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CORRIGENDUM TO OUR PAPER:
HOW EXPRESSIONS CAN CODE FOR AUTOMATA

SYLVAIN LOMBARDY' AND JACQUES SAKAROVITCH?

Abstract. In a previous paper, we have described the construction
of an automaton from a rational expression which has the property
that the automaton built from an expression which is itself computed
from a co-deterministic automaton by the state elimination method
is co-deterministic. It turned out that the definition on which the
construction is based was inappropriate, and thus the proof of the
property was flawed. We give here the correct definition of the broken
derived terms of an expression which allow to define the automaton
and the detailed full proof of the property.

Mathematics Subject Classification. 68Q45, 68Q70.

1. THE PROBLEM, ITS PARTIAL SOLUTION, AND A FLAW

The conversion of finite automata into regular expressions and conversely of
regular expressions to finite automata is an old, and fundamental, problem in
automata theory. The algorithms that produce an expression which denotes the
language accepted by a finite automaton (McNaugton-Yamada algorithm, state
elimination method) are more or less ‘equivalent’ [9] and yield an expression whose
length may be exponential in the size of the automaton. The algorithms that
build a (non deterministic) automaton from an expression (Glushkov, Antimirov)
output an automaton whose size is roughly (and at most for Antimirov) equal to
the length of the expression. In a previous paper of ours [8], we have considered
the possibility of finding a method that would be reversible, in the sense that
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FIGURE 1. The old and new constructions of automata from an expression.

it recovers an automaton from an expression that has been computed from this
automaton. More precisely we have stated the following problem:

Find an algorithm Q which, given any rational expression E com-
puted from an automaton A —e.g. E = ®(A) where O is the state
elimination method —, computes an automaton $UE) isomorphic

to A.

We did not solve the problem completely in [8], but we have identified two
constructions that are good candidates to be the core components of such an algo-
rithm €. The first one is a variant of Antimirov’s construction of an automaton,
the second one, which plays a more ancillary role, is the operation of ‘co-quotient’.
The flaw in the original paper is due to an inappropriate definition of the vari-
ant of Antimirov’s derivation that we used to build the automaton, there denoted
by A (E), from an expression E. We describe now another variant of Antimirov’s
derivation, which is based on what we called the broken derived terms in another
paper of ours ([7]) and defined there just for the sake of the exploration. Once this
new derivation is set up, the construction from the expression E of the automaton,
that we denote by A’ (E), goes then as in [8], and what was considered as the key
statement can be stated again.

Theorem 1.1. Let A be a co-deterministic automaton and E = ®(A) a rational
expression computed from A by the state elimination method. Then, the broken
derived term automaton A’ (E) of E is co-deterministic.

A simple example will illustrate the transformation between the construction
in our first paper [8] and the new one.
Let A; be the automaton of Figure 1a, and let

Ei =®(A;) = (a+b+1)[ala+b)]"

be the expression computed from A; by the state elimination method (by sup-
pressing first state 1 and then state 2). We write Ey = (a + b+ 1)F; with F; =
[a(a + b)]"; Figure 1b shows A (E;) and Figure 1c shows A’ (E;). The automa-
ton Aj is co-deterministic and so is A’ (E; ), whereas A (E;) is not co-deterministic.
Now, the minimal co-quotient of A’ (E;), denoted by T (A/ (El)) (all definitions

are given in the next section), is isomorphic to A; — whereas YT (A (Ey)) is not, of
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course. Hence, 4; =7 (A/ ((I>(.A1))> and T o A’ is a good candidate to make up

the algorithm €.

The remainder of this paper is devoted to the definitions (Sect. 2) and to the
proof of Theorem 1.1 (Sects. 3 and 4). There must have been a flaw in the proof
of the corresponding statement in [8]. It is not interesting to find it, but it is
important to give a full (and correct) proof of Theorem 1.1 in order to keep valid
all the work that has been done around it in [8].

2. THE (CORRECTED) DEFINITIONS AND STATEMENT

2.1. PRELIMINARIES

In the sequel, A is a finite alphabet and A* the free monoid generated by A.
The empty word, denoted by 14, is the identity of A*. We denote by AT the set
of non-empty words: AT = A*\ {14+}.

For any subset L of A*, and any u in A*, the (left) quotient of L by u is defined
as u 'L = {v € A* | uv € L}. The quotient operation defines an action of A*
onto the power set of A*, that is:

Yu,v € A%, VL C A* (uv)'L=v""[u"'L]. (1)

2.1.1. Basics I: rational expressions

The set of rational expressions over A, denoted by RatE(A), is the set of well-
formed formulas built inductively from the constants 0 and 1 and the letters a
in A as atomic formulas and with two binary operators 4+ and - and one unary
operator *: if E and F are rational expressions, so are (E + F), (E-F), and (E*).
We often write simply expression instead of rational expression.

With every rational expression E is associated a language of A* which is called
the language denoted by E and we write! it |E|. The language |E| is inductively
defined by |0 =0, |1| ={1a-}, |a| = {a} for every a in A, |(E+ F)| =|E|U|F|,
[(E-F)| = |E||F|, and |(E*)| = {|E|}*. Two expressions are equivalent if they
denote the same language.

In the sequel, any operator defined on expressions is implicitely extended addi-
tively to sets of expressions. For instance, we have:

VX CRatE(4)  |X|= | [El. (2)
EeX

Using the classical precedence relation between operators: ‘x > - > + 7’ allows to
save parentheses in the writing of expressions — e.g. E+ F-G* is an unambiguous

IThe notation L(E) is probably more common. But |E| proves to be lighter in the compu-
tations performed in this paper. Note also that this latter notation is more appropriate when
dealing with expressions with multiplicity, although it is not the case here.
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writing for the expression (E + (F - (G*))) — but one should be aware that for
instance (E-(F-G)) and ((E-F)-G) are two equivalent but distinct expressions.

