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OBSERVABILITY PROPERTIES OF A SEMI-DISCRETE 1D WAVE EQUATION
DERIVED FROM A MIXED FINITE ELEMENT METHOD

ON NONUNIFORM MESHES

Sylvain Ervedoza1

Abstract. The goal of this article is to analyze the observability properties for a space semi-discrete
approximation scheme derived from a mixed finite element method of the 1d wave equation on nonuni-
form meshes. More precisely, we prove that observability properties hold uniformly with respect to the
mesh-size under some assumptions, which, roughly, measures the lack of uniformity of the meshes, thus
extending the work [Castro and Micu, Numer. Math. 102 (2006) 413–462] to nonuniform meshes. Our
results are based on a precise description of the spectrum of the discrete approximation schemes on
nonuniform meshes, and the use of Ingham’s inequality. We also mention applications to the boundary
null controllability of the 1d wave equation, and to stabilization properties for the 1d wave equation.
We finally present some applications for the corresponding fully discrete schemes, based on recent
articles by the author.
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1. Introduction

The goal of this article is to address the observability properties for a semi-discrete 1d wave equation.
We consider the following 1d wave equation:⎧⎨

⎩
∂2

ttu − ∂2
xxu = 0, (x, t) ∈ (0, 1) × R,

u(0, t) = u(1, t) = 0, t ∈ R,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ (0, 1),

(1.1)

where u0 ∈ H1
0 (0, 1) and u1(x) ∈ L2(0, 1). The energy of solutions of (1.1), given by

E(t) =
1
2

∫ 1

0

|∂tu(t, x)|2 + |∂xu(t, x)|2 dx, (1.2)

is constant.
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It is well-known (see [21]) that for all T > 0, there exists a constant KT such that the admissibility inequality

∫ T

0

|∂xu(0, t)|2 dt ≤ KT E(0) (1.3)

holds for any solution of (1.1) with (u0, u1) ∈ H1
0 (0, 1) × L2(0, 1).

Besides, for any time T ≥ 2, there exists a positive constant kT such that the boundary observability
inequality

kT E(0) ≤
∫ T

0

|∂xu(0, t)|2 dt (1.4)

holds for any solution of (1.1) with (u0, u1) ∈ H1
0 (0, 1) × L2(0, 1).

Inequalities (1.3)–(1.4) arise naturally when dealing with boundary controllability properties of the 1d wave
equation, see [21]. Indeed, the observability and controllability properties are dual notions. We will clarify this
relation in Section 3.

Let us also present another relevant observability inequality, which is useful when dealing with distributed
controls or stabilization properties of damped wave equations (see [16,21]). If (a, b) denotes a non empty
subinterval of (0, 1), the following distributed observability property holds: for any time T > 2 max{a, 1 − b},
there exists a constant C1 such that any solution of (1.1) with initial data (u0, u1) ∈ H1

0 (0, 1)×L2(0, 1) satisfies:

E(0) ≤ C1

∫ T

0

∫ b

a

|∂tu(x, t)|2 dx dt. (1.5)

In the sequel, we will consider observability properties for the 1d space semi-discrete wave equation derived
from a mixed finite element method on a nonuniform mesh.

For any integer n ∈ N∗, let us consider a mesh Sn given by n + 2 points as:

0 = x0,n < x1,n < . . . < xn,n < xn+1,n = 1, hj+1/2,n = xj+1,n − xj,n, j ∈ {0, . . . , n}· (1.6)

On Sn, the mixed finite element approximation scheme for system (1.1) reads as (see [7,15] or [5]):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hj−1/2,n

4
(u′′

j−1,n + u′′
j,n) +

hj+1/2,n

4
(u′′

j,n + u′′
j+1,n)

=
uj+1,n − uj,n

hj+1/2,n
− uj,n − uj−1,n

hj−1/2,n
, j = 1, . . . , n, t ∈ R,

u0,n(t) = un+1,n(t) = 0, t ∈ R,

uj,n(0) = u0
j,n, u′

j,n(0) = u1
j,n, j = 1, . . . , n.

(1.7)

The notations we use are the standard ones: A prime denotes differentiation with respect to time, and uj,n(t)
is an approximation of the solution u of (1.1) at the point xj,n at time t.

System (1.7) is conservative. The energy of solutions un of (1.7), given by

En(t) =
1
2

n∑
j=0

hj+1/2,n

(
uj+1,n(t) − uj,n(t)

hj+1/2,n

)2

+
1
2

n∑
j=0

hj+1/2,n

(
u′

j+1,n(t) + u′
j,n(t)

2

)2

, t ∈ R, (1.8)

is constant.
In this semi-discrete setting, we will investigate the observability properties corresponding to (1.4) and (1.5),

and especially under which assumptions on the meshes Sn we can guarantee discrete observability inequalities
to be uniform with respect to n.
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For this purpose, we introduce the notion of regularity of a mesh:

Definition 1.1. For a mesh Sn given by n + 2 points as in (1.6), we define the regularity of the mesh Sn by

Reg(Sn) =
maxj{hj+1/2,n}
minj{hj+1/2,n} · (1.9)

Given M ≥ 1, we say that a mesh Sn given by n + 2 points as in (1.6) is M -regular if

Reg(Sn) =
maxj{hj+1/2,n}
minj{hj+1/2,n} ≤ M. (1.10)

Obviously, a 1-regular mesh is uniform. In other words, the regularity of the mesh Reg(Sn) measures the
lack of uniformity of the mesh.

