P, L, M), (P′, L′, M′) be well-formed types: (P, L, M)�(P′, L′, M′)
is well-formed iff (P, L, M) �� (P′, L′, M′).

Proof. We have to show that (L � P′) ∪ (L′ � P) ⊆ ⋃
t∈P�P′ Dt and P � P′ � [(M �

P′) ∩ (M′ � P)] ⊆ ⋂
t∈P�P′(Ut � {t}).

Since (P, L, M) and (P′, L′, M′) are well formed by hypothesis, we get L ⊆ ⋃
t∈P Dt,

L′ ⊆ ⋃
t∈P′ Dt, P � M ⊆ ⋂

t∈P(Ut � {t}), P′ � M′ ⊆ ⋂
t∈P′(Ut � {t}). Then (L � P′) ∪

(L′ � P) ⊆ ⋃
t∈P�P′ Dt follows from L ⊆ ⋃

t∈P Dt and L′ ⊆ ⋃
t∈P′ Dt.

We have P� M = P� M� P′ � P′ ⊇ P� P′ � [(M� P′)∩ (M′ � P)] since P′ ⊆ M, which
implies P � P′ � [(M � P′) ∩ (M′ � P)] ⊆ ⋂

t∈P(Ut � {t}) by P � M ⊆ ⋂
t∈P(Ut � {t}).

Similarly we can show P�P′� [(M�P′)∩(M′�P)] ⊆ ⋂
t∈P′(Ut�{t}), so we conclude

P � P′ � [(M� P′) ∩ (M′ � P)] ⊆ ⋂
t∈P�P′(Ut � {t}).

Note that if (L � P′) ∪ (L′ � P) � (M� P′) ∩ (M′ � P) the join type is clearly not
well formed. If P � M′ it means that there are basic types t ∈ P, t′ ∈ P′ such
that the number of present elements of basic type t is bigger than the number
of elements of basic type t allowed by the elements of basic type t′, taking into
account also the elements of basic type t which belongs to P′ or possibly to an
inner compartment. Therefore the join type will be not well formed. �

Finally, we consider the (Tcomp) rule. In the resulting type, the present el-
ements are only the ones in the looping sequence, because a looping sequence
makes the elements inside the compartment invisible from the outside. Since the
elements in the looping sequence are influenced by the ones inside the compart-
ment, to obtain the at-least-ms and at-most-ms of its type we must subtract the
elements present in the inner pattern from the at-least-ms and at-most-ms of the
looping sequence.

Definition 3.5 (subtraction of types). Given two well-formed types (P, L, M) and
(P′, L′, M′), we define their subtraction as (P, L� P′, M� P′).

A type obtained by subtraction is always well formed, because we are taking
away the same multiset from the at-least-ms and at-most-ms of a well-formed type.
Since a looping sequence encloses a compartment, we must assure that all the at-
least limits in the inner compartment are reached. To do so, we require that the
present-ms of the looping sequence satisfies all the requests of the at-least-ms of
the inner pattern. Moreover, as in the case of compatibility we need to assure that
there are not too many present basic types.

Definition 3.6 (types satisfaction). Given two well-formed types (P, L, M) and
(P′, L′, M′), (P, L, M) satisfies (P′, L′, M′) (written (P′, L′, M′) � (P, L, M)) if L′ ⊆ P,
P ⊆ M′ and P′ ⊆ M.

It is easy to verify that, using the typing rules in Figure 2, from the empty basis
we derive a well-formed type for a term, and from a well-formed basis we derive a
well-formed type for a pattern.

Reduction rules are applied only to terms such that their types are well formed
and the at-least limits are reached also in the outermost compartment, i.e. their
types have the empty multiset as at-least-ms. These terms are interesting from a

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 45

biological point of view, because, since all the minimum requests are fulfilled, they
represent complete systems. We call them correct terms:

Definition 3.7 (correct term). A term � T : (P, L, M) is correct if L = ∅.
For clarity, in the following examples, a multiset A will be denoted with the

set notation by listing the types followed by their multiplicity, {t : fA(t) | t ∈ D},
where t1, t2, . . . , tk : m means that all basic types t1, t2, . . . , tk have multiplicity
m. In the at-most-ms we write only the basic types having multiplicity 0 or finite,
and we do not write the basic types having multiplicity ∞. On the contrary, in
present-ms and at-least-ms we do not write the basic types having multiplicity
0. In this way we highlight only the most significant cases: in fact, an infinite
multiplicity in a at-most-ms means no constraint, and the same for a multiplicity
of zero in a at-least-ms.

Example 3.2. Assuming the set of basic types
T = {ta, tb, tc, td}

and a classification which contains
{a : ta, b : tb, c : tc, d : td}

where mn, mx are:
mn ta tb tc td
ta 0 0 1 0
tb 0 0 0 0
tc 2 0 0 0
td 0 0 0 0

mx ta tb tc td
ta ∞ ∞ 1 ∞
tb ∞ ∞ ∞ ∞
tc ∞ 1 ∞ ∞
td ∞ ∞ ∞ ∞

the term
(A) � (d)L � (c | a | a | a | a) : ({td : 1}, ∅,T∞)

is correct, while the term
� a | (d)L � (c | a | a | a | a) : ({ta, td : 1}, {tc : 1}, {tc : 1})

is not correct, because the term of a basic type ta requires exactly one element of
basic type tc. Moreover, a term cannot have a type, if in the inner compartment
containing an element of basic type tc there are less than two elements of basic
type ta, as for example

a | (d)L � (c | a).
This is also the case when, in the same compartment or looping sequence containing
an element of basic type tc, there are more than one element of basic type tb, as
for example

a | (d)L � (c | a | a | b | b).
Also a term with some elements of basic type ta without any element of basic type
tc, as for example

a | (d)L � (a | a | a)
does not have a type.

