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UNBOUNDED VISCOSITY SOLUTIONS OF HYBRID CONTROL SYSTEMS

Guy Barles1, Sheetal Dharmatti2 and Mythily Ramaswamy3

Abstract. We study a hybrid control system in which both discrete and continuous controls are
involved. The discrete controls act on the system at a given set interface. The state of the system is
changed discontinuously when the trajectory hits predefined sets, namely, an autonomous jump set A
or a controlled jump set C where controller can choose to jump or not. At each jump, trajectory can
move to a different Euclidean space. We allow the cost functionals to be unbounded with certain growth
and hence the corresponding value function can be unbounded. We characterize the value function as
the unique viscosity solution of the associated quasivariational inequality in a suitable function class.
We also consider the evolutionary, finite horizon hybrid control problem with similar model and prove
that the value function is the unique viscosity solution in the continuous function class while allowing
cost functionals as well as the dynamics to be unbounded.
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Introduction

The hybrid control systems are those involving continuous and discrete dynamics and continuous and dis-
crete controls. Typical examples of such systems are constrained robotic systems [1] and automated highway
systems [12]. For some more examples of such systems, see [5,6] and references therein.

In [6], Branicky et al. have presented a model for a general hybrid control system in which continuous
controls are present and in addition discrete controls act at a given set interface, which corresponds to the
logical decision making process as in the above examples. The state of the system is changed discontinuously
when the trajectory hits these predefined sets, namely, an autonomous jump set A or a controlled jump set C
where controller can choose to jump or not. They prove right continuity of the value function corresponding
to this hybrid control problem. Using dynamic programming principle they arrive at the partial differential
equation satisfied by the value function which turns out to be quasivariational inequality, referred hereafter
as QVI.
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In an earlier work [8], the authors have studied this problem and proved the local Hölder continuity of the
value function and have characterized it as the unique viscosity solution of the QVI. There the cost functionals
were assumed to be bounded and hence the value function was also bounded. This was essential in the uniqueness
proof, as the auxiliary function had to be modified a finite number of times to get the comparison result. In this
paper we allow the cost functions to be unbounded. We use a different method to compare unbounded value
functions, namely a suitable change of variable to reduce the unbounded function to a bounded one (see [2], for
example). We also tackle the uniqueness for the time dependent problem, using a test-function similar to the
one introduced in [3].

We also point out the paper of Galbraith and Vinter [10] who consider similar hybrid systems with an infinite
number of discrete states: their assumptions on the dynamics, cost functions and hence the resulting QVI (inside
the domain) are essentially the same as ours and they also characterize the value function as the unique solution
of the QVI, using a slightly different notion of solutions. The key differences with the present work are the
following: in our framework, there are preassigned sets for autonomous and controlled jumps, contrarily to [10]
where jumps can occur anywhere; to take into account these sets is a nontrivial additional difficulty. Because of
this difficulty, we just look for continuous value functions while [10] can treat the case when value function are
only lower semicontinuous. Hence some of our assumptions are stronger. Finally they have given an algorithm
for finding the optimal process while we have not addressed this question.

The paper is organized as follows: in Section 2, we introduce the notations, assumptions and quasivariational
inequality (QVI) satisfied by the value function. In Section 3, we show that the value function is continuous. The
next section deals with uniqueness of the solution of QVI. We give a comparison principle proof characterizing
the value function as unique viscosity solution of QVI, for the stationary case in Section 4 and then for the time
dependent case in Section 5.

1. Preliminaries

In a hybrid control system, as in [6], the state vector during continuous evolution, is given by the solution of
the following problem

Ẋ(t) = fi(X(t), u(t)) (1.1)
X(0) = x (1.2)

where x ∈ Ωi, a connected subset of R
di , di ∈ Z+ for i ∈ Z1 ⊂ Z+. Here fi : Ωi × U → Ωi and the continuous

control set is:

U = {u : [ 0,∞) → U | u measurable, U compact metric space} ·
The trajectory undergoes discrete jump when it hits predefined sets Ai the autonomous jump set and Ci, the
controlled jump set, both subsets of R

di . The trajectory starting from x ∈ Ωi, on hitting Ai, can jump to a
predefined destination set Dj in another Euclidean space Ωj and continue the evolution there. This jump is
given by prescribed transition map g : Ai × V → ⋃

i

Di, where V is the discrete control set. On hitting Ci the

controller can choose either to jump or not to jump. If the controller chooses to jump, then the trajectory is
moved to a new point in Dk, possibly in another space Ωk. This gives rise to a sequence of hitting times of⋃
j

Aj , which we denote by σi and sequence of hitting times of
⋃
j

Cj , where the controller chooses to jump which

is denoted by ξi.
We introduce the state space

Ω :=
⋃
i

Ωi × {i}, i ∈ Z1 ⊂ Z+,
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and the dynamics f : Ω × U → Ω. Actually, f = fi with the understanding, Ẋ(t) = fi(X(t), u(t)) whenever
x ∈ Ωi. The predefined sets are

A =
⋃
i

Ai × {i} Ai ⊆ Ωi ⊆ R
di ;

C =
⋃
i

Ci × {i} Ci ⊆ Ωi ⊆ R
di ;

D =
⋃
i

Di × {i} Di ⊆ Ωi ⊆ R
di .

The trajectory of this problem, is composed of continuous evolution given by (1.1) between two hitting times
and discrete jumps at the hitting times. We denote X(σ−

i , u(·)) by xi, the point before an autonomous jump
and g(X(σ−

i ), v) by x′i, after the jump. The controlled jump destination of X(ξ−i , u(·)) is X(ξ−i )
′
, or simply,

X(ξi)
′. For example, the dynamics for σi < ξk < σi+1, is given by

Ẋ(t) = f(X(t), u(t)) σi < t < ξk,

X(σi) = X(σ+
i ) = g(X(σ−

i ), v) = x′i,

and then

Ẋ(t) = f(X(t), u(t)) ξk < t < σi+1,

X(ξk) = X(ξ+k ) = X(ξ−k )
′
,

We give the inductive limit topology on Ω namely,

(xn, in) ∈ Ω converges to (x, i) ∈ Ω if for some N large and ∀ n ≥ N

in = i x, xn ∈ Ωi, Ωi ⊆ R
di , for some i, and ‖xn − x‖

R
di < ε.