Within the class of M regular meshes, we will prove the following observability properties:

Theorem 1.2. Let M be a real number greater than one, and consider a sequence (Sn)n of M -regular meshes.
Then for any time T > 2, there exist positive constants kT and KT such that for all integer n, any solution un

of (1.7) satisfies

kT En(0) ≤
∫ T

0

(∣∣∣u1,n(t)
h1/2,n

∣∣∣2 + |u′
1,n(t)|2

)
dt ≤ KT En(0). (1.11)

Besides, if J = (a, b) ⊂ (0, 1) denotes a subinterval of (0, 1), then, for any time T > 2, there exists a constant C1

such that for all integer n, any solution un of (1.7) satisfies

En(0) ≤ C1

∫ T

0

∑
xj,n∈J

hj+1/2,n

(
u′

j,n(t) + u′
j+1,n(t)

2

)2

dt. (1.12)

Obviously, these properties are discrete versions of inequalities (1.3), (1.4) and (1.5). Also note that the right
hand-side inequality in (1.11) holds, as (1.3), for all time T > 0, taking KT = K3 for T ≤ 2.

Theorem 1.2 is based on an explicit spectral analysis of (1.7) in the discrete setting, that proves the existence
of a gap between the eigenvalues of the space discrete operator in (1.7). Thanks to Ingham’s inequality [18], this
reduces the analysis to the study of the observability properties of the eigenvectors of (1.7), which will again
be deduced from the explicit form of the spectrum of (1.7).

Besides, we emphasize that Theorem 1.2 provides uniform (with respect to n) observability results. Therefore,
as in the continuous setting, Theorem 1.2 has several applications to controllability and stabilization properties
for the space semi-discrete 1d wave equations (1.7). In Section 3, similarly as in [5], using precisely the same
duality as in the continuous case, we present an application to the boundary null controllability of the space
semi-discrete approximation scheme of the 1d wave equation. Later, in Section 4, following [1], we study the
decay properties of the energy for semi-discrete approximation schemes of 1d damped wave equations.

In Section 5, we explain how Theorem 1.2 can be combined with the results in [11,12] to obtain observ-
ability and stabilization results for the corresponding fully discrete approximation schemes. Indeed, in the
recent work [12], admissibility and observability properties for time-discrete approximation schemes of linear
conservative systems were studied in a very general abstract setting. The approach developed in [12] allows
to derive uniform observability inequalities for time-discrete approximation schemes in a systematic way. One
of the interesting features of this technique is that it can be applied to fully discrete schemes as soon as the
space semi-discrete approximation schemes satisfy uniform observability properties (see [12], Sect. 5). The
study presented here fits in this abstract setting. Therefore, combining Theorem 1.2 and the results in [12], one
can derive uniform (with respect to both time and space discretization parameters) observability properties for
time-discrete approximation schemes of the space semi-discrete approximation schemes (1.7).

Later on, in [11], stabilization properties for time-discrete approximation schemes of abstract damped systems
have been studied. In particular, in [11], several time-discrete approximation schemes have been designed
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to guarantee uniform (with respect to the time discretization parameter) stabilization properties, by adding a
numerical viscosity term in time which efficiently damps out the spurious high frequency components created
by the time discretization process. Besides, this can also be applied to families of uniformly exponentially stable
systems, and in particular to families of space semi-discrete approximation schemes that fit into the abstract
setting of [11], which is the case for discrete approximations of damped wave equations. Thus, using the results
in [11], we will explain how to design fully discrete approximation schemes which are uniformly (with respect
to both time and space discretization parameters) exponentially stable.

Let us briefly comment some relative works. Similar problems have been extensively studied in the last
decade for various space semi-discrete approximation schemes of the 1d wave equation, see for instance the
review article [32]. The numerical schemes on uniform meshes provided by finite difference and finite element
methods do not have uniform observability properties, whatever the time T is (see [17]). This is due to high
frequency waves that do not propagate, see [22,29]. To be more precise, these numerical schemes create some
spurious high-frequency wave solutions that are localized.

