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STURMIAN JUNGLE (OR GARDEN?)
ON MULTILITERAL ALPHABETS
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Abstract. The properties characterizing Sturmian words are consid-
ered for words on multiliteral alphabets. We summarize various gener-
alizations of Sturmian words to multiliteral alphabets and enlarge the
list of known relationships among these generalizations. We provide
a new equivalent definition of rich words and make use of it in the
study of generalizations of Sturmian words based on palindromes. We
also collect many examples of infinite words to illustrate differences in
the generalized definitions of Sturmian words.
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1. Introduction

Sturmian words, i.e., aperiodic words with the lowest factor complexity, ap-
peared first in the paper of Hedlund and Morse in 1940. Since then Sturmian
words have been in the center of interest of many mathematicians and the number
of discoveries of new properties and connections keeps growing. The charm of
Sturmian words consists in their natural appearance while studying diverse prob-
lems. Many equivalent definitions have been found that way. Sturmian words are
binary and every property characterizing Sturmian words asks for a fruitful exten-
sion to an analogy on a larger alphabet. Well-known examples of such efforts are
Arnoux-Rauzy words, words coding interval exchange transformations, or billiard
words. All these words belong to well established classes and their descriptions
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and properties can be found in many works [5,6,11,27,35,40,46]. An overview of
some generalizations of Sturmian words is provided in [12,50].

The aim of this paper is to attract attention to other generalizations of Sturmian
words. Our motivation stems from recent results on palindromes in infinite words
that have ended in the definition of words rich in palindromes, the definition of
defect, the description of a relation between factor and palindromic complexity,
etc. [3,7,15]. Impulses for such an intensive research of palindromes come con-
cededly from the article [22] which characterizes Sturmian words by palindromes,
the article [23] which investigates the number of palindromes in prefixes of infinite
words and last, but not least, the discovery of the role of palindromes in descrip-
tion of the spectrum of Schrödinger operators with aperiodic potentials [31]. While
generalizing Sturmian words we have taken into consideration the characterization
of Sturmian words by return words from [49] and a recent definition of Abelian
complexity [42,43], which is closely connected with balance properties.

We consider the following properties (k denotes the cardinality of alphabet A):

(1) Property C:
the factor complexity of u satisfies C(n) = (k − 1)n + 1 for all n ∈ N.

(2) Property LR:
u contains one left special and one right special factor of every length.

(3) Property BO:
all bispecial factors of u are ordinary.

(4) Property R:
any factor of u has exactly k return words.

(5) Property P :
the palindromic complexity of u satisfies P(n) + P(n + 1) = k + 1 for

all n ∈ N.
(6) Property PE :

every palindrome has a unique palindromic extension in u.
(7) Balance properties:

(a) Property B∀:
u is aperiodic and for all a ∈ A and for all factors w, v ∈ L(u) with
|w| = |v| it holds

||w|a − |v|a| ≤ k − 1.

(b) Property B∃:
u is aperiodic and there exists a ∈ A such that for all factors w, v ∈
L(u) with |w| = |v| it holds

||w|a − |v|a| ≤ k − 1.

(c) Property AC:
u is aperiodic and the abelian complexity of u satisfies AC(n) = k for
all n ∈ N, n ≥ 1.
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All properties are equivalent on a binary alphabet and they characterize
Sturmian words. No two of them are equivalent on the set of infinite words over
a multiliteral alphabet. The non-equivalence is shown by counterexamples. How-
ever some properties imply others, or it can be shown that a couple of properties
are equivalent on a certain class of infinite words. For instance, on the class of
uniformly recurrent ternary words properties R and BO are equivalent.

There exist more equivalent definitions of Sturmian words, for instance the
definition based on balance properties of subfactors of factors [25], on the index of
an infinite word [37], or Richomme’s characteristics of Sturmian words [41]. We
do not pay attention to these definitions in our survey.

The paper is organized as follows. In Section 2 we recall the notions playing
an important role in the definitions of properties (1) through (7). We recall the
notion of substitution which is irrelevant for the generalizations of Sturmian words
but is used to construct most of examples of infinite words. Section 3 is focused
on the study of palindromes in infinite words: we summarize older and new results
concerning palindromes, we define palindromic branches. A new result in this sec-
tion is Theorem 3.10 providing a new characterization of rich words by means of
bilateral orders. Section 4 shortly summarizes essential results on Sturmian words.
Section 5 is devoted to an overview of known relations among different generaliza-
tions of Sturmian words, mostly from articles [7,9,16,30,42,43]. New results are in
Theorems 5.9 and 5.13, and Corollaries 5.11 and 5.12. The last section is a brief
summary of selected relations and examples illustrating the studied properties.

2. Notation and definitions

By A we denote a finite set of symbols, usually called letters; the set A is
therefore called an alphabet. A finite string w = w0w1 . . . wn−1 of letters of A is
said to be a finite word, its length is denoted by |w| = n. Finite words over A
together with the operation of concatenation and the empty word ε as the neutral
element form a free monoid A∗. The map

w = w0w1 . . . wn−1 �→ w̃ = wn−1wn−2 . . . w0

is a bijection on A∗, the word w̃ is called the reversal or the mirror image of w.
A word w which coincides with its mirror image is a palindrome.

Under an infinite word u over the alphabet A we understand an infinite string
u = u0u1u2 . . . of letters from A such that every letter of A occurs in u. We
call an infinite word u eventually periodic if there exist finite words w, v such that
u = wvω , where ω means ‘repeated infinitely many times’. If w = ε, then u is said
to be (purely) periodic. If u is not eventually periodic, then we call u aperiodic.

A finite word w is a factor of a word v (finite or infinite) if there exist words p
and s such that v = pws. If p = ε, then w is said to be a prefix of v, if s = ε, then
w is a suffix of v. We say that a prefix or a suffix is proper if it is not equal to the
word itself.
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The language L(u) of an infinite word u is the set of all its factors. The factors
of u of length n form the set denoted by Ln(u). Using this notation, we may write
L(u) = ∪n∈NLn(u).

We say that the language L(u) is closed under reversal if L(u) contains with
every factor w also its reversal w̃.

An infinite word u over A is called c-balanced if for every a ∈ A and for every
pair of factors w, v of u of the same length |w| = |v|, we have ||w|a − |v|a| ≤ c,
where |w|a means the number of letters a contained in w. Note that in the case
of a binary alphabet, say A = {0, 1}, this condition may be rewritten in a simpler
way: an infinite word u is c-balanced, if for every pair of factors w, v of u with
|w| = |v|, we have ||w|0 − |v|0| ≤ c. We call 1-balanced words simply balanced.

We say that two words w, v ∈ A∗ are abelian equivalent if for each letter a ∈ A,
it holds |w|a = |v|a. It is easy to see that the abelian equivalence defines indeed
an equivalence relation on A∗. If A = {a1, a2, . . . , ak}, then the Parikh vector
associated with the word w ∈ A∗ is defined as

Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak
).

We call abelian complexity (as defined in [42]) of an infinite word u the function
AC : N → N given by

AC(n) = #{Ψ(w)
∣∣ w ∈ Ln(u)}.