With the understanding of above topology we suppress the second variable i from Ω. We follow the same for
A,C and D. We also denote by |x| the quantity which is equal to ‖x‖

R
di if x ∈ Ωi.

We make the following basic assumptions on the sets A,C,D and on functions f and g:
(A1): Each Ωi is closure of a connected, open subset of R

di .
(A2): Ai, Ci, Di are closed, and for all i and for all x ∈ Di, |x| < R. ∂Ai,∂Ci are C2 and ∂Ai ⊇ ∂Ωi ∀ i.
(A3): g : A × V → D is bounded, uniformly Lipschitz continuous map, with Lipschitz constant G with the
understanding that g = {gi} and gi : Ai × V → ∪jDj .
(A4): Vector field f is Lipschitz continuous with Lipschitz constant L in the state variable x and uniformly
continuous in control variable u. Also,

|f(x, u)| ≤ F ∀ x ∈ Ω and ∀ u ∈ U. (1.3)

(A5): Each ∂Ai is compact for all i, and for some ξ0 > 0, following transversality condition holds:

f(x0, u) · ζ(x0) ≤ −2ξ0 ∀ x0 ∈ ∂Ai ∀ u ∈ U (1.4)

where ζ(x0) is the unit outward normal to ∂Ai at x0. We assume similar transversality condition on ∂Ci.
(A6): We assume that

inf
i
d(Ai, Ci) ≥ β and inf

i
d(Ai, Di) ≥ β > 0 (1.5)

where d is the appropriate Euclidean distance. Note that, above rules out infinitely many jumps in finite time.
(A7): The control sets U and V are assumed to be compact metric spaces.
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Now θ := (u(·), v, ξi, X(ξi)
′) is the control and total discounted cost is given by

J(x, u(·), v, ξi, X(ξi)
′) =

∞∫
0

K(X(t), u(t))e−λtdt+
∞∑

i=0

Ca(X(σ−
i ), v)e−λσi

+
∞∑

i=0

Cc(X(ξ−i ), X(ξi)
′)e−λξi (1.6)

where λ is the discount factor, K : Ω×U → R+ is the running cost, Ca : A×V → R+ is the autonomous jump
cost and Cc : C ×D → R+ is the controlled jump cost. The value function V is then defined as:

V (x) = inf
θ∈(U×V×[0,∞)×D)

J(x, u(·), v, ξi, X(ξi)
′). (1.7)

We assume the following conditions on the cost functionals:
(C1): K is nonnegative, continuous in the x variable with at most polynomial growth of degree k, with k and
the growth being independent of i. K is uniformly continuous in u variable.
(C2): Ca(x, v) and Cc(x, x′) are continuous in both variables, uniformly continuous in x, uniformly with respect
to v and x′ respectively, and bounded below by C′ > 0. Moreover Ca and Cc have at most polynomial growth
of degree k in the first variable, with k and the growth being independent of i.

Note that under (C1) and (C2), value function is always non-negative and hence bounded below by 0. Using
dynamic programming principle, one can show that the value function satisfies the following QVI in viscosity
sense:

Theorem 1.1 (quasivariational inequality). Under the assumptions (A1)–(A7), (C1), (C2) and if λ > kL, the
value function V described in (1.7) is continuous and has at most a polynomial growth of degree k. Moreover it
satisfies the following quasivariational inequality in the viscosity sense:

V (x) =

⎧⎪⎨
⎪⎩
MV (x) ∀ x ∈ A

min {NV (x),−H(x,DV (x))} ∀ x ∈ C

−H(x,DV (x)) ∀ x ∈ Ω \A ∪ C.
(QVI)

For φ, a function defined on Ω and bounded below, M,N and H are given by

Mφ(x) = inf
v∈V

{φ(g(x, v)) + Ca(x, v)},
Nφ(x) = inf

x′∈D
{φ(x′) + Cc(x, x′)},

H(x, p) = sup
u∈U

{−K(x, u) − f(x, u) · p
λ

}
·

The condition λ > kL in Theorem 1.1 is used (and needed in the general case) to ensure that the value
function is locally bounded and has a polynomial growth. For the uniqueness result for the quasivariational
inequality (cf. Sect. 3), such condition is not playing any role.

Now we consider the hybrid control problem, with autonomous and controlled jumps as before, but in finite
horizon, namely for t ∈ [0, T ]. In this case the dynamics depends on the time variable t and we also allow
cost functionals to depend on t. We relax the global Lipschitzness assumption on f and assume only local
Lipschitzness. Further relaxing boundedness of f , we allow it to grow linearly.

In order to simplify we assume that the cost Ca, Cc are as above independent of time. It is not difficult to
check that, besides additional technical details, the case when Ca, Cc depend on t can be treated in a similar
way, with suitable adaptations.
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The total cost in the time dependent case is given by,

J(s, x, u(·), v, ξi, X(ξi)
′) =

T∫
s

K(t,X(t), u(t))dt+
∑

s≤σi<T

Ca(X(σ−
i ), v)

+
∑

s≤ξi<T

Cc(X(ξ−i ), X(ξi)
′) + h(Xx(T )) (1.8)

where K : [0, T ] × Ω × U → R+ is the running cost, Ca : A × V → R+ is the autonomous jump cost,
Cc : C ×D → R+ is the controlled jump cost and h is the terminal cost. The value function V is then defined
as:

V (s, x) = inf
θ∈(U×V×[s,T )×D)

J(s, x, u(·), v, ξi, X(ξi)
′). (1.9)

The precise assumptions are as follows: as before we assume (A1)–(A3), (A6) and (A7). Because f and K
are time dependent we further assume the following:
(A4)’: Vector field f(t, x, u) is locally Lipschitz continuous in the state variable x and uniformly continuous in
the rest of the variables. Its linear growth is given by

|f(t, x, u)| ≤ F (1 + |x|) ∀ x ∈ Ω and ∀ (t, u) ∈ [0, T ]× U.

(A5)’: Each ∂Ai is compact for all i, and for some ξ0 > 0, following transversality condition holds:

f(t, x0, u) · ζ(x0) ≤ −2ξ0 ∀ x0 ∈ ∂Ai ∀ (t, u) ∈ [0, T ]× U (1.10)

where ζ(x0) is the unit outward normal to ∂Ai at x0. We assume similar transversality condition on ∂Ci. The
cost functionals are assumed to satisfy
(C1)’: K is nonnegative and continuous in all the three variables; moreover K is uniformly bounded for
bounded |x|.