However some remedies exist. The most natural one consists in filtering the initial data and thus removing
these spurious waves, as in [17,31]. Another way to filter is to use the bi-grid method as introduced and
developed in [14] and analyzed in [24]. A new approach was proposed recently in [25] based on wavelet filtering
techniques. Let us also mention the results [10,26–28] that amounts to adding an extra term in (1.12) which is
non-negligible only for the high frequencies. A last possible cure was proposed in [1,15] and later analyzed in [5]:
a 1d semi-discrete scheme derived from a mixed finite element method was proposed, which has the property
that the group velocity of the waves is bounded from below. Also note that an extension of [5] to the 2d case
in the square was proposed in [6].

To the best of our knowledge, there is no result at all for the space semi-discrete wave equation on nonuniform
meshes, although most of the domains used in practice are recovered by non periodic triangulations. A first
step in this direction can be found in [26], in which a study of a non homogeneous string equation on a uniform
mesh was proposed. This can indeed be seen, up to a change of variable, as a discretization of a wave equation
with constant velocity on a slightly nonuniform mesh.

Let us also mention that some results are available in the context of the heat equation for space semi-discrete
approximation schemes on nonuniform meshes in [19], even in dimension greater than 1.

The outline of this paper is as follows. In Section 2, we precisely describe the spectrum of the space semi-
discrete operator and prove Theorem 1.2. Sections 3 and 4 respectively aim at presenting precise applications
of Theorem 1.2 to controllability and stabilization properties. Section 5 presents applications of Theorem 1.2
in the fully discrete setting for both observability and stabilization issues.

2. Spectral theory

In this section, we first study the spectrum of the space semi-discrete operator in (1.7) on a general mesh Sn

given by n + 2 points as in (1.6). Second, we derive more precise estimates on the spectrum when Sn is an
M -regular mesh. Third, we derive Theorem 1.2 from our analysis. Finally, we discuss the assumption on the
regularity of the meshes, and show that, in some sense, the M -regularity assumption is sharp with respect to
the observability properties given in Theorem 1.2.

Given a mesh Sn of n + 2 points as in (1.6), since the system (1.7) is conservative, the spectral problem
for (1.7) reads as: Find λn ∈ R and a non-trivial solution φn such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−λ2
n

4
(hj−1/2,n(φj,n + φj−1,n) + hj+1/2,n(φj,n + φj+1,n))

=
φj+1,n − φj,n

hj+1/2,n
− φj,n − φj−1,n

hj−1/2,n
, j = 1, . . . , n,

φ0,n = φn+1,n = 0.

(2.1)
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2.1. Computations of the eigenvalues for a general mesh

In this subsection, we consider a general mesh Sn given by n + 2 points as in (1.6).

Theorem 2.1. The spectrum of system (1.7) is precisely the set of ±λk
n with k ∈ {1, . . . , n}, where λk

n is
defined by the implicit formula

n∑
j=0

arctan

(
λk

nhj+1/2,n

2

)
=

kπ

2
· (2.2)

The gap between two eigenvalues is bounded from below:

min
k∈{1,...,n−1}

{λk+1
n − λk

n} ≥ π. (2.3)

Besides, for each k ∈ {1, . . . , n}, the following estimate holds:

λk
n ≥ λk

∗n = 2(n + 1) tan
(

k

n + 1
π

2

)
≥ kπ. (2.4)

Remark 2.2. Note that λk
∗n coincides with the k-th eigenvalue of system (1.7) for a uniform mesh constituted

by n + 2 points. Also note that kπ is the k-th eigenvalue of system (1.1). In other words, inequality (2.4)
implies that the dispersion diagrams corresponding to the spectrum of (1.7) for a general nonuniform mesh, for
a uniform mesh, and for the continuous system (1.1) are sorted.

Proof. To simplify notation, we drop the subscript n.
Let us introduce functions p and q corresponding to ∂xφ and iλφ in the continuous case:

pj+1/2 =
φj+1 − φj

hj+1/2
, qj+1/2 =

iλ

2
(φj + φj+1), j ∈ {0, . . . , n}· (2.5)

The spectral system (2.1) then becomes:⎧⎪⎨
⎪⎩

iλ

2
(hj−1/2 qj−1/2 + hj+1/2 qj+1/2) = pj+1/2 − pj−1/2, j = 1, . . . , n,

iλ

2
(hj−1/2 pj−1/2 + hj+1/2 pj+1/2) = qj+1/2 − qj−1/2, j = 1, . . . , n,

(2.6)

with boundary conditions

iλhn+1/2

2
pn+1/2 + qn+1/2 = 0,

iλh1/2

2
p1/2 − q1/2 = 0.

Equations (2.6) rewrite, for j ∈ {1, . . . , n}, as:⎧⎪⎪⎨
⎪⎪⎩

(
iλhj−1/2

2
qj−1/2 + pj−1/2

)
+
(

iλhj+1/2

2
qj+1/2 − pj+1/2

)
= 0,(

iλhj−1/2

2
pj−1/2 + qj−1/2

)
+
(

iλhj+1/2

2
pj+1/2 − qj+1/2

)
= 0.