In the remaining of the present section we will define our typed semantics, and
show that typed reductions preserve the correctness of terms.

An instantiation σ agrees with a basis Δ (notation σ ∈ ΣΔ) if χ : (P, L, M) ∈ Δ
implies � σ(χ) : (P, L, M).

46 L. BIOGLIO

The following Lemma, that can be easily proved by induction on type deriva-
tions, will be useful for the Subject Reduction theorem:

Lemma 3.3. If σ ∈ ΣΔ, then � Pσ : (P, L, M) if and only if Δ � P : (P, L, M).

We are looking for a typed semantics which applied to correct terms produces
only correct terms. Observe that if Y : (P, L, M) � C[Y] : (P′, ∅, M′), then every term
obtained filling the hole of this context with a term having type (P, L, M) will be
correct. This fact leads us to the following definition:

Definition 3.8 (typed hole). Given a context C and a well-formed type (P, L, M),
the type (P, L, M) is OK for the context C if Y : (P, L, M) � C[Y] : (P′, ∅, M′) for
some P′, M′.

For rewriting rules we are only interested in the types of the right-hand-sides,
since they influence the type of the obtained term.

Definition 3.9 (Δ-(P, L, M)-safe rules). A rewrite rule P1 �→ P2 is Δ-(P, L, M)-safe
if Δ � P2 : (P, L, M).

Example 3.4. Assuming the set of basic types and the classification in Exam-
ple 3.2 and the basis

Δ = {X : ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0})}
the rule

(d)L � (b |X) �→ b | (d)L �X
is a Δ-({tb, td : 1}, ∅,T∞)-safe rule. In fact we derive

Δ � b | (d)L �X : ({tb, td : 1}, ∅,T∞).

Using Definitions 3.8 and 3.9, if we apply a rule whose right-hand-side has type
(P, L, M), and this type is OK for the context, we obtain a correct term.

Definition 3.10 (typed semantics). Given a finite set of rewriting rules R, the
typed semantics of CLS is the least relation closed with respect to ≡ and satisfying
the following sets of rules:

� = P1 �→ P2 ∈ R is a Δ-(P, L, M)-safe rule P1σ �≡ ε
σ ∈ ΣΔ C ∈ C (P, L, M) is OK for C

C[P1σ] =⇒ C[P2σ] .

As expected, typed reduction preserve correctness.

Theorem 3.5 (subject reduction). If T =⇒ T ′, then Δ � T ′ : (P′, ∅, M′) for some
P′, M′.

Proof. From Definition 3.10, we have that T ′ is C[P2σ], and, from Definition 3.9,
we have that Δ � P2 : (P, L, M) for some Δ, P, L, M. Lemma 3.3 and σ ∈ ΣΔ imply
that � P2σ : (P, L, M). Since, from Definition 3.10, the type (P, L, M) is OK for C,
we conclude that � C[P2σ] : (P′, ∅, M′) for some P′, M′. �

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 47

P1 P2 X C

(A) a b — (d)L � (c | a | a | a |�)
(B) (d)L � (b |X) b | (d)L �X c | a | a | a �
(C) a b — b | (d)L � (c | a | a |�)
(D) (d)L � (b |X) b | (d)L �X c | a | a b |�

Figure 3. Rules, instantiations and contexts of Example 3.6.

Δ type of P2σ type of C[P2σ]

(A) — ({tb : 1}, ∅, T∞) ({td : 1}, ∅, T∞)
(B) X : ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0}) ({tb, td : 1}, ∅, T∞) ({tb, td : 1}, ∅, T∞)
(C) — ({tb : 1}, ∅, T∞) ({tb, td : 1}, ∅, T∞)
(D) X : ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0}) ({tb, td : 1}, ∅, T∞) ({tb : 2, td : 1}, ∅, T∞)

Figure 4. Basis and typings of Example 3.6.

Example 3.6. We study the behavior of the term (A) in Example 3.2 using the
rules

(1) a �→ b and (2) (d)L � (b |X) �→ b | (d)L �X .
Rules, instantiations and contexts for the next reductions are reported in Fig-

ure 3, and their basis and typings are reported in Figure 4.
On term (A) of Example 3.2, we can only apply rule (1), obtaining the correct

term
(B) � (d)L � (c | a | a | a | b) : ({td : 1}, ∅,T∞).

On term (B), we cannot apply rule (1), because the basic type of c allows
no more than one element having basic type tb, and the term derived from the
application of this rule would not respect this constraint. We can only apply rule
(2), obtaining the correct term

(C) � b | (d)L � (c | a | a | a) : ({tb, td : 1}, ∅,T∞).
On term (C) , we can only apply rule (1), obtaining the correct term

(D) � b | (d)L � (c | a | a | b) : ({tb, td : 1}, ∅,T∞).
For the same reason as for the term (B), on the term (D) we can apply only rule
(2), obtaining the correct term

(E) � b | b | (d)L � (c | a | a) : ({tb : 2, td : 1}, ∅,T∞).
Rule (1) cannot be applied, because the basic type of c needs at least two elements
having basic type ta, and the term derived from the application of this rule does
not respect this constraint. Since also rule (2) cannot be applied, the term (E)
cannot reduce using rules (1) and (2).