One can derive the DPP for time dependent problem which is given as follows:
For s′ such that s ≤ s′ < T ,

V (s, x) = inf
(u,ξ1)

⎡
⎣1s′<(σ1∧ξ1)

⎧⎨
⎩

s′∫
s

K(t,X(t), u(t))dt+ V (s′, X(s′))

⎫⎬
⎭

+ 1σ1<(s′∧ξ1)

⎧⎨
⎩

σ1∫
s

K(t,X(t), u(t))dt+ V (σ1, X(σ1
−))

⎫⎬
⎭

+ 1ξ1<(s′∧σ1)

⎧⎨
⎩

ξ1∫
s

K(t,X(t), u(t))dt+ V (ξ1, X(ξ1−))

⎫⎬
⎭

⎤
⎦.

It can be verified that the quasivariational inequality (QVI-T) satisfied by V (s, x), is given by

V −MV = 0 in (0, T )×A
max{V −NV,−Vs +H(s, x,DV )} = 0 in (0, T )× C

−Vs +H(s, x,DV ) = 0 in (0, T )× Ω \A ∪ C

⎫⎬
⎭ (QVI-T)



UNBOUNDED VISCOSITY SOLUTIONS OF HYBRID CONTROL SYSTEMS 181

where for φ, a function defined on ([0, T ]× Ω) and bounded below, M,N and H are given by

Mφ(t, x) = inf
v∈V

{φ(t, g(x, v)) + Ca(x, v)} ∀ x ∈ A

Nφ(t, x) = inf
x′∈D

{φ(t, x′) + Cc(x, x′)} ∀ x ∈ C

H(t, x, p) = sup
u∈U

{−K(t, x, u)− f(t, x, u) · p}·

For the terminal condition, it turns out to be more complicated than it is usually the case because of the possible
(or imposed) jumps. In fact, the terminal data is obtained by solving the stationary problem

V (T, x) −MV (T, x) = 0 ∀ x ∈ A
max{V (T, x) −NV (T, x), V (T, x) − h(x)} = 0 ∀ x ∈ C

V (T, x) − h(x) = 0 ∀ x ∈ Ω \A ∪ C

⎫⎬
⎭ · (1.11)

In order to have a continuous solution V (and therefore a continuous terminal V (T, x)), we have to assume
(D1): Equation (1.11) has a (unique) bounded from below solution h̃ which is uniformly continuous for
bounded |x|.

We point out that the key property in this assumption is the existence of such uniformly continuous solution
(uniformity means really uniformity in i) while uniqueness is rather easy to obtain. This is really an assumption
on h. To go further in this direction, we also remark that if Cc satisfies

Cc(x, y) ≤ Cc(x, z) + Cc(z, y) for any x ∈ C, y ∈ D and z ∈ C ∩D,

which means that to jump once is always better that to jump twice, then h̃ can be built in the following way
(i) h̃ is given except on A and C.
(ii) For points in C, set h̃ = min(h,Nh).

The above condition implies that, actually, Nh ≤ N(Nh) on C ∩D and therefore the right inequality
holds in (1.11).

(iii) For points in A, set h̃ = Mh̃.
This is well-defined since h̃ is known on D.

Assumption (D1) consists in assuming that this function h̃ is uniformly continuous for bounded |x|, which is
both a continuity assumption on h and a compatibility condition on its value near ∂A and ∂C. If for example,
C ∩D is empty, then assuming h = Mh on ∂A and h ≤ Nh on ∂C in addition to the uniform continuity of h on
bounded subsets of Ω, will ensure that of h̃, since h̃ = h. One can construct easy examples in one dimension to
show that if C∩D is nonempty, the situation gets complicated and the conditions on h are not that transparent.

Once h̃ is known, we are left with a more classical terminal condition

V (T, x) − h̃(x) = 0 ∀ x ∈ Ω.

2. Continuity of the value function

Let the trajectory given by solution of (1.1) and starting from the point x be denoted by Xx(t, u(·)). Since
x ∈ Ω, in particular it belongs to some Ωi. Then we recall from theory of ordinary differential equations:

|Xx(t, u(·)) −Xz(t, u(·))| ≤ eLt|x− z|, (2.1)

|Xx(t, u(·)) −Xx(t̄, u(·)) ≤ F |t− t̄|, |Xx(t, u(·))| ≤ |x|eLt +
C

L
(eLt − 1). (2.2)

For the derivation of these, see for example, [4], Appendix, Chapter 5. Here F and L are as in (A4). Now we
can proceed as in [8] using the transversality condition (A5) and conclude the continuity of the value function.
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Moreover, as running cost K, and discrete jump costs Ca and Cc have polynomial growth of order k, one can
see that total cost J also has at most the same growth because of the assumption kL < λ. Then it follows that
the value function V also has a polynomial growth of order k, uniformly in all Ωi.

For η > 0, we introduce the following spaces of functions: we denote by Eη(Ω) the space of semicontinuous
functions u defined on Ω and bounded below and such that, in each Ωi

lim
|x|→∞

u(x)e−η|x| = 0,

the limit being uniform w.r.t. i. Then E(Ω) is defined by

E(Ω) = ∪η<λ/FEη.

In Section 4, we prove the uniqueness of viscosity solution of QVI in this function class E to which the value
function belongs.

In the case of finite horizon problems, the continuity of the value function is a more delicate problem: indeed,
in the infinite horizon case, the fact that time is unbounded allows to use the transversality condition (A5) and
to compensate the jumps, perhaps with a delay, and a priori this is not possible anymore in the finite horizon
case. This shows that the problem is even more important when t is close to the terminal time T and this
explains the above discussion about (D1) and the terminal condition h̃.

To prove directly (and without too many technicalities) that the value function is continuous requires (D1)
but also the uniform continuity on bounded subsets of Ω of the functions K, Ca, Cc, which are rather strong
assumptions. An alternative proof (but essentially with the same assumptions) is to show that the upper and
lower semi-continuous envelopes of V are respectively viscosity sub- and supersolutions of (QVI-T) and to use
the comparison result of Section 5; this provides a slightly simpler proof.

3. Uniqueness – Infinite horizon problem

In this section, we state and prove a comparison between sub- and supersolutions of QVI, which belong
to E(Ω).