(2.7)

For j ∈ {1, . . . , n}, this leads to:(
1 +

iλhj−1/2

2

)
(pj−1/2 + qj−1/2) =

(
1 − iλhj+1/2

2

)
(pj+1/2 + qj+1/2)(

1 − iλhj−1/2

2

)
(pj−1/2 − qj−1/2) =

(
1 +

iλhj+1/2

2

)
(pj+1/2 − qj+1/2).
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These two equations can be seen as propagation formulas, each term corresponding to ∂tw ± ∂xw. Especially,
they imply:

pj+1/2 + qj+1/2 = (p1/2 + q1/2)
(

2 + iλh1/2

2 − iλhj+1/2

) j−1∏
k=1

(
2 + iλhk+1/2

2 − iλhk+1/2

)
, (2.8)

pj+1/2 − qj+1/2 = (p1/2 − q1/2)
(

2 − iλh1/2

2 + iλhj+1/2

) j−1∏
k=1

(
2 − iλhk+1/2

2 + iλhk+1/2

)
· (2.9)

We remark that each term in the product has modulus 1, and therefore there exists αj+1/2 ∈ (−π, π], given by
tan(αj+1/2/2) = λhj+1/2/2, such that:

2 + iλhj+1/2

2 − iλhj+1/2
= exp(iαj+1/2).

We also denote by βj the coefficient

βj =
2 + iλh1/2

2 − iλhj+1/2
,

which satisfies
βj

β̄j
= exp(iαj+1/2) exp(iα1/2).

Combined with the boundary conditions, identities (2.8)–(2.9) give:

pn+1/2

(
1 − iλhn+1/2

2

)
= βn exp

(
i

n−1∑
k=1

αk+1/2

)
p1/2

(
1 +

iλh1/2

2

)

pn+1/2

(
1 +

iλhn+1/2

2

)
= β̄n exp

(
−i

n−1∑
k=1

αk+1/2

)
p1/2

(
1 − iλh1/2

2

)
·

Then, if λ is an eigenvalue, λ satisfies:

(
βn

β̄n

)2

exp

(
2i

n−1∑
k=1

αk+1/2

)
= exp

(
2i

n∑
k=0

αk+1/2

)
= 1. (2.10)

To simplify notation, we define:

f(λ) = 4
n∑

k=0

arctan
(

λhk+1/2

2

)
·

Due to (2.10), if λ is an eigenvalue, there exists an integer k such that:

f(λ) = 2kπ.

The image of f is exactly (−2(n + 1)π, 2(n + 1)π), and therefore k must belong to {−n, . . . , n}.
Conversely, if λ is a solution of f(λ) = 2kπ for an integer k ∈ {−n, . . . , n}, then λ is an eigenvalue, except

if k = 0, which corresponds to λ = 0 and pj+1/2 = qj+1/2 = 0 for all j ∈ {0, . . . , n}. This gives us exactly
2n eigenvalues ±λk, k ∈ {1, . . . , n}.

Moreover, the derivative of f is explicit:

f ′(λ) = 8
n∑

k=0

1
4 + (λhk+1/2)2

hk+1/2.
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Figure 1. Dispersion diagrams for various meshes constituted by 200 points generated by
Method 1 for different values of Reg.

It follows that

0 ≤ f ′(λ) ≤ 2
n∑

k=0

hk+1/2 = 2.

Since all the eigenvalues are simple and f(λk+1) − f(λk) = 2π for all k ∈ {1, . . . , n − 1}, this implies that the
gap between the eigenvalues is bounded from below by π, and therefore (2.3) holds.

Using the concavity of arctan gives the following estimate:

arctan
(

λk

2(n + 1)

)
= arctan

⎛
⎝ 1

2(n + 1)

n∑
j=0

λkhj+1/2

⎞
⎠ ≥ 1

n + 1

n∑
j=0

arctan

(
λkhj+1/2

2

)
=

k

n + 1
π

2
·

In other words,

λk ≥ 2(n + 1) tan
(

k

n + 1
π

2

)
,

and (2.4) follows. Indeed, the right hand-side inequality in (2.4) simply follows from the standard inequality
tan(η) ≥ η for η ∈ [0, π/2). �

We illustrate this result in Figures 1 and 2 by computing dispersion diagrams for various nonuniform
meshes Sn, that we characterize by their regularity Reg(Sn), as defined in (1.9).

Let us briefly explain the two ways we have chosen for generating them.
• Method 1. In Figure 1, we create a random vector h of length n+1 whose values are chosen according

to a uniform law on (0, 1). This vector is then normalized such that the sum of its components is one,
so that h corresponds to the vector (h1/2,n, . . . , hn+1/2,n), which describes the mesh in a unique way.

• Method 2. In Figure 2, we create a random vector x of length n whose components are chosen
according to a uniform law on (0, 1). Then we sort its components in an increasing way to obtain a
vector (x1,n, . . . , xn,n), which represents the mesh points.