We end this section by stating two lemmas on properties of typing rules which
will be used to show the theorems of next section.

Lemma 3.7 (Weakening). If Δ � P : (P, L, M) and Δ ⊆ Δ′, then Δ′ � P : (P, L, M).

Proof. By induction on derivations. �

48 L. BIOGLIO

Lemma 3.8. If Δ � C[P] : (P, L, M) then
(1) Δ � P : (P′, L′, M′) for some (P′, L′, M′), and
(2) if P ′ is such that Δ � P ′ : (P′, L′, M′), then Δ � C[P ′] : (P, L, M).

Proof. By induction on contexts. �

4. Inference

We use the machinery of principal typing [17] to infer the OK relation between
types and contexts and which rules are Δ-(P, L, M)-safe. From the term we want to
reduce we obtain a set of constraints: if they are fulfilled by a rule, then the rule
can be applied to the term preserving correctness. In this way, we can decide the
applicability of the rules.

We convene that for each element variable x there is an e-type variable ηx
ranging over basic types, and for each term or sequence variable ψ there are three
variables πψ , λψ , μψ (called p-type variable, l-type variable and m-type variable)
ranging over multisets of basic types. Moreover we convene that Π ranges over
formal unions of multisets of basic types, e-type variables and p-type variables, Λ
ranges over unions of multisets of basic types and l-type variables, and Ω ranges
over unions of multisets of basic types and m-type variables. We denote by δ a
generic p-type, l-type, m-type or e-type variable.

A basis scheme Θ is a mapping from atomic variables to their e-type variables,
and from sequence and term variables to triples of their p-type variables, l-type
variables and m-type variables:

Θ ::= ∅ ∣∣ Θ, x : ηx
∣∣ Θ, ψ : (πψ , λψ, μψ).

The rules for inferring principal typings use judgments of the shape:

� P : Θ; (Π,Λ,Ω); Ξ
where Θ is the principal basis in which P is well formed, (Π,Λ,Ω) is the principal
type of P , and Ξ is the set of constraints that should be satisfied. Figure 5 gives
these inference rules, derived from the typing rules in Figure 2.

Rules (Reps) and (Rel) directly derive from rules (Teps) and (Tel). The rules
for typing variables (rules (Rvar1) and (Rvar2)) put the variable with its type in
the basis. In rules (Rseq), (Rpar) and (Rcomp), the principal type is derived as in
(Tseq), (Tpar) and (Tcomp) rules respectively. The set of constraints is the union
between the constraints in the premise of the rule itself and the constraints in
the premise of (Tseq), (Tpar) and (Tcomp) rules, respectively. The principal basis
is the union of the principal bases of the composing patterns, without renaming,
because each variable ψ or x is associated to an unique triple of p-type, l-type,
m-type variables or to an unique e-type variable, respectively.

The key difference between inference rules, in Figure 5, and typing rules, in
Figure 2, is that the conditions of type compatibility and type satisfaction are not
premises, but conclusions. In this way, at the end of inference all these conditions

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 49

� ε : ∅; (∅, ∅,∞); ∅ (Reps) � x : {x : ({ηx}, Dηx , Uηx)}; ({ηx}, Dηx , Uηx); ∅ (Rvar1)

� ψ : {ψ : (πψ, λψ, μψ)}; (πψ, λψ, μψ); ∅ (Rvar2)
a : t ∈ Γ

(Rel)
� a : ∅; ({t}, Dt, Ut); ∅

� SP : Θ; (Π,Λ,Ω); Ξ � SP ′ : Θ′; (Π′,Λ′,Ω′); Ξ′
(Rseq)

� SP ·SP ′ : Θ ∪ Θ′; (Π,Λ,Ω) � (Π′,Λ′,Ω′); Ξ ∪ Ξ′ ∪ {(Π,Λ,Ω) �� (Π′,Λ′,Ω′)}

� P : Θ; (Π,Λ,Ω); Ξ � P ′ : Θ′; (Π′,Λ′,Ω′); Ξ′
(Rpar)

� P |P ′ : Θ ∪ Θ′; (Π,Λ,Ω) � (Π′,Λ′,Ω′); Ξ ∪ Ξ′ ∪ {(Π,Λ,Ω) �� (Π′,Λ′,Ω′)}

� SP : Θ; (Π,Λ,Ω); Ξ � P ′ : Θ′; (Π′,Λ′,Ω′); Ξ′
(Rcomp)

� (SP)L �P : Θ ∪ Θ′; (Π,Λ � Π′,Ω � Π′); Ξ ∪ Ξ′ ∪ {(Π′,Λ′,Ω′) � (Π,Λ,Ω)}

Figure 5. Inference rules.

create a set of constraints, that must be checked to decide the applicability of the
rules.