Theorem 3.1. Assume (A1)–(A7) and (C1)–(C2). Let u1, u2 ∈ E(Ω), be respectively upper semicontinuous
subsolution and lower semicontinuous supersolution of the quasivariational inequality given by (QVI) in the
viscosity sense. Then u1 ≤ u2 in Ω.

Proof. We complete the proof in 4 steps. In Step 1, we convert the unbounded value functions u1, u2 into
bounded functions w1, w2 by a suitable change of variable. We derive the modified quasivariational inequality
satisfied by w1 and w2. In the following 2 steps, for fixed μ ∈ (0, 1), close to 1, we argue on μw1 and w2: in
Step 2, we examine the possibility of having approximate suprema at points of A∪C and the actual consequences
of such facts, while, in Step 3, we use the previous results to reach a contradiction. In Step 4, we conclude the
comparison of u1 and u2 using Steps 2 and 3.

Step 1. Let u1, u2 be respectively upper and lower semicontinuous sub- and supersolutions of the QVI in E(Ω).
Fix 0 < η < λ

F such that both u1, u2 lie in Eη, where, as above, λ is the discount factor and F is the bound on
dynamics f . Define

w1(x) = u1(x)e−ηξ(x), w2(x) = u2(x)e−ηξ(x),

where ξ : Ω → R+ is a smooth function such that, |Dξ| ≤ 1 for all x ∈ Ω, ξ(x) = 0 if |x| ≤ R and
ξ(x) = (1 + |x|2)1/2 if |x| > 2R where R is given by (A2). Since ξ behaves like |x| at infinity and u1, u2 ∈ Eη,
w1(x), w2(x) are bounded and converge to 0 when x tends to infinity in each Ωi, uniformly w.r.t. i.
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The functions w1, w2 are respectively upper and lower semicontinuous sub- and supersolution of a QVI which
can be first written as

w(x)eηξ(x) =

⎧⎪⎨
⎪⎩
M(w(x)eηξ(x)) ∀ x ∈ A

min
{
N(w(x)eηξ(x)),−H(x,D(w(x)eηξ(x)))

} ∀ x ∈ C

−H(x,D(w(x)eηξ(x))) ∀ x ∈ Ω \A ∪ C.

But, recalling the facts that |x| < R if x ∈ D and that g maps A × V into D, we can simplify this QVI in the
following way

w(x) =

⎧⎪⎪⎨
⎪⎪⎩
M̃w(x) ∀ x ∈ A

min
{
Ñw(x),−H̃(x,w(x), Dw(x))

}
∀ x ∈ C

−H̃(x,w(x), Dw(x)) ∀ x ∈ Ω \A ∪ C
where

M̃w(x) = e−ηξ(x) inf
v∈V

{w(g(x, v)) + Ca(x, v)}
Ñw(x) = e−ηξ(x) inf

x′∈D
{w(x′) + Cc(x, x′)}

H̃(x,w,Dw(x)) =
1
λ

{
sup
u∈U

{−f(x, u) · (Dw(x) + ηw(x)Dξ(x))} − e−ηξ(x)K(x, u)}
}
·

Indeed, by definition of ξ and for i = 1, 2, wi(g(x, v)) = ui(g(x, v)) for any x ∈ A and v ∈ V , and, in the same
way, wi(x′) = ui(x′) for any x′ ∈ D.

Using the definition of H̃ and the assumptions on the cost functionals and dynamics we can show that

|H̃(y, w2(y), p2) − H̃(x,w1(x), p1)| ≤ (L/λ)|x− y||p1| + (F/λ)|p1(x) − p2(y)|
+ (ηF/λ)|w1(x) − w2(y)| + (1/λ)ωK̃(|x− y|) (3.1)
+ (η/λ)|w2| sup

u∈U
{|Dξ(x) · f(x, u) −Dξ(y) · f(y, u)|}

where K̃(x, u) = e−ηξ(x)K(x, u) and ωK̃ is the modulus of continuity of K̃.
Now we fix μ ∈ (0, 1), close to 1, and prove the comparison result for μw1 and w2. To do so, we assume, by

contradiction, that supΩ̄(μw1(x) − w2(x)) > 0 or, in other words

sup
j

sup
Ωj

(μw1(x) − w2(x)) = m > 0.

We first recall that w1(x), w2(x) converge to 0 when x tends to infinity in all Ωj , uniformly w.r.t. j; therefore
each supΩj

is indeed achieved at some point. But since the set of indices j is infinite, we have anyway to argue
with approximate supremums (of course, if this supremum is attained at some finite point then the following
proof gets simplified). We consider κ > 0 small enough (a more precise estimate on its size will be given later
on) and let i and xκ be such that

sup
Ωi

(μw1(x) − w2(x)) = μw1(xκ) − w2(xκ) ≥ m− κ >
m

2
> 0. (3.2)

Note that xκ remains bounded: indeed we can find Rm such that

|μw1(x)| < m/10 and |w2(x)| < m/10 for |x| > Rm for all x ∈ Ωj and for all j.

Then, xκ being the maximum of μw1−w2 in Ωi and m/2 < m−κ < (μw1 −w2)(xκ) will imply that |xk| < Rm.
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Next we are going to consider three different cases, namely,
(1) xκ ∈ Ai;
(2) xκ ∈ Ci and w2(xκ) ≥ Ñw2(xκ);
(3) Either xκ ∈ Ωi \ (Ai ∪ Ci) or xκ ∈ Ci and w2(xκ) < Ñw2(xκ).

We consider cases (1) and (2) in the next step and case (3) in Step 3.

Step 2. We first consider the case (1) namely xκ ∈ Ai. For w1, w2, viscosity sub- and supersolutions, the
conditions on ∂A are satisfied only in the viscosity sense: For the subsolution

min{w1 + H̃(x,Dw1, w1), w1 − M̃w1} ≤ 0 on ∂A. (3.3)

For the supersolution,
max{w2 + H̃(x,Dw2, w2), w2 − M̃w2} ≥ 0 on ∂A. (3.4)

Hence we need to rule out the bad inequalities for w1, w2, namely

w1 > M̃w1 or w2 < M̃w2

on ∂A. Our assumption (A5) helps us to avoid the above situation and to conclude that the right inequalities
for w1, w2 hold on ∂A. To do so, we need the following

Lemma 3.2. If w1 and w2 are viscosity sub- and supersolutions of QVI and w1, w2 are u.s.c. and l.s.c. on Ω
respectively, then the functions M̃w1, Ñw1 and M̃w2, Ñw2 are respectively upper and lower semi-continuous.
Moreover, for any x ∈ ∂A, we have

w1(x) ≤ M̃w1(x), w2(x) ≥ M̃w2(x)

and for any x ∈ ∂C, we have w1(x) ≤ Ñw1(x).

