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FUNCTION OPERATORS SPANNING
THE ARITHMETICAL AND THE POLYNOMIAL
HIERARCHY

ARMIN HEMMERLING !

Abstract. A modified version of the classical p-operator as well as
the first value operator and the operator of inverting unary functions,
applied in combination with the composition of functions and starting
from the primitive recursive functions, generate all arithmetically rep-
resentable functions. Moreover, the nesting levels of these operators
are closely related to the stratification of the arithmetical hierarchy.
The same is shown for some further function operators known from
computability and complexity theory. The close relationships between
nesting levels of operators and the stratification of the hierarchy also
hold for suitable restrictions of the operators with respect to the poly-
nomial hierarchy if one starts with the polynomial-time computable
functions. It follows that questions around P vs. NP and NP vs. coNP
can equivalently be expressed by closure properties of function classes
under these operators. The polytime version of the first value operator
can be used to establish hierarchies between certain consecutive lev-
els within the polynomial hierarchy of functions, which are related to
generalizations of the Boolean hierarchies over the classes X7.
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1. INTRODUCTION AND OVERVIEW

The investigations which led to this paper started with the observation that
the first value operator can replace the classical p-operator in generating the com-
putable functions from the (partial) primitive recursive ones, c¢f. Section 1 in [13].
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The first value operator in its original form was introduced by Epstein, Haas and
Kramer [8] in order to study Ershov’s hierarchy [9].

In the present context it turned out that even a special version of this operator
is still more powerful than the classical p if it is repeatedly applied in connec-
tion with the composition of functions: it leads to all arithmetically representable
functions. Also a modified version of the p-operator as well as the operator of
inverting unary functions and some further operators known from computability
and complexity theory have this power. A more detailed treatment considers the
nesting levels (degrees) of these operators and shows that they span the classes of
the arithmetical hierarchy in several ways. This is developed in Sections 3-5, after
the basic notions have been introduced in Section 2.

Even if these results may contribute some new items from the computability
point of view, they surely would not be of big interest if they did not have analogues
in complexity theory, in particular concerning polynomial-time complexity. As the
arithmetical hierarchy has its polytime counterpart by the polynomial hierarchy,
the function operators considered so far can naturally be restricted in such a way
that they span the polynomial hierarchy if they are repeatedly applied, starting
with polynomial-time computable functions. To be more precise, since we deal
with functions and function operators, we always consider hierarchies of (classes
of) arithmetical functions instead of sets of numbers, relations or languages, as is
usually done.

It turns out that (the polynomial-time versions of) most operators under con-
sideration span the polynomial hierarchy. Thus, P = NP or, equivalently, the
polynomial hierarchy collapses to P iff the class FP of all polytime functions is
closed under one (or all) of these operators. This is shown in Section 7 after the
introduction of fundamentals in Section 6. Now the nesting levels of the operators,
starting with FP as the lowest level, are closely related to the stratification of the
polynomial hierarchy, see Section 8. Valiant’s sharp operator and the operator of
summation are discussed from this point of view in Section 9. Section 10 shows
that a collapse of the polynomial hierarchy can equivalently be expressed by closure
properties of function classes under the polytime version of the first value oper-
ator. Moreover, this operator enables us to establish hierarchies between certain
consecutive levels within the polynomial hierarchy which correspond to general-
izations of the Boolean hierarchies over the classes ¥7. These details are given in
Section 11. The final Section 12 discusses the results and some open problems.

Throughout the paper, the reader is assumed to be familiar with basic notions,
techniques and results of computability and complexity theory as they are dealt
with in several textbooks cited in the references. Our terminology widely follows
the recommendations by Soare [29,30]. So we speak of computable functions and
decidable (or computable) sets as well as of c.e. (i.e., computably enumerable) sets
and relations. Notice, however, that computable functions always may be partial.
If they are supposed to be total, this will explicitly be mentioned.
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2. FUNCTION OPERATORS AND THEIR LEVELS

Let FAIl denote the class of all partial arithmetical functions f: N™ =—— N of
arbitrary arities m > 1. By f(&) |, we indicate that & € dom(f), whereas f(Z)1
or f(Z) ~T means that f(Z) is undefined. Generally, ~ denotes the conditional
equality between two values: both of them have to be simultaneously defined, or
undefined, and must be equal in the first case.

A function operator or briefly operator is a partial mapping

w: Jo—; FAII" —— FAIL

The operator of composition is denoted by o. More precisely, we have o(g, hy, ...,
h;) = f if g is a function of some arity [, all the functions hq,...,h; and f have
the same arity m, and f(Z) ~ g(h1(Z),...,(Z)) for all ¥ € N™. We also write
go(hi, ..., h;) instead of o(g, hi,...,h;), and simply goh, if | = 1.

In many cases, the operators w themselves have fixed arities n > 1, i.e.,
w: FAI" —— FAIll. For example, the operator of primitive recursion is
pr: FAII? —— FAll, with pr(g,h) = f if f(0,4) ~ ¢(¥) and f(y + 1,%) ~
h(y,Z, f(y,&)) for all & € N, where g is of some arity m > 1 and both h and
f have arity m 4+ 1. Notice that here and in the sequel we simply write, e.g.,
(y,Z) instead of (y,z1,...,2Tm), for & = (x1,...,2,,). The parameter-free prim-
itive recursion, where a unary function f: N —— N is defined by f(0) = c € N
and f(y + 1) ~ h(y, f(y)) for some binary function h, can also be expressed
by pr, by means of composition, constant functions and projections. Indeed,
let the projections > : N — N yield the ith component of m-tupels, i.e.,
A (X1, ..., xm) = x; for m > 1,1 < i < m, and conste(x) = ¢ € N for all z € N.
Then for the binary function f’ = pr(const., ho(s, 54)) the above defined func-
tion is obtained by f = f’o(s, »}).

The well known p-operator of minimalization is unary, i.e., it has arity 1. It
assigns to any (m + 1)-ary function g an m-ary function f = pu(g) defined by

(@) ~ yo if g(yo, @) =0, and g(y,Z) | and g(y,Z) > 0 for all y < yo,
17 if there is no yg of the above kind.

p must not be confused with the operator of brutal minimalization, , which is
defined by

2(9)(%) 2 min{y : g(y,#) =0}, where min() ~1 .

If g is a total function, then obviously wu(g) = m(g). If g(0,Z) 1, it follows that
w(g)(Z) 7, whereas @(g)(#) might still be defined however. The power of @ will be
characterized in detail in the next section.
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We shall see that @ is closely related to the first value operator ¢. The latter
assigns to any function g with arity, say, m+1 an m-ary function f = ¢(g) defined
by
F(@) ~ g(yz, T) if there is an y €N with g(y,Z) | ,and yz = min{yeN: g(y, Z)[},

- T if g(y,Z) 1 for all y € N.

A more general version of ¢ was used in [8] in order to characterize the classes of
the Ershov hierarchy, cf. [9,12]. In [13], we introduced the denotation first value
operator and used it in order to establish hierarchies of function classes. For a
total function g, it always holds ¢(g)(Z) = ¢(0,Z). So the operator ¢ becomes
only interesting if it is applied to properly partial functions.

The operator of inverting unary functions was known from the early days of
computability theory, ¢f. [16,20], where it was applied only to surjective (and
total) functions in order to yield total functions as results. Nowadays it has got
considerable importance within structural complexity and cryptology, cf. [23,25],
where it is usually restricted to injective functions however. Here we consider the
operator @ which to any function g : N >— N assigns a unary function f = g(g),
the reverse (also readable as regular inverse) of g, defined by

f(y) ~min{z : g(z) =y}, where min () ~71.

By Kleene’s Normal Form Theorem, every computable partial function f can be
represented in the form f = ho p(g) with suitable primitive recursive functions h
and g. On the other hand, the set FCom of all (partial) computable functions is
closed under the operator p. Let FPrim denote the set of all primitive recursive
functions and FPaPrim the set of all partial primitive recursive functions. The
latter ones are the restrictions of primitive recursive (total) functions to primitive
recursive domains (i.e., sets which are decidable by primitive recursive functions).
Remember in this context that, at least in using the first value operator, it is
essential to start with properly partial functions.

By Clos {w, ws,...} (FC) we denote the closure of a function class FC under
the operators wi,ws,.... This is the smallest class which includes FC and is
closed under all w;, i.e., it contains w;(gi,...,gn) whenever this is defined and
the functions g1, ..., g, belong to that class. Thus,

Clos {0,y (FPrim ) = Clos (o 3 (FPaPrim ) = FCom = Clos (o, ) (FCom ).

Our first goal is the characterization of the sets Clos o, (FC) for w € {I, ¢, 0}
and FC € {FPrim, FPaPrim, FCom}. To get more detailed results, we consider
the nesting degrees of functions with respect to the operators w. This technique
goes back to the early sixties of the past century when degrees of primitive recur-
sive functions with respect to the operator pr were studied. Related results and
references can be found, e.g., in [3,19,22,24]. In order to avoid confusions with the
Turing, or other degrees, throughout this paper we shall denote nesting degrees
(with respect to arbitrary operators w) as (w-)levels.
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For a function class FC and an operator w, let w(FC) denote the set of all
functions obtained by applying the operator w exactly once to arguments from
FC. In particular, if w is unary as usual in the cases we shall mainly deal with,
w(FC) is just the image set of FC under w. The w-levels are the following function
classes FLev,(k), for all natural numbers k:

FLevy,(0) = FPaPrim and
FLevw(k +1) = Closgoy ( FLevw(k) U w(FLevy(k)) ) for all k € N.

This means that FLev,, (k) contains just the functions obtained from FLev,(0) =
FPaPrim by applying the composition and the operator w, where applications
of w are nested at most k times. Immediately, this would yield FLev,(k + 1) =
Clos {0} ( FLevy (k) U w(Clos oy (FLeve, (k) )) ). Since all the levels FLev, (k) are
closed under composition, however, the original form can be simplified to the above
one. Obviously, we have Clos {o o} (FPaPrim ) = (J;—; FLevy, (k) and FLevy, (k) C
FLevy,(k +1).
By Kleene’s Normal Form Theorem, all nonzero p-levels coincide:

FLevy (k) = FCom for all k > 1.

In the next section we shall see that 1, ¢ and g yield more interesting levels. Now
we first show that these three operators lead to the same hierarchy of levels.

Proposition 2.1. For any wy,ws € {I, ¢, 0} and k € N, we have FLev,,, (k) =
FLevg, (k).

This follows by induction on k. The case k = 0 is trivial. To prove that un-
der the premise FLev,,, (k) = FLevy,, (k) it follows FLev,, (k 4+ 1) C FLev,, (k +
1), it is enough to show the inclusion w;(FLevy, (k)) € Clos;oy(FLeve, (k)U
w2(FLevy, (k))), where the second class can be supposed to be equal to
Clos {0} (FLeve, (k) Uwz(FLeve, (k) ). So the proof of Proposition 2.1 is com-
pleted by showing the following lemma.

Lemma 2.1. For wy,ws € {@, ¢, 0} and every function class FC which is closed
under composition and satisfies FPaPrim C FC C FAIl, we have

w1(FC) C Clos oy ( FCU w2 (FC) ).

This inclusion says that the operator w; on FC can be expressed by o and wo,
where no nesting of ws is needed. Only some partial primitive recursive functions
have to be additionally employed. In fact, we need for this only very special
functions. We shall return to this point in Section 6.