Example 4.1. We can use the inference rules in Figure 5 to infer the types of the
right-side patterns of the rules in Example 3.6, where, again, we assume the set of
basic types and the classification of Example 3.2, obtaining

� b : ∅; ({tb : 1}, ∅,T∞); ∅
� b | (d)L �X : Θ; ({tb : 1}, ∅,T∞) � ({td : 1}, ∅,T∞); Ξ

where
Θ = { X : (πX , λX , μX) }
Ξ = { (πX , λX , μX) � ({td : 1}, ∅,T∞),

({tb : 1}, ∅,T∞) �� ({td : 1}, ∅,T∞) }.
Soundness and completeness of our inference rules can be stated as usual. A

type mapping maps e-type variables to basic types, p-type variables, l-type variables
and m-type variables to multisets of basic types. A type mapping m satisfies a set
of constraints Ξ if all constraints in m(Ξ) are satisfied.

Theorem 4.2 (soundness of type inference). If � P : Θ; (Π,Λ,Ω); Ξ and m is a
type mapping which satisfies Ξ, then m(Θ) � P : (m(Π),m(Λ),m(Ω)).

Proof. By induction on derivations, and by cases on the last applied rule.
• For rules (Reps), (Rel), (Rvar1), and (Rvar2) the result is trivial.
• Rule (Rseq). In this case the conclusion of the rule is

� SP·SP ′ : Θ∪Θ′; (Π,Λ,Ω)�(Π′,Λ′,Ω′); Ξ∪Ξ′∪{(Π,Λ,Ω) �� (Π′,Λ′,Ω′)}
and the assumptions are
� SP : Θ; (Π,Λ,Ω); Ξ and � SP ′ : Θ′; (Π′,Λ′,Ω′); Ξ′. Since m satisfies Ξ

50 L. BIOGLIO

and Ξ′, by induction hypothesis, and weakening (Lem. 3.7), we derive
m(Θ ∪ Θ′) � SP : (m(Π),m(Λ),m(Ω))

m(Θ ∪ Θ′) � SP ′ : (m(Π′),m(Λ′),m(Ω′)).
Moreover, since m satisfies (Π,Λ,Ω) �� (Π′,Λ′,Ω′), we have

(m(Π),m(Λ),m(Ω)) �� (m(Π′),m(Λ′),m(Ω′)).
Therefore the rule (Tseq) can be applied, and
m(Θ ∪ Θ′) � SP ·SP ′ : (m(Π),m(Λ),m(Ω)) � (m(Π′),m(Λ′),m(Ω′)).

• For rules (Rpar), and (Rcomp) the result can be proved like for rule (Rseq).
�

Theorem 4.3 (completeness of type inference). If Δ � P : (P, L, M), then � P :
Θ; (Π,Λ,Ω); Ξ for some Θ, Π, Λ, Ω, Ξ and there is a type mapping m that satisfies
Ξ and such that Δ ⊇ m(Θ), P = m(Π), L = m(Λ), M = m(Ω).

Proof. By induction on the derivation of Δ � P : (P, L, M).
• If the last rule of the derivation is (Teps), (Tel), or (Tvar) the result is

obvious. Note that, for (Tvar) in the inference we distinguish the case of
element variables from sequence or term variables.

• Rule (Tseq). The conclusion of the rule is
Δ � SP ·SP ′ : (P, L, M) � (P′, L′, M′),

and the assumptions are
Δ � SP : (P, L, M), Δ � SP ′ : (P′, L′, M′)

and the condition (P′, L′, M′) �� (P′, L′, M′). By induction hypothesis, there
are Θ, Π, Λ, Ω, Ξ, Θ′, Π′, Λ′, Ω′, Ξ′ such that

� SP : Θ; (Π,Λ,Ω); Ξ and � SP ′ : Θ′; (Π′,Λ′,Ω′); Ξ′.
These are the assumptions of rule (Rseq), whose conclusion is
� SP·SP ′ : Θ∪Θ′; (Π,Λ,Ω)�(Π′,Λ′,Ω′); Ξ∪Ξ′∪{(Π,Λ,Ω) �� (Π′,Λ′,Ω′)}.
Moreover, by induction there is a type mapping m′ satisfying Ξ such that
Δ ⊇ m′(Θ), P = m′(Π), L = m′(Λ) and M = m′(Ω), and there is a type
mapping m′′ satisfying Ξ′ such that Δ ⊇ m′′(Θ′), P′ = m′′(Π′), L′ =
m′′(Λ′) and M′ = m′′(Ω′). Therefore, we derive Δ ⊇ m′(Θ) ∪ m′′(Θ′) and
(P, L, M) � (P′, L′, M′) = (m′(Π),m′(Λ),m′(Ω)) � (m′′(Π′),m′′(Λ′),m′′(Ω′)).

Since the bases m′(Θ) and m′′(Θ′) are both subsets of the same basis
Δ, then for all the (e-type, p-type, l-type or m-type) variables δ such that
δ ∈ dom(m′) ∩ dom(m′′) we get m′(δ) = m′′(δ). Therefore the mapping m

m(δ) =
{

m′(δ) if δ ∈ dom(m′)
m′′(δ) if δ ∈ dom(m′′)

is well defined.
Moreover, since m satisfies Ξ, Ξ′ and (Π,Λ,Ω) �� (Π′,Λ′,Ω′), then m

satisfies also all the constraints of the conclusion of the rule (Rseq).
• If the last rule is (Tpar) or (Tcomp) the proof is similar.

�

We use the inference rules to decide applicability of typed reduction rules for
Δ-(P, L, M)-safe rules. The first step is to understand when a type mapping makes
a rule a Δ-(P, L, M)-safe rule, i.e. when it satisfies the constraints in Definition 3.9.