Even if for the sake of our purpose and the correct definition of the derivation,
we distinguish between expressions that seem to be so obviously equivalent, all the
computations on expressions that will be defined below are performed modulo a
set of seven identities, that we call trivial identities:

E+0=0+E=E, E-0=0-E=0, E-1=1-E=E, 0*=1. (T)

An expression is said to be reduced if it contains no subexpression which is a
left-hand side of one of the above identities; in particular, 0 does not appear in a
non-zero reduced expression. It is not necessary to set up a full theory of rational
identities in order to understand that any expression H can be rewritten in an
equivalent reduced expression H’, and that this H’ is unique and independant
from the way the rewriting is conducted.

Definition 2.1. Let E be a rational expression. The constant term of E, written
c(E), is the Boolean value defined as follows:

c(0)=0, c(1)=1, Vace A c(a)=0,
c(F+G)=c(F)ve(G), c(F-G)=c(F)Ac(G), c(F")=1.

Property 2.2. The constant term of an expression E is equal to 1 if, and only if,
14+ belongs to |E|.

2.1.2. Basics II: finite automata

We recall here classical and very general definitions and constructions on au-
tomata. We postpone the description of normalised automata, which is not less
classical but which will specifically be used in the proof.

We denote by A = (Q,A,E,I,T) a (finite) automaton over A whose set of
states, initial states and final states are @, I and T respectively and whose set of
transitions is F C (QxAxQ). The language (of A*) accepted (or recognised) by A
is denoted by |A] (¢f. note 1). An automaton is ¢rim if every state belongs to a
successful computation.

The transpose of A is the automaton ‘A = (Q, A,'E,T,I) whose transitions
are the reverse of those of A: 'F = {(¢q,a,p) € (QxAXQ) | (p,a,q) € E}. This
construction will be used to define ‘dual’ notions on automata.

The automaton A is deterministic if I is a singleton (or empty), and if for
every p in @ and every a in A, there exists at most one ¢ in @ such that (p,a,q)
is in E. The automaton A is co-deterministic if *4 is deterministic, that is, if T
is a singleton (or empty), and if for every p in @ and every a in A, there exists at
most one ¢ in @ such that (¢,a,p) is in E.

For each state q of A, the past of ¢ (in A) is the set of labels of computation
which go from an initial state of A to ¢, and we write it Past 4(¢); the future of ¢
(in A) is the set of labels of computations that go from ¢ to a final state of A and
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we write it Fut 4(q):
Past 4(¢q) ={we A" |Jiel z'i:—»q}, Fut,(¢) ={we A" |FeT q%:—w}.

Property 2.3. A trim automaton A is deterministic if, and only if, the pasts of
states are pairwise disjoint, and dually, A is co-deterministic if, and only if, the
futures of states are pairwise disjoint.

The following definitions and statements, that are, or should be, classical [7,9],
are taken in order to state Proposition 2.7, which, combined with Theorem 1.1,
makes of T a component of an algorithm 2. The definition of morphism and of
minimal quotients of automata is a generalisation of the classical minimisation of
deterministic automata (similar to the definition of simulation among transition
systems). These notions apply to any kind of automata and are more versatile. On
the other hand, the minimal quotient of an automaton is not canonically attached
to the recognized language anymore but depends on the automaton it is computed
from.

Definition 2.4. Let A = (Q,A,E,I,T) and B = (R, A, F,J,U) be two au-
tomata; a map ¢: Q — R is a morphism (of automata) if:
() ()<,
(i) (T)C U, and
(iii) for every tramsition (p,a,q) in E, (¥ (p),a,1(q)) is a transition in F.

If v is such a morphism, we write 1: A — B, and it immediately follows that

|Al € |B] .

Definition 2.5. The automaton B is a quotient of A, if there exists a morphism
¥: A — B such that:
() Q) =R,
(i) ()=,
(i) ¢(T)=U, and
(iv) for every transition (r,a,s) in F and every p in ¢~ !(r), there exists a q
in 1 ~1(s) such that (p,a,q) is a transition in E.

If B is a quotient of A, then |A| = |B].

Proposition 2.6. Every automaton A has a minimal quotient C, which is unique
up to an isomorphism, and which is the quotient of any quotient B of A.

The terminology does not make it clear, but the notion of quotient is directed
(from the origin to the destination of the transitions). The automaton B is a
co-quotient of A if 'B is a quotient of *A. And the dual of Proposition 2.6 also
holds.

Proposition 2.7. Every automaton A has a minimal co-quotient D, which is
unique up to an isomorphism, and which is the co-quotient of any co-quotient B

of A.
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The minimal quotient or co-quotient of an automaton can be computed by
a kind of Moore algorithm that consists in successive refinements of the trivial
partition on the set of states. We denote the co-minimisation algorithm by T.
Let us note again that T(A) is canonically attached to A and not to the language
accepted by A, but for the case where A is co-deterministic, in which case Y (A)
is the minimal co-deterministic automaton of |.A.

2.2. DERIVATION OF EXPRESSIONS

2.2.1. Antimirov derivation

Let us first recall the notion of derivation as defined by Antimirov.