The proof of the lemma employs the m-tupling functions 7 : N — N. More
precisely, let 7™ (x1,...,Zm) or (x1,...,%m,) denote the Cantor number of the
m-tuple & = (x1,...,%,,). For m > 2, the functions 7™ and their inverses
7™ : N — N, 1 < i < m, are obtained from Cantor’s pairing function 72 and its
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1

inverses 77 and 73 by inductive definition over m. 7' = 7} is the identity on N.

We have always

(w7 (@), .., (2) =2 and wtoT™ (X1, ..., Tm) = @ (1 <4i < m).

Both 7 and all ©* are primitive recursive, 7 is a bijection of N onto N, the
functions 7" are injective. Moreover, any 7" is monotonous with respect to each
argument, i.e.,

VA !/
T < T iff Tm(Il, ey L1, Ty Ty - ,J)m) < Tm(.fl, ey L1y Ly Tk 1y - - - ,.Z‘m).
Now we show that p, ¢ and g can be expressed by each other in the above

mentioned sense. More precisely, a cycle of three such expressibilities will be
given.

(i) Expressing it by ¢: For f = f(g) with g € FC, we put

ooy if gy, @) =0,
9'(y,7) _{ T otherwise.

Then f = ¢(g'). Moreover, the function h defined by

z ify=0,
h(y, 2) ~ { T otherwise,

is partial primitive recursive. If f is m-ary, it holds ¢'(y, &) ~ h(g(y, %),
2"y, ), hence g’ = ho(g, /"™ € FC.

(ii) Expressing ¢ by o: For an m-ary function f = ¢(g) with g € FC, let

9’(<y,f>):{ <ff> if g(y,7) |,

otherwise.
Then ¢’ = ho(g, 7™o(my" !, ... ,ﬂmi%)) € FC with a suitable function
h € FPaPrim. Moreover, we have f(&) ~ g(7""'oo(g")((Z)),T), i.c.,
f=go(r"oo(g)or™, m, ..., 7).

(iii) Expressing g by fi: If f = p(g) for (unary) functions f and g with g € FC,
we consider the binary function

, _J 0 ifgy) =z,
9(y.2) { T otherwise.

It is easily seen that g’ € Clos oy (FPaPrimU {g}) € FC and f(z)
1(9')(2), i-e., f=T(g).
This completes the proof of Lemma 2.1 and Proposition 2.1.
In the sequel, we shall simply write FLev(k) instead of FLev, (k) with w

{1, 0,0}

R

m O
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3. RELATIONSHIPS TO THE ARITHMETICAL HIERARCHY

In order to describe the precise meanings of notations used in the sequel, we
first have to recall some basic facts and notions of computability theory. Most of
them are folklore, more details can be found in [6,17,21,28,30,33].

The arithmetical hierarchy is usually considered both as the hierarchy of the
classes X, Il and Ag, for £ € N, but also as the union over all these classes:
AH = U;O:O Y. Here X, contains just those relations A C N, m > 1, which are
representable in the form

A={ZeN":3yVys...Qur(y1,...,yx, T) € B}

with B € Com, which is the class of all computable relations, and @ € {3,V}, so
that the prefix of quantifiers in the above representation becomes alternating. A
relation A C N™ belongs to AH iff it is representable in the first-order logic of the
structure (N;0,1; <;+,-), the so-called elementary arithmetic. The classes of the
arithmetical hierarchy can also be characterized by means of relative computability
and the jump operator, as will be sketched now.

We start with a standard numbering (M, : n € N) of all oracle Turing machines
(OTMs). Notice that the syntax of a machine M,,, and hence its index or encoding
n, does not depend on the oracle set. By M,‘? , we indicate that the machine
M,, is working with the oracle set A C N, whereas M2 (Z) means the (finite or
infinite) computation of M?* on the input 7 (&) = (&). Let ®/* denote the unary
arithmetical function computed by M. Thus, (®2 : n € N) is a numbering of
all unary functions computable in (i.e., relatively to) A, and (®7or™ : n € N) is
a standard numbering of the m-ary functions computable in A. The numberings
with the empty oracle, (@2 :n € N) and ((I)?lOTm : n € N), respectively, correspond
to absolute computability.

The jump of a set A C N is defined by A’ = {n : ®2(n) |}. The sequence
() : k € N), where (§(©) = () and p-+1) = P*)’ spans the arithmetical hierarchy
in the following sense.

Fact 3.1. For all k > 1, 0 is X-complete (with respect to m-reducibility <p ),
and a relation A € N belongs to Xy iff it is computably enumerable (c.e.) in
=1 or, equivalently, in some B € Xp_1.

A function f € FAll is said to be arithmetically representable iff its graph,
graph(f) = {(Z,y) : f(Z) =y},

belongs to AH. Let FAH denote the set of all arithmetically representable func-
tions. It is quite natural to transfer the stratification of the arithmetical hierarchy
to the function class FAH by considering the classes

FX, = {f : graph(f) € 3y}, for k € N.
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In particular, F¥; = FCom. The special class FYj is less interesting in the present
context. Since a function f is computable in a set A iff graph(f) is c.e. in A, we
have

Fact 3.2. For k > 1 and functions f, f € FXy iff f is computable in 0~ or,
equivalently, in some B € Xg_1, i.e., f = ®Bor™ for some n € N, if f is m-ary.

For A C N the relation A x {0} is the graph of the semicharacteristic function
XY of A, which is defined by

0 (%) ~ 0 ifreA,
XANE) = T otherwise.

Since A and A x {0} are computably isomorphic, we have A € X iff x € FX,.
This shows how the classes ¥ can be defined by means of the FX;. Moreover,
X%(k) € FXp \ FX;_ for any k > 1.

Since the arithmetical representability of functions is hereditary under o and
w € {I@, @, 0}, one easily sees that Clos (o) (FPaPrim) C FAH. Now we shall
prove not only the converse inclusion but also that the nonzero levels of functions
are closely related to the stratification of the arithmetical hierarchy.

Proposition 3.1. For all k € N, FLev(1 +2k) = F¥; 4.

The proof is by induction on k. For k = 0, we have to show that FLev(1) =
FCom. The inclusion “2” holds by Kleene’s Normal Form Theorem and by the
fact that p(f) = @(f) for any (total) primitive recursive function f. “C” follows
since ¢(FPaPrim) as well as FPaPrim are subclasses of FCom, and this is closed
under composition.

Now we suppose FLev(1 + 2k) = FX1 4 and conclude

FLeV(l + 2k + 2) = F21+k+1.

To show the inclusion “C”, let ¢ € FXji4k, i.e., g be computable in gk If
7i(g) is defined (i.e., g is of an arity m > 2), then fi(g) is computable in (51
and dom(fz(g)) is even decidable (computable) in ((*+1). The latter follows since
Z € dom(g(g)) iff there is a number y with g(y,Z) = 0, and this property is
c.e. in 0¥ hence it is decidable in §*+t1) . Since the decidability of the domains
is hereditary under composition of functions, all functions f € FLev(l + 2k +
1) = Clos o} (F¥1 11 Um(FY1 1) ) have domains decidable in O+ This shows
already that they build a proper subclass of FX1,5y1. Moreover, for all such
functions of arities >2, it follows that f(f) is computable in *+1) too. Hence
we have FLev(1 + 2k + 2) = Clos {0y (FLev(1 + 2k + 1) U(FLev(1 + 2k + 1)) C
FYiire1-

. . . k41
To show the converse inclusion “27, let f € FX1 k11, i€, [ = (I)@( ) for

ny
some ny € N. The following proof of f € FLev(1l 4+ 2k 4 2) again employs stan-
dard techniques of computability theory. For reasons of readability, we prefer an

informal description.
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—

The finite (halting) computations M?I(fkﬂ) (Z), considered as sequences of con-
figurations of the OTM M,,,, can be encoded by natural numbers n.. Also, the
finite sequences of oracle queries, which are positively or negatively answered in
the course of a finite computation, can be encoded by numbers ny and n_, respec-
tively. All this can be done in some standard way (sometimes called Godelization)
such that there are primitive recursive functions hy and ho satisfying

hi(Z,ne,ny,n_)=0 iff n. encodes a halting computation of M.,
starting with input (Z), in the course of which exactly
the oracle queries encoded by n are positively answered
and those encoded by n_ are negatively answered

and
y = ha(ne) is always the output produced by the computation encoded by n..
Moreover, we use two functions, g4 and g_, of higher levels such that
gi(ny) =0 iff all queries encoded by n belong to (*+1)
and
g_(ny)=0 iff all queries encoded by n_ do not belong to ((*+1).
Then we have

f@ =y it Fneng,no)(hi(@ne,ny,n_)=0A
y = ha(ne) Ag+(ng) =0A g-(n-) =0),

hence
F(&) = haosop(h)(Z),

where h({(ne,ny,n_),Z) ~ hi(Z,ne,nq,n_) + g+(ny) + g—(n_). So the proof is
completed by showing that g, , g € FLev(1+2k+1)=Clos {0y (FX1 44 U(FX144)).

g+(n4) = 0 has to confirm that the finitely many queries ¢ encoded by n4
belong to 0+ = {n : @g(k) (n) |}. To compute g4(ny), all such computations
Mg(k) (q) are tried to simulate. If g € P+ for all queries ¢ encoded by n,, put
g+(ng) = 0, otherwise let g4 (n4) 1. Thus, g+ can be computed by means of the

oracle set () hence g, € F¥; 4.
Similarly, one gets a function gg € FX1 4 satisfying

(0,n_) 0 if there is a query g encoded by n_ with ¢ € 9(-+1),
gotth—) = T otherwise,

0 foralln_ € N.

2

gO(lan*)
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Then we have

_ 1 ifgé P41 for all queries g encoded by n_,
Fi(go)(n-) = { 0 otherwise,

Thus, g_(n—) ~ 1 — (go)(n—) defines a function g_ € FLev(1 + 2k + 1) with all
the properties we required. O

In the light of Propositions 2.1 and 3.1, it becomes interesting to explore how
some further operators known from computability theory and complexity theory
are related to each other and to the arithmetical hierarchy.

Of course, for operators w which always yield computable functions if they
are applied to computable ones, it holds Clos {0 ) (FPaPrim) € FCom. Hence
they cannot span the arithmetical hierarchy of functions. A first such example
is the classical operator p. Some further ones are given by operators wy de-
fined by computable functions f (of arity, say, m) according to ws(g1,...,gm) =

folgis--- 'y Gm)-

4. THE LIMIT OPERATOR AND THE ARITHMETICAL HIERARCHY

The limit operator is known to be rather powerful. It assigns to each total
(m + 1)-ary function g the m-ary function f = lim(g) defined by

£(@) ~ z  if there is a yo € N such that g(y, ¥) = z for all y > yo,
T = T  if there are no such z and yqg.

Obviously, the arithmetical representability of functions is hereditary under the
limit operator. From this it follows inductively that FLevy;, (k) € FAH for all
k € N, and we have Clos (¢ 1im} ( FPaPrim ) € FAH. On the other hand, it is easily
seen that FCom C lim(FPrim), hence Clos (1) (FCom ) = Clos (1jmy (FPrim ).
By the generalized version of Shoenfield’s Limit Lemma, c¢f. Proposition IV.1.19
in [17], it follows even that FAH C Closjjm) (FCom), thus FAH C
Clos {0 1im} ( FPaPrim). So we can conclude that Clos (¢ jjm} ( FPaPrim ) = FAH.