For any factor w ∈ L(u), there exists an index i such that w is a prefix of the
infinite word uiui+1ui+2 . . . Such an index i is called an occurrence of w in u. If
each factor of u has at least two occurrences in u, the infinite word u is said to
be recurrent. It can be easily shown that each factor of a recurrent word occurs
infinitely many times. It is readily seen that if the language of u is closed under
reversal, then u is recurrent. The infinite word u is said to be uniformly recurrent
if for any factor w of u the distances between successive occurrences of w form
a bounded sequence.

Let j, k, j < k, be two successive occurrences of a factor w in u. Then
ujuj+1 . . . uk−1 is called a return word of w. Return words were first studied
in [24,32]. The set of all return words of w is denoted by R(w),

R(w) = {ujuj+1 . . . uk−1 | j, k being successive occurrences of w in u}.

If v is a return word of w, then the word vw is called a complete return word of w.
It is obvious that an infinite recurrent word is uniformly recurrent if and only if
the set of return words of any of its factors is finite.

The (factor) complexity of an infinite word u is the map C : N �→ N, defined
by C(n) = #Ln(u). To determine the increment of complexity, one has to count
the possible extensions of factors of length n. A left extension of w ∈ L(u) is any
letter a ∈ A such that aw ∈ L(u). The set of all left extensions of a factor w will
be denoted by Lext(w). We will mostly deal with recurrent infinite words u. In
this case, any factor of u has at least one left extension. A factor w is called left
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� ��
w = w0w1 · · ·wn−1 v = w1 · · ·wn−1wn

e = w0w1 · · ·wn−1wn

Figure 1. Incidence relation between an edge and vertices in a
Rauzy graph.

special (or LS for short) if w has at least two left extensions. Clearly, any prefix of
a LS factor is LS as well. It makes therefore sense to define an infinite LS branch
which is an infinite word whose all prefixes are LS factors of u. Similarly, one can
define a right extension, a right special (or RS) factor, Rext(w), and an infinite RS
branch which is a left-sided infinite word whose all suffixes are RS factors of u.

We say that a factor w of u is a bispecial (or BS) factor if it is both RS and LS.
The role of BS factors for the computation of complexity can be nicely illustrated
on Rauzy graphs (introduced in [6]).

Let u be an infinite word and n ∈ N. The Rauzy graph Γn of u is a directed graph
whose set of vertices is Ln(u) and set of edges is Ln+1(u). An edge e ∈ Ln+1(u)
starts in the vertex w and ends in the vertex v if w is a prefix and v is a suffix
of e, see Figure 1. If the word u is recurrent, the graph Γn is strongly connected
for every n ∈ N, i.e., there exists a directed path from every vertex w to every
vertex v of the graph.

If the language L(u) of the infinite word u is closed under reversal, then the
operation that to every vertex w of the graph associates its mirror image, the
vertex w̃, and to every edge e associates ẽ maps the Rauzy graph Γn onto itself.

The outdegree (indegree) of a vertex w ∈ Ln(u) is the number of edges which
start (end) in w. Obviously the outdegree of w is equal to #Rext(w) and the
indegree of w is #Lext(w). The sum of outdegrees over all vertices is equal to
the number of edges in every directed graph. Similarly, it holds for indegrees. In
particular, for the Rauzy graph Γn we have∑

w∈Ln(u)

#Rext(w) = C(n + 1) =
∑

w∈Ln(u)

#Lext(w).

The first difference of complexity ΔC(n) = C(n + 1) − C(n) is thus given by

ΔC(n) =
∑

w∈Ln(u)

(
#Rext(w) − 1

)
=

∑
w∈Ln(u)

(
#Lext(w) − 1

)
.

A non-zero contribution to ΔC(n) in the left-hand sum is given only by those
factors w ∈ Ln(u) for which #Rext(w) ≥ 2, and for recurrent words, a non-zero
contribution to ΔC(n) in the right-hand sum is provided only by those factors
w ∈ Ln(u) for which #Lext(w) ≥ 2. The last relation can be thus rewritten for
recurrent words u as

ΔC(n) =
∑

w∈Ln(u), w RS

(
#Rext(w) − 1

)
=

∑
w∈Ln(u), w LS

(
#Lext(w) − 1

)
.
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If we denote Bext(w) = {awb ∈ L(u)
∣∣ a, b ∈ A}, then the second difference of

complexity Δ2C(n) = ΔC(n + 1) − ΔC(n) = C(n + 2) − 2C(n + 1) + C(n) is given
by

Δ2C(n) =
∑

w∈Ln(u)

(
#Bext(w) − #Rext(w) − #Lext(w) + 1

)
. (2.1)

Denote by b(w) the quantity

b(w) := #Bext(w) − #Rext(w) − #Lext(w) + 1.

The number b(w) is called the bilateral order of the factor w and was introduced
in [18]. It is readily seen that if w is not a BS factor, then b(w) = 0. Bispecial
factors are distinguished according to their bilateral order in the following way

• if b(w) > 0, then w is a strong BS factor;
• if b(w) < 0, then w is a weak BS factor;
• if b(w) = 0 then w is an ordinary BS factor.

A substitution on A is a morphism ϕ : A∗ → A∗ such that there exists a letter
a ∈ A and a non-empty word w ∈ A∗ satisfying ϕ(a) = aw and ϕ(b) �= ε for
all b ∈ A. Since a morphism satisfies ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈ A∗, any
substitution is uniquely determined by the images of letters. Instead of classical
ϕ(a) = w, we sometimes write a → w. A substitution can be naturally extended to
an infinite word u = u0u1u2 . . . by the prescription ϕ(u) = ϕ(u0)ϕ(u1)ϕ(u2) . . .
An infinite word u is said to be a fixed point of the substitution ϕ if it fulfills
u = ϕ(u). It is obvious that every substitution ϕ has at least one fixed point,
namely limn→∞ ϕn(a) (to be understood in the sense of product topology).

3. Words opulent in palindromes

In resemblance to the factor complexity C(n) of an infinite word u, let us define
the palindromic complexity of u as the map P : N → N given by

P(n) = #{w ∈ Ln(u)| w = w̃}.

If a ∈ A and w is a palindrome and awa ∈ L(u), then awa is said to be
a palindromic extension of w. The set of all palindromic extensions of w is denoted
by Pext(w).

Similarly as in the case of left special and right special branches, one can define
a palindromic branch of u.

Definition 3.1. Let u be an infinite word. A two-sided infinite word v = . . . v3v2v1

v1v2v3 . . . is a palindromic branch with center ε of the word u if for every n ∈ N the
word vnvn−1 . . . v2v1v1v2 . . . vn−1vn is a factor of u. Let a be a letter. A two-sided
infinite word v = . . . v3v2v1av1v2v3 . . . is a palindromic branch with center a of the
word u if for every n ∈ N the word vnvn−1 . . . v2v1av1v2 . . . vn−1vn is a factor of u.
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It follows from the König’s theorem that if u has infinitely many palindromes,
then u has at least one palindromic branch. In any Sturmian word on {0, 1}
there exist exactly three palindromic branches with centers ε, 0 and 1. See also
Section 5.1.