We postpone the proof of this lemma to the end of the section.
We now conclude the proof by using Lemma 3.2. If xκ ∈ A then, using Lemma 3.2 for boundary points, we

have

w1(xκ) ≤ M̃w1(xκ) and w2(xκ) ≥ M̃w2(xκ).

By definition of M̃ , and compactness of control set V , we can find v0 such that,

M̃w2(xκ) = e−ηξ(xκ){w2(g(xκ, v0)) + Ca(xκ, v0)}·

For all controls v ∈ V and hence in particular for v0 we have,

M̃w1(xκ) ≤ e−ηξ(xκ){w1(g(xκ, v0)) + Ca(xκ, v0)}·

Hence,

μw1(xκ) − w2(xκ) ≤ e−ηξ(xκ){μw1(g(xκ, v0)) − w2(g(xκ, v0)) − (1 − μ)Ca(xκ, v0)}
≤ e−ηξ(xκ){μw1(g(xκ, v0)) − w2(g(xκ, v0)) − (1 − μ)C′}
≤ e−ηξ(xκ){m− (1 − μ)C′}·

This inequality and (3.2) imply

m− κ ≤ μw1(xκ) − w2(xκ) ≤ e−ηξ(xκ){m− (1 − μ)C′} ≤ m− (1 − μ)C′.
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This is a contradiction if we choose κ such that

(1 − μ)C′ > κ. (3.5)

Thus, for such a choice of κ, xκ cannot be on Ai.
Next we consider the case when xκ ∈ Ci. If w2(xκ) ≥ Ñw2(xκ), we use Lemma 3.2 to deduce w1(xκ) ≤

Ñw1(xκ) and a similar argument as above leads to a contradiction under the same condition on κ. Therefore
we may assume without loss of generality that w2(xκ) < Ñw2(xκ) which means that we are in the third case.

Step 3. We examine here the third (and last possible) case. To do so, we introduce the function Φ : Ωi×Ωi → R

by

Φ(x, y) = μw1(x) − w2(y) − 1
ε
|x− y|2 − |x− xκ|2

where ε is a small positive parameter, devoted to tend to 0. Since Φ goes to −∞ as |x| goes to ∞, there exists
a maximum point (x0, y0) of Φ. Note that,

m

2
< μw1(xκ) − w2(xκ) = Φ(xκ, xκ) ≤ sup Φ(x, y) = Φ(x0, y0). (3.6)

The following estimates, listed in a lemma, are standard in the theory of viscosity solutions and can be derived
from the definition of Φ and (x0, y0). For example see [5], Chapter 3, Theorem 2.12. Only the last property
stated in the lemma, is non-standard.

Lemma 3.3. (i) |x0 − y0| ≤
√
Cε for some constant C depending only on the L∞ bounds on w1 and w2;

(ii)
|x0 − y0|2

ε
→ 0 as ε→ 0;

(iii) x0, y0 → xκ, w1(x0) → w1(xκ), w2(y0) → w2(xκ) when ε→ 0;
(iv) If xκ ∈ Ci and w2(xκ) < Ñw2(xκ), w2(y0) < Ñw2(y0) if ε is small enough.

We leave the proof of the point (iv) of this lemma to the reader: it just uses the fact that w2(y0) → w2(xκ)
when ε→ 0 together with the lower semi-continuity of Nw2 coming from Lemma 3.2.

Now define the test functions φ1 and φ2 by

φ1(x) = w2(y0) +
1
ε
|x− y0|2 + |x− xκ|2 and φ2(y) = μw1(x0) − 1

ε
|x0 − y|2 − |x0 − xκ|2.

The function μw1−φ1 attains its maximum at x0 and, for ε small enough, x0 ∈ Ωi\Ai because x0 → xκ ∈ Ωi\Ai;
therefore QVI implies

μw1(x0) + sup
u∈U

1
λ
{−f(x0, u) · (Dφ1(x0) + ημw1(x0)Dξ(x0)) − μe−ηξ(x0)K(x0, u)} ≤ 0.

On the other hand, w2 − φ2 attains its minimum at y0 ∈ Ωi \ Ai and w2(y0) < Ñw2(y0) if y0 ∈ Ci; therefore,
by using definition of viscosity supersolution, we have

w2(y0) +
1
λ

sup
u∈U

{−f(y0, u) · (Dφ2(y0) + ηw2(y0)Dξ(y0)) − e−ηξ(y0)K(y0, u)} ≥ 0.

Denoting by pε = 2(x0−y0)
ε and substituting Dφ1(x0) = pε+2(x0−xκ), Dφ2(y0) = pε in the above and estimating

as in (3.1), we get,

(λ− ηF )(μw1(x0) − w2(y0)) ≤ L|x0 − y0||pε| + η|w2|(F ||D2ξ||∞ + L)|x0 − y0|
+ (1 − μ)ωK̃(|x0 − y0|) + 2F |x0 − xκ|.
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Now remembering λ− ηF > 0,

(λ− ηF )Φ(x0, y0) = (λ − ηF )
{
μw1(x0) − w2(y0) − 1

ε
|x0 − y0|2

}

≤ (λ − ηF )(μw1(x0) − w2(y0))

≤ L|x0 − y0|
{∣∣∣∣2(x0 − y0)

ε

}
+ η(F + L)|w2||x0 − y0|

+ (1 − μ)ωK̃(|x0 − y0|) + 2F |x0 − xκ|.

Using the lemma, we can choose ε such that RHS of the above inequality can be made arbitrarily small, which
will contradict (3.6) namely,

Φ(x0, y0) ≥ m

2
> 0.

Thus, in each of the three steps, we arrive at a contradiction to (3.2) and we conclude that,

sup
i

sup
Ωi

(μw1(x) − w2(x)) ≤ 0.

Now sending μ to 1 we get the required comparison between w1 and w2, namely, w1(x) ≤ w2(x) for all x in Ω.

Step 4. From Step 3, we have concluded that

w1(x) − w2(x) ≤ 0 ∀ x ∈ Ω.