Nevertheless, with respect to the nesting levels the limit operator is more pow-
erful than @, ¢ and . For example, the (total) characteristic function of ', xg,
belongs to FLevyjm (1) (but it does not belong to F3; = FLev(1) as one knows).
To show this, we employ the functions @ﬁl , obtained by simulating at most s steps
of the machines M,, with oracle A. More precisely, let

oA (7) ~ z if Mﬁ(f) halts after at most s steps and yields the output z,
nls T  otherwise.

For any A C N, the function g(s,n,Z) ~ ®§|s(f) is computable in A, and its
domain is decidable in A; for A = (), we even have primitive recursivity in both
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cases. Now we can put

0 : 0
h(s,n) = D, (n) i O (n)l,
0 otherwise.

Then h € FPrim C FLev(0), and we have xg = lim(h).
Even if FLevyjm (1) # FX1q, there is a close correspondence between the levels of
the limit operator and the stratification of the arithmetical hierarchy of functions.

Proposition 4.1. For all k > 1, FLevijjm (k) = FX14k.

The proof is by induction on k. We first remark that FX5, as any FYj, is
closed under composition. Thus, FLevjj,(1) € FXy follows from FPaPrim U
lim(FPaPrim) C F3,. Of course, FPaPrim C F¥j, holds trivially. Let f = lim(g)
for some g € FPaPrim, i.e., g € FPrim, since the limit operator is only defined on
total functions. Thus,

(Z,z) € graph(f) iff JyoVy(y > yo — g(y, 7) = 2).

This shows that graph(f) € Xo, hence f € FX,.

Now let f € FX3 be an m-ary function. Then f is computable in (', i.e.,
f = (I)glfOTm for some n; € N. TInstead of (' = {n : ®°(n) |}, the following
approximations A; are used:

A, ={n: M? (n) halts after at most y steps}.

Obviously, Ay C Ay 4y and ' = |J, cy A} For y € Nand 7 € N™, let

o (@) if oA ()| and only oracle queries to values ¢ <y

nly nely
. are put in the course of the related computation,
g((y,2>,x) = . Al —
y if @nfly(x)T or an oracle query to a value ¢ >y

is put within the first y steps of Mﬁ;f (2).

In this way, a (total) (m+1)-ary function g is defined. The first argument is written
as a Cantor number in order to simplify the description. By standard arguments
of computability theory, it follows that g is even primitive recursive. In particular,
9({y, z),Z) can be computed by simulating at most y steps of the computation
M,‘% (Z), as long as all oracle queries concern values ¢ < y. Moreover, the queries
“qg € AL?” can be decided by simulating at most z steps of the computations
Mg(q).

If Mgf (Z) halts at all, then, for sufficiently large y, it halts after < y steps and
puts only oracle queries to values ¢ < y. Hence for sufficiently large z it holds
ge W iff g€ A,. Thus, g((y,2),%) = f(Z) for y > yo and z > 2o with suitably
chosen numbers yo and zp. This means lim(g)(Z) = f(&).
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If CID?I; (Z) 1, then the computation Mgf (Z) never halts. Then to every y there
is a sufficiently large z such that for all oracle queries ¢, which are put up to the
step y of computation, it holds ¢ € (" iff ¢ € A,. Thus, the computation Mﬁ;z (2)
performs at least y + 1 steps, i.e., g({y, z), Z) = y. It follows that lim(g)(Z) 1, and
we have shown that F¥s = lim(FPrim).

Now we show that from FXj 11 =lim(... lim(FPrim)...), for some k > 1, it
—_——

k times
follows

FXpi2 =lim(... lim(FPrim)...).
————
k+1 times

The inclusion from left to right can be proved as above for the special case k = 1:
Supposed f € FXg 2, hence f = CID?l(ka)OTm for some ny € N, we put

Az(!kﬂ) ={n: Mg(k) (n) halts after at most y steps}

and
o4 (7) if @ ()| and only oracle queri lues ¢ <
nily (@) i nply ()] and only oracle queries to values ¢ <y
. are put in the course of the related computation,
9((y, 2), %)= o AUFD
Y if (I)n;‘y (Z)7 or an oracle query to a value ¢ >y

(k+1)
is put within the first y steps of Mﬁ; o (Z).

The total function g is computable in )%, i.e. g € FX 1, and f = lim(g).

To conclude the converse inclusion, and even FLevym(k + 1) C FXi o from
the inductive hypothesis of the proof of Proposition 4.1, it is enough to show that
lim(FXj11) C FYj 2. Solet f = lim(g) for some g € FXj 41, i.e., g is computable
in 0*). Then the function ¢’ defined by

"y, T) ~ 0 if there is a ¢y > y such that g(v', Z) # g(y, Z),
g\y,x) = 1 otherwise (i.e., g(y', %) = g(y, @) for all y’ > y),

is computable in %) too, hence ¢’ € F¥y 1. Thus, dom(g’) is decidable (com-
putable) in §*+1). By means of the computation of g and the decision of dom(g’),
however, lim(g) can be shown to be computable in ¢+ This means f € FX; 0,
and the inductive proof is complete. O

By the above proof, we have the following normal form representation of the
arithmetically representable functions with respect to the limit operator. It can
be seen as a variant of the generalized limit lemma which usually concerns the
limit representations of characteristic functions of sets from Ay in the classical
arithmetical hierarchy.

Corollary 4.1. For k > 1, an m-ary function f belongs to FXp1 iff there is a
(k 4+ m)-ary function g € FPrim such that f = limk(g). O
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Herein lim"* (9) means the result of the k-fold iterated limit operator applied
to g, where it is supposed that lim"’ (g) is a total function for 1 < k&’ < k.

It might be of interest that the limit operator could also be understood in the
generalized way that

. . z ifg(y,¥) =z for almost all y € N,
lim(g)(z) ~ { T if there is no such z,

for every (i.e., not necessarily total) function g of an arity > 2. Also with this
meaning, Proposition 4.1 and Corollary 4.1 remain true, as the above proof shows.
Nevertheless, we continue to consider the limit operator as applicable to total
functions only.

5. SOME FURTHER OPERATORS

Next we consider three further operators, mazimum, sharp and summation,
each of which defines the same hierarchy of levels as the limit operator. They all
assign to arbitrary (m + 1)-ary functions g certain m-ary functions max(g), (g)
and sum(g), respectively, which are defined by

o Jmax{g(y,¥) : g(y,¥) ]} if this set is nonempty and finite,
max(g)(Z) =~ { 1 if the above set is empty or infinite,

=

=

o

S—

—
8

S—
|

card{y : g(y,Z) |} if this set is finite,
1 if the above set is infinite,

2yeN,g(y.z) 9y, T) if there are only finitely many y
with ¢(y,Z) | and g(y,Z) > 0,
1 if there are infinitely many y
with g(y, %) |, g(y, %) > 0.

As usual, the empty sum takes the value 0, i.e., sum(g)(Z) = 0 if all g(y, &) are
undefined. Notice that, possibly, sum(g)(Z) | even if g(y,Z) | for infinitely many
y, but g(y,Z) = 0 in almost all these cases.

Proposition 5.1. For allw € {max, f,sum} and k > 1, FLev,, (k) = FLevjjm (k)
=FYpq1.

To prove this, we show that, applied to functions from FX, any of the operators
under considerations, lim included, can be expressed by any other of them in the
following sense.

Lemma 5.1. For all wy,ws € {max,{,sum,lim} and FC € {FPaPrim}U
{sz c k Z 1},

w1(FC) C Clos {0y (FCU wy(FC) ).
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From this, by means of Proposition 4.1, the equality FLev,,(k) = FLevjjm (k)
follows inductively. Indeed, it holds for £ = 0, and, supposed that it holds for
some k, for w € {max, f§, sum} Proposition 4.1 and Lemma 5.1 yield

FLevw(k +1) = Clos oy (FLevy (k) Uw(FLevy(k)) )
Clos {0} (FLeviim (k) U lim(FLevyim, (k)) )
= FLevjim(k +1) = FXj 0,

which means the stated equality for k£ + 1.
To prove Lemma 5.1, it is enough to show a suitable chain of expressibilities of
the operators in the sense of the stated inclusion.

(i)

Expressing lim by max: Let f = lim(g), for some total function g € FC
with FC € {FPaPrim} U {FX;, : k > 1}. The function ¢’ defined by

g'(0,7) = 0 and

, o~ Sy ifg(y, @) #g(y+1,72),
g'(y+1,7) { T otherwise,

belongs to FC too, and it holds g( max(¢')(Z) + 1, %) ~ lim(g)(Z). Hence
lim(g) belongs to Clos {0} (FC U max(FC) ).
Expressing max by f: For f = max(g) and g € FPaPrim, we put

g'(4,@) ~max{g(y,#) : y <yand g(y,7)]}, where max0 1.

Then ¢’ € FPaPrim, too, and if ¢'(y, &) | for some y € N, then ¢'(y/, %) |
and ¢'(y', @) = ¢'(y, )forally >y. By

0z~ {0 90,8 ] and 2 < g(0,3),
9"((0,2), ) ~ {T otherwise,

0 if ¢'(y, %) 1T and 2 < ¢'(y + 1, )

9"({y +1,2),2) = ¢ org'(y,7)] and ¢'(y,7) + 2 < ¢g'(y + 1,),
T otherw1se,

we get a function ¢” € FPaPrim such that #(¢”) = max(g) = f.
Now let f = max(g) for some g € FX;,k > 1. There is an index ng

with g = ®0"~". By

1)

k:
g/ (y,#) = max{@l | V() y <y and o)) 1},
where max () ~7, a function ¢’ € FXj is defined, which satisfies max(g) =
max(g’). Moreover, dom( ') is even decidable in O~V If ¢/(y, &) | for
some y € N, then ¢ ( Z)| and ¢'(v', %) > ¢'(y, Z) for all y’ > y. Defining
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the function g” as above for the case g € FPaPrim, we get ¢’ € FX;, such

that #(¢") = max(g) = f.
(iii) Expressing §f by sum: This holds quite general. For f = #(g), we put

o) 1 it gy, @)L,
AL { T otherwise.

Then g’ € Clos (o} (FPaPrimU {g} ) , and sum(g’) = #i(g) = f.
(iv) Expressing sum by lim: Let f = sum(g). If g € FPaPrim, we put

'y, &) = )
J'(y, @) Zy,gyyg(y,yf)lg(y, )

For higher levels, we employ the functions (I)ﬁl\s defined similarly to (I);;“S
by

z  if MZ(Z) halts after exactly s steps and
@fﬂs(f) o~ yields the output z,
T otherwise.

71)

If g € FSy, k> 1 and gy, 7) ~ o0 ((4,2), let

"y, 2),7) = . ! Yy 7).
9(<y > ) Zq)giﬁlzl)(y’f)l ngllz (y )

In all the cases we are considering, we have ¢’ € FPaPrim and ¢’ € FXy,
respectively, and lim(g’) = sum(g) = f. 0

Since the natural numbers are well-ordered, the minimum operator min cannot
simply be seen as an analog to max. For any (m + 1)-ary function g, let

min(g)(7) ~ min {g(y,7) : g(y, 7)1}, where min(0) ~1.
Proposition 5.2. For all k > 1, FLeviyin(k) = FLev(k + 1).

Remember that FLev(k + 1) = FLevy,(k + 1) for all w € {f, ¢, 0}. The proof
of the proposition is by induction on k.