In both cases, the dispersion diagrams look the same. It is particularly striking that the shape of the dispersion
diagrams does not seem to depend significantly on the meshes.

2.2. Spectral properties on M-regular meshes

This subsection is devoted to prove additional properties for the spectrum of (1.7) when the mesh Sn is
M -regular for some M ≥ 1.
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Figure 2. Dispersion diagrams for various meshes constituted by 200 points generated by
Method 2 for different values of Reg.

Theorem 2.3. Let M ≥ 1.
Then, for any M -regular mesh Sn, the eigenvalue λn

n of (2.1) on Sn satisfies

λn
n ≤ 4M

π
(n + 1)2. (2.11)

Besides, for any M -regular mesh Sn, if φk
n denotes the eigenvector corresponding to λk

n in (2.1), then its energy

Ek
n =

1
2

n∑
j=0

hj+1/2,n

(∣∣∣φk
j+1,n − φk

j,n

hj+1/2,n

∣∣∣2 + |λk
n|2
∣∣∣φk

j,n + φk
j+1,n

2

∣∣∣2
)

(2.12)

satisfies

1
1 + M2

(∣∣∣ φk
1,n

h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λk
nφk

1,n

h1/2,n

∣∣∣2) ≤ Ek
n ≤ (1 + M2)

(∣∣∣ φk
1,n

h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λk
nφk

1,n

h1/2,n

∣∣∣2)· (2.13)

Moreover, if ω = (a, b) is some subinterval of (0, 1), then the energy of the k-th eigenvector φk
n in ω, defined by

Ek
ω,n =

1
2

∑
xj,n∈ω

hj+1/2,n

(∣∣∣φk
j+1,n − φk

j,n

hj+1/2,n

∣∣∣2 + |λk
n|2
∣∣∣φk

j,n + φk
j+1,n

2

∣∣∣2
)

, (2.14)

satisfies

Ek
n ≤ M2

|ω| Ek
ω,n. (2.15)

Remark 2.4. These inequalities roughly say that the eigenvectors cannot concentrate in some part of an
M -regular mesh. These properties are indeed the one needed for control and stabilization purposes, as we will
see in next sections.

Remark 2.5. Note that Theorem 2.1 gives the estimate

λn
n ≥ 2(n + 1) tan

((
1 − 1

n + 1

)
π

2

)
�

n→∞
4
π

(n + 1)2.

Combined with estimate (2.11), this indicates that, when considering sequences of M -regular meshes, the
eigenvalues λn

n really grow as n2 when n → ∞.
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Proof. Along the proof, we fix an integer n, a real number M ≥ 1 and an M -regular mesh Sn, so that we can
remove the index n without confusion.

Inequality (2.11) is a consequence of (2.2). Indeed, if we set h = min{hj+1/2} and H = max{hj+1/2}, then
we have

1 ≤ (n + 1)H ≤ (n + 1)Mh. (2.16)
Besides, using (2.2), we get

n∑
j=0

arctan
(

λnhj+1/2

2

)
=

nπ

2
≥ (n + 1) arctan

(
λnh

2

)
,

which provides

λn

(n + 1)2
≤ 2

h(n + 1)2
tan

(
π

2

(
1 − 1

n + 1

))
≤ M sup

η∈[0,1]

{
2η tan

(
π

2
(1 − η)

)}
,

from which (2.11) follows.

To derive the properties (2.13) and (2.15) of the eigenvectors, we use the computations and notations (2.5)
introduced in the proof of Theorem 2.1. Namely, we introduce:

pk
j+1/2 =

φk
j+1 − φk

j

hj+1/2
, qk

j+1/2 =
iλk

2
(φk

j + φk
j+1), j ∈ {0, . . . , n}·

Then the previous computations, and in particular identities (2.8)–(2.9), give:

Ek =
1
2

n∑
j=0

hj+1/2

(
|pk

j+1/2|2 + |qk
j+1/2|2

)

=
1
4

n∑
j=0

hj+1/2

(
|pk

j+1/2 − qk
j+1/2|2 + |pk

j+1/2 + qk
j+1/2|2

)

=
1
4

n∑
j=0

hj+1/2

(
|β̄j |2|pk

1/2 − qk
1/2|2 + |βj |2|pk

1/2 + qk
1/2|2

)

=
1
4

n∑
j=0

hj+1/2

4 + (λh1/2)2

4 + (λhj+1/2)2

(
|pk

1/2 − qk
1/2|2 + |pk

1/2 + qk
1/2|2

)
.