Now, by definition of w1, w2,

w1(x) = u1(x)e−ηξ(x), w2(x) = u2(x)e−ηξ(x),

hence,
u1(x) − u2(x) = eηξ(x){w1(x) − w2(x)} ≤ 0 ∀ x ∈ Ω.

Thus, we have the comparison between u1 and u2, which are solutions of the original quasivariational inequality.
In order to complete the proof, we have to provide the

Proof of Lemma 3.2. This uses the idea in Lemma 5.2 (p. 113) of [2]. Suppose that for some x ∈ ∂Ai

w1(x) > M̃w1(x).

Let the distance function from Ai be denoted by d(·). Consider the test function,

φ(y) = w1(y) − |x− y|2
ε

− Cd(y)

for positive parameters ε and C, to be fixed suitably later on. Let yε be the max of φ in Ωi. Then in particular,

w1(yε) ≥ w1(x)

for each ε and yε → x. Hence
lim inf w1(yε) ≥ w1(x).

Using the uppersemicontinuous property of w1,

lim supw1(yε) ≤ w1(x).
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Thus
limw1(yε) = w1(x).

By our assumption w1(x) > M̃w1(x). Since M̃w is u.s.c., we have

w1(yε) > M̃w1(yε)

for ε sufficiently small. If yε ∈ ∂Ai, then we have by (3.3),

w1(yε) + sup
u

1
λ

{
−〈f(yε, u),

2(x− yε)
ε

− Cn(yε) + ηw1(yε)Dξ(yε)〉 − e−ηξ(yε)K(yε, u)
}

≤ 0

where for the distance function d(·) from A, Dd(x) = n(x). Now, we divide by C and let ε→ 0 and C → ∞, in
such a manner that C

√
ε→ ∞. Recalling that |x−yε|√

ε
→ 0, we get

sup
u
{〈f(x, u), n(x)〉} ≤ 0 ⇒ 〈f(x, u), n(x)〉 ≤ 0 ∀ u ∈ U .

As n(x) = −ζ(x), appearing in (A5) this conclusion contradicts (A5). Hence our assumption cannot hold.
In a similar manner arguing with the test function.

φ(y) = w2(y) +
|x− y|2

ε
+ cd(y)

we get the required inequality of w2. Thus the proof is complete. �
This theorem characterizes the value function of hybrid control problem as the unique viscosity solution of

the QVI in the function class E defined earlier. We would like to remark the following.

Remark 3.4. We can extend the uniqueness result to the hybrid game theory problem with unbounded value
functions. The case of bounded value functions was treated in [9].

4. Uniqueness – Finite horizon problem

The comparison proof for finite horizon problem is proved by building test-functions, which go to infinity
at the boundary of the domain of comparison and tend to zero in a specific subset of the interior. These are
similar to the ones in Ley [11] and Barles et al. [3] where they are introduced as “friendly giants”, either for
proving “finite speed of propagation type results” for first-order equations or for proving that the comparison
holds for second-order equations. Here it is extended to quasi-variational inequalities involving HJB equations.

First we announce the uniqueness theorem.

Theorem 4.1. Assume (A1)–(A3), (A4)’, (A5)’, (A6), (A7) and (C1)’, (C2). Let u1, u2 be respectively a u.s.c.
subsolution bounded from below and a l.s.c. supersolution bounded from below of the quasivariational inequality
(QVI-T) in (0, T )× Ω. If u1, u2 satisfy: for any r > 0, u1, u2 are bounded on [0, T ]× {x ∈ Ω ; |x| ≤ r} and

lim sup
t→T

sup
|x|≤r

[u1(t, x) − u2(t, x)] ≤ 0, (4.1)

then u1 ≤ u2 in (0, T ) × Ω.

We point out that (4.1) is a non trivial assumption since we work in Ω =
⋃
i

Ωi×{i} because of the dependence

in i; roughly speaking, it means that the terminal data is assumed with a certain uniformity w.r.t. i. This
assumption is satisfied by the value function of the control problem under mild additional assumptions on the
data as we show it at the end of the section.
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Proof. Since u1, u2 are both bounded from below, we can assume as well that they are positive since we can
add the same positive constant to both of them and the resulting functions still solve (QVI-T) in (0, T )×Ω (of
course, (4.1) also holds.)

We want to prove that for fixed μ close to 1 in (0, 1),

w = μu1 − u2 ≤ 0 in [0, T ]× Ω.

For that, we divide the interval [0, T ] into finite number of sub-intervals of length less than a certain constant
and prove the comparison on this subinterval first and then extend the result to [0, T ] by repeating the argument
on each of the subintervals.

Let us set K̄ := F (1 +R+ β), where F is as in (A4)′, R is the bound for D, introduced in (A2) and β is as
in (A6). We choose T0 such that

T − T0 < min
{

1
2F

,
β

2K̄

}
· (4.2)

The first step consists in proving that w ≤ 0 on [T0, T ] × D. To do so, we introduce a neighbourhood of D,
namely

D̃ := {x ∈ Ω : d(x,D) < β}
for β > 0 as before and we set

m̃(T0) := sup
[T0,T ]×D

w(t, x).

Because of assumption (4.1) and since

w(t, x) = (μ− 1)u1(t, x) + (u1 − u2)(t, x) ≤ (u1 − u2)(t, x),

there exists τ , T0 ≤ τ ≤ T such that
m̃(τ) ≤ (1 − μ)

C′

2
(4.3)

where C′ is the lower bound for the cost functionals introduced in (C2). We will show that w is a subsolution
of the variational inequality

min{−wt(t, x) − F (1 + |x|)|Dw|, w(t, x)} = 0 (4.4)

in D̃τ := (τ, T ) × D̃ and from that we will conclude w ≤ 0 on [τ, T ] ×D by using “finite speed of propagation
type properties” (cf. for example Ley [11]). Once this is true for every such τ , it will follow that w ≤ 0 in
[T0, T ]×D.

From this first result, we will deduce, in a second step, that w ≤ 0 on [T0, T ]×A. Finally the third step will
be devoted to proving first that w is a subsolution of (4.4) in [T0, T ] × Ω \A and then w ≤ 0 in [T0, T ]× Ω.