We start with showing that min(FPaPrim) = @(FCom). By FLev(l) =
FCom C f(FCom), this implies

FLevVmin(1) = Clos (o} (FPaPrim U r(FCom) ) = FLev(2).
For f = min(g), g € FPaPrim, put

- 0 if there is a z € N with g(z,%) =y,
g’(y,x)’“{ 9&m =y

T otherwise.
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Then ¢’ € FCom and f(¢g') = min(g) = f.
For f =1(g), g € FCom, suppose that g = @2y and put

y @) | (y,7) =0,
T otherwise.

(21,8 = {

Then ¢’ € FPaPrim and min(g') = (g) = f. So the initial step of induction has
been done.

To show that (a single application of) 7t can be expressed by min, let f = 1(g),
i.e., f(Z) ~min{y : g(y,Z) = 0}. The function ¢’ defined by

, if g(y, ) = 0,
g,(%x):{ y ifg(y,7)

T otherwise,

belongs to the same @-level as g, and it holds min(¢’) = @(g) = f. Thus,
FLevmin(k) = FLev(k + 1) implies that

FLev(k +2) = Closjoy (FLev(k+ 1) Um(FLev(k +1)))
Clos {0} (FLevimin (k) U min(FLevymin (k)) )
= FLeVmin(k’ + ].)

N

To prove the converse inclusion, let f = min(g) for some g € FLevpin(k) =
FLev(k+1). If k is even, i.e., k = 2k’ for some k' € N and FLev(k + 1) = F¥q 4
by Proposition 3.1, we put

1. = J 0 ifthereis ay € N with g(y,7) = 2,
9'(z7) _{ T otherwise.

This defines a function g’ which belongs to FX;1x/, too, and satisfies u(g’) =
min(g) = f. Thus, we have min(FLev(k + 1)) C m(FLev(k + 1)), what implies
FLevmin(k +1) C FLev(k + 2).

If £ is odd, de, k& = 2k 4+ 1 with ¥/ € N, then FLev(k + 1) =
Clos (o} (FX1 1 U(FE1 1) ). As noticed in the proof of Proposition 3.1, for
all functions g belonging to this class, dom(g) is decidable in P*'+1) and g is
computable in P+ 1t follows that the epigraph of g,

epigraph(g) = {(&,y) : there is a y’ <y with g(z) =y},

is decidable in @*'+1). Now, if g has some arity >2, min(g) can be computed
in P*' 1) as follows: Given an argument &, first search for a pair (y, z) such that
((y, %), z) € epigraph(g). If there is such a pair, it will be found finally by a suitable
computation in §*'+1), Then the value min(g)(Z) can be determined by deciding
whether ((y/, %), 2’) € epigraph(g), for the finitely many y’ < y and 2’ < z. Thus,
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we have min(FLev(k + 1)) C FXj 49, and again

FLevmin(k +1) = Clos oy (FLev(k + 1) Umin(FLev(k 4 1)))
FYj 4o = FLev(1l + 2k' + 2) = FLev(k + 2).

N

This completes the inductive proof. O

From the viewpoint of computability theory one might ask why we did not start
the nesting levels of operators w with FLev,,(1) = FCom and proceed then, as
we did, with FLevy,(k + 1) = Clos (o} (FLevew(k + 1) Uw(FLevy(k +1)) ). This
would not change the levels FLev(k) of &, ¢ and g, for k& > 1. The levels
FLevmin (k) would become equal to FLev(k), however, and for w € {lim, max, {,
sum} we would have FLev,, (k) = FX.

The main reason to start the levels with FPaPrim instead of FCom is that
we are highly interested in studying the analogous classification with respect to
polynomial-time computability. In our opinion, however, there are more simi-
larities between the classes FP and FPaPrim than between FP and FCom. So
it is desirable to know what happens if we start the stratification of levels with
FPaPrim.

6. OPERATORS ON POLYTIME FUNCTIONS

The theory of computational complexity, in particular that of polynomial-time
computability, is mainly devoted to the machine-oriented point of view, where
computing devices operate on words over finite alphabets. So the usual complexity
classes consist of languages, i.e., sets of words over finite alphabets, and complexity
classes of functions usually consist of word functions. The reader is referred to basic
textbooks like [2,7,18,23,32]. In the present paper, we continue to deal preferably
with sets of numbers and arithmetical functions, respectively. This corresponds to
the point of view taken, e.g., in bounded arithmetic, cf. [14].

In a certain sense, it is merely a matter of taste that we prefer to deal with
explicit number functions and number problems, instead of word functions and
word problems. On the one hand, this is here caused by the background from
computability theory which has been presented in the preceding sections. On the
other hand, most of the operators we are considering refer to a well-ordering of
the underlying object domain, which is canonically given for numbers but not so
for words. Of course, all the following results and techniques can immediately be
transferred to word functions and languages if, between words, we use the order
by length and lexicographic comparing based on an ordering of the underlying
alphabet.

More precisely, all complexity theoretic notions applied to sets of numbers or
number theoretic functions are meant with respect to the (modified) binary expan-
sion of numbers, where a binary word of length | = |w|, w = bjbj—1...b1 € {1,2}*,
represents the number

l .
V(blbl—l . bl) = Zi:l b'i . 21_1.
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The empty word A represents the number 0, i.e., y(A) = 0. The mapping
~v: {1,2}* — N is a bijection between the words from {1,2}* and the natural
numbers with respect to which the ordering of words by length and lexicographic
comparing corresponds to the natural ordering of numbers. For a number z € N,
lz|| denotes the length of its binary expansion,

]l = Iy~ ().
For an m-tuple & = (21,...,2m), let ||Z] = |[{x1,...,2m)], this is the length of
(the binary expansion of) the Cantor number (z1, ..., Zm).

A function f: N = N is said to be polynomial-time computable (briefly:
polytime) iff the related word function, i.e., the mapping fw({1,2}*)™ —— {1,2}*
defined by

fw(wla-“awm) 2771 Of(’y(wl)v"'vfy(wm))a
is computable in polynomial time by a (deterministic) Turing machine (TM) in
the usual sense. Let FP denote the class of all polytime functions. For example,
the m-tupling function 7 and its inverses m", 1 < ¢ < m, are polytime for any
m > 1. Moreover, FP is closed under composition. All polytime functions are
polynomially length-bounded, i.e., for any f € FP there is a polynomial p such
that £(7) = y implies ||y| < p(]1Z]).

In the sequel, we shall use the same denotations for some classes of (arithmeti-
cal) functions as they occur in literature for related classes of word functions. Also
for classes of sets of number tuples, we shall use the same denotations as they are
usually applied to the related complexity classes of languages. The denotations
of the latter ones will here get the index “w” indicating that they concern (sets
of) words. So let the class P consist of all sets A C N™ that are decidable in
polynomial time with respect to the binary expansions of the Cantor numbers,
i.e.,

P={ACN": m>1and {y Yzi,...,zm): (¥1,...,7m) € A} € Py },

where Py, denotes the usual class of languages decidable by polynomially time-
bounded (deterministic) TMs. The classes NP and NPy, are analogously related
to each other. Of course, P = NP iff Py, = NPy, and this is the classical P vs.
NP problem. Also, A € P iff y4 € FP.

Polytime functions are partial in general, but, analogously to partial primitive
recursive functions, they can be regarded as restrictions of total polytime functions
to polynomially decidable domains: For an m-ary function f, it holds f € FP iff
there are a total function fe FP and a set A € P, A C N such that

f(f)w{ f(@) if &€ A,

T otherwise.

It follows, e.g., that ¢(g) € FCom if g € FP. On the other hand, the unrestricted
application of the first value operator to polytime functions leads already to all
computable functions.
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Lemma 6.1. For any f € FCom there is a function g € FP such that f = ¢(g).
Thus, we have ¢(FP) = FCom and Clos (o ¢ (FP) = FAH.

For other operators as powerful as ¢, one can prove related results. In fact,
instead of FP, more restricted function classes are still sufficient to generate the
whole arithmetical hierarchy.

The second part of the lemma follows from Clos (o ¢} (FCom) = FAH, cf.

Proposition 3.1. To sketch the proof of the first part, suppose f = <I>9Lf. We put

9y, &) = { o, (@) @) L
) otherwise.

It is easily seen that g € FP and f = ¢(g). a

In the context of polynomial-time computability, we want to exclude such trivial
constructions leading to functions w(g) ¢ FP for certain g € FP. This is done by
restricting the search domain for y in a polynomially length-bounded way depend-
ing on the remaining argument #, in building w(g)(Z) from the set of all values
9(y, Z). A simple but sufficiently general way consists in restricting the operator w
to functions which are undefined for arguments (y, &) if y lies outside a polynomial
length-bound depending on 7.

More precisely, an (m + 1)-ary function g is said to be 1-polynomial iff there is
a polynomial p such that

g(y,Z)1 for all y € N and & € N satisfying ||y|| > p(||Z]]).

In other words, for all numbers y with g(y,Z) | we have 0 < y < 2PUIFID — 1. Tt
follows that, in computing ¢(g)(Z), the search for a minimal y with g(y, Z) | can
be restricted to the set {y: 0 <y < 2PUED — 1},

Let w’ denote the restriction of an operator w € {u, I, ¢, max, §, sum, min}
to 1-polynomial functions of arities >2. More precisely, w’(g) is defined iff g is
1-polynomial and w(g) is defined, and in this case we put w'(g) = w(g). For
example, if g is 1-polynomial, then both #'(g) and sum’(g) are total functions.
Since the analogous restriction lim’ yields only the nowhere defined function, it is
not of interest.

For an adequate restriction of the operator g, we employ a notion well known
in complexity theory. A function g : N —— N is said to be (polynomially) honest
iff there is a polynomial p such that

o(9)(y) == implies |z[| < p(|[yl)-

This condition is obviously necessary for g(g) € FP.

Let o’ denote the restriction of the operator g to honest (unary) functions.

It is easily seen that all functions from Clos (o .,y (FP ) are polynomially length-
bounded, for all w’ € {p/, ', @', o, max’, {f’, sum’, min'}.

The polytime w'-levels FLev,, (k), for numbers k € N, are defined in a straight-
forward way similarly to the w-levels. In contrast to them, however, we now start
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with the basic class FP:

FLevl,(0) = FP and
FLev,, (k+1) = Clos o} ( FLev, (k) U w'(FLev,, (k)) ) for k € N.

First it turns out that, in analogy to Proposition 2.1, the operators ', ¢’ and
o' yield the same polytime levels.

Proposition 6.1. For any w',w) € {@', @', 0’} and k € N, we have FLeV:“,/1 (k) =
FLevfM2 (k).

The proof is quite analogous to that of Proposition 2.1, namely based on the
following lemma stating the mutual expressibilities of the operators under consid-
eration.

Lemma 6.2. Forw!,w) € {I', @', o'} and every function class FC which is closed
under composition and satisfies FP C FC C FAIl, we have

w1 (FC) C Clos (o} ( FCU wh(FC) ).

This can be shown by almost the same constructions as in the proof of Lemma 2.1,
parts (i), (ii) and (iii). One now has to notice that if the functions g are 1-
polynomial and honest, respectively, the functions ¢’ defined in the related ways
are honest or 1-polynomial, too. Only in part (iii), the definition of function ¢’
has to be modified to

J(5:2) 2{ 0 if g(y) = z and [ly| <p(]lz]),

T otherwise,

with a polynomial p witnessing that the function g is honest. In all the three parts,
it holds g’ € Clos oy ( FPU{g} ) € FC and w/(g) € Clos o} (FCU{w5(g")}),
for the related operators w),w) € {@',¢’,0'}. So the proof of Lemma 6.2 and

Proposition 6.1 is complete. O
In the sequel, we shall simply write FLev' (k) instead of FLev,, (k) with w’ €
{#.¢' o}

In contrast to the results of Section 5 concerning general computability, the
polytime variants of the operators max and min are equivalent to each other and
even to ', ¢' and o'.