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 51

Lemma 4.4 (characterization of Δ-(P, L, M)-safe rules). A rule P1 �→ P2 is Δ-
(P, L, M)-safe if and only if the type mapping m defined by the basis Δ, i.e. such
that

• m(ηx) = t if Δ(x) = {t}
• m(πψ) = P′ if Δ(ψ) = (P′, L′, M′)
• m(λψ) = L′ if Δ(ψ) = (P′, L′, M′)
• m(μψ) = M′ if Δ(ψ) = (P′, L′, M′)

satisfies the set of constraints Ξ2 ∪ {Π2 = P} ∪ {Λ2 = L} ∪ {Ω2 = M}, where
� P2 : Θ2; (Π2,Λ2,Ω2); Ξ2.

We can apply Δ-(P, L, M)-safe rules only in contexts in which the type (P, L, M)
is OK, so we must characterize also the OK relation. To check this relation it
is not necessary to consider the whole context, but only the part of the context
influenced by the typing of the hole: from the typing rules we can see that the
typing of a term inside two nested looping sequences does not influence the typing
of the terms outside the outermost looping sequence. We call core of the context
the subcontext including the hole and the part of the context influenced by the
type of the hole. The following definition formalizes this notion.

Definition 4.1. The core of the context C (notation core(C)) is defined by:

• core(C) = C if C ≡ � |T1 or C ≡ (S1)
L � (� |T1) |T2;

• core(C) = C2 if C = C1[C2] where C2 ≡ (S2)
L � ((S1)

L � (� |T1) |T2).

Thanks to this notion, we can characterize the OK relation using a small num-
ber of constraints.

Lemma 4.5 (characterization of OK relation). Let the context C be such that
� C[T] : (P0, ∅, M0) for some T , P0, M0. A type (P, L, M) is OK for C if and only if
the type mapping m defined by

• m(πY) = P,
• m(λY) = L,
• m(μY) = M,

satisfies the set of constraints

Ξ ∪ {Λ = ∅ if core(C) = C},
where � core(C)[Y] : {Y : (πY , λY , μY)}; (Π,Λ,Ω); Ξ.

Example 4.6. Using Lemma 4.5, the constraints making OK the type associated
with a generic variable Y for the contexts in Example 3.6 are:
(A) (πY , λY , μY) �� ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0})

((πY , λY , μY) � ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0})) � ({td : 1}, ∅,T∞) ∅ = ∅
(B) λY =∅
(C) (πY , λY , μY) �� ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0})

((πY , λY , μY) � ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0})) � ({td : 1}, ∅,T∞) ∅ = ∅
(D) (πY , λY , μY) �� ({tb : 1}, ∅,T∞) λY � {tb : 1}=∅

Note that Λ is ∅ in (A) and (C).

52 L. BIOGLIO

Once we have characterized the Δ-(P, L, M)-safe rules, and also the OK relation,
we can infer the applicability of a rewrite rule by checking if the type mapping
respects the constraints derived for these rules.

Theorem 4.7 (Applicability of rewrite rules). Let

� P2 : Θ2; (Π2,Λ2,Ω2); Ξ2 , � core(C)[Y] : {Y : (πY , λY , μY)}; (ΠC ,ΛC ,ΩC); ΞC

and P1σ �≡ ε. Then the rule P1 �→ P2 can be applied to the term C[P1σ] such that
� C[P1σ] : (P0, ∅, M0) (for some P0, M0) if and only if the type mapping m defined
by

• m(ηx) = t if σ(x) : t ∈ Γ,
• m(πψ) = P′ if � σ(ψ) : (P′, L′, M′),
• m(λψ) = L′ if � σ(ψ) : (P′, L′, M′),
• m(μψ) = M′ if � σ(ψ) : (P′, L′, M′),

satisfies the following sets of constraints:

Ξ2 ∪ ΞC ∪ {(πY = Π2), (λY = Λ2), (μY = Ω2)} ∪ {ΛC = ∅ if core(C) = C}.

Proof. We define the basis Δ as follows:

• x : ({t}, Dt, Ut) ∈ Δ if σ(x) : t ∈ Γ, and
• ψ : (P′, L′, M′) ∈ Δ if � σ(ψ) : (P′, L′, M′).

In this way we get that σ ∈ ΣΔ and the type mapping m is such that:

• m(ηx) = t iff x : ({t}, Dt, Ut) ∈ Δ
• m(πψ) = P′ iff ψ : (P′, L′, M′) ∈ Δ
• m(λψ) = L′ iff ψ : (P′, L′, M′) ∈ Δ
• m(μψ) = M′ iff ψ : (P′, L′, M′) ∈ Δ.

(⇐): If the mapping m satisfies the set of constraints Ξ2 ∪ ΞC ∪ {(πY =
Π2), (λY = Λ2), (μY = Ω2)} ∪ {ΛC = ∅ if core(C) = C}, then m(πY) =
m(Π2) = P,m(λY) = m(Λ2) = L,m(μY) = m(Ω2) = M for some P, L, M,
and by Lemma 4.5 the context C is OK for (P, L, M) and by Lemma 4.4
the rule P1 �→ P2 is Δ-(P, L, M)-safe; we get C[P1σ] =⇒ C[P2σ].