Proof of Step 1. Let Φ ∈ C2((0,∞) × Ωκ) and let (t̄, x̄) ∈ D̃τ be a strict local maximum point of w − Φ =
μu1 − u2 − Φ in D̃τ . We want to prove that

min {−Φt(t̄, x̄) − F (1 + |x̄|)|DΦ(t̄, x̄)|, w(t̄, x̄)} ≤ 0.

If w(t̄, x̄) ≤ 0, there is nothing to prove.
If w(t̄, x̄) > 0, since C ∩D need not be empty, we first remark that

u2(t̄, x̄) < Nu2(t̄, x̄) if x̄ ∈ Cκ. (4.5)

Indeed, otherwise, since u1(t̄, x̄) ≤ Nu1(t̄, x̄), we would have, for some x′ ∈ D

(μu1 − u2)(t̄, x̄) ≤ (μu1 − u2)(t̄, x′) + (μ− 1)Cc(x̄, x′) ≤ m̃(τ) + (μ− 1)C′,

which contradicts the fact that w(t̄, x̄) > 0, because of our choice of τ , satisfying (4.3).
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For ε > 0, we consider for some ρ such that (t̄− ρ, t̄+ ρ) ×B(x̄, ρ) ⊂ D̃τ ,

max
(t̄−ρ,t̄+ρ)×B(x̄,ρ)2

{
μu1(t, x) − u2(t, y) − Φ(t, x) − |x− y|2

ε2

}
·

It can be shown that the above maximum is achieved at points (xε, yε, tε) such that

(tε, xε, yε) → (t̄, x̄, x̄) and
|xε − yε|2

ε2
→ 0 as ε→ 0,

u2(tε, yε) → u2(t̄, x̄).
Then, thanks to (4.5) and the lower semicontinuity of Nu2 and the above convergence, we have, for ε small
enough,

u2(tε, yε) < Nu2(tε, yε).
Therefore, at these points (tε, yε), u2 is a viscosity supersolution of the HJB equation given by

−vt + sup
u∈U

{−K(t, x, u)− f(t, x, u) ·Dv} = 0,

while v = μu1 is a viscosity subsolution of the (slightly different) HJB equation

−vt + sup
u∈U

{−μK(t, x, u)− f(t, x, u) ·Dv} = 0.

By the results of the User’s guide [7], there exists a ∈ R such that

(a, pε) ∈ D−u2(tε, yε)
(a+ Φt(tε, xε), pε +DΦ(tε, xε)) ∈ D+u1(tε, xε)

where pε := 2(xε−yε)
ε2 and therefore

−a− Φt(tε, xε) + sup
u∈U

{−μK(tε, xε, u) − f(tε, xε, u) · (DΦ(tε, xε) + pε)} ≤ 0,

−a+ sup
u∈U

{−K(tε, yε, u) − f(tε, yε, u) · pε} ≥ 0.

Subtracting these two viscosity inequalities, we get

−Φt(tε, xε) − sup
u∈U

{−K(tε, yε, u) − f(tε, yε, u) · pε}
+ sup

u∈U
{−μK(tε, xε, u) − f(tε, xε, u) · (DΦ(tε, xε) + pε)} ≤ 0.

Using that sup(· · · ) − sup(· · · ) ≥ inf(· · · − · · · ) and the continuity properties of K and f , we are lead to

−Φt(tε, xε) − F (|1 + |xε|)|Dφ(tε, xε)| − μωK(|xε − yε|) − ωf(|xε − yε||pε|) ≤ 0.

Thus, as ε→ 0, noticing that |xε − yε||pε| = 2 |xε−yε|2
ε2 → 0, we obtain

−Φt(t̄, x̄) − F (1 + |x̄|)|Dφ(t̄, x̄)| ≤ 0

proving the claim that w = μu1 − u2 is a viscosity subsolution of (4.4) in D̃τ .
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Next we deduce that w ≤ 0 on [τ, T ]×D. We first remark that, by (A2), if x ∈ D̃, |x| ≤ R+ β. Recall that
K̄ := F (1 +R+ β). Hence w is as well a subsolution of

min{−wt(t, x) − K̄|Dw|, w(t, x)} = 0 in D̃τ . (4.6)

We now construct a strict supersolution for this equation using “friendly giant” functions. For that, we consider
an increasing C∞ function ψ : (−∞, β) → R such that

ψ(s) ≡ 0 if s ≤ β/2 and ψ(s) → +∞ as s→ β.

We claim that, for any κ, x0 ∈ Dκ, η > 0 and T0 satisfying (4.2), the function

χx0(t, x) := ψ(K̄(T − t) + |x− x0|) + η(T − t)

is a strict (smooth) supersolution of (4.6) in the domain

Cx0 := {(t, x) ∈ D̃τ : K̄(T − t) + |x− x0| < β ; K̄(T − t) ≤ β/2}·

In fact this property can be checked by an immediate computation noticing that, for x = x0, K̄(T−t)+|x−x0| =
K̄(T − t) ≤ β/2 and therefore all the derivatives of ψ are equal to 0 at that point. Finally, for any κ, set

χ(t, x) = inf
x0

χx0(t, x) = ψ(K̄(T − t) + d(x,D)) + η(T − t).

Then χ is well-defined and is still a strict supersolution of (4.6) in the domain

C := {(t, x) ∈ D̃τ : K̄(T − t) + d(x,D) < β ; K̄(T − t) ≤ β/2}·

Now we want to compare w and χ in C. From the definition of χ, it is clear that it tends to infinity on the
boundary of the domain C. Using this remark together with standard comparison arguments yield that w ≤ χ
in C. For any x ∈ D,

w(t, x) ≤ χ(t, x) = ψ(K̄(T − t)) + η(T − t) = η(T − t)
since K̄(T − t) ≤ β/2. Letting η tend to 0, we deduce that for x ∈ D and τ ≤ t ≤ T

w(x, t) ≤ 0.

Hence m̃(τ) ≤ 0 for all T0 ≤ τ < T . Thus m̃(T0) ≤ 0 and the proof of the first step is complete.

Proof of Step 2. By the definition of M and N , and in particular the fact that g takes values in D, we deduce
that, if x ∈ A, then for any v0

μMu1(t, x) ≤ μu1(t, g(x, v0)) + μCa(xκ, v0) ≤ u2(t, g(x, v0)) + Ca(xκ, v0) + (μ− 1)C′,

and therefore, taking the infimum on v0, μMu1(t, x) ≤Mu2(t, x)+ (μ−1)C′. A similar property holds for Nu1

and Nu2. For the boundary points of A and C, we have to argue on the same lines as in Lemma 4.2, to show
that the correct inequalities hold.