Proposition 6.2. For any w),w) € {min’, max’, @'} and every function class FC
which is closed wunder composition and includes FP, we have w!|(FC) C
Clos (o} ( FPUWAH(FC) ). Thus, FLevy ;. (k) = FLeVigax (k) = FLev'(k) for
all k € N.

The second statement follows from the first one analogously to the proof of
Proposition 6.1.
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Now suppose that g is an (m + 1)-ary function which is 1-polynomial with
respect to a polynomial p, i.e., g(y, Z) | whenever |y|| > p(||Z||). First we put

' (y, &) = 2°UF) — g(y, 7).

Then ¢ is 1-polynomial too, and g’ € Clos (o) ( FP U {g} ). Moreover, for all
e N,

max’(g)(Z) ~ 2P — min'(¢/)(Z) and min'(g)(Z) ~ 2P0 — max’(¢') ().

This shows the mutual expressibility of max’ and min’ by means of polytime
functions.
Putting

o)y ifaly, @) =0,
9'(y, 7) _{ T otherwise,
we get a 1-polynomial function g’ € Clos ;o3 ( FP U {g} ) with min’(g") = &'(g).
On the other hand, if g(y, &) | whenever ||y|| > p(||Z]|), by

0 ifg(y,@) =z,

! (ay - 2PCIZI]) 2\~
g(y-2 +2,7) { 1 otherwise,

we again get a 1-polynomial function g’ € Clos (o} ( FP U {g} ). Now it holds
min’(¢)(7) ~ @' (¢') mod 27,

where mod denotes the binary modulus function, i.e., @ mod b is the remainder
of a divided by b, for a,b € N and b > 1. Notice that mod € FP. a

The discussion of the power of the operators f’,sum’ and p’ requires knowl-
edge of some relationships to the polynomial hierarchy. Hence it is postponed to
Sections 7 and 9.

7. FIRST RELATIONSHIPS TO THE POLYNOMIAL HIERARCHY
AND P vs. NP

Analogously to the arithmetical hierarchy, the (number theoretic version of the)
polynomial hierarchy is considered both as the hierarchy of classes 7, II} and A%,
for k € N, but also as the union over them: PH = (J;—,X}. To characterize the
classes X%, one can use bounded quantifications, where

VT stands for ~ Vz([|z]| <m = ...) and
Iz ... stands for  Jz([]z]| <m A ...).

37 consists of all relations A € N™, m > 1, which are representable in the form

A={FeN™: e UZ) ) we2UIZDy, o QreUE,,, (y1,-..,yr, ) € B}
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with B € P, polynomials pi,...,pr , and Q € {3,V}, so that the prefix of quan-
tifiers becomes alternating. One could (equivalently) require that all polynomials
occurring above coincide: p; = - -+ = px = p for some polynomial p. As usual, let
I} = coX}, i.e., it consists of the complements of the members of ¥7; the classes
AP, however, are not defined as the intersections of ¥¥ with II}, see below. In
particular, 35 =II = A = AP = P, 37 = NP and II} = coNP. It is known that
a relation A C N belongs to PH iff it is representable by a formula of bounded
arithmetic, see [14] for related details.

Another characterization of (the classes of) PH can be given by means of deter-
ministic and nondeterministic polynomial-time oracle Turing machines (POTM
and NPOTM, respectively). For a (complexity) class of sets, C, let P and NP¢
denote the class of all sets A € N, m > 1, which can be accepted by POTMs and
NPOTMs, respectively, using oracle sets belonging to C. Then

P
SP =TI, = AP = P; B0, = NP, and T = co? for all k € N.
The classes A 41 are usually defined in a special way:

»
Aiﬂ = P>k,
For motivations, further details and basic results, the reader is referred to text-
books of complexity theory.

The function classes FP® and FNPC, for a complexity class C of sets, cor-
respondingly consist of all functions computable by POTMs and NPOTMs, re-
spectively, which use oracle sets from C. The meaning should be clear for the
deterministic case. Computation of a function by a mondeterministic machine
means that, for any input, all its terminating computations yield the same result,
namely the function value at this input, and that there is at least one such termi-
nating computation iff the function is defined at this input. Equivalently one can
say that f € FNPY iff there is a 1-polynomial function g € FP® such that

1) g(ylaf) - g(y27f) whenever g(ylaf)l and g(yQa f)la and

i) f=4¢'(g)
So we have FPY C FNPY, 4 € PY iff x4 € FPY, and 4 € NPY iff 4 € FNPY,
where x4 denotes the (total) characteristic function of a set A, in contrast to its
(partial) semicharacteristic function x9, ¢f. Section 3.

Generalizing the definition of the classes FX in the arithmetical hierarchy,
any class C' consisting of sets determines a function class F[C] = {f € FAll :
graph(f) € C}. With respect to polytime computability, it is natural to restrict
these classes to polynomially length-bounded functions. Thus, we put

F,[C] = {f € FALl: graph(f) € C and f is polynomially length-bounded}.

Lemma 7.1. For every class C of sets, we have Fp[NPC] = FNPY.
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c . 0 C . 0 o
If graph(f) € NP¥, i.e., Xgraph(f) € FNP*, it holds Xgraph(f) = ¢'(g) for some

g e FP¢ satisfying the above uniqueness property i). Putting

h(<y,z>,f)z{ z i g(y, @, 2) |,

T otherwise,

we get a function h € FPY such that h((y1,21),Z) = h((y2,z2),#) whenever
h({y1,21),Z) | and h({ya, 22),Z) |, and f = ¢(h). If f is polynomially length-
bounded, then h is 1-polynomial, hence f = ¢'(h) and f € FNPC.

Conversely, if f = ¢'(g) with g € FPY satisfying condition i), we have

0 L [0 if (9@ =
Xgraph(f) (7 2) ~ { 1 otherwise.

Thus, graph(f) € NP®. Moreover, f is polynomially length-bounded. O

It should be noticed that the analogue for the deterministic case does not hold,
probably. For example, we have F,[P] = FP iff P = UP. This is a result by
Grollman and Selman, cf. Satz 9.7 in [32].

Of course, it holds FPP = FP. The class FNPP contains exactly those functions
which are computable by NPOTMs with the empty oracle set or, equivalently,
without using the oracle. This class will also be denoted by FNP, and its elements
are called nondeterministically computable in polynomial time. FNP is just the
number theoretic analogue of Selman’s class NPSV, see [25,26]. Lemma 7.1 can
also be seen as an analogue of the (relativized version of the) well-known graph
Theorem of computability: f € FCom iff graph(f) is c.e. From this point of view,
the lemma and the remark above indicate that FCom is more related to FNP than
to FP, whereas the latter could better be seen as a counterpart of FPaPrim in
computability theory, ¢f. our remark at the end of Section 5.

Anyway, it is natural to define the following function classes of the polynomial
hierarchy:

FY} =Fp[2f] for ke N.
So we have FP C F),[P] = FX}, FX} = F,[NP] = FNP, and

P P
FXP,, = F,[S0,,] = F,[NP¥k] = FNPk for all k € N,

Let FPH denote the class of all polynomially length-bounded functions whose
graphs belong to PH, i.e.,

_ _ p

FPH = F,[PH] = UkeN Fxb.
By means of the characterization of the classes Zi by bounded quantifications,
it is easily seen that the property of belonging to FPH is hereditary both under
the composition of functions and under the application of ’. Thus, we have
Clos (o} (FP) € FPH and, by Propositions 6.1 and 6.2, Clos (o .} (FP) C FPH
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for all w’ € {@', ¢, o', min’, max’}. To give a first proof of the converse inclusion,
we show

Lemma 7.2. If A € PH, then xa € Clos (o} (FP).

This is proved by induction on k, for all A € ¥, If k = 0, i.e., A € P, then
xa € FP.

Suppose the assertion holds for all A € Ei. First it follows for all A € Hi too,
since xa(¥) =1 — x7(¥), hence xa € Clos oy (FP U {x7})-

Now let A € 37,4, i.e.,

Fe A it Uy UFDy  Qre0FDy, (yo yi, ...y @) € B,

with B € P, polynomials py, . . ., pr and a related quantifier Q). By the supposition,
for the set A’ € II} defined by

(y07f) € Al iff Vpl(”f”)yl o ka(”f”)yk (y07y1a s 7ykaf) € Ba

we have x4/ € Clos (o 7y (FP ). Putting

1= xar(yo, @) if [[yoll < po([[Z])),
9(yo, ¥) =~ 0 if [lyoll = po([|]]) + 1,
T otherwise,

we get a l-polynomial function g € Clos o gy (FP) with xa(Z) = h(@'(g9)(%),
%) for the function h € FP defined by

«~ _J Uiyl < po(lIE]]),
hiy, @) = { 0 otherwise. 0

Proposition 7.1. For every o’ € {f@, ¢, o', min’, max’}, Clos (0w} (FP) =
FPH.

To show the remaining part of the proof, i.e., FPH C Clos o5y (FP ), let
graph(f) € PH and [|f(Z)|| < p(]|Z||]) for all ¥ € dom(f), with a polynomial p.
Then it holds f() = y iff 1 — Xgraph(s)(Z:y) = 0. So we have f =p'(g) for

9(y, ) ~ otherwise.

{ 1 — Xgraph(p) (T ) if |lyll < p(IZ]),
T

By Lemma 7.2, it follows that f € Clos ;o 77y (FP). O

It is well-known that P = NP iff P = PH or, equivalently, P = C for some (or
all) class(es) C' with NP C C' C PH. Other equations equivalent to P = NP are
FP = FNP, FP = FPH, and FP = FC for some (or all) FC satisfying FNP C
FC C FPH. This was shown in [25,26] and seems to be folklore. Proposition 7.1
immediately yields the following characterization of the P vs. NP problem in terms
of a closure property of FP with respect to certain function operators.
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Theorem 7.1. For every w' € {I', @', o', min’, max’} and any other operator w’
which satisfies FNP C Clos {0,y (FP) € FPH, we have

P=NP iff FP is closed under o'

Indeed, P = NP implies the closedness of FP under w’ by the remarks above.
Conversely, if FP is closed under w’, then FPH = Clos (o .} (FP) = FP, since
FP is closed under the composition of functions. O

Now it is time to consider ', the restriction of the classical p-operator to
1-polynomial functions, in the present context. Using the characterization of the
classes 37 by bounded quantifications, one easily sees that Clos (o} (FP) C
FPH. On the other hand, let f € FNP, i.e., f = ¢'(g) for g € FP such that
9(y, |7]|) T whenever ||y|| > p(||Z]|), with a suitable polynomial p. For

0 ifg(y,7) |,
gy, %)~ q 1 ifg(y,®) 1 and |y| <p(|7]),
T if [yl > p()|Z]),

we have ¢’ € FP and f(Z) ~ g(u'(¢')(Z), Z), hence f € Clos {0 1 (FP ) and even
f € FLevy(1). This would already suffice to show that Theorem 7.1 applies to
w' = ' too. Moreover, the proofs of Lemma 7.2 and Proposition 7.1 work also
with g’ instead of @@'. Thus, Clos (0,1 (FP ) = FPH, and it follows

Corollary 7.1. Clos (o) (FP) = FPH, and it holds P = NP iff FP is closed
under p'. O

Next we turn to a closer treatment of the nesting levels of (the polytime versions
of) some operators within FPH.