(⇒): If C[P1σ] =⇒ C[P2σ] , then the rule P1 �→ P2 is Δ-(P, L, M)-safe for some
P, L, M, and the context C is OK for (P, L, M). By Lemmas 4.5 and 4.4,
m(πY) = m(Π2) = P,m(λY) = m(Λ2) = L,m(μY) = m(Ω2) = M, and the
mapping m satisfies the set of constraints Ξ2 ∪ ΞC ∪ {(πY = Π2), (λY =
Λ2), (μY = Ω2)} ∪ {ΛC = ∅ if core(C) = C}. �

Example 4.8. We use the Theorem 4.7 on the terms of Example 3.6. Each
type mapping derived from the instantiation and from the constraints {(πY =
Π2), (λY = Λ2), (μY = Ω2)}, reported in Figure 6, satisfies its own set of con-
straints for the right-hand of the rules and OK relations for the contexts, reported

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 53

πX λX μX πY λY μY
(A) — — — tb : 1 ∅ T∞
(B) ta : 3, tc : 1 ∅ tb : 1, tc : 0 tb, td : 1 ∅ T∞
(C) — — — tb : 1 ∅ T∞
(D) ta : 2, tc : 1 ∅ tb : 1, tc : 0 tb, td : 1 ∅ T∞

Figure 6. Type mappings of Example 4.8.

in Examples 4.1 and 4.6, respectively.
(A) rule constraints: ∅

context constraints: ({tb : 1}, ∅,T∞) �� ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0})
({ta : 3, tb, tc : 1}, ∅, {tb, tc : 0}) � ({td : 1}, ∅,T∞) ∅ = ∅

(B) rule constraints: ({ta : 3, tc : 1}, ∅, {tb : 1, tc : 0}) � ({td : 1}, ∅,T∞)
({tb : 1}, ∅,T∞) �� ({td : 1}, ∅,T∞)
context constraints: ∅ = ∅

(C) rule constraints: ∅
context constraints: ({tb : 1}, ∅,T∞) �� ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0})
({ta : 2, tb, tc : 1}, ∅, {tb, tc : 0}) � ({td : 1}, ∅,T∞) ∅ = ∅

(D) rule constraints: ({ta : 2, tc : 1}, ∅, {tb : 1, tc : 0}) � ({td : 1}, ∅,T∞)
({tb : 1}, ∅,T∞) �� ({td : 1}, ∅,T∞)
context constraints: ({tb, td : 1}, ∅,T∞) �� ({tb : 1}, ∅,T∞) ∅ = ∅

5. Example

The type discipline presented in Section 3 can be used both to describe the
structure of an element and to limit the presence of some elements. We present
an example for each use: for the structure description we present the hemoglobin
variants, and for the limitation we present the regulation between cell death and
division, an example of homeostatic balance in living organisms. The aim of these
examples is not to describe a complete biological case study, but to give an idea
of the possible uses of the type discipline.

5.1. Hemoglobin variants

Hemoglobin (abbreviated Hb) is the oxygen-transport metalloprotein in the
red blood cells of vertebrates, and in the tissues of some invertebrates. It consists
mostly of proteins (the globin chains), which usually differ between species, and
even within a species, although one sequence is usually a most common one in
each species. In humans, the hemoglobin molecule is an assembly of four glob-
ular protein subunits: the most common, with a normal amount over 95%, is
the hemoglobin A, consisting of two α and two β subunits, but there are some
hemoglobin variants, as reported in Table 1. Many of these cause no disease, but

54 L. BIOGLIO

Table 1. Some hemoglobin variants in humans.

Name Structure Informations
A α2β2 The most common
A2 α2δ2 It has a normal range of 1.5–3.5%
F α2γ2 The one presents in the fetus
H β4 It may be present in variants of α thalassemia

Barts δ4 It may be present in variants of α thalassemia

Table 2. Basic types for hemoglobin variants and subunits.

Element Basic type Minimum and maximum
α tα –
β tβ –
γ tγ –
δ tδ –
A tA tγ , tδ, tA, tA2 , tF , tH , tB : 0, tα, tβ : 2
A2 tA2 tβ, tγ , tA, tA2 , tF , tH , tB : 0, tα, tδ : 2
F tF tβ, tδ, tA, tA2 , tF , tH , tB : 0, tα, tγ : 2
H tH tα, tγ , tδ, tA, tA2 , tF , tH , tB : 0, tβ : 4

Barts tB tα, tβ, tγ , tA, tA2 , tF , tH , tB : 0, tδ : 4

some of these cause a group of hereditary diseases, known as hemoglobinopathies:
the most known are sickle-cell disease, in which red blood cells assume an abnor-
mal and rigid shape, and thalassemias, that usually result in underproduction of
normal globin proteins.

We want to model the different kinds of hemoglobin: we model an hemoglobin
protein as a looping sequence having the element h on the surface and containing,
depending on the kind of hemoglobin, four subunits, chosen between α, β, γ
and δ, and one of the elements A, A2, F , H or B, representing the different
kinds of hemoglobin in Table 1. For example, the term modeling the hemoglobin
A is (h)L � (A |α·α·β ·β), and the one for hemoglobin H is (h)L � (H |β ·β ·β ·β).
According to the structure of each hemoglobin variant, we create the basic types
shown in Table 2.

Using the typed extension of CLS and these basic type, no rule can change the
structure of the different kinds of hemoglobin without removing or modifying its
structural element A, A2, F , H or B.