Definition 2.8. [Antimirov [2]] Let E be a rational expression over A and a a
letter in A. The B-derivation® of E with respect to a, denoted % E, is a set of
rational expressions over A, recursively defined by

%0 = %1 =0,
vbe A %b = { {(})} gthefwzisg
%(F+G):%FU%G, (3)
%(F.G): [%F]-GUC(F)%G, (4)
%(F*) = {% F] CF* (5)

Equation (4) should be understood as

a(F-G){[

a [

That is, the product x X of a set X by a Boolean value z is X = X ifz =1
and zX =0 if z =0.

The induction implied by Equations (3)—(5) should be interpreted by extending
derivation additively (as are always derivation operators) and by distributing (on
the right) product over union as in (2); if X is a set of expressions, we have:

]-GuZG if 1,
|-G, if c(F)=0.

o8

o F
F

Q

a

- X=U5-E X-F=|J(E-F).
EeX EeX
2We call it ‘B-derivation’ in order to avoid confusion with the ‘derivatives’ defined by

Brzozowski [3]. In other papers and works, when dealing with expressions with multiplicity
in a semiring K, we called the result of the derivation a ‘K-derivative’ (cf. [7,9]).
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Definition 2.9. Let E be a rational expression over A and v a non empty word
of A*, i.e.v = wa with a in A. The B-deriwation of E with respect to v, de-

noted — E | is the set of rational expressions over A, recursively defined by for-
v
mulae (3)—(5) and by:

0 0 (0
+ I = I
Yue AT, Vae A 8uaE 8a(auE>' (6)

We call derived term of E, either the expression E itself?, or any rational expression

0
which belongs to a set Ep E for some v in AT. We write D(E) for the set of derived
v

terms of E.

The derivation with respect to a word is consistent with the left quotient by a
word, in the sense that the following holds.

Vu € A", VE € RatE(A) 'a% El = u g, (1)

The definition of derived terms allows then the definition of an automaton, which
was the original purpose.

Definition 2.10. [Antimirov [2]] The derived term automaton of a rational expres-
sion E is the finite automaton Ag whose set of states is D(E) and whose transitions
are defined by:
(i) if K and K" are derived terms of E and a a letter of A, then (K,a,K’) is
a transition if, and only if, K’ belongs to % K;
(ii) the initial state is E;
(iii) a derived term K is final if, and only if, ¢ (K) = 1.

It is well-known that Ag has at most £(E) + 1 states and accepts the language
denoted by E (¢f. [2]). We also denote Ag as A(E) in order to have a notation
which is parallel to the one used for the broken derived term automaton A’ (E)
(see below); this notation is used in the proof of Proposition 4.7.

2.2.2. Breaking derivation

The essence of the derivation (by a letter), as defined by Antimirov and repeated
here, is to “break” the expression into pieces when the operator at the upper level
of the expression is “4”. The modification of the derivation we consider now
consists in supposing that this breaking happens spontaneously, as if it were a
derivation with respect to the empty word, before the first derivation by a letter,
and after every such derivation. To that end, we define a new operation on rational
expressions which we denote by B() and which, roughly speaking, consists in

3We would rather not say that E is the result of a derivation by the empty word as the
derivation of a sum should be the sum (here, the union) of the derivation of the summands. And
this is what will happen with the breaking derivation that we define below.
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FIGURE 2. The co-deterministic automaton As.

decomposing an expression into a set of expressions whose left factor is not a
sum*.

The definition of B() requires two further notations. If X is a set of expressions,
then [X], is the same set possibly without the expression 1: [X], = X\ {1}, and
dx 1is the Boolean that takes the value 1 if the expression 1 belongs to X and 0
otherwise. For instance, dx], =0 and X = [X], Udx {1} for any set X.

Definition 2.11. Let E be an expression. Then, B(E) is the set of expressions
inductively defined as follows:

B(0) = {0}
B(E+ F) = B(E) UB(F)

, B(1)={1}, VacA B(a)={a},
, B(E-F)=[B(E)],-FUdgE B(F), B(E")={E"}.
The set B(E) is called the set of broken terms of E.

As noted in (2), the breaking operator B is also additive over sets of rational
expressions:
VX CRatE(4)  B(X)= |J B(E).
EeX
Moreover, the breaking operator is idempotent: B(B(E)) = B(E) for any expres-
sion E.

Example 2.12. Let Ay be the co-deterministic automaton of Figure 2.
The expression E5 computed by the state elimination method with the ordering
gEr<p<s<itis:

Es = (ad™b)"ad"da*a + (1 4 (ad*b)*a)(b+ ba*a).
Then, B(E3) = {(ad*b)*ad*da*a, (ad*b)*a(b+ ba*a),b, ba*a} .

4Here lies the correction we make to our original paper. The definition of the derivation we
apply to the expressions is modified in two ways: first, the breaking B() is more ‘complete’ as
it ‘goes through’ sets of expressions which contain 1; second, we replace the derivation by the
breaking derivation (in the original paper, the breaking B() was applied only once before any
derivation).
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Definition 2.13. The breaking derivation of a rational expression E over A with
respect to a letter a in A is defined by:

e-s((2d)

The breaking derivation with respect to words is then defined by induction on the
length of words as in (6):

Ob O [ O
AT A —E=—1—E].
Vued”, Vae Oua da <8u >

We call true broken derived term of E any rational expression which belongs to a
0
set —> E for some non-empty word u in A,

u
We write TBD(E) for the set of true broken derived terms of E and the set of
broken derived terms, BD(E), is defined by:

BD(E) = TBD(E) UB(E).
It is easy to check that for every rational expression E over A

0 B 0 + 6b o 0
Va € A %B(E)faaE, and thus Yue A 6uEB<[8uE])’

which in turn implies that the broken derived terms are obtained by ‘breaking’

the derived terms:
BD(E)= |J B(K). (8)
KeD (E)
As for the derivation, one of the purposes of the breaking derivation, the one which
is of interest here, is the definition of an automaton.