Using the definition (2.5) of (pk
1/2, q

k
1/2), this leads to

Ek =
1
2

⎛
⎝ n∑

j=0

hj+1/2

4 + (λkhj+1/2)2

⎞
⎠(

4 + (λkh1/2)2
)(∣∣∣ φk

1

h1/2

∣∣∣2 +
h2

1/2

4

∣∣∣λkφk
1

h1/2

∣∣∣2
)
· (2.17)

Given an interval ω, the same computations give for Ek
ω:

Ek
ω =

1
2

⎛
⎝∑

xj∈ω

hj+1/2

4 + (λkhj+1/2)2

⎞
⎠(

4 + (λkh1/2)2
)(∣∣∣ φk

1

h1/2

∣∣∣2 +
h2

1/2

4

∣∣∣λkφk
1

h1/2

∣∣∣2
)
· (2.18)

Inequalities (2.13) and (2.15) easily follow from (2.17)–(2.18) and the M -regularity assumption. �
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2.3. Proof of Theorem 1.2

Our strategy is based on Ingham’s lemma on non-harmonic Fourier series, which we recall hereafter (see [18,30]):

Lemma 2.6 (Ingham’s lemma). Let (λk)k∈N be an increasing sequence of real numbers and γ > 0 be such that

λk+1 − λk ≥ γ > 0, ∀k ∈ N. (2.19)

Then, for any T > 2π/γ, there exist two positive constants c = c(T, γ) > 0 and C = C(T, γ) > 0 such that, for
any sequence (ak)k∈N,

c
∑
k∈N

|ak|2 ≤
∫ T

0

∣∣∣∑
k∈N

akeiλkt
∣∣∣2dt ≤ C

∑
k∈N

|ak|2. (2.20)

Proof of Theorem 1.2. Let us consider a sequence (Sn)n of M -regular meshes.
According to inequality (2.3), the gap condition (2.19) holds with γ = π. Thus, due to Lemma 2.6, we only

need to prove the observability inequalities (1.11)–(1.12) for the stationary solutions

uk
n(t) = exp(iλk

nt)φk
n

of (1.7) corresponding to the eigenvectors φk
n of system (2.1) on Sn.

Since each mesh Sn is M -regular, we can apply Theorem 2.3. Especially, inequality (2.13) holds, and therefore
Ingham’s inequality (2.20) directly implies (1.11).

To prove (1.12), we fix J = (a, b) ⊂ (0, 1) a subinterval of (0, 1). According to Ingham’s lemma and (2.3), it
is sufficient to prove that there exists a constant C independent of n and k such that, for any eigenvector φk

n

solution of (2.1) on Sn corresponding to the eigenvalue λk
n, the quantity

Ik
J,n =

∑
xj,n∈J

hj+1/2,n|λk
n|2

(
φk

j,n + φk
j+1,n

2

)2

(2.21)

satisfies
Ek

n ≤ CIk
J,n. (2.22)

We thus investigate inequality (2.22) on a mesh Sn by using a multiplier technique.
Let ω be a strict subinterval of J and let us denote by η a function of x ∈ [0, 1] such that:

{
η(x) = 0, ∀x ∈ (0, 1)\J,

η(x) = 1, ∀x ∈ ω,

{ ‖η‖∞ ≤ 1,

‖η′‖∞ ≤ CJ,ω.
(2.23)

To simplify notation, we drop the exponent k and the index n hereafter. Below, we denote by ηj the value of η
in the mesh point xj .

We consider system (2.1) and multiply each equation by η2
j φj . Discrete integrations by parts yield:

λ2
n∑

j=0

hj+1/2

(
φj + φj+1

2

)(
η2

j φj + η2
j+1φj+1

2

)
=

n∑
j=0

hj+1/2

(
φj+1 − φj

hj+1/2

)(
η2

j+1φj+1 − η2
j φj

hj+1/2

)
·

Then we deduce that

λ2
n∑

j=0

hj+1/2

(
η2

j + η2
j+1

2

)(
φj + φj+1

2

)2

−
n∑

j=0

hj+1/2

(
η2

j + η2
j+1

2

)(
φj+1 − φj

hj+1/2

)2

= A1 + A2, (2.24)
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where A1 and A2 are defined by

A1 = −λ2

2

n∑
j=0

h3
j+1/2

(
φj + φj+1

2

)(
φj+1 − φj

hj+1/2

)(
ηj+1 − ηj

hj+1/2

)(
ηj + ηj+1

2

)
,

A2 = 2
n∑

j=0

hj+1/2

(
φj + φj+1

2

)(
φj+1 − φj

hj+1/2

)(
ηj+1 − ηj

hj+1/2

)(
ηj + ηj+1

2

)
·

Then, for any choices of positive parameters δ1 and δ2, we get:

|A1| ≤ 1
4δ1

n∑
j=0

hj+1/2λ
2

(
φj + φj+1

2

)2(
ηj+1 − ηj

hj+1/2

)2

+
δ1

4

n∑
j=0

hj+1/2(λ2h4
j+1/2)

(
φj+1 − φj

hj+1/2

)2(
ηj + ηj+1

2

)2

,

|A2| ≤ 1
δ2

n∑
j=0

hj+1/2

(
φj + φj+1

2

)2(
ηj+1 − ηj

hj+1/2

)2

+ δ2

n∑
j=0

hj+1/2

(
φj+1 − φj

hj+1/2

)2(
ηj + ηj+1

2

)2

·

Using that (
n + 1
M

)
sup hj+1/2 ≤ (n + 1) inf hj+1/2 ≤ 1

estimate (2.11) gives

λ2h4
j+1/2 ≤

(
4M

π
(n + 1)2

)2(
M

(n + 1)

)4

≤
(

4
π

)2

M4.