5.2. Cell death and division

In multicellular organisms the life of the cells is ruled by two oppose processes: a
cell division process, resulting in cell multiplication (mitosis for eukaryotic cells and
binary fission for prokaryotic cells), and a process of programmed cell death, called
apoptosis. In an adult organism, the rate of these processes must be balanced:
an excess of cell death leads to cell loss, and an excess of cell division leads to

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 55

tumors. For this reason, the number of cells is kept relatively constant through
cell death and division. Using our type discipline, we can model this behavior
in a simple way. We model a cell as a looping sequence having the element c on
the surface and containing the other elements of interest for the study, in this
case only the element a: (c)L � a. We assume the organism can support from 2 to
8 cells, and the element a does not have any request. Assuming the set of basic
types T = {ta, tc}, a basic type ta for the element a and a basic type tc for the
element c, the functions mn and mx that model this behavior are:

mn ta tc
ta 0 0
tc 0 1

mx ta tc
ta T∞ T∞
tc T∞ 7

In this model, the rules for cell death and cell division are

(de) (x̃·c)L �X �→ ε

(di) (x̃·c)L �X �→ (x̃·c)L �X | (x̃·c)L �X
respectively. For the right-side patterns of these rules we can infer the following
types:

(rp1) � ε : ∅; (∅, ∅,T∞); ∅
(rp2) � (x̃·c)L �X | (x̃·c)L �X : Θx̃,X ; (Π,Λ,Ω) � (Π,Λ,Ω); Ξ ∪ {(Π,Λ,Ω) ��
(Π,Λ,Ω)}
where
Θx̃,X = {x̃ : (πx̃, λx̃, μx̃), X : (πX , λX , μX)}

Π = {tc : 1} � πx̃
Λ = (({tc : 1} � πx̃) ∪ (λx̃ � {tc : 1})) � πX
Ω = (({tc : 7} � πx̃) ∩ (μx̃ � {tc : 1})) � πX
Ξ = {({tc : 1}, {tc : 1}, {tc : 7}) �� (πx̃, λx̃, μx̃) ∪

(πX , λX , μX)} � (({tc : 1}, {tc : 1}, {tc : 7}) � (πx̃, λx̃, μx̃)).
We want to study the behavior of a system composed by two cells, (c)L � a | (c)L � a,
and we try to apply rules (de) and (di) on it. Because both rules have the same
left side pattern, they use the same instantiation, σ(x̃) = ε and σ(X) = a, and
also the same context (c)L � a |�, for which we derive, using the rules in Figure 5,
the inferred type:

� (c)L � a |Y : ΘY ; (ΠC ,ΛC ,ΩC); ΞC
where
ΘY = {Y : (πY , λY , μY)}
ΠC = {tc : 1} � πY
ΛC = ({tc : 1} � πY) ∪ (λY � {tc : 1})
ΩC = ({tc : 7} � πY) ∩ (μY � {tc : 1})
ΞC = {({tc : 1}, {tc : 1}, {tc : 7}) �� (πY , λY , μY).

We use Theorem 4.7 to check the applicability of the rules. First of all, from the
instantiation σ we get the type mapping

πx̃ λx̃ μx̃ πX λX μX
∅ ∅ T∞ ta : 1 ∅ T∞

56 L. BIOGLIO

and we use it to instantiate the type and the constraints of the patterns (rp1) and
(rp2), obtaining that the constraints of both patterns are satisfied, and

Π = {tc : 1} Λ = {tc : 1} Ω = {tc : 7}.
Now we check the other constraints in Theorem 4.7. For the rule (di) we have

πY = {tc : 2} λY = ∅ μY = {tc : 6}.
The constraints of the context, ΞC , and the constraint ΛC = ∅ are satisfied, then
we can apply the rule.
For the rule (de) we have

πY = ∅ λY = ∅ μY = T∞.
The constraints of the context, ΞC , are satisfied, but the constraint {tc : 1} =
ΛC = ∅ is not satisfied, then we cannot apply the rule: in fact, this rule kills a cell,
an invalid behavior in an organism composed by only 2 cells, the minimum required
number. In a dual way, cell division is not possible in an organism composed by 8
cells.

6. Conclusions

In this paper we introduced a type discipline for the Calculus of the Looping
Sequences which allows to describe and to limit the structure of systems and sub-
systems: this behavior cannot be easily reproduced only by means of reduction
rules. In this way we may transfer the complexity of some biological properties
from reduction rules to types, describing the behavior of biological systems using
only general rules.

In [6,9] some rules are classified as Δ-safe rules, i.e. rules having the same type
for the left-side and the right-side patterns: these rules do not change the type
of terms to which they are applied. In the present type discipline, for typing we
count the number of elements of a term. Since rules usually change something
in the term, adding or removing elements, in a rule the number of elements in
the right-hand-side is different from the number of elements in the left-hand-side,
and therefore their types are also different. According to this idea, we decided to
not include Δ-safe rules in the present semantics, because using the present type
discipline very few reduction rules are Δ-safe.