Definition 2.14. The broken derived term automaton of a rational expression E
over A is the finite automaton A’ (E) whose set of states is BD(E) and whose
transitions are defined by:
(i) if Kand K’ are broken derived terms of E and a a letter of A, then (K, a,K’)
is a transition if, and only if, K’ belongs to (%Z K;
(ii) the set of initial states is B(E);
(iii) a broken derived term K is final if, and only if, c (K) = 1.

The automaton A’ (E) accepts the language |E| (¢f. [7], Thm. 9)°. More
precisely, the following holds.

Property 2.15. For every K in BD(E), the future of K in A’ (E) is equal to |K]|.

5We use that notation A/ () here, in this corrigendum, in order to have a different notation
from the one used in [8]; it might be the case that in further publications, we shall use A () which
is more natural. The automaton A’ (E) has a number of states which is bounded in function
of ¢(E) as for Ag, but the bound is more tricky to establish (cf. [1]).
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FIGURE 3. The broken derived term automaton of Es.

Example 2.16 (Ex. 2.12 cont.). We have computed B(Ez) = {F1,F2,b,ba*a},
with F; = (ad*b)*ad*da*a and Fo = (ad*b)*a(b+ ba*a). The following breaking
derivations give rise to the true broken derived terms of Es.

ab - * * * ab - * * ab * * * * *
—aFlf{d bF1,d*da*a} 0@F27{d bF3,b,ba*a} add da*a = {d*da*a,a*a}
% d*bF; = d*bF, % d*da*a = {d*da*a,a”a} % ba*a = a*a.

The broken derived term automaton of E, is shown at Figure 3. Hopefully, it is
co-deterministic and its minimal co-quotient is isomorphic to As.

We are now ready to state the key result of this work.

Theorem 1.1. Let A be a co-deterministic automaton and E = ®(A) a rational
expression computed from A by the state elimination method. Then, the broken
derived term automaton A’ (E) of E is co-deterministic.

In [8], we have given a number of examples where the mapping T o A’ applied
to an expression that is computed from a co-minimal automaton A yields A itself.
But the only case where we have been able to prove the property is when A is
co-deterministic. Moreover, this result gives the possibility of dealing with the
general case by means of tagging. This is the reason why we consider Theorem 1.1
as the key statement in our search for an algorithm €2 which would be the inverse
of ®°.

The introduction of the breaking operation is necessary to deal with automata
with several initial states. Nevertheless, the core of the proof of Theorem 1.1 is
Proposition 4.7 which establishes that the derived term automaton of an expression
computed from a normalised co-deterministic automaton is co-deterministic, that
is, a property of Antimirov derivation (definition of normalised automata is recalled

6In [8], the corresponding statement is Theorem 3.5, and Theorem 1.1 is the corrected
version of it.
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below). A remarkable feature of this result is that its proof goes by induction on the
number of states of the normalised automaton we start from. The main ingredients
of this proof are first Lemma 3.1 that describes how the (Antimirov) derivation
translates under a continuous rational substitution and then Proposition 3.9 which
states that every (broken) derived term is contained in the future of some state
of the automaton on which the expression has been computed. The transfer from
the hypothesis of Proposition 4.7 (normalised co-deterministic automata) to the
one of Theorem 1.1 (co-deterministic automata) is made possible by Lemma 3.8.

3. PRELIMINARY TO THE PROOF OF THEOREM 1.1

We first establish two properties of derivation that will be used in the sequel
and whose scope is wider than the statement alone. For the ease of the proof, we
prefer to work with normalised automata. We then show, in two steps, that we
can make this assumption without loss of generality.

3.1. A SUBSTITUTION LEMMA

Let A and B be two alphabets. We call rational substitution a map
¢: B — RatE(A) which is extended to ¢: RatE(B) — RatE(A)

by replacing every atom of a rational expression over B by its image under .
Substitutions are consistent with rational operations in the sense that for every
expressions E and F in RatE(B), the following equalities hold:

@(E+F) =¢(E) +¢(F), @E-F)=¢(E)-oF) and ¢((E)*) = (¢(E))".

Naturally, ¢ also induces a substitution from B* into A* and the equality |¢(E)| =
¢ (JE|]) holds. A substitution ¢ is continuous if ¢ (p(b)) is null for every b in B.
If ¢ is continuous, then, for every expression E in RatE(B), we have:

c(p(E)) =c(E).

The following lemma states that the derivation behaves with respect to continuous
rational substitutions exactly as it is expected from an operator called derivation.
(Note also this lemma deals with the derivation and not with the breaking deriva-
tion. It turns out that we shall make use of the two notions in parallel.)

Lemma 3.1. Let : RatE(B) — RatE(A) be a continuous rational substitution.
Then

vaca  goo®)= U [0 ¢ (5E): )
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Proof. By induction on the depth of E. If E = 0 or 1, both sides of (9) are zero.
0

If E = b, the right-hand side of (9) reduces to % ©(b) which is the left-hand
a

side, and the base of the induction is established. The following three sequences
of equalities give the three possible induction steps:

T o(F+6) =~ [o(F) + 9(G)] = o 9(F) U - 0(6)

|
| —|
-

L —|
o
5
=
| S
5
N
Ll
-
N————
_ 1
5
3)
C
(@]
Sl
| |
-
| —|

|
5
=
| S
S
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o

|
-
—
SE
S
=
[
—
AS)
7 N
SIS
n
5
.
et
-
I
(-
—
SE
S
=
[
©
7N
SIS
i
SN—

3.2. NORMALISED AUTOMATA

We define standard, co-standard, and normalised automata. Indeed, with ev-
ery automaton we associate a standard, a co-standard, and finally a normalised
automaton. In contrast to what is usually done with such constructions, these
new automata are not exactly equivalent to the one from which they are derived,
but in each case, the added transitions bear a new letter that keeps track of the
transformation.
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Definition 3.2. An automaton is standard if it has exactly one initial state with
no incoming transition.