We immediately deduce that w(t, x) ≤ 0 for T0 ≤ t ≤ T and x ∈ A because μu1(t, x) − u2(t, x) ≤
μMu1(t, x) −Mu2(t, x) ≤ 0.

Proof of Step 3. It remains to show that w ≤ 0 in [T0, T ] × (Ω \ A). To do so, we first prove that w is a
subsolution of (4.4) in the set {w > 0}. We only sketch this proof since it follows arguments we already used
above.
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The only difficulty comes from the points (t, x) in C since we may have the inequality u2(x, t) ≥ Nu2(x, t)
(and not the inequality associated to the HJB equation). But, if this is the case, then, by Step 2,

μu1(t, x) − u2(t, x) ≤ μNu1(t, x) −Nu2(t, x) ≤ (μ− 1)C′ < 0 .

Therefore this case cannot happen on the set {w > 0} and the same arguments as in Step 1 above show that w
is a subsolution of (4.4) in the set {w > 0}.

To conclude, we have to modify the comparison argument by building “friendly giant functions” as the
function χ above but in a slightly different way in order to take into account the |x|-dependence in a suitable
way. This also allows us to use a “local” comparison argument.

For any interior point x0 ∈ Ωκ \Aκ and for r, c > 0, we introduce the set

O(x0, r) = {(t, x) ∈ [T0, T ]× Ω : |x− x0| < r
√
c(t− T0)}·

Next we define χ : O(x0, r) → R by

χ(t, x) =
1

r2c(t− T0) − |x− x0|2 ·

We need to show that χ is a strict supersolution of (4.4) in O(x0, r). By simple calculations, we get

χt =
−cr2

(r2c(t− T0) − |x− x0|2)2

Dχ =
2(x− x0)

(r2c(t− T0) − |x− x0|2)2 ·

Since |x| ≤ |x− x0| + |x0| and |x− x0| ≤ r
√
c(T − T0), we have

2F (1 + |x|)|x − x0| ≤ 2F (1 + r
√
c(T − T0) + |x0|)r

√
c(T − T0) .

Finally if we choose r ≥ r(x0) = (1 + |x0|) and c such that
√
c >

2F
√

(T−T0)

1−2F (T−T0) , we have

2F (1 + |x|)|x− x0| < cr2.

Note that such a choice of c is possible because of (4.2). Substituting and using above inequality we can conclude
that χ is a strict supersolution of (4.4) in O(x0, r).

By definition, χ goes to ∞ on the lateral boundary of O(x0, r) and hence, on that part of the lateral boundary
contained inside [T0, T ]× (Ωκ \Aκ), we have no problem to compare w and χ. Of course, w ≤ χ on [T0, T ]×Aκ

since χ ≥ 0 and w ≤ 0 there by Step 2. Therefore we can conclude that w ≤ χ in O(x0, r).
Now we let r go to infinity to obtain

w ≤ 0 in [T0, T ] × Ωκ \Aκ,

for every κ. The proof is now complete since we can iterate the argument in time according to the fact that
T − T0 depends only on β and K̄. �

Finally we show that the value function naturally satisfies the condition (4.1) under some reasonable addi-
tional assumptions. For that it is enough to show that

|V (t, x) − h̃(x)| → 0

as t approaches T , uniformly for bounded x ∈ Ω.
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If t is close to T and |x| ≤ r, it is easy to see that the trajectory X starting from x at time t, remains in a
bounded subset of Ω on the time interval [t, T ]. This is true even after the jumps, since the jump destination
set D is bounded. Because of (C2), the number of jumps is finite and estimated uniformly in x by a fixed
number depending on r. Therefore, the integral of K gives a O(T − t) whatever the trajectory is.

Next we estimate V (t, x) − h̃(x) from below by considering a ε-optimal control (u(·), v, ξi, X(ξi)
′) (we drop

the dependence with respect to ε for the sake of simplicity of notations); we have

V (t, x) + ε ≥
T∫

t

K(t,X(t), u(t))dt+
∑

s≤σi<T

Ca(X(σ−
i ), v) +

∑
s≤ξi<T

Cc(X(ξ−i ), X(ξi)
′) + h(Xx(T )).

But, using that

h̃(X(s)) = Mh̃(X(s)) if X(s) ∈ A

or

h̃(X(s)) = min(h(X(s), Nh(X(s)))) if X(s) ∈ C,

we deduce

Ca(X(σ−
i ), v) ≥ h̃(X(σ−

i )) − h̃(X(σ+
i )),

Cc(X(ξ−i ), X(ξi)
′) ≥ h̃(X(ξ−i )) − h̃(X(ξi)

′).

Therefore

V (t, x) + ε ≥ O(T − t) +
∑

s≤σi<T

(
h̃(X(σ−

i )) − h̃(X(σ+
i ))

)
+

∑
s≤ξi<T

(
h̃(X(ξ−i )) − h̃(X(ξi)

′)
)

+ h̃(Xx(T )).

In order to conclude, it is enough to rearrange the terms of the right-hand side and to make it appear as a sum
of differences of values h̃ between two jumps (after one jump and before the next one). The uniform continuity
of h̃ and the estimates on the f -ode (1.1), lead to the desired property, since ε is arbitrary.

Conversely, for any u(·), we write

V (t, x) ≤
T∫

t

K(t,X(t), u(t))dt+
∑

s≤σi<T

Ca(X(σ−
i ), v) +

∑
s≤ξi<T

Cc(X(ξ−i ), X(ξi)
′) + h(Xx(T ))

but this time, when we touch either A or C, we choose the jumps in order to have

Ca(X(σ−
i ), v) ≤ h̃(X(σ−

i )) − h̃(X(σ+
i )) + ε,

Cc(X(ξ−i ), X(ξi)
′) ≤ h̃(X(ξ−i )) − h̃(X(ξi)

′) + ε.

By the same arguments as above, we again obtain

|V (t, x) − h̃(x)| ≤ m̂(T − t) for any |x| ≤ r

where m̂(τ) → 0 as τ → 0 depend only on the L∞ norm of K and on the modulus of continuity of h̃ on the
bounded subset where the trajectory X lives.

The above inequalities show that V assumes the terminal data h̃ uniformly w.r.t. i, which is exactly (4.1).
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