Uniformly recurrent words containing infinitely many distinct palindromes sat-
isfy that for any factor w, every sufficiently large palindrome in u contains w, thus
such a palindrome contains w̃ as well. As a consequence, we have the following
theorem.

Theorem 3.2. If u is a uniformly recurrent word that contains infinitely many
distinct palindromes, then its language L(u) is closed under reversal.

The opposite implication is not true as illustrated by the following example.

Example 3.1 (uniform recurrence + language closed under reversal �⇒ infinitely
many palindromes). The infinite word u on {a, b} (constructed in [13]) whose
prefixes un are given by the following recurrent formula

u0 = ab, un+1 = unabũn,

is uniformly recurrent and its language is closed under reversal. However, u con-
tains only a finite number of palindromes.

When we relax the condition of uniform recurrence, the statement of Theo-
rem 3.2 is not true any more.

Example 3.2 (infinitely many palindromes �⇒ language closed under reversal).
The infinite word u on {a, b, c} whose prefixes un are given by the following recur-
rent formula

u0 = ε, un+1 = unabcn+1un

is clearly recurrent. Infinitely many palindromes are represented by the factors cn

for every n. As the factor ba does not occur, the set of factors is not closed under
reversal. A similar example can be found in [16].

The word u may be recoded to a binary alphabet while preserving the mentioned
properties. We may for instance recode u using the following mapping:

a → 0110, b → 1001, c → 1.

An interesting relation between the palindromic and factor complexity has been
revealed in [7].

Theorem 3.3. Let u be an infinite word with the language closed under reversal.
Then

P(n + 1) + P(n) ≤ ΔC(n) + 2 for all n ∈ N. (3.1)

In fact, the above relation is stated in [7] for uniformly recurrent words, how-
ever the proof requires only recurrent words. Theorem 3.3 implies that infinite
words reaching the equality in (3.1) are in a certain sense opulent in palindromes.
Another measure of opulence in palindromes has been provided in [23].
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Theorem 3.4. Every finite word w contains at most |w|+1 palindromes (including
the empty word).

Definition 3.5. An infinite word u satisfying that every factor w of u contains
|w| + 1 palindromes is called rich in palindromes.

The following equivalent definitions of richness have been proved in [30], [16],
[17], respectively.

Theorem 3.6. For any infinite word u the following conditions are equivalent:
(1) u is rich;
(2) any complete return word of a palindromic factor of u is a palindrome;
(3) for any factor w of u, every factor of u that contains w only as its prefix

and w̃ only as its suffix is a palindrome;
(4) each factor of u is uniquely determined by its longest palindromic prefix

and its longest palindromic suffix.

We will need for our further purposes an implication that holds only for lan-
guages closed under reversal.

Corollary 3.7 [16]. Let u be a rich infinite word with the language closed under
reversal. Then for any factor w of u, the occurrences of w and w̃ alternate.

A natural question is whether infinite words reaching the equality in (3.1) co-
incide with rich words. The following theorem proved in [16] provides an answer.

Theorem 3.8. Let u be an infinite word with the language closed under reversal.
Then u is rich if and only if P(n + 1) + P(n) = ΔC(n) + 2 for all n ∈ N.

Let us mention as an open problem the following question. “Does the equiva-
lence of richness and the equality in (3.1) hold for a larger class than words with
the language closed under reversal? For instance for all recurrent words?”

The following observations may serve as hints:
• It does not hold for non-recurrent infinite words in general. The infinite

word abω is given in [16] as an example of a rich non-recurrent infinite
word (with the language of course not closed under reversal), which does
not reach the equality in (3.1) for all n ∈ N.

• Notice that both rich infinite words and infinite words reaching the equality
in (3.1) contain infinitely many palindromes.

• If u is rich and recurrent, then L(u) is closed under reversal (proved in [30],
Prop. 2.11).

The rest of this section is devoted to the relation between richness and bilateral
orders of factors. The following proposition reveals some information on bilateral
orders of palindromic bispecial factors in an infinite word with the language closed
under reversal.

Proposition 3.9. Let u be an infinite word whose language is closed under re-
versal. Then the bilateral order b(w) of a palindromic bispecial factor w ∈ L(u)
has a different parity than the number of palindromic extensions of w.
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Proof. Let w be a palindromic BS factor of u. On one hand, as the language is
closed under reversal, we have #Lext(w) = #Rext(w). Consequently, from the
definition of bilateral order one can see that the parity of #Bext(w) is different
from the parity of b(w). On the other hand, the parity of the number of palin-
dromic extensions of w equals the parity of #Bext(w) since for any a, b ∈ A, if
awb ∈ L(u), then bwa ∈ L(u). �

In the sequel, we will state and prove a new equivalent definition of rich words
by means of bilateral orders.

Theorem 3.10. Let u be an infinite word with the language closed under reversal.
Then u is rich if and only if any bispecial factor w of u satisfies:

• if w is non-palindromic, then

b(w) = 0;

• if w is a palindrome, then

b(w) = #Pext(w) − 1.

The following lemma will provide the most important tool for the proof of
Theorem 3.10.

Lemma 3.11. Let u be a rich infinite word whose language is closed under rever-
sal. Then it holds for any bispecial factor w:

• if w is non-palindromic, then

b(w) ≥ 0;

• if w is a palindrome, then

b(w) ≥ #Pext(w) − 1.

Proof. Let w be a non-palindromic BS factor. By the definition of b(w), we want
to prove

#Bext(w) ≥ #Rext(w) + #Lext(w) − 1.

We will construct a bipartite oriented graph G having its set of vertices V defined
as

V = {wa|a ∈ Rext(w)} ∪ {w̃a|a ∈ Rext(w̃)} .

There is an oriented edge from wa to w̃b if there exists a factor vb ∈ L(u) such
that wa is its prefix, w̃b is its suffix and factors w and w̃ occur each exactly once
in vb. Furthermore, there is an oriented edge from w̃x to wy if there exists a factor
vy ∈ L(u) such that w̃x is its prefix, wy is its suffix and factors w and w̃ occur
each exactly once in v.

Due to Theorem 3.6, such a factor v is a palindrome. Therefore the existence of
an edge from wa to w̃b implies aw̃b ∈ L(u), and so bwa ∈ L(u), too. Analogously,
if there is an edge from w̃x to wy, we have xwy ∈ L(u).
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� ��
w̃a wb

. . . | w̃ | a w︸ ︷︷ ︸
v

| b | . . .

� ��
wa w̃b

. . . | w | a w̃︸ ︷︷ ︸
v

| b | . . .

Figure 2. Incidence relation in the graph G.

By Corollary 3.7, the occurrences of w and w̃ alternate. Thus, to any factor of
u corresponds a path in G. As u is recurrent, the graph G is strongly connected.

As a consequence, the number of pairs of its vertices which are connected by
an edge is greater than or equal to the number of its vertices minus 1. We have

#Bext(w) ≥ #Rext(w) + #Rext(w̃) − 1.

Since Rext(w̃) = Lext(w) the proof of the first part is finished.

Let w be a palindromic BS factor. Let us consider this time a graph G whose
set of factors V is defined as

V = {wa|a ∈ Rext(w)} .