With any automaton A = (Q, A, E,I,T), we associate the standard automa-
ton Aqg = (QU {i}, AU{$}, F, {i},T), Where i does not belong to @, nor $ to A,
and where

F=EU{(i$,p)|pel}

Note that A is co-deterministic if, and only if, A, is. Clearly |Aq| = $|.A|. This
equality indeed generalises to expressions and their broken derived terms in the
following way (when the state elimination method is applied to A4, it is understood
that ¢ will be the last state to be eliminated).

Lemma 3.3. Let A be an automaton over A, Aq the standard automaton defined
as above, E = ®,(A) and Eq = D, (Ag) the expressions obtained by the state
elimination method (with respect to the same order w on the states of A). Then
we have:

B(E)=5¢cEs  and  BD(E) = TBD(E,).
Definition 3.4. An automaton is co-standard if it has exactly one final state with
no outgoing transition, that is, if its transpose is a standard automaton.

With any automaton A = (Q, A, E,I,T), we associate the co-standard au-
tomaton A, = (Q U {t}, AU{£L}, F,I,{t}), where ¢ does not belong to @, nor £
to A, and where

F=EU{(p,£,t)|peT}.

Note that A is co-deterministic if, and only if, A, is. Clearly |As| = |A| £. We
first consider more closely expressions for which such an equality holds. Let Fp
be the family of expressions in RatE(A U .£) that denote rational subsets of A*
followed by £:

Fre={EcRatE(AU£) ||E|=L£ L ecRatA*},

Since any word in the language denoted by an element of F¢ does not contain the
symbol £ but at the end, the following property holds.

Property 3.5. Any element of F is of one of the following forms: £, Ez + Fg,
or G-Fg, where Ey and Fz are in Fy and G is in RatE(A).

The notions of standard and co-standard automata are dual, but as the deriva-
tion is also a directed notion, the statement corresponding to Lemma 3.3 is not
exactly its dual.

Lemma 3.6. Let A be an automaton over A, A, the co-standard automaton
defined as above, E = ®,(A) and E, = @, (Ag) .

The projection m: (AU{£})" — A* induces a bijection between BD(E,)\ {1}
and BD(E) and in particular between B(E,) and B(E) .
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Proof. As the algorithm & acts symbolically on the labels of the transitions,
m(Es) = E. The expression E, belongs to Fg. By induction on the depth of
the expression, we first show that m(B(E,)) = B(w(Es)) = B(E). The interesting
case is when E, = G- F:

m(B(G-Fg)) = m(B(G) - Fe) Udp(c) - m(B(Fe)) = B(G) - FUdp(g) B(F) =B(G-F).

In the same way, for any Hy in F,, and for any letter a in A, we have:

W(%Hg)%ﬂ(H_ﬁ). (10)

The statement is then shown by induction on the ‘length’ of the derivation. Every
(broken) derived term of E; different from 1 is in Fg. Let Kz be a derived term
in BD(E;) and K its projection, in BD(E) by induction hypothesis. The derivation
of K¢ with respect to £ gives either 1, or the empty set. The derivation of K
with respect to any letter a in A is, by (10), in bijection with the derivation of K
with respect to a. O

Putting the notions of standard and co-standard automata together, we get the
following definition and statement that are even more classical than the previous
ones (cf. [5] for instance).

Definition 3.7. An automaton is normalised if, and only if, it has exactly one
initial state and one final state such that there is no incoming transition on the
initial state and no outgoing transition from the final state’.

With any automaton A = (Q,A,E,I,T), we associate the normalised au-
tomaton Ay = (QU{i,t}, AU{S$, £}, F,{i}, {t}), where neither ¢ nor ¢ belongs
to @, neither $ nor £ belongs to A, and where

F=FEU{(i,$p)|pellu{(p,£,t)|peT}.

Note that A is co-deterministic if, and only if, A¢ is. Clearly |Ag| = $|A| £ .
And both Lemmas 3.3 and 3.6 are put together in the following statement.

Lemma 3.8. Let A be an automaton over A, A the normalised automaton
defined as above, E = ®,(A) and E¢; = @, (Ag) .

The projection w: (AU{£})* — A* induces a bijection between g—; E¢ and
B(E) on one hand and between TBD(E¢) \ {1} and BD(E) on the other hand. O

"In spite of its name, a normalised automaton is not necessarily the result of the normalisation
of another automaton.
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3.3. FUTURE OF STATES AND DERIVED TERMS

We end these preliminaries by putting in relation the derived terms and the
broken derived terms of an expression obtained from an automaton by the state
elimination method and the future of the states of that automaton. In the next
three statements, A is an automaton over A with set of states @ and E = ®(A)
is an expression computed from A by the state elimination method. For clear
typography, we write a, instead of (a,q) for the elements of Ax Q.

Proposition 3.9. If A is standard, then for every derived term K of E there
exists a state q in Q such that |K| is included in the future of q.

Proof. Let A= (Q,AXQ,E,I,T) be obtained from A = (Q,A,E,I,T) by
relabelling every transition (p, a,q) in E as (p, aq, ¢). The projection 7 maps AxQ
onto A and is extended to a map from RatE(Ax Q) onto RatE(A).