8. THE POLYTIME LEVELS WITHIN THE POLYNOMIAL HIERARCHY

As for the polynomial hierarchy of sets, it is useful to enrich the polynomial
hierarchy of functions by classes FA? 41 defined by means of POTMs in analogy

p
to the employment of NPOTMs in defining FEQJFI = FNPEk7 ¢f. Lemma 7.1. So
we put
P b
FAp,, =FP~k forall k € N.

p P
In particular, FA? = FP¥0 = FP, and FA = FP>1 = FPNP | From Fx? = FNP
upwards, we have the usual inclusions:

Lemma 8.1. For allk > 1, FX} C FAQ+1 C FEQH.

The second inclusion is trivial. To prove the first one, let f € FX¥ = F,[2}].
This means that graph(f) € X%, and f is polynomially length-bounded. Since
k > 1, the set

A ={(y1,92,7) : y (1 <yry <y Af(@) =y)}
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belongs to X% too: the quantification Jy can be polynomially length-bounded
with respect to the tuple Z, and then it can be joined with the first existential
quantification in the presentation of graph(f) characterizing f(Z) = y which is
also polynomially length-bounded with respect to the argument Z.

Finally, by means of the oracle set Ay a POTM can, for any given input &,
decide whether & € dom(f), and if so, it can compute the value f(Z) by binary
search, again using the oracle set Ay. O

Now we are going to show that the levels of our operators coincide with the

p
classes FAk+1 .

Theorem 8.1. For all k € N, FLev'(k) = FA} ;.

The proof is by induction on k. For k = 0, we indeed have
p
FLev'(0) = FP = FPY = Fp¥0 = FA?.
Supposed that the assertion holds for some k, it follows for k + 1, i.e.,

FLev'(k+1) = FAY .

To show inclusion “C”, we remember that FLev'(kz + 1)
Clos (o} (FLev'(k) U @' (FLev'(k)) ). Since FLev'(k) C ¢'(FLev'(k)) and FA}
closed under composition, it is enough to show that ¢'(FLev'(k)) = ¢'(FAY )

» .
FAL ;s ie.,

N

P 4
&' (FPYk) C FP¥k+1.

P
Given a 1-polynomial function g € FPEk, we put
Ag ={(y1,v2,%) - Jy(yr <y Ay <y2 A9y, 7))}

p
Obviously, A, € NP>k = E£+1' As in the proof of Lemma 8.1, for any tuple Z by
binary search using the oracle set A,, a POTM can decide whether there exists a
y with g(y,Z) |, and if so, the minimal such y can be determined. Hence we have

p
¢'(g) € FP¥he1,
P
It should be noticed that one can even show ¢’(FNPEk) C FP

D D
also for a 1-polynomial function g € FNP>k it follows Ag € NP>

To prove the converse inclusion FA? 40 C FLev'(k+1) by means of the inductive
hypothesis, the following lemma is crucial.

p
D1 . Indeed,

Lemma 8.2. Every total function f € FA} , belongs to ¢'(FAY ).

Supposed that the lemma holds and f € FA? 4o, We consider its totalization,

o [ F@+1 i f(@) ]
f(m){ 0 if (7)1
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Then f € FA},, too, and Lemma 8.2 yields fe ¢ (FAY,,
f = hoof with the unary function hy € FP defined by

z—1 if z>0,
hO(Z)Z{ T ifz=0.

). On the other hand,

Thus, the hypothesis of induction would imply
f € Clos (o) (¢'(FAL)) = Clos (o} (¢'(FLev'(k)) ) € FLev'(k 4 1),

and the proof of Theorem 8.1 would be complete.
Lemma 8.2 can be proved by adapting a technique established by Krentel [15]
in his proof that MAX P D AL, see also [32].

»
Let be given a total m-ary function f € FPE’H1 which is computed by a POTM

P
M using an oracle set A € X} 41 = NP>k, Without loss of generality, A C N.

Let p denote a polynomial time bound of M, i.e., if f(Z) |, then M halts after at
P
most p(||Z]|) steps on input #. Since xY € FNPEk, there is a 1-polynomial binary

P
function h € FP¥k such that
A={z| P20y n(y,2) =0}, with a suitable polynomial p4.

It can be supposed that ran(h) C {0,1} and h(y, z) | whenever |ly|| < pa(]lz|]).

Now we describe the work of a POTM M’ which computes a 1-polynomial
(partial) function g : N = N. Given an input (y,#) € N with ||y|| <
(paop(||Z]]) +1) - p(||&]|), its first component is decomposed as

y =y - 20aoeUFN DU o it o < 2eacp(IZD»(I7).

Consider the word w’ = 0...0- 3(y") € {0,1}* of length |w'| = p(||Z]|), where
B(y") denotes the usual binary expansion of the number y’. Thus, w’ corresponds
to an initial part of the binary expansion of y. This word is now interpreted as
a sequence of oracle answers in the course of working of M on input #. More
precisely, for the Ith bit b; of w’ let by = 0 mean the answer “yes” and b, = 1
mean the answer “no” to the lth oracle query in the related path of working of
M on input #. The corresponding /th subword of length pa o p(||Z||) of the word
w’ =0...0-6(y") with |w"]| = paop(||Z]]) - p(]|Z||) provides a potential witness y;
with ||yi]| < paop(||Z]]), 1 <1< p(||Z]])), such that h(y;, z;) = b; for the Ith oracle
query z;.

More precisely, on input (y,Z) let M’ simulate the behavior of M for at most
p(||Z]]) steps in such a way that the Ith oracle query is always answered according
to by and, moreover, it is checked whether h(y;, z;) = by, for the related part y; of
y" and the current oracle query z;. If h(y;, 2;) # by, for some first such 1, let M’
enter a cycle of working (without halting, the result remains undefined); otherwise
let it continue the simulation. If a stop configuration of M is reached (thus,
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h(yi, z1) = by for all oracle steps | performed so far), let M’ output the result of
machine M corresponding to the simulated path (controlled by the oracle answers
according to the sequence of the bits b;).

Since M computes the total function f and the zero bit b; = 0 corresponds
to the oracle answer “yes”, it is ensured that the minimal value of y, for which
the input (y, Z) yields a result of M’, corresponds to a sequence of correct oracle
answers in the related path of M with respect to the oracle set A. Thus, M’

computes a 1-polynomial function g € FPEQ such that f = ¢'(g). This completes
the proof of Lemma 8.2. g

If, in the above proof, the function f is allowed to be partial, then for ¥ ¢
dom(f) there could be a (minimal) value y for which the input (y, &) gives a result
of M’ (which corresponds to an incorrect sequence of oracle answers). Hence we
cannot conclude that f = ¢'(g) in this case. If both the oracle set A and its

_ »
complement A belong to X} 41, however, one can even show that f € FNPEk.
This means

P P p
Lemma 8.3. For every k € N, FPEkaHkH C FNPZk.

P P
To prove this, we show that for every (partial) function f € FPEkJrlmHkJrl,

Iz
there exists a 1-polynomial g € FPEk such that f = ¢'(g) and, moreover,
9(y1,Z) = g(y2, &) whenever g(y1,Z) | and g(yo, T) |.

Indeed, employing the framework and denotations from the proof of Lemma 8.2,
we have for the complement A = N\ A that

A={z] 320Dy Ry, z) = 0}

with a 1-polynomial binary function h € FPEi, for which h(y, z) | whenever ||y|| <
pa(]|z]|), where the polynomial p4 is chosen to be applicable in the representation
of both A and A.

Now the behavior of the TM M’ is modified such that in case that b; = 1
the corresponding part y; of y” has to witness that 2z € A, i.e., h(y;,2) = 0
with z; corresponding to the Ith oracle query of machine M on an input (y, Z).
This ensures that all results obtained by M’ are equal to f(#) and that there is
a number y such that M’ halts with a result on input (y,#) if f(Z) |. On the
other hand, for all inputs (y,#) with & ¢ dom(f), M’ cannot halt with a result,
since all oracle queries have to be answered correctly then, and the simulation
follows correctly the work of M. Hence we have f = ¢'(g) for the 1-polynomial

P
function g € FP>k computed by M’, and g(y1, %) = g(y2, Z) whenever g(y1, ) |

and g(y2, ) |. This means f € FNPE? O

We shall return to questions and problems around Lemmas 8.2 and 8.3 in Sec-
tion 10. By the present section, the levels FLev,, (k) for o’ € {@’,¢’, o/, min’,
max’} have completely been characterized within the polynomial hierarchy. It has
turned out that the behavior of the polytime variants of operators is not straightly
analogous to the relationships between their computation theoretic counterparts in
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the arithmetical hierarchy. In particular, the question whether the polytime levels
establish a proper hierarchy corresponds to the question whether the polynomial
hierarchy does not collapse. Hence it is related to the open P vs. NP problem.

9. ON THE POLYTIME LEVELS OF FURTHER OPERATORS

First we want to deal again with the polytime version of the classical pu-operator.
Surprisingly, its levels will turn out to be equal to those of the previously discussed
operators.

By Theorem 8.1, the levels of the operator ' coincide with the classes FA? 41
defined by means of (deterministic) POTMs. Hence they are closed under total-
ization in the following sense.

Let the operator of totalization T assign, to any function f € FAll, the function
7(f) = f of the same arity, which is defined by

= F@)+1 i f(@) 1,
ﬂ@{ 0 if (7)1

Quite naturally, we say that a function class FC C FAll is closed under totalization
if 7(f) € FC whenever f € FC. For example, all complexity classes of functions
which are defined by means of deterministic TMs with the usual constructible
time-bounds, as well as unions of such classes, are closed under totalization. In
particular, the classes FA? 1= FLev'(k) have this property.

The following Lemma shows that closedness under totalization means that the
functions of the class under consideration have domains which are decidable within
this class.

Lemma 9.1. Let FP C FC C FAll for a function class FC which is closed un-
der composition. Then FC is closed under totalization iff Xdom(s) € FC for all
functions f € FC.

Indeed, if FC is closed under totalization, for any f € FC we have Xqom(f) =
hot(f) € FC, with the polytime function

0 ifx=0,
h("”){ 1 ifz>0.

Conversely, it holds

. 0 if x om (f) =0,
T(f)(&) —{ F@+1 i xjomx;(f) =1,

hence 7(f) € Clos (o3 (FPU{f}) € FC under the supposition of the lemma. [
Now it can be shown that un-nested applications of the operators 7’ and p’ to
functions of certain classes yield closely related results.
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Lemma 9.2. If FP C FC C FAIll and the function class FC is closed under
totalization and composition, then

Clos (o} (f'(FC) UFC) = Clos {0} (' (FC) UFC).

If f=7(g) for an (m + 1)-ary function g such that g(y,#) T whenever |y|| >
p(||Z]]), with a polynomial p, we put

0 if lyl} < p(||#]]) and g(y,Z) =0,
9y, @) ={ 1 iyl <p((|Z]]) and (g(y, )T or gy, &) >0),
T otherwise .
Then g’ = ho(7(g), " ", ..., 5 ]) with a suitable function h € FP, and we have
f = p'(g"). Under the supposition of the lemma it follows ¢’ € FC, hence @’ (FC) C
1/ (FC), what implies Clos (o (&' (FC) UFC) C Clos (o} (p/'(FC) UFC).
To show the converse inclusion, let f = p/(g) and ¢(y,Z) T whenever |Jy| >
p(||Z]]), with a polynomial p. Now we put

g(y, %) if |yl < p(|Z]]) and g(y,7) |,
q'(y, %) ~ 0 if ly|l < p(l|7]]) and g(y, )T,
T otherwise .