There is an edge from wa to wb if there exists a factor vb ∈ L(u) such that v is a
complete return word to w that has wa as a prefix. As u is rich, v is a palindrome.
Due to the recurrence of u, for every awb ∈ L(u), a �= b, there exists an edge in
G going from wa to wb. As the language is closed under reversal, the edge going
from wb to wa is in G, too. Therefore

# {awb ∈ L(u)|a �= b} = 2 × the number of pairs of distinct vertices
connected by an edge.

Owing to the recurrence of u, the graph G is strongly connected, thus the number
of pairs of distinct vertices connected by an edge is greater than or equal to the
number of vertices of G minus 1, which equals #Rext(w) − 1. We find

#Bext(w) = # {awb ∈ L(u)|a �= b}+ #Pext(w) ≥ 2 (#Rext(w) − 1)+ #Pext(w).

As Rext(w) = Lext(w), the statement is proved. �
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Proof of Theorem 3.10. (⇐): Let us show by mathematical induction that

ΔC(n) + 2 = P(n + 1) + P(n) for all n ∈ N.

Since L(u) is closed under reversal, this means by Theorem 3.8 that u is rich.
The assumption on bilateral orders and the fact that non-bispecial palindromic

factors have a unique palindromic extension guarantee the following equality for
all n ∈ N:

Δ2C(n) =
∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w=w̃

(#Pext(w) − 1) = P(n + 2) − P(n). (3.2)

For n = 0, we can write ΔC(0) + 2 = C(1) − C(0) + 2 = #A + 1. On the other
hand we have P(1) + P(0) = #A + 1.
Take N ∈ N. Assume ΔC(n) + 2 = P(n + 1) + P(n) holds for all n < N . Using
the induction assumption and (3.2), we obtain

ΔC(N) + 2 = (ΔC(N) − ΔC(N − 1)) + (ΔC(N − 1) + 2)
= Δ2C(N − 1) + (P(N − 1) + P(N))
= (P(N + 1) − P(N − 1)) + (P(N − 1) + P(N))
= P(N + 1) + P(N).

(⇒): Take n ∈ N arbitrary. We will prove the statement of the theorem for all BS
factors of length n.

As u is rich and the language L(u) is closed under reversal, we have by Theo-
rem 3.8

ΔC(k) + 2 = P(k + 1) + P(k) for all k ∈ N.

Applying this equality, we will deduce the form of Δ2C(n).

Δ2C(n) = (ΔC(n + 1) + 2) − (ΔC(n) + 2)

= (P(n + 2) + P(n + 1)) − (P(n + 1) + P(n))

= P(n + 2) − P(n).

Consequently, we obtain∑
w∈Ln(u)

b(w) = Δ2C(n) = P(n + 2) − P(n) =
∑

w∈Ln(u)
w=w̃

(#Pext(w) − 1) .

Palindromic factors that are not BS have obviously exactly one palindromic ex-
tension. Thus, we can rewrite the previous equality∑

w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w=w̃,w BS

(#Pext(w) − 1) . (3.3)
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Let us split the sum of bilateral orders into two parts and use Lemma 3.11∑
w∈Ln(u)

b(w) =
∑

w∈Ln(u)
w �=w̃, w BS

b(w) +
∑

w∈Ln(u)
w=w̃, w BS

b(w)

≥
∑

w∈Ln(u)
w �=w̃, w BS

b(w) +
∑

w∈Ln(u)
w=w̃, w BS

(#Pext(w) − 1). (3.4)

This in combination with (3.3) gives
∑

w∈Ln(u)
w �=w̃, w BS

b(w) = 0. By Lemma 3.11, bi-

lateral orders of such factors are non-negative, which implies b(w) = 0 for all
non-palindromic BS factors. Since the equality is reached in (3.4), we obtain∑

w∈Ln(u)
w=w̃, w BS

b(w) =
∑

w∈Ln(u)
w=w̃, w BS

(#Pext(w) − 1) . Together with Lemma 3.11, this re-

sults in b(w) = #Pext(w) − 1 for all palindromic BS factors. �

4. Equivalent definitions of Sturmian words

Let us stress a close link between periodicity and complexity (revealed by Morse
and Hedlund [38]). On one hand, the complexity of eventually periodic words is
bounded. On the other hand, if there exists n ∈ N such that C(n) ≤ n, then
the complexity is bounded and the infinite word u is eventually periodic. In
consequence, the complexity of aperiodic words satisfies C(n) ≥ n+1 for all n ∈ N.
Sturmian words are defined as infinite words with the complexity C(n) = n+1 for
all n ∈ N. This condition on complexity implies many properties. Let us list some
of them. If u is a Sturmian word, then u has the following properties:

• u is a binary word;
• u is aperiodic;
• the language L(u) is closed under reversal;
• the language L(u) contains infinitely many palindromes;
• the word u is uniformly recurrent;
• the language L(u) contains no weak bispecial factors;
• u is rich.

There exist many equivalent definitions of Sturmian words. The following the-
orem summarizes several of their well-known combinatorial characterizations.

Theorem 4.1. Let u be an infinite word over the alphabet A. The properties
listed below are equivalent:

(i) u is Sturmian, i.e., C(n) = n + 1 for all n;
(ii) u is binary and contains a unique left special factor of every length;
(iii) u is binary, aperiodic and every bispecial factor is ordinary;
(iv) any factor of u has exactly two return words;
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(v) u contains one palindrome of every even length and two palindromes of every
odd length;

(vi) u is binary and every palindrome has a unique palindromic extension;
(vii) u is aperiodic and balanced;
(viii) u is aperiodic and AC(n) = 2 for all n ∈ N, n ≥ 1.

The characterization by return words is due to Vuillon [49] and the one by the
abelian complexity is a consequence of the works by Coven and Hedlund [20]. The
equivalent definition based on the balance property comes already from Morse
and Hedlund [39]. The two equivalent properties concerning palindromes have
been proved by Droubay and Pirillo [22]. Notice that the sixth property can be
equivalently rewritten as

P(n) + P(n + 1) = 3 for all n ∈ N,

and also as
P(n + 2) = P(n) for all n ∈ N.

Let us recall that P(0) = 1 since the empty word is considered to be a palindrome.

5. Generalizations of Sturmian words

We have seen that Sturmian words can be defined in many equivalent ways.
As a matter of course, various generalizations to multiliteral alphabets have been
suggested and studied.

5.1. Two well-known generalizations

The most studied generalizations are Arnoux-Rauzy words and words coding
k-interval exchange transformation.

Arnoux-Rauzy words (or AR words for simplicity) are infinite words with the
language closed under reversal and containing exactly one LS factor w of every
length, and such that every LS factor has the same number k of left extensions, i.e.,
#Lext(w) = k. Their alphabet A has k letters since the empty word has exactly k
left extensions. AR words are aperiodic and satisfy C(n) = (k−1)n+1 for all n ∈ N.
They have been defined and studied in [23], the following properties have been
proved ibidem. The language of AR words contains infinitely many palindromes,
they are uniformly recurrent, rich, and have only ordinary BS factors. AR words
form a subclass of extensively studied episturmian words (see for instance [29]),
defined as infinite words that have the language closed under reversal and contain
at most one LS factor of every length.