As 7 is a continuous (rational) substitution, with the property that for any a,

0
bin A, (and any ¢ in Q), % 7(bg) is equal to 1 or 0 according to whether a is
a

equal to b or not, Lemma 3.1 implies that for any a in A and for any expression F
in RatE(Ax Q) we have:

0 0
—n(F) = —F]]. 11
500 = U1 (5,7)) @
q€eQ
Let E = @(ﬁ) . As the algorithm & acts symbolically on the labels of the tran-
sitions, m(E) = E holds. Then, by iteration of (11), for any K in D(E) there
exists K’ in D(FE) such that K = 7(K’).

~

Either K" = FE, then K =E and |K'| is (in) the future of the (unique) initial
state. Or there exists a non empty word w in (Ax Q)T such that K’ is in i E
w

and then 5

K| C|=— E| = w'|A4].

KT € 1o Bl = |4
Let aq be the last letter of w, then w™'|.A| is contained in Fut 3(¢). The projection
by 7 gives

Fut 4(q) = 7 (Fut 4(q)) and thus [K| € Fut 4(q). O

The same property holds then for broken derived terms.

Corollary 3.10. Without further hypothesis on A, for every broken derived term K
of E there exists a state q in Q such that |K| is included in the future of q.

Proof. Let A, be the standard automaton associated with A as in Section 3.2 and
let Eq = @, (Aq) . For every Kq in BD(E4) there exists Hq in D(Ey) such that K is
in B(Hq) (¢f. (8)) and thus |K| C |H|. Moreover, there exists, by Proposition 3.9,
a state ¢ in @ such that |H| C Fut,_(q) hence |K | C Fut, (¢). By Lemma 3.3,
TBD(E4) = BD(E), therefore |K| C Fut4(q) . O
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A B B’
p'(G*'H

F ) ©® Cpr

P, P, P,
E 1 E/
A/ A/

A (E) A (E)
FIGURE 4. Diagram for an induction step in the proof of Theorem 1.1.

As the futures of states are pairwise disjoint in a co-deterministic automa-
ton (Prop. 2.3), we then can state the following.

Corollary 3.11. If A is a co-deterministic normalised automaton, then for every
derived term (resp. every broken derived term) K of D(E), there exists a unique ¢
in Q such that |K| C Fut 4(q) .

4. PROOF OF THEOREM 1.1

The proof goes by induction on the number of states of the automaton A as
sketched in Figure 4.

Let E = ®,(A) the rational expression computed by the state elimination
method following the order w on the states of A and let ¢ be the smallest state
with respect to w. For every predecessor p of ¢, let F), be the set of letters a
such that (p, a, ¢) is a transition of A and F, the expression ‘sum of letters in F},’.
Let R be the set of successors of ¢ in A; for every r in R, let H, be the set of
letters a such that (g, a,r) is a transition of .4 and H, the expression ‘sum of letters
in H,’. Let G be the set of letters a such that (q,a,q) is a transition of A and G
the expression ‘sum of letters in G’. The set G may be empty and then G = 0;
the trivial identities (T) allows to treat this special case in the same way as the
general one in almost every instance.

Let B be the generalised automaton obtained from A by elimination of ¢ — by
the state elimination method. For every p and every r as above, a transition from
p to r labelled by F, - (G*-H,) is thus created®. Let B’ be the (normalized)

8The automaton 13 is called ‘generalised’ because some of its labels are rational expressions.
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Cp.p

(a) The automaton B} (b) The broken derived term automaton of E)

F1GURE 5. The first step first step of the state elimination method on As.

automaton obtained from B by replacing every label of the form F,-(G*-H,) by a
fresh letter ¢, . Let C be the alphabet of these fresh letters and A’ = AU C'. Let
¢ be the (continuous) substitution from RatE(A’) to RatE(A) which maps every
letter of A onto itself and every letter ¢, onto F, - (G*-H,).

Since the construction of B is the first step of ®,(), then E = &,(B) and
let E' = ®,(B’). As the algorithm ®, acts symbolically on the labels of the
transitions, ¢(E’) = E.

If A is co-deterministic, so is 8 and A’ (E’) is co-deterministic by induction
hypothesis. The proof amounts to transferring the properties from A’ (E') to
A’ (E) via the substitution ¢.

Example 4.1. [Ex. 2.16 cont.] The first step of the state elimination method,
followed by relabelling of automaton As is the automaton B of Figure 5a, with:

SD(CP,P) = ad*b and Sa(cp,r) == ad*d

The expression E}, computed by the state elimination method with the ordering
r<p<s<tis

E) = ¢, ,cpra”a+ (1+ ¢, a)(b+ba*a),
and ¢(E5) = Ez holds. Then, B(Ey) = {c; ,cpra*a,c;, a(b+ ba*a),b,ba*a} and
the broken derived term automaton of E} is shown at Figure 5b, with the notation

/o % * ! % *
Fi = ¢y pcpra*a and Fy = ¢y ,a(b+ ba*a).

4.1. PREPARATION FOR THE INDUCTION

From now on — and until after Corollary 4.9 — A, and thus B and B, are
normalised automata and the state ¢ is neither the initial nor the final state.
With the above notation, we have:

Property 4.2. For every state s, s # ¢, Fut,(s) = ¢ (Futg/ (s)) .
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The remainder of this subsection is devoted to the description of the derived
terms and broken derived terms of E, that is, the elements of D(E) and BD(E), in
terms of the elements of D(E’).