Then ¢’ € FC and we have

[ FE@E HER@@] md B(e)@)] and 7 (9)@) = 7 (6)@).
- 1 otherwise .
Thus, f € Clos (o} (&' (FC) UFC). O
By induction on k, from Lemma 9.2 and Theorem 8.1 we immediately obtain

Corollary 9.1. FLev,, (k) = FLev'(k) for all k € N. O

Next we want to deal with the remaining operators §’ and sum’. It is eas-
ily seen that they yield the same levels. First, analogously to part (iii) of the
proof of Lemma 5.1, one shows that #'(g) € sum’(Clos (o} (FP U {g})), for any
1-polynomial function g.

On the other hand, let f = sum’(g) and g(y,#) T whenever ||y| > p(||Z]|) for a
polynomial p. In addition, we suppose that g € FC for a function class FC which
is closed under totalization. Then putting

q ({y, z), %) ~ { 0 ifg(y, )| and z < g(y,7),

T otherwise ,

we get a 1-polynomial function g’ € Clos o} (FCUFP ) such that f = #'(¢"). So
it holds
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Lemma 9.3. For any function class FC which is closed under totalization and
under composition and includes FP, we have §'(FC) = sum/(FC). O

Moreover, we shall employ the following technical lemma.

Lemma 9.4. Let a function class FC be closed under totalization and include FP.
Then its closure, Clos oy (FC), is closed under totalization, too.

Indeed, if f = go(hy,...,h;), then

g(hi(@), ... . (®) +1 it hy(@)| forallie {1,...,1}
T(f)(@) = and g(h(2), ..., () |,

0 otherwise .

It follows that 7(f) € Clos oy ({7(9), T(h1),...,7(h)} UFP) C Clos (0} (FC),
and this yields the assertion. O

Proposition 9.1. FLevy (k) = FLeviypy (k) for all k € N.

Indeed, by induction on k and by means of Lemmas 9.3 and 9.4, one shows
simultaneously that FLev;j/ (k) = FLevVgyum (k) and that this class is closed under
totalization and composition and includes FP, for every k € N. |

Unfortunately, we did not succeed in localizing the levels of ' and sum’ within
or compared to the polynomial hierarchy. It is even open whether they are con-
tained in FPH. These problems correspond to the open questions concerning
Valiant’s counting class §P well-known from complexity theory, cf., e.g., Chap-
ter 9 in [7]. One easily sees that

P = ¢'(FP) C FLeva,(l).

Thus, these unsolved hard problems concern already the first nonzero level of §’
and sum’, and it could even be that FLevy (1) is not contained in FPH. The only
related result, which we were able to prove so far within our framework, says that
any level FLev'(k) is contained in the #’-level of height 2k.

Proposition 9.2. For all k € N, FLev'(k) C FLevy (2k).

This follows by induction on k from the fact that the operator ' can be ex-
pressed by a two-fold (nested) application of f’, in composition with polytime
functions.

More precisely, let f = @'(g) for an (m + 1)-ary function g satisfying g(y, %) 1
whenever |ly|| > p(]|Z||), with a polynomial p. We put

if z<yand g(2,%) =0,
otherwise ,

g (z,y,T) ~ { (T)

and
hy )~ {0 iy <270 and #'(g")(y.7) = 0,
¥1) = T otherwise .
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Then ¢" and h are 1-polynomial functions, and we have g' € Clos (o} (FP U {g} )
and h € Clos (o} (FP U (Clos (o} (FP U {g})) ). Moreover,

I 2vIZ) i @ (g) () T,
#(h)(7) = { y < 227D i @ (g)(7) = y .

Thus, if g € FLevy (2k), then f = &'(g) € FLevy (2k + 2), and if FLev'(k)

-
FLevy (2k), then FLev'(k + 1) C FLevy (2k + 2). O
Propositions 7.1 and 9.2 immediately yield

Corollary 9.2. FPH C U,y FLevy (k) = Clos o gy (FP).

O

As we mentioned above, it is open whether the converse inclusion holds.

10. EQUIVALENCES TO A COLLAPSE OF THE POLYNOMIAL
HIERARCHY

By Theorem 8.1 and Lemma 8.1, the operator levels FLev'(k), k € N, span
the whole polynomial hierarchy of functions, which also characterizes the usual
polynomial hierarchy of (classes of) sets. Thus, the polynomial hierarchy collapses
iff the sequence of operator levels collapses to some level FLev' (k). The latter
holds iff FLev'(k) = FLev'(k + 1), and this is the case iff FLev’ (k) is closed under
some (equivalently, under all) w’ € {g/, 7', @', o', min’, max’}. In this section, we
establish several operator-related equivalent formulations of the question whether
341 is closed under complement. This problem is equivalent to X}, = II} |
and to 2£+1 = FPH. For k = 0, it is just the famous NP ws. coNP problem.

We start with stating a basic chain of inclusions.

Proposition 10.1. For all k € N,

» P »

FpYk c FPoen e ¢ pNPEE C ¢/(FPTR) € FPURH C FPH.
Il I Il

FA%H FEerl FA£+2

The indicated equalities to the classes in the last line of the proposition hold by

definition of the classes FA? and by Lemma 7.1, respectively. The first inclusion

follows from X € X7 | NI}, the second one is just Lemma 8.3, the third one

holds by definition of the classes FNPC, whereas the last one is trivial. Finally,
P Iz
(b'(FPEk) - FPE’CJr1 was shown in the first part of the proof of Theorem 8.1. [
As a counterpart of the totalization introduced at the beginning of the previous
section, now we define the operator of partialization, 7. It assigns, to any function
f € FAIL the function 7w (f) = f of the same arity, which is defined by

S @1 i f@) | and f(@) >0,
(@) =~ { ) otherwise .
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Thus, 7(f) = hoof, where the unary polytime function hg is defined by

r—1 ifz>0,
hO(“’”)g{ T ifz=0.

For example, all function classes, which contain FP and are closed under compo-
sition, are closed under partialization, too. This holds for all classes occurring in

P
Proposition 10.1, possibly except ¢’(FPEI€). On the other hand, all the classes

occurring in Proposition 10.1, possibly except FNPEi, are closed under totaliza-
tion.

The variety of statements known as equivalent to X7 = 11} 41 can now be
enriched by some ones concerning equations between and closure properties of the
above function classes.

Theorem 10.1. The following statements are equivalent:
(a) 2£+1 = Hk+1a
(b) FP Sy FNPEQ;
P
(c) FNPZk = ¢/ (FPZ);
zr P
(@) ¢'(FPEF) = FP¥hi
e) ¢ (FPE k) is closed under composition;
) ¢

f (FPE is closed under partialization;

(
(
(2) FNP k 1s closed under totalization.
Also, FPZ = FPY kMt g AP

it follows that FP kaHkH = FPH and conversely.

p P p TP
=Y, NIy, and from 3 =11

The structure of our proof of the equivalence of the statements (a)—(g) can be
sketched by the following scheme.

Scheme of implications / l l \
shown in the proof of Theorem 10.1

() () () (f)

p P »
Obviously, ZiJrl = Hi+1 implies FPEk-i-lmHk-i-l = FPEk-H7 i.e., from (a) follow

(b), (c¢) and (d). Moreover, it is well-known that (a) implies that the polynomial

hierarchy collapses to X}, d.e., ¥, = PH, ¢f. [7]. Then it follows FX}_

FPH. So we have already shown the main direction of the theorem’s very last
statement, the converse implication follows from the equivalence of (a)—(g).

p P
Since FNP>% and FPY%+1 are closed under composition, both (c¢) and (d)
P
imply (e). (e)=-(f) follows, since hy € FP C (b'(FPEk), and (¢)=-(g) holds, since

(b'(FPEk) is closed under totalization, as one easily sees.
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P P
To show (d)=-(a), assume that FP okt = {d'(g): g€ FPEk}. IfAeXy |,
P P
we have Y € FNPEk - FPZkH. Due to the abilities of POTMs, it follows
2 P
XOZ € FPYirt. Hence, by supposition (d), there is a 1-polynomial g € FP>k with

P
X% = ¢'(g). One can easily ensure that g(y, ) = 0if g(y, Z) |. Thus, X% € FNP>k
and A € i1, b6, A €T 4. So we have shown X} | CTI} |, and this implies
the equality (a).

Now suppose (b). For any A € Eiﬂ, we have Y € FNPEi = FPEiHmHiH.
Again by the abilities of POTMs, it follows X% € FPEiHmHiH = FNPEi and
A€ X} . Thus, we have (b)=(a).

Let (f) hold, i.e., w(g) € gb’(FPEp) for any ge e (FPE k). Given some g €
Fp> k+1, its totalization 7(g) belongs to Fp> o1 too. By Lemma 8.2, 7(g) €
¢’ (FPEk), and (f) implies that g = mwoT(g) € ¢’ (FPE k). So we have shown
FP k1 C ¢/(FPYH); this means (d).

Finally, let A € X | = NPk, i.c, x4 € FNPYL. If (g) holds, then it
follows x4 € FNPEk, hence XO; € FNPE? So we have shown that (g) implies

¥, €I, and this yields (a). The proofs of the implications indicated above
are complete.

AT o oy
+1""k+1 = FP = FP~k. Conversely,

lmH

AL, = 2 P NI, then FPYK
»
FPEL = Fpoke "l
FPEk, hence A € sz = A£+1' This completes the proof of the theorem. O
The most interesting special case of Proposition 10.1 and Theorem 10.1 is ob-
tained for k = 0 and, accordingly, ¥§ = NP, I} = coNP, FA} = FpY — FP,
»
FNPEO = FNP, and A} = P. We re-formulate these results as a corollary. It
should be mentioned that the implication NP = coNP = FNP = FA} was essen-

tially known from [26], Theorem 11.1. Moreover, there are known a lot of further
equations or conditions equivalent to NP = coNP.

k+1 and A € X, NI}, implies x4 € Fp> (IRLL S

Corollary 10.1. We have FP € FPNPONP « pNp ¢ /(FP) € FAL C FPH,
and the following statements are equivalent:

a) NP = coNP;
PNPﬂCONP FNP,

FNP = ¢'(FP);

¢'(FP) = FAZ;

¢’(FP) is closed under composition;
¢’(FP) is closed under partml@zatzon,
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Moreover, FP = ppNPncoNP iff P =NP NcoNP, and from NP = coNP it fol-
lows that FPNPmCONP = FPH and conversely.

Theorem 7.1 and Corollaries 7.1 and 10.1 emphasize once more that questions
around P vs. NP can be expressed quite independently on the notion of nonde-
terminism, e.g., by closure properties of the basic class FP with respect to our
variants of classical operators. Thus, it is stressed that the hardness of P vs.
NP questions is caused by an insufficient knowledge of the class FP of polytime
functions.

Remembering Propositions 6.1 and 6.2 and Corollary 9.1, one might ask whether
the operators ', I, @', min’ and max’ would yield results similar to Theorem 10.1
and Corollary 10.1 if they are taken instead of ¢'. This indeed holds for min’ and
max’, whereas u’, r’ and @' do not seem to allow such analogues.