Another well-known generalization of Sturmian words is provided by words
coding k-interval exchange transformation. Let us state their definition and then
explain why such words generalize Sturmian words to k-letter alphabets. Take pos-
itive numbers α1, . . . , αk such that

∑k
i=1 αi = 1. They define a partition of the
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interval I = [0, 1) into k subintervals

Ij =

[
j−1∑
i=1

αi,

j∑
i=1

αi

)
, j ∈ {1, 2, . . . , k}.

The interval exchange transformation is a bijection T : I → I given by the pre-
scription

T (x) = x + cj for all x ∈ Ij , j ∈ {1, 2, . . . , k},
where cj are suitably chosen constants. Since T is a bijection, the intervals
T (I1), T (I2), . . . , T (Ik) form a partition of I. The orders of T (Ij) in the parti-
tion define a permutation π : {1, 2, . . . , k} → {1, 2, . . . , k} and this permutation π
determines uniquely the constants cj . For instance, if the permutation π is sym-
metric, i.e., π =

(
1 2 ... k−1 k
k k−1 ... 2 1

)
, then the transformation T is of the following

form
T (x) = x +

∑
i>j

αi −
∑
i<j

αi for x ∈ Ij .

The infinite word u = u0u1u2 . . . over A = {a1, . . . , ak} associated with T is
defined as

un := aj if T n(x) ∈ Ij

and is called a word coding k-interval exchange transformation (k-iet word for
short).

From the point of view of combinatorics on words, an important role is played
by those transformations whose orbit for an arbitrary x ∈ I is dense in I, i.e.,
the closure of {T n(x)

∣∣ n ∈ N} is the whole interval I. A sufficient condition for
this property represents the so-called i.d.o.c. (consult [35]) and the irreducibility
of the permutation π. In the sequel, let us assume that T satisfies both of these
properties. The k-iet word is then uniformly recurrent, its language does not
depend on the position of the starting point x, but only on the transformation T ,
its complexity satisfies C(n) = (k− 1)n+1 for all n ∈ N and no BS factor is weak.

The language of the k-iet word u is closed under reversal if and only if the
permutation π is symmetric. In such a case, the language L(u) contains infinitely
many palindromes and, as shown in [7], the equality in (3.1) is attained. Hence,
according to Theorem 3.8, the k-iet words are rich. It is easy to describe the
infinite palindromic branches for such k-iet words. The one with the empty word
as its center is obtained as the coding of the orbit {T n(x)|n ∈ Z} with the starting
point x = 1/2 and the branch with the center aj ∈ A as the coding of the orbit
with the starting point x =

∑
i<j αi + αj/2.

The k-iet words provide a generalization of Sturmian words due to the well-
known connection between Sturmian and mechanical words [36].

Theorem 5.1. Let u be an infinite word. Then u is Sturmian if and only if u is
a 2-iet word with an irrational partition of the unit interval.

Recently, in [45], a different generalization of Sturmian sequences is consid-
ered. It in fact corresponds to a special subclass of k-iet words given by coding a
trajectory in a regular 2n-gon.
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5.2. Combinatorial generalizations

Let us write down and baptize the generalizations of properties from Theo-
rem 4.1. We will then refer to them and study their relations. Let u be an infinite
word over the alphabet A. Denote k = #A.

(1) Property C:
the factor complexity of u satisfies C(n) = (k − 1)n + 1 for all n ∈ N.

(2) Property LR:
u contains one left special and one right special factor of every length.

(3) Property BO:
all bispecial factors of u are ordinary.

(4) Property R:
any factor of u has exactly k return words.

(5) Property P :
the palindromic complexity of u satisfies P(n) + P(n + 1) = k + 1 for

all n ∈ N.
(6) Property PE :

every palindrome has a unique palindromic extension in u.
(7) Balance properties:

(a) Property B∀:
u is aperiodic and for all a ∈ A and for all factors w, v ∈ L(u) with
|w| = |v| it holds

||w|a − |v|a| ≤ k − 1.

(b) Property B∃:
u is aperiodic and there exists a ∈ A such that for all factors w, v ∈
L(u) with |w| = |v| it holds

||w|a − |v|a| ≤ k − 1.

(c) Property AC:
u is aperiodic and the abelian complexity of u satisfies AC(n) = k for
all n ∈ N, n ≥ 1.

At first, let us mention which properties are satisfied by the two generalizations
of Sturmian words from Section 5.1. AR words fulfill Properties: C,LR,BO,R,P ,
PE and k-iet words satisfy Properties: C,BO,R. If moreover the permutation
defining the k-iet word is symmetric, then these words have Properties P and PE .
Property LR does not hold for k-iet words.

It follows directly from the definition that some Properties imply others. For
instance, by (2.1) BO implies C. They are not equivalent as shown by the following
example taken from [26].

Example 5.1 (C �⇒ BO). The infinite ternary word limn→∞ ϕn(a), where ϕ(a) =
ab, ϕ(b) = cab, ϕ(c) = ccab – a recoding of the Chacon substitution – has the
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complexity 2n + 1 for every n ∈ N, but contains infinitely many strong and weak
BS factors.

In the sequel, we will show that no two of these properties are equivalent on
a multiliteral alphabet.

Concerning Properties B∀,B∃ and AC, we will not treat them but in the last
section since they are very restrictive, and consequently, satisfied only by a small
class of infinite words.

5.3. Property LR
Property LR does not characterize AR words since it is satisfied by a larger

class of words. Infinite words with the language closed under reversal and satisfy-
ing Property LR coincide with extensively studied aperiodic episturmian words.
Nevertheless, Property LR may be satisfied by words whose language is not closed
under reversal, as illustrated in [23] by the following example. It shows also that
Property LR does not guarantee Properties C,BO,R,P ,PE.

Example 5.2 (LR �⇒ language closed under reversal, C,BO,R,P ,PE). If we
construct an infinite word u so that we replace b with bc in the Fibonacci word
abaababaabaabab . . . , the fixed point of ϕ : a → ab, b → a, then bc is a factor of
L(u), however cb not. It is easy to see that such a word has still a unique infinite
RS and a unique LS branch (the infinite word u itself). Consequently, Property
LR is preserved. However, both of these infinite special branches have only two
extensions, hence Property C (and BO as well) fails. The factor c has only two
return words caab and cab, hence Property R does not hold. Moreover, as u is
uniformly recurrent and its language is not closed under reversal, it contains by
Theorem 3.2 only a finite number of palindromes. Therefore, Properties P and
PE are not satisfied.

On the other hand, observing k-iet words, we learn that none of Properties
C,BO,R,P ,PE imply LR. The problem to describe the class of infinite words
with Property LR whose language is not closed under reversal requires a further
study.

5.4. Property R
Let us recall that infinite words with Property R are necessarily uniformly

recurrent. If their language is not closed under reversal, then it cannot contain
infinitely many palindromes by Theorem 3.2. Such words exist, as illustrated by
the following example, therefore, Property R does not imply P .