Therefore, if we set

δ1 =
π2

16M4
; δ2 =

1
4
,

using the classical inequality (
ηj + ηj+1

2

)2

≤ η2
j + η2

j+1

2
,

we deduce from (2.24) the existence of two constants independent of k and n such that

1
2

n∑
j=0

hj+1/2

(
η2

j + η2
j+1

2

)(
φj+1 − φj

hj+1/2

)2

≤ λ2
n∑

j=0

hj+1/2

(
η2

j + η2
j+1

2

)(
φj + φj+1

2

)2

+ C1

n∑
j=0

hj+1/2λ
2

(
φj + φj+1

2

)2(
ηj+1 − ηj

hj+1/2

)2

+ C2

n∑
j=0

hj+1/2

(
φj + φj+1

2

)2(
ηj+1 − ηj

hj+1/2

)2

·

But |λ| is also uniformly bounded from below (see (2.4)), and therefore we obtain that

n∑
j=0

hj+1/2

(
η2

j + η2
j+1

2

)(
φj+1 − φj

hj+1/2

)2

≤ λ2
n∑

j=0

hj+1/2

(
η2

j + η2
j+1

2

)(
φj + φj+1

2

)2

+ C

n∑
j=0

hj+1/2λ
2

(
φj + φj+1

2

)2(
ηj+1 − ηj

hj+1/2

)2

·

Using the properties (2.23) of the function η leads us to the following result:

Ek
ω,n ≤ CIk

J,n.

Therefore inequality (2.22) can be deduced from inequality (2.15) applied to ω. �



OBSERVABILITY FOR A MIXED FINITE ELEMENT METHOD ON NONUNIFORM MESHES 309

2.4. The regularity assumption

Let us discuss the assumption on the regularity of the meshes.

2.4.1. Concentration effects without the M -regularity assumption

Here, we design a sequence of meshes Sn such that:
• The sequence Reg(Sn) goes to infinity arbitrarily slowly when n → ∞.
• There exists an interval J = [a, b] for which there is no constant C such that for all n, for all eigenvec-

tors φk
n of (2.1) on Sn,

Ek
n ≤ CEk

J,n, (2.25)

where Ek
n and Ek

J,n are, respectively, as in (2.12) and (2.14).

Note that (2.25) constitutes an obstruction for (1.12) to hold.
Choose a strict non-empty closed subinterval J of (0, 1), and a sequence Kn going to infinity when n → ∞.

Introduce a sequence of meshes (Sn), each one constituted by n + 2 points such that

x0,n = 0, xn+1,n = 1,

{
xj+1,n − xj,n = Hn, if [xj,n, xj+1,n] ⊂ J,
xj+1,n − xj,n = hn, if [xj,n, xj+1,n] ⊂ [0, 1]\J,

where Hn = Knhn. Remark that the mesh Sn is then totally described by the quantity Kn. From identi-
ties (2.17)–(2.18), we get:

Ek
n

Ek
J,n

= 1 +
Ek

(0,1)\J,n

Ek
J,n

= 1 +
1 − |J |
|J |

4 + (λk
nHn)2

4 + (λk
nhn)2

·

But
|J |
Hn

+
1 − |J |

hn
= n + 1,

and so (n + 1)hn = (1 − |J |) + |J |/Kn converges to 1 − |J | when n → ∞. But inequality (2.4) gives

λn
nhn

2
≥ (n + 1)hn tan

(
n

n + 1
π

2

)
,

and then (λn
nhn)n goes to infinity when n → ∞. Especially, this implies that

En
n

En
J,n

�
n→∞

1 − |J |
|J |

H2
n

h2
n

=
1 − |J |
|J | K2

n → ∞,

and therefore there is no constant such that (2.25) holds uniformly with respect to n ∈ N and k ∈ {1, . . . , n}.
2.4.2. Partial regularity assumptions

Without the M -regularity assumption, one can derive partial results, due to the explicit form (2.17) of the
energy.