From Lemma 3.1 follows, for every K’ in RatE(A’), and every letter a in A:

9] 9] 9] 0
T oKy =o (LK g Ik,
o (K “’<aa ) Yy Lmso(d} ‘/’<ac >
ceC
For every cin C, there exists p and 7 such that ¢(c) = F,,-(G*-H,.). Hence, either a
88 oK) =¢ (g K') or it belongs to F), for a

unique p, since A is co-deterministic, and (recall that R is the set of successors

of ¢ in A):
o .. (O, . 9
%w(x)_w(%x) U MG H"‘p(ach)]' (12)

For every ¢ in C, and as G and H, are sums of letters, the derivation of

G*-H,¢ <§ K’) with respect to any letter x of A’ gives G*-H, ¢ (02 K’>
c c

0
ifzisin G, ¢ <8_ K'> if z is in H,, both sets of expressions if z is in G N H,,
c

does not belong to any Fj, and

and () in any other case. Hence, by a straightforward induction, we have:

pE©) =2 0ENU U |U g ¢ (5e0@). 03

ocy
cp,r€C | a€EF, pr

The broken derived terms are obtained by applying B() to (12). Either the letter a
0
does not belong to any F, and = oK) = B( K')) holds or it belongs

/\
®|Qj

da

to F), for a unique p, and we have:

n | GE)) o U (G

52 9(K) = B(@ (% K,)) U U be (acp, ) otherwise.

reRbeH,

K') iG#0

(14)

0
As above, and for every ¢ in C, the breaking derivation of G*H, ¢ (& K')

0
(resp. of by (8_ K’) with b in H,) with respect to any letter gives a subset
c

f {G*Hrcp (% K’>,B<<p (% K’))} . Hence, by a straightforward induction,
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we get the following equality:

BD(E) = B DEN U U | U 2 plen)| oo DEY.  (15)

cp,r€EC | a€F, ’

Example 4.3. [Ex. 4.1 cont.] Equation (14) applied to F} = ¢} ¢, ra*a yields:

Ob 5} 0
— (¢ cpra“a) = B<<p (— ¢y Cpraa )) U d*by <— C o Cprd’a >
9a T\ pptP Ja (5 ) 9cpp (5P )

* a * *
U d*dy (K (cp,pcpma a)>

s

= {(ad*b)*ad*da*a,d*b(ad*b)*ad*da*a,d*da*a}.

4.2. PROOF OF THEOREM 1.1

The comparison between (13) and (15) is quite instructive. The presence in
the right-hand side of both equations of a non breaking derivation makes it un-
derstandable that an induction proof will run more smoothly on the derived term
automata. This is done with Proposition 4.7. On the other hand, when it comes
to compare the derived terms of an expression obtained from an automaton A and
those obtained from its normalisation A¢, the broken derived terms are to be used
(Lem. 3.8). Corollary 4.9 will fill the gap and Theorem 1.1 will follow.

We keep the notation of the preceeding subsection and we suppose from now on
that A is (normalised) co-deterministic. This implies that B’ is co-deterministic
and moreover that for every p, G and F), are disjoint; likewise, if p and p’ are two
distinct predecessors of ¢, F}, and Fj, are disjoint. For every successor r of g, let I,
be the set of labels of incoming transitions of  that does not come from ¢; then I,
and H, are disjoint. For every state s of B’ (therefore different from ¢), let Js be
the set of labels of incoming transitions of s. The following property then holds:

Property 4.4. For every state s in B, ¢(J;) is a suffix code in A* and the images
of the elements of Jg by ¢ are pairwise disjoint.

Lemma 4.5. For every state s in A, s # q, and for every u in Fut ,(s) there
exists a unique v in Futg (s) such that u € p(v) .

Proof. Suppose by way of contradiction that there exist v and v’ in Fut (s) such
that u € p(v) Ne(v'). We write v = z,, ... xoz1 and v = 2, ... 252} . There
exist w; € p(z;) and w; € p(a}) such that u = wy, ... wowy = w), ... whwj .

Let j be the smallest index such that either w; # w; or x; # :c; Let 7 be the
unique state of B’ such that z;_1...21 € Futg (r). By Property 4.4, ¢(J,) is a
suffix code and then w; = w’, and p(z;) N () # 0 implies z; = 2. O

Let K be a derived term in D(E). As A is co-deterministic, and by Proposi-
tion 3.9, the analysis will be split into two cases:
either there exists a unique state s # ¢ in A such that |K| C Fut(s) — Case 1,
or |K| C Fut 4(q) — Case 2.
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Lemma 4.6. Let K in D(E). There exists K' in D(E") such that either:
Case 1 there exists s # q such that |K'| C Futg (s) and K= o(K’), or

Case 2 there exists a successor r of q such that |K'| C Futg (r) and
K=G*H, oK) or K=H,p(K") (if G is null).

Proof. From (13), K is either (Case 1) in ¢ (D(E’)) or (Case 2) in

U | U 5 ¢ #0e,,E)

cp,r€C |a€F,

In Case 1, there exists K’ such that K = ¢(K’), by Proposition 3.9 there exists s
in B’ such that |K'| C Futy (s) and by Property 4.2 |K| C Fut 4(s) .
In Case 2, there exist ¢, € C, a € Aand K’ € D, (E’) such that

K= [ 52 #lenn)] (k) = 6 Ho(K),

As K" €D, . (E'), |K'| C Futg(r). By Property 4.2 ¢ (|K’|) C Fut 4(r) and thus,
by definition of G and H,., |K| C Fut 4(q). O

Proposition 4.7. Let A be a normalised co-deterministic automaton, and let
E=®(A). Then, the derived term automaton A(E) of E is co-deterministic.

Proof. A normalised automaton has at least two states. If A has only two states,
®(A) is reduced to a sum of letters and A(®(A)) is clearly co-deterministic.