11. A HIERARCHY BETWEEN FNP>: AND ¢/ (FP>)

The previous section demonstrated that the polytime version of the first value
operator is well suited to express statements equivalent to a collapse of the poly-
nomial hierarchy. Now this operator will be used to establish a hierarchy of func-

» p
tion classes between FNPEk and qb'(FPEk), for any k£ € N. This corresponds to

»
the generalized Boolean hierarchy over X} 41 = NPEk which leads from X% 41 to

A£+2 = Pzzﬂ and was explored in detail for k¥ = 0. There one first gets the
Boolean hierarchy over NP = ¥ that corresponds to the Boolean closure of NP
but can be extended to a hierarchy exhausting the whole class Ab, cf. [4,5,31,32].

The basic technique of the construction of the Boolean closure of a “ring of
sets” goes back to Hausdorff [11]. His difference hierarchy was transferred to com-
putability theory by Ershov [9]. For a unified treatment of both these hierarchies
and of a counterpart in constructive analysis, the reader is referred to [12]. Ep-
stein, Haas and Kramer [8] introduced (the original version of) the first value
operator just in order to investigate Ershov’s hierarchy. In [13] we applied related
techniques to establish hierarchies of function classes which, in a certain sense,
generalize both the Hausdorff hierarchy and the Ershov hierarchy, as well as their
counterpart in constructive analysis.

P
In the present setting, a hierarchy below gb’(Fsz) can be created by restricting

7
the number of the changes of values of 1-polynomial polytime functions from FPZk
to which the first value operator is applied. More precisely, for an (m + 1)-ary
1-polynomial function g, let

O‘g(f) - Card{(ZhZQ) 2 < 22, g(zlaf)la g(ZQ,f)l,, g(zlaf) 7é g(ZQaf)a
and g(z,@)7 for all z with z; < z < 23 }.

Notice that, due to the 1-polynomiality of g, ay(Z) is always a natural number.
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For any unary total function 5 : N — N, , the related ®j-class is defined as

P
Py sy ={¢'(9): g € FP¥k is 1-polynomial, and a4 (%) < G(||Z||) for all ZeN"}.

One immediately sees that

P p
FNP™k =&y C By () C ¢/(FPY)  forall f: N — Ny, and
Q. 5,n) € Prg,n) if B1(n) < Ba(n) for (almost) all n € N.

p
Moreover, if g(y,Z) | whenever |ly|| > p(||Z]]) for some g € FPEk7 then ¢'(g) €

D). 9p(n).  Thus, ¢’(FP21€) is obtained as the union over all classes ®; 5,) for
B(n) < 2P with polynomials p, i.e.,

¢ (FPk) = | o pi lynomial } = | J{® cdeN
= k2v() : P is a polynomial } = U{ gomd + dENFL.

From any strict inclusion @, 5, (n) C Py g,(n), for unary total functions 31 and 3z,
p I
it would follow that FNP™k C ¢/(FP™k), i.e., ¥ | #TI?, | by Theorem 10.1.
Now we are going to show a close relationship between the hierarchy of ®-

classes and the Boolean hierarchy over NPEZ To this purpose, we transfer the
generalized Boolean hierarchy over NP, cf. [1,31,32], both to sets of tuples of
natural numbers and to higher levels of the polynomial hierarchy in the following
straightforward way:

For any function 3: N — N, let the class BHy, g, consist of all sets A € N™,

P
m € N, , for which there is a set B € NPEk7 B C N™" such that

and

(%) (y, %) € B implies (¢, %) € B whenever 1 <y’ <y,
€ B} =1 (mod. 2),

1
Fe A iff max{y: 1<y <g(|7]) and (y, %)
where, of course, max ) Z 1 (mod. 2). Putting

B :{ {Z: (y, %) e B} if1<y<p(|7),
Y 0 if y > B(|Z]),

condition (x) can also be expressed by

() {312322332...7811(1
A =Uyen (Bay+1 \ Bay+2).

This representation is closely related to Hausdorff’s difference hierarchy: A is the
result of the difference chain of the decreasing sequence (By),en, -
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By standard techniques, one shows:

'4
= NP>k = BHy; C BHyp forall : N — Ny,
P
BHy, 5(n) C P2k+1 = A£+2
BHy g, (n) € BHy g,ny  if B1(n) < Ba(n) for (almost) all n € N.

P
zk—i—l

if § is polynomial-time computable, and

The standard Boolean hierarchy over NP is obtained in this way for £k = 0 and
constant functions f(n) =1 € N:

NP =BH;; CBH;, C ... CBH;, C ... CAL,

and the class [ J{BH;; : [ € Ny } is just the Boolean closure of NP.

In the following theorem, the bounding functions (8 are supposed to be both
polytime and polynomially bounded. The latter means that there is a polynomial
p such that 3(n) < p(n) for all n € N.

Theorem 11.1. Let 5: N — N, § € FP and 8 polynomially bounded. Then
for any ACN™, m € Ny, we have:

1.

A€ BHypmy iff there is a function f € @y g, such that T € Aiff f(%)

To prove the implication “=-", let A € BHj g(,) be characterized by a set
»
B e NPEk according to (%), where the function § fulfills the required suppositions.

2 2
Since x4 € FNPEk, there is a 1-polynomial function g € FPZk such that for all
TeN™ 21,29,y € N:

if g(zla yaf)l and g(ZQ,y, f)la then g(zla yaf) - 9(227ya f)a
and it holds (y,Z) € B iff thereis a z € N with g(z,y,Z) = 0.

Without loss of generality, we suppose that ran(g) C {0, 1} and always ¢(z,0, Z) 1.
Let p be a polynomial witnessing that the function g is 1-polynomial. Now we put

Lot lyll < gD, (121 < p(IKy, 2))),
g(z,B([1Z]]) =y, ) = 0 and B(||7]]) —y =1
(mod. 2),

h(y-20UCUFNDD L2 3) ~ &0 if |y < BUZID, 2] < p(I(y, D)),
9(z, B(|Z]) —y,¥) = 0 and B(||7]]) —y =0
(mod. 2),

T  otherwise.

p
This (m+ 1)-ary function h is 1-polynomial, belongs to FP>k like g, and it holds:
7 € Aiff ¢'(h)(Z) = 1. Moreover, ap, (%) < B(||Z]]). Thus, f = ¢'(h) fulfills all the
requirements from Theorem 11.1.
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To prove “<«=", let be given f € ®; 3,y and A C N™ such that ¥ € A iff

P
f(#) =1. Let f = ¢'(g), where g € Fsz, g is 1-polynomial, and oy (Z) < B(]|Z]]).
We can suppose that ran(f),ran(g) C {0,1}.

For 1 < |ly|| < B(||Z])), we define B C N™*! by

(y,£)eB iff  there are 21 < 22 < --- < 2y such thatg(z;,Z) |
whenever 1 <i <y, and g(z;, %) # g(zi41, %) for 1 <i <y,
and ((y is odd and g(z1,#)=1) or (y is even and g(z1,Z)=0)).

Then B € NPEi and (y, Z) € B obviously implies (y’, &) € B whenever 1 <y’ < y.

Let ¥ € A. Then ¢'(g)(%) = 1 = g(20, %), where 29 = min{z : g(z, ) | }. Thus,
Z € By, and ¥ € By iff there are z; < 23 such that g(z1,#) = 0 and g(21,Z) = 1.
In the latter case, we have zp < z; and ¥ € Bs. Then ¥ € By iff there are
21 < 23 < z3 < z4 such that g(z1,%) = g(z3,%) = 0 and g(22, %) = g(24, %) = 1.
This holds iff # € Bs, and so on. It is seen that max{y : (y,Z) € B} is an odd
number < SB(||Z]]).

Conversely, if max{y : (y, %) € B} is an odd number, then it is < §(||Z]|) and
# € A. Thus, condition (x) is fulfilled by the set B, i.e., A € BHy gn). O

It should be noticed that, even if we could require that ran(f) C {0,1} for the
function f € @ 5(,) according to Theorem 11.1, f is not necessarily total, i.e.,
we could not conclude that f = xa. For & ¢ A, we would only have f(Z) = 0
or f(#) 1. From this it follows easily that x4 € ®j g()+1 what, however, only
implies that A € BHy, g(,)41- This situation is quite similar to those in the related
settings where the first value operator is employed to characterize hierarchies of
set classes, cf. [13].

Moreover, we would like to mention an interesting difference between the
Boolean hierarchy and that of the ®y-classes of partial functions. For the gen-
eralized Boolean hierarchy over NP, in [31] it was proved that

U{BHl,ﬁ(n) :3: N — N} = U{BHLQP(M : pis a polynomial } = AL,

This corresponds to Lemma 8.2 which says that all the total functions from
FAY_ , belong to ¢'(FA}, ;) = U{®) 20 : pis a polynomial }. Thus, for k =
0 we have: all the total functions from FAJ belong to ¢'(FP) = [J{® gptm :
p is a polynomial }. For the ®g-hierarchy it holds by Theorem 10.1:

if U{@kgp(n) : pis a polynomial } = FA} |, then X}, =TI} .

Thus, probably there are functions in f € FA£+2\U{CI>k,2p<n) : p is a polynomial },
but they have to be properly partial.

12. CONCLUDING REMARKS

We have studied the nesting levels of some relatives of the classical p-operator
and their polytime counterparts. The computation theoretic variants span the
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stratification of the arithmetical hierarchy in different ways, whereas the polytime
variants of most of the operators generate the polynomial hierarchy of functions.
However, there seem to be only few analogies in the ways in which the nesting levels
of the polytime operators and of the computation theoretic ones, respectively, are
related to the stratifications of the hierarchies.

Proposition 3.1 characterizes the levels of odd heights, FLev(1 + 2k) for k € N.
Its proof shows the strict inclusions FLev(1 + 2k) C FLev(1 +2k+ 1) C FLev(1 +
2k+2). The levels of even heights, FLev(1+2k+1), are not characterized in more
detail, however. This remains an open problem.

Also some further known function operators could be considered within the
framework of this paper. Questions of the (un-nested) expressibility of one unary
operator wi by another one wy would lead to study relations like <. defined by

wi <cwy iff wi(g) € Clos (o) (FPaPrim U {g} U wy(Clos {0y (FPaPrim U {g} )))
for all g € dom(w).

In the case of polytime operators, one should define a relation <, accordingly
by using the class FP instead of FPaPrim above. Lemmas 2.1 and 6.2 as well
as Proposition 6.2 provide examples of such expressibilities between operators.
Notice, however, that Lemma 5.1 and Proposition 5.1, as well as Lemmas 9.2
and 9.3, uses different techniques based on some knowledge about the nesting
levels of the operators.

Quite naturally, questions about the strictness of the hierarchies of nesting
levels of the polytime operators are closely related to the big unsolved problems of
computational complexity, ¢f. Theorems 7.1, 8.1, 10.1 and Corollary 10.1. So we
could perhaps present some new points of view for approaching these problems.

Finally, the previous Section 11 emphasizes the close connection between the
first value operator and difference hierarchies of classes of sets or hierarchies of
function classes related to them. In particular, the role of partial functions is
stressed in this context. As we remarked, applications of the first value operator
in its original form to functions from F¥; = FCom were studied in [8,13]. The
computation theoretic analogues of the @, hierarchies, however, would yield special
hierarchies of function classes between FX1 1, and ¢p(FX11y), for all k € N. These
have not yet been dealt with in the present paper or somewhere else.

Acknowledgements. 1 want to thank the referees of earlier versions of this paper for their
suggestions improving the style of presentation.
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