For instance, identity (2.17) on the energy of the k-th eigenvector φk
n on Sn gives:

Ek
n ≤ 4 + (λk

nh1/2,n)2

4 + inf
j

(λk
nhj+1/2,n)2

(∣∣∣ φk
1,n

h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λk
nφk

1,n

h1/2,n

∣∣∣2)·
In particular, if there exists a constant M1 > 0 such that for all n,

h1/2,n ≤ M1 inf
j

hj+1/2,n, (2.26)
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then for all n and k,

Ek
n ≤ (1 + M2

1 )
(∣∣∣ φk

1,n

h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λk
nφk

1,n

h1/2,n

∣∣∣2)·
Now, consider the reverse equality. From (2.17), we get

Ek
n ≥ 4 + (λk

nh1/2,n)2

4 + sup
j

(λk
nhj+1/2,n)2

(∣∣∣ φk
1,n

h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λk
nφk

1,n

h1/2,n

∣∣∣2)·

In particular, if there exists a constant M2 > 0 such that for all n,

sup
j

hj+1/2,n ≤ M2h1/2,n, (2.27)

then, for all n and k, we get

Ek
n ≥ 1

1 + M2
2

(∣∣∣ φk
1,n

h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λk
nφk

1,n

h1/2,n

∣∣∣2)·
Besides, as in Section 2.4.1, for each integer n, we can consider sequences of meshes Sn given as in (1.6)

defined by
x1,n − x0,n = h1/2,n, xj+1,n − xj,n = hn, ∀j ∈ {1, . . . , n},

where h1/2,n and hn are two sequences going to zero. It is then easy to check that if condition (2.27) is not
satisfied, that is if hn/h1/2,n → ∞ when n → ∞, then there is no positive constant c such that

Ek
n ≥ c

(∣∣∣ φk
1,n

h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λk
nφk

1,n

h1/2,n

∣∣∣2)

uniformly in k and n.
On the contrary, if hn/h1/2,n → 0 when n → ∞, then there is no constant C such that

Ek
n ≤ C

(∣∣∣ φk
1,n

h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λk
nφk

1,n

h1/2,n

∣∣∣2)

uniformly in k and n.
Therefore, if we consider a sequence of meshes Sn such that Reg(Sn) is unbounded, we cannot expect in

general to have both observability and admissibility properties (1.11) uniformly with respect to n.

Remark 2.7. If we are interested in the observability inequality (1.12) for a particular subinterval (a, b) ⊂ (0, 1),
the situation is more intricate. As above, due to the explicit description of the energies (2.17) and (2.18), one
easily checks that if there exists a constant M3 such that for all n ∈ N,

sup
xj,n∈(a,b)

{hj+1/2,n} ≤ M3 inf
xj,n /∈(a,b)

{hj+1/2,n}, (2.28)

then for all n ∈ N and for all k ∈ {1, . . . , n},

Ek
n ≤

(
1 +

M2
3

(b − a)

)
Ek

(a,b),n.
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Figure 3. Concentration effects of the 380-th eigenvector on the mesh constructed in Sec-
tion 2.4.1 with n = 400 and J = (1/2, 1): left M = 1 (uniform mesh), and right M = 40.

However, under the only condition (2.28), the estimates (2.11) on the eigenvalues might be false, and therefore
the proof presented above of inequality (2.22) (with J = (a, b)) fails. We do not know if assumption (2.28)
suffices to guarantee (2.22) to hold uniformly with respect to n ∈ N and k ∈ {1, . . . , n}.

Also remark that if assumption (2.28) holds for a sequence of meshes Sn for any subinterval (a, b) ⊂ (0, 1),
then there exists a real number M such that all the meshes Sn are M -regular.

Remark 2.8. We emphasize that, for the various meshes constructed in this subsection to show the optimality
of our results, the corresponding eigenvalues do satisfy the gap condition (2.3), as proved in Theorem 2.1.
Actually, the corresponding dispersion diagrams are very close to the ones presented in Figures 1 and 2. In
particular, uniform admissibility and observability properties do fail only because of concentration effects for
the eigenvectors.

To illustrate this fact, we present in Figure 3 the behavior of the 380-th eigenvector of a mesh obtained for
n = 400, constructed such that:

• xj+1,n − xj,n = hn for [xj,n, xj+1,n] ⊂ [0, 1/2];
• xj+1,n − xj,n = Hn for [xj,n, xj+1,n] ⊂ [1/2, 1];
• Hn = Mhn.

In Figure 3, we compare the eigenvector obtained for M = 1, which corresponds to the one on a uniform mesh,
and the one obtained for M = 40, for which, as expected by the computations led in Section 2.4.1, we observe
a concentration phenomenon in the part where the mesh size is smaller.

3. Application to the null controllability of the wave equation

3.1. The continuous setting

Let us first present the problem. It is well-known that for any time T ≥ 2, given any initial data (y0, y1) ∈
L2(0, 1) × H−1(0, 1), we can find a control function v(t) ∈ L2(0, T ) such that the solution of⎧⎨

⎩
∂2

tty − ∂2
xxy = 0, (x, t) ∈ (0, 1)× (0, T ),

y(0, t) = v(t), y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), ∂ty(x, 0) = y1(x), x ∈ (