Example 5.3 (R �⇒ P). The fixed point u of ϕ, where ϕ(a) = aab, ϕ(b) =
ac, ϕ(c) = a, contains bac, but cab is not its factor. The fact that every factor
of u has three return words is explained in [9] for a whole class of infinite words
coding β-integers.
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We have seen that AR words and k-iet words have both Property R and C,
however, as shown in [26] by the following example, Property C does not imply
Property R on multiliteral alphabets.

Example 5.4 (C �⇒ R). The fixed point of ϕ : a → ab, b → cab, c → ccab – the
above mentioned recoding of the Chacon substitution – has the complexity 2n + 1
for every n ∈ N, but contains more than three return words of certain factors (for
example the factor bc has 4 return words: bca, bcca, bcaba and bccaba.

The following theorems come from the paper [9] that is devoted to the study
of Property R for infinite words on multiliteral alphabets. Let us observe once
more AR words and k-iet words, these classes satisfy not only Property C, but also
Property BO. It is thus natural to ask whether Property BO guarantees R. The
corollary of the following theorem will provide an answer.

Theorem 5.2. If u is an infinite word with no weak BS factors, then u has
Property R if and only if u is uniformly recurrent and satisfies C.

Let us underline, an infinite word u has Property BO if and only if it has
Property C and contains no weak BS factors. It results in the advertised corollary.

Corollary 5.3. Let u be a uniformly recurrent infinite word. Then

BO ⇒ R.

If we restrict our consideration to the ternary alphabet, the implication can be
reversed.

Theorem 5.4. Let u be a ternary uniformly recurrent infinite word. Then

BO ⇔ R.

As soon as the alphabet has more than three letters, Property R does not imply
Property BO any more.

Example 5.5 (R �⇒ BO). The uniformly recurrent infinite word u =
limn→∞ ϕn(a), where

ϕ(a) = acbca, ϕ(b) = acbcadbdaca, ϕ(c) = dbcbdacadbd, ϕ(d) = dbcbd,

satisfies R, but not C (since C(n) is even for all n ∈ N) and u contains, of course,
weak BS factors. For details consult [9].

The question whether there exists a nice characterization of words with Prop-
erty R on alphabets with more than three letters remains open.

5.5. Property P and PE
The paper [8] is focused on the study of Properties P and PE . As soon as

an infinite word u has Property PE , then u has exactly one infinite palindromic
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branch with center a for every letter a ∈ A and one infinite palindromic branch
with center ε. Therefore, u contains exactly #A palindromes for every odd length
(central factors of palindromic branches with centers a ∈ A) and one palindrome
for every even length (central factor of the infinite palindromic branch with center
ε). Consequently, Property P is also satisfied by u.

Let us recall that Property P may be reformulated in the following way

P(n + 2) = P(n) for all n ∈ N, (5.1)

where P(0) = 1. We will equally use both of the forms of Property P .
Let u be an infinite word satisfying PE . The language L(u) contains infinitely

many palindromes, but it need not be closed under reversal, neither recurrent nor
rich as illustrated by the following example.

Example 5.6 (PE �⇒ language closed under reversal, PE �⇒ richness). The infinite
word u on the alphabet {a, b, c} defined in the following way:

u = caccb ccc︸︷︷︸
3×

a cccc︸︷︷︸
4×

b ccccc︸ ︷︷ ︸
5×

a cccccc︸ ︷︷ ︸
6×

b ccccccc︸ ︷︷ ︸
7×

a . . .

has three infinite palindromic branches with centers a, b and c

. . . cccaccc . . . , . . . cccbccc . . . , . . . ccccccc . . .

and one infinite palindromic branch with central factors of even length of the form
. . . cccccccc . . . The factor accb occurs only once in u, thus u is not recurrent and
hence L(u) is not closed under reversal. Moreover, u is not rich since the prefix
caccbccca of length 9 contains only 9 palindromes:
ε, a, b, c, cc, cac, cbc, ccc and ccbcc.

However, if the language L(u) is closed under reversal, then it is possible to say
more about the relation of Properties P and C and the richness of u. When both
P and C are satisfied, the equality in (3.1) is reached. Application of Theorem 3.8
provides us with the following corollary.

Corollary 5.5. Let u be an infinite word whose language is closed under reversal.
Then

P + C ⇒ richness of u.

The first example shows that Property P itself does not guarantee richness
even if the language is closed under reversal. The second one illustrates that the
implication in Corollary 5.5 cannot be reversed.

Example 5.7 (PE �⇒ richness, PE �⇒ C). A known example of an infinite word
with the language closed under reversal and with a higher factor complexity is the
billiard sequence on three letters, for which C(n) = n2 + n + 1. As shown in [14],
such words satisfy Property PE, hence P as well. Consequently, billiard sequences
do not reach the upper bound in (3.1) and by Theorem 3.8 cannot be rich.
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Example 5.8 (richness �⇒ P , richness �⇒ C). Let ϕ be defined on an m-letter
alphabet as follows:

ϕ(0) = 0t1, ϕ(1) = 0t2, . . . , ϕ(m − 2) = 0t(m − 1), ϕ(m − 1) = 0s,

where s, t ∈ N and t ≥ s ≥ 2. The fixed point u of ϕ satisfies the equality
P(n + 1) + P(n) = ΔC(n) + 2 for all n. As the language is closed under reversal,
by Theorem 3.8 u is rich. Property P is not satisfied since the sum P(n+1)+P(n)
is not constant. Further properties of palindromes in u can be found in [4].

Let us examine in the sequel the connection between Properties C and P , resp.
C and PE .

5.5.1. Ternary alphabet

Let us limit our considerations to the ternary alphabet. The following theorem
and examples come from [8].

Theorem 5.6. Let u be an infinite ternary word with the language closed under
reversal. Then

(1) C ⇒ P;
(2) BO ⇒ PE .

The implication in Theorem 5.6 cannot be reversed. We have already illustrated
in Example 5.7 that even the stronger property PE does not ensure C. Let us
provide one more counterexample – a fixed point of a substitution.

Example 5.9 (PE �⇒ C). Denote by u the infinite ternary word being the fixed
point of the substitution Φ defined by

Φ(a) = aba, Φ(b) = cac, Φ(c) = aca. (5.2)

Then the language of u is closed under reversal. On one hand, u has Property
PE , consequently, u has Property P , too. On the other hand, Property C fails and
L(u) contains infinitely many weak BS factors.

Properties P and PE are equivalent for binary words. However already for
ternary words, the implication P ⇒ PE does not hold any more.

Example 5.10 (P �⇒ PE). Let v be the ternary infinite word defined by v =
Ψ(u), where Ψ : {A, B}∗ → {a, b, c}∗ is the morphism given by

Ψ(A) = bc and Ψ(B) = baa,

and u is the fixed point of the substitution ϕ defined by

ϕ(A) = ABBABBA, ϕ(B) = ABA.

Then v satisfies P , but does not satisfy PE.
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The relation between R and P follows from Theorems 5.6 and 5.4.

Corollary 5.7. Let u be an infinite ternary word with the language closed under
reversal. Then

R ⇒ PE .

The implication cannot be reversed.

Example 5.11 (PE �⇒ R). Consider the fixed point u of the substitution in (5.2).
As mentioned above, u contains weak BS factors. Then by Theorem 5.4, u does
not satisfy R.