In nature, the minimum and maximum levels presented in this paper can be
sometimes exceeded, even if this would lead the system to disease: even if un-
desiderable, the balance between cell death and division can be broken, leading to
death or tumors. On the contrary, our typed semantics completely exclude these
kinds of situations. According to this idea, we could modify our typed semantics,
allowing transitions which lead to untypable terms, but signaling that some unde-
sired state has been reached. To this aim we should add to our typed semantics
the rule

� = P1 �→ P2 ∈ R is a Δ-(P, L, M)-safe rule P1σ �≡ ε
σ ∈ ΣΔ C ∈ C (P, L, M) is not OK for C

C[P1σ] Error−−−−→ C[P2σ]

ENUMERATED TYPE SEMANTICS FOR LOOPING SEQUENCES 57

to advise the modeller that some unwanted behavior is happening in the system.
In this way, the modeller can check if, starting from the initial term and using
the given rules, we can reach a non-typable term, i.e. a term that breaks some
biological property.

In biology, we do not always know the precise numbers of elements in the system,
but we know their concentration, as percentage of the single elements in the whole
system: for example, the corpuscles in blood are usually given as a percentage or
as an absolute number per litre. Our type discipline cannot manage these cases,
because it checks the exact numbers of elements in every compartment. As a
possible future development, we plan to modify our type discipline to work on
these cases, checking, in every compartment, not the exact numbers, but the ratio
of elements with respect to the other elements.

Acknowledgements. The author is grateful to the anonymous reviewers for their valu-
able comments. The final version of this paper is strongly improved due to their right
criticisms and their suggestions. In particular Section 3 of the present paper was com-
pletely rewritten, using multiset arithmetic and expanding the explanations of the Defi-
nitions 3.3–3.6. Moreover we added a more complete inference example in Section 5. A
final and huge acknowledgement must go to Mariangiola Dezani and Paola Giannini, for
proofreading with patience the drafts and highlighting conceptual and lexical mistakes.

References

[1] R. Alur, C. Belta, V. Kumar and M. Mintz, Hybrid modeling and simulation of biomolecular
networks, in Hybrid Systems: Computation and Control. Lecture Notes in Computer Science
2034 (2001) 19–32.

[2] B. Aman, M. Dezani-Ciancaglini and A. Troina, Type Disciplines for Analysing Biologically
Relevant Properties, in Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC’08). Electronic Notes in Theoretical Computer Science 227 (2009) 97–111.

[3] R. Barbuti, A. Maggiolo-schettini and P. Milazzo, Extending the calculus of looping se-

quences to model protein interaction at the domain level, in Proceedings of International
Symposium on Bioinformatics Research and Applications (ISBRA’07). Lecture Notes in
Bioinformatics 4463 (2006) 638–649.

[4] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and A. Troina, Bisimulation congruences in
the calculus of looping sequences, in Proceedings of International Colloquium on Theoretical
Aspects of Computing (ICTAC’06). Lecture Notes in Computer Science 4281 (2006) 93–
107.

[5] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and A. Troina, A calculus of looping sequences
for modelling microbiological systems. Fund. Inform. 72 (2006) 21–35.

[6] L. Bioglio, M. Dezani-Ciancaglini, P. Giannini and A. Troina, Type directed semantics for
the calculus of looping sequences. International Journal of Software and Informatics (2010),
to appear.

[7] L. Cardelli, Brane calculi – interactions of biological membranes, in Computational Methods
in Systems Biology (2004) 257–278.

[8] V. Danos and C. Laneve, Formal molecular biology. Theoret. Comput. Sci. 325 (2004)
69–110.

[9] M. Dezani-Ciancaglini, P. Giannini and A. Troina, A Type System for Required/Excluded
Elements in CLS, in Workshop on Developments in Computational Models (DCM’09). Elec-
tronic Proceedings in Theoretical Computer Science 9 (2009) 38–48.

58 L. BIOGLIO

[10] H. Matsuno, A. Doi, M. Nagasaki and S. Miyano, Hybrid Petri Net representation of gene
regulatory networks, in Proceedings of the Pacific Symposium on Biocomputing (PSB ’00)
(2000), 338–349. http://www.marmisicc.com/index.aspx?IDMenu=76\&idMenuAPP=11.

[11] P. Milazzo, Qualitative and Quantitative Formal Modeling of Biological Systems. Ph.D.
thesis, University of Pisa (2007).

[12] G. Păun, Membrane Computing. An Introduction. Springer-Verlag (2002).
[13] A. Regev and E. Shapiro, Cells as computation. Nature 419 (2002) 343.
[14] A. Regev and E. Shapiro, The π-calculus as an abstraction for biomolecular systems. Mod-

elling in Molecular Biology (2004) 219–266.
[15] A. Regev, E.M. Panina, W. Silverman, L. Cardelli and E. Shapiro, Bioambients: An ab-

straction for biological compartments. Theoret. Comput. Sci. 325 (2004) 141–167.
[16] A. Syropoulos, Mathematics of multisets, in Multiset Processing. Lecture Notes in Computer

Science 2235 (2001) 347–358.
[17] J.B. Wells, The essence of principal typings, in Proceedings of Intenational Colloquium on

Automata, Languages and Programming (ICALP’02). Lecture Notes in Computer Science
2380 (2002) 913–925.

Communicated by A. Cherubini.
Received February 22, 2010. Accepted November 18, 2010.

http://www.marmisicc.com/index.aspx?IDMenu=76&idMenuAPP=11

	Introduction
	Overview on calculus of looping sequences
	Type discipline
	Inference
	Example
	Hemoglobin variants
	Cell death and division

	Conclusions
	References