By induction, A(E’) is co-deterministic, which means, by Property 2.15, that
the interpretations of the derived terms of E’ are pairwise disjoint. We prove now
that the interpretations of elements of D(E) are disjoint, which implies that A(E)
is co-deterministic.

Let Ky and Ks be two distinct derived terms of D(E) and assume that there
exists u in |Ky| N|Ks|. By (13) and Lemma 4.6, there exist K} and K} in D(E’)
such that one of the following three cases holds:

Case 1 K; = p(K]) and Ky = p(K5}).
Case 2.1 Ky = ¢(K}) and Ky = G*H,¢(K}).
Case 2.2 K; = G*H,, p(K}) and Ko = G*H,,o(K},).

Case 1 From Lemma 4.6 there exist states s; and s such that |Kj| C Futg (s1)
and |K5| C Futg(s2), and |Ki| C Fut(s;) and |Ka| € Fut,(s2). As Ais
co-deterministic, s; = so = s # ¢ and by Lemma 4.5, there exists a unique v
in Futy (s) such that u € p(v). Hence v € |K{| N|K5|. The induction hypothesis
implies K} = K/, and thus K; = Kj.

Case 2.1 From Lemma 4.6 there exist states s; # ¢ such that |K;| C Fut 4(s1)
and |Ky| C Fut 4(q) . As A is co-deterministic, |Ki| N|Kz| =0.
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Case 2.2 From Lemma 4.6, there exist successors of ¢, r1 and 7y such that
|Ki| € Futg (r1) and |K5| C Futy (r2), and |Ki| € Fut4(¢) and |Ka| C Fut 4(q) .
Hence u = gihiwi = gohowy , with g1, 92 € G*, hy € H,., hy € H,.,, w1 € ¢ (|K}])
and we € ¢ (|K5|). AsGNH,, = GNH,, =0, g1 = g2, h1 = h2, and thus w; = ws.
Since A is co-deterministic, there is a unique state s, different from ¢, such that w
is in Fut 4(s). Hence, by Case 1, ¢(K}) = ¢(K5) and thus K; =K. O

A last lemma to deal with the breaking of the images by ¢.

Lemma 4.8. For every broken derived term K’ of E', B(p(K")) is a set of expres-
sions whose interpretations are pairwise disjoint.

Proof. As K’ is a broken derived term, it is either a star, a letter or a product
whose first factor is a star or a letter. If it begins with a star or a letter which
is not in C, B(¢(K')) = {p(K’')}. Otherwise, K’ begins with a letter ¢, , and
B(p(K")) = Uaer aG*H,.L. O

Corollary 4.9. Let A be a normalised co-deterministic automaton, and E = ®(A).
Then, the broken derived term automaton A'(E) of E is co-deterministic.

Proof. As above, the corollary trivially holds if A has only two states.

By induction, A’(E’) is co-deterministic, which means, by Property 2.15, that
the interpretations of the broken derived terms of E’ are pairwise disjoint. We
prove now that the interpretations of elements of BD(E) are disjoint, which implies
that A’(E) is co-deterministic.

By Equation (8), BD(E) = B(D(E)) and, by Proposition 4.7, the interpretations
of the derived terms of E are disjoint. If there exists a word u in the intersection
of the interpretation of two broken derived terms K; and Ks, then, there exists a
derived term L of E, such that both K; and Kz are in B(L).

Case 1 There exists L’ in D(E’) such that L = ¢(L’). Then, there exists K} and K}
in B(L") such that K; € B(p(K})) and Ky € B(p(K})). By Lemmas 4.6 and 4.5,
there exists a unique word v in |L’| such that ¢(v) = u, hence, v is in |K}|N|K}|. By
induction hypothesis, the broken derived terms of E’ have disjoint interpretations,
thus K] = K. By Lemma 4.8, K; = Ka.

Case 2 There exist L" in D(E’), G and H,, such that L = G*H, (L") or L = H, (L")
(if G is null).

In the first subcase, B(L) = {L}, hence K; = Ky = L; in the second subcase,
Ki = a1¢(L') and Ky = azp(L’), a1 and az are both the first letter of u and are
therefore equal, hence K; = Ks. O

Theorem 1.1 is now established by the following simple argument. Indeed,
either A is a normalised automaton, and nothing is to be added, or we apply
Corollary 4.9 to A¢ and as the interpretations of any two broken derived terms
of E¢ are disjoint, so are the interpretations of the corresponding broken derived
terms of E: the broken derived term automaton is co-deterministic. g
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CONCLUSION

As we wanted to be complete, and not to leave another flaw behind us, the proof
of the theorem is long, much longer than we expected, and somewhat laboured.
It goes repeatedly forth and back between the properties of the terms and of their
interpretation. It is also based on an interplay between the derived terms and
the broken ones, which let us think that the truth may be hidden somewhere in
between. . .

As we explained in the introduction, the statement whose proof is corrected in
this corrigendum was considered in the original paper as the core of an algorithm to
find a converse to state elimination method. It applies to minimal co-deterministic
automata but its scope is more far reaching. First, the new like the old construc-
tion of the broken derived term automaton happens to give the solution in many
cases where the automaton is not co-deterministic. Second, the main part of the
paper [7] was devoted to the shortcomings of this construction and to the descrip-
tion of different tracks to obtain a converse algorithm when this construction alone
fails. All these tracks remain valid and the problem as appealing as before.

On the other hand, the proof presented here brings to light these broken derived
terms that we defined in [7] in an exploratory way. They deserve to be further
studied, a task that we have already begun [1].
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