Putting together Theorems 5.6 and Corollary 5.5, we obtain one more corollary.

Corollary 5.8. Let u be an infinite ternary word with the language closed under
reversal. Then

C ⇒ richness of u.

In contrast with Corollary 5.5, we see that on a ternary alphabet already Prop-
erty C itself ensures richness.

Neither in this case, the reversed implication holds. Consult Example 5.8 or
the following example with a periodic word.

Example 5.12 (richness �⇒ C). The periodic infinite word (abcba)ω is rich (since
complete return words of palindromic factors are palindromes) and has a bounded
complexity.

5.5.2. Multiliteral alphabet

In this section, two new theorems concerning Properties P and PE for multi-
literal infinite words will be proved.

Theorem 5.9. Let u be an infinite word with the language closed under reversal.

Assume C: PE ⇔ BO.

Proof. (⇐): Let us prove the statement by contradiction. Assume that Prop-
erty BO holds and Property PE does not. It is clear that the property PE can
only be violated on a palindromic BS factor. By Property BO, all palindromic
factors have their bilateral order equal to zero. By Proposition 3.9, they have an
odd number of palindromic extensions, particularly at least one.

Since the language is closed under reversal, Theorem 3.3 implies the inequal-
ity (3.1) for all n ∈ N

P(n) + P(n + 1) ≤ 2 + ΔC(n).

Let w denote the shortest palindromic BS factor that does not have exactly one
palindromic extension. Denote N = |w|. Then we have for all n ≤ N ,

P(n) + P(n + 1) = #A + 1.
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Since Property BO implies Property C, we have 2 + ΔC(n) = 2 + (#A− 1), hence
the equality in (3.1) is attained for all n ≤ N .

Since w has to have at least 3 palindromic extensions, one can see that P(N +
2) ≥ P(N) + 2. Thus, we obtain P(N + 1) +P(N + 2) ≥ P(N + 1) +P(N) + 2 =
#A + 3 = ΔC(N + 1) + 4, which is a contradiction with (3.1). We conclude that
Property PE holds.

(⇒): Assume Property PE holds. Then Property P holds as well. By Corollary 5.5
u is rich. Consequently, we can apply Theorem 3.10 and we obtain b(w) = 0 for
all non-palindromic BS factors and b(w) = #Pext(w) − 1 for all palindromic BS
factors. By Property PE every palindromic BS factor has a unique palindromic
extension, thus b(w) = 0 for palindromic BS factors, too. �

Let us deduce several corollaries of Theorem 5.9. The most straightforward
concerns richness and Property BO. It follows combining Theorems 5.9 and 3.8.

Corollary 5.10. Let u be an infinite word with the language closed under reversal.
Then

BO ⇒ richness of u.

Putting together Theorems 3.2, 5.2 and 5.9, we obtain the following corollaries.

Corollary 5.11. Let u be a uniformly recurrent infinite word.

Assume C: PE ⇒ R.

The reversed implication does not hold. Property R does not even guarantee
the weaker property P .

Example 5.13 (R+ C �⇒ P). Consider again the infinite word from the previous
section: the fixed point u of ϕ, where ϕ(a) = aab, ϕ(b) = ac, ϕ(c) = a. Properties
C and R are satisfied (as explained in [9]), u is uniformly recurrent and the lan-
guage L(u) is not closed under reversal. By Theorem 3.2, u contains only a finite
number of palindromes.

Notice that the assumptions in Corollary 5.11 imply that the language L(u) is
closed under reversal. It is natural to ask whether the implication R ⇒ PE holds
for infinite words with the language closed under reversal. The answer is however
negative. Property R does not imply even the weaker property P .

Example 5.14 (R + language closed under reversal �⇒ P). Consider again the
uniformly recurrent infinite word from [9] given by u = limn→∞ ϕn(a), where

ϕ(a) = acbca, ϕ(b) = acbcadbdaca, ϕ(c) = dbcbdacadbd, ϕ(d) = dbcbd.

It satisfies R, but C and BO are violated. It is not difficult to find infinitely many
palindromes among weak BS factors. Thus, the language L(u) is closed under
reversal. However PE is not satisfied because cbc, dbd ∈ L(u). Nor P holds since
P(1) + P(2) = 4 �= 5.
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We notice in the previous examples that to demand either only the language
closed under reversal or only Property C in order to reverse the implication in
Corollary 5.11 is not sufficient. It is however not solved whether any infinite word
with the language closed under reversal and having Properties C and R satisfies
Property PE or at least P as well.

Corollary 5.12. Let u be a uniformly recurrent infinite word.

Assume PE: richness of u ⇔ R.

Proof. Recall that by Theorem 3.2, the language is closed under reversal.
(⇒): Suppose u is rich. Then Property PE guarantees that Property P holds as
well. Since the language is closed under reversal, Property P together with Theo-
rem 3.8 implies C is also satisfied. The statement follows then by Corollary 5.11.
(⇐): Let us prove the second implication by contradiction. Assume R is satisfied
and u is not rich. Theorem 3.6 claims that there exists a palindrome w which
has a complete return word that is not a palindrome itself. As PE holds, the
language has #A + 1 biinfinite palindromic branches. As w is a palindrome, we
can find it in the middle of one branch. Since u is uniformly recurrent, we can
find w in a bounded distance from the center (on both sides) of the remaining
#A branches. Thus we have #A distinct palindromic complete return words of
w. As w was supposed to have a non-palindromic complete return word, we have
a contradiction with R. �

In Theorem 5.9 for infinite words having Property C, we have proved that Prop-
erty PE coincides with Property BO. Under the same assumption on the com-
plexity, we are again able to characterize Property P imposing this time a weaker
condition on bilateral orders of BS factors.

Theorem 5.13. Let u be an infinite word with the language closed under reversal
and satisfying Property C. Then Property P holds if and only if any bispecial
factor w of u satisfies:

• if w is non-palindromic, then

b(w) = 0;

• if w is a palindrome, then

b(w) = #Pext(w) − 1.

Proof. (⇐): Theorem 3.10 implies that u is rich. Since the language is closed under
reversal, we can use Theorem 3.8. By Property C, we have P(n + 1) + P(n) =
ΔC(n) + 2 = #A + 1, thus Property P holds.

(⇒): Corollary 5.5 states that u is rich. The statement about bilateral orders
follows then by Theorem 3.10. �

This theorem may be immediately reformulated using Theorem 3.10.
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Corollary 5.14. Let u be an infinite word with the language closed under reversal.

Assume C: P ⇔ richness of u.

Non-palindromic bispecial factors can really occur in infinite words with the
language closed under reversal and satisfying Properties C and PE , thus P as well.
This means that there exist rich words with non-palindromic BS factors.

Example 5.15. A ternary word with such properties is v = π(u), where u =
ϕ2(u) and

ϕ : A → CAC, B → CACBD, C → BDBCA, D → BDB,

π : A → ba, B → b, C → a, D → abc.

The substitution ϕ satisfies for any letter x ∈ {A, B, C, D}, if we cut off the last
two letters of ϕ2n(x), we get a palindrome. Together with the uniform recurrence
of u, Theorem 3.2 implies that the language L(u) is closed under reversal. Every
LS factor of u is a prefix of ϕ2n(B) or ϕ2n(C) for some n ∈ N, consequently,
ΔC(n) = 2 for all n ∈ N, n ≥ 1.

For every non-empty palindrome w ∈ L(u) (except for B and C), its morphic
image π(w) without first two letters is a palindrome. As v contains infinitely many
distinct palindromes and is a morphic image of a uniformly recurrent word, thus
uniformly recurrent, too, the language L(v) is closed under reversal. The word v
has two infinite LS branches: every LS factor of v is either a prefix of π(ϕ2n(B))
or of π(ϕ2n(C)). Therefore, v satisfies Property C. Moreover, v contains only
ordinary BS factors. Applying Theorem 5.9, Property PE holds as well. Remark
that the factor ba is a non-palindromic BS factor of v.

5.6. Balance properties

It is a direct consequence of the definition that

AC ⇒ B∀ ⇒ B∃. (5.3)

The first implication follows from the fact that if there are two factors v, w of the
same length that contain a distinct number of letters a, say l and r, then there
exist factors containing any number of letters a between l and r (they may be
found in any factor having v as its prefix and w as its suffix, or vice versa).

Let us point out that our favorite generalizations of Sturmian words, namely
AR words and k-iet words, violate the property B∀. The paper [19] provides
a construction of an AR word u that is not c-balanced for any c. The same
property have also all 3-iet words given by the transformation T associated with
the symmetric permutation and verifying the property i.d.o.c., which can be shown
using methods from [1].

It is natural to ask whether infinite words on multiliteral alphabets with Prop-
erty AC exist. A recent answer has been provided in [21]: there are no infinite
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words satisfying AC on alphabets containing more than 3 letters. On the other
hand, there exist ternary infinite words with Property AC as shown by the example
taken from [42].

Example 5.16. Let v be any aperiodic infinite word on {A, B} and put u = π(v),
where π is the morphism defined by π(A) = abc, π(B) = acb. Then AC(n) = 3
for all n ∈ N, n ≥ 1.

A more general theorem has been proved ibidem.

Theorem 5.15. If an aperiodic uniformly recurrent infinite word u on a ternary
alphabet is 1-balanced, then u has Property AC.

Let us underline in the following examples that none of the implications in (5.3)
can be reversed. The first example comes from [43] and the second one is taken
from [47].

Example 5.17 (B∀ �⇒ AC). The ternary Tribonacci word – the fixed point of
the substitution ϕ : a → ab, b → ac, c → a – is 2-balanced, however its abelian
complexity reaches five values: 3, 4, 5, 6, 7. Notice that the Tribonacci word belongs
to AR words, which satisfy Properties C,LR,BO,R,P ,PE .

Example 5.18 (B∃ �⇒ B∀). The fixed point u of the substitution ϕ : a → aab, b →
c, c → ab has the following properties (shown in [47]):

• for any factors v, w ∈ L(u) with |v| = |w|, it holds

||v|x − |w|x| ≤ 2 if x ∈ {b, c};

• there exist v, w ∈ L(u) with |v| = |w| such that

||v|a − |w|a| = 3.

Thus, u has Property B∃. The word u is a coding of distances between neighboring
β-integers, where β is the largest root of the polynomial x3−2x2−x+1. The word
u is moreover known (see [28]) to verify Property BO, but not LR. Theorem 5.2
implies that u has Property R as well. Its language is not closed under reversal,
consequently, neither PE nor P holds.

Generally, it is difficult to decide whether an infinite word has Property B∃
or B∀. A slightly simpler problem is to study infinite words that are c-balanced
for some c. The criterion for existence of such a constant c for fixed points of
a primitive substitution has been provided in [2], observing the spectra of adjacence
matrices of substitutions. In general, it is however impossible to determine the
minimal value of c from the spectrum. To our knowledge, besides the ternary
words considered in Examples 5.17 and 5.18, the only non-sturmian fixed points
of primitive substitutions, for which the minimal value of c is known, have been
examined in [10] and [48].
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Figure 3. Diagram of known relations (assumptions are marked
as labels of arrows).

6. Overview of relations and examples

In this section we provide a brief overview of relations and examples presented
in the paper. Most of the relations are depicted in Figure 3. Examples are listed
in Table 1. The word is either a fixed point of the given substitution, the image
by the morphism π of a fixed point of the substitution ϕ, the limit of the sequence
(un) or otherwise specified.
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Table 1. Example overview.

word properties reference

u0 = ab, un+1 = unabũn uniformly recurrent, closed
under reversal, finite number
of palindromes

ex. 3.1 on
p. 449, [13]

u0 = ε, un+1 = unabcn+1un recurrent, ∞-many palin-
dromes, not closed under re-
versal

ex. 3.2 on
p. 449, [16]

a → ab, b → cab, c → ccab C, not BO, not R ex. 5.1 on
p. 457,
ex. 5.4 on
p. 459, [26]

ϕ: A → AB, B → A; π: A → a,
B → bc

LR, not closed under rever-
sal, finite number of palin-
dromes, not C, not R

ex. 5.2 on
p. 458

a → aab, b → ac, c → a R, not closed under reversal ex. 5.3 on
p. 458, [9]

a → acbca, b → acbcadbdaca,
c → dbcbdacadbd, d → dbcbd

R, closed under reversal, not
C, not P

ex. 5.5 on
p. 459,
ex. 5.14 on
p. 463, [9]

u = ca cc︸︷︷︸
2×

b ccc︸︷︷︸
3×

a cccc︸︷︷︸
4×

b ccccc︸ ︷︷ ︸
5×

a . . . ∞-many palindromes, not
closed under reversal, not
rich

ex. 5.6 on
p. 460

billiard sequence on three letters closed under reversal, PE,
not C, not rich

ex. 5.7 on
p. 460, [14]

a → aab, b → aac, c → aa rich, not C, not P ex. 5.8 on
p. 461, [4]

a → aba, b → cac, c → aca closed under reversal, PE,
not C, not R

ex. 5.9 on
p. 461,
ex. 5.11 on
p. 462, [8]

ϕ: A → ABBABBA, B → ABA;
π: A → bc, B → baa

closed under reversal, C,P ,
not PE

ex. 5.10 on
p. 461, [8]

(abcba)ω rich, not C ex. 5.12 on
p. 462

a → aab, b → ac, c → a C, R, not closed under rever-
sal

ex. 5.13 on
p. 463, [9]

ϕ: A → CAC, B → CACBD,
C → BDBCA, D → BDB; π:
A → ba, B → b, C → a, D → abc

PE , C, closed under re-
versal, rich, contains non-
palindromic BS factors

ex. 5.15 on
p. 465

u = π(v), π: A → abc, B → acb,
v is an aperiodic word over {A, B}

AC ex. 5.16 on
p. 466, [42]

a → ab, b → ac, c → a LR,BO,R,PE , B∀, not AC ex. 5.17 on
p. 466, [43]

a → aab, b → c, c → ab B∃, not B∀, not closed under
reversal, BO, not LR, R

ex. 5.18 on
p. 466, [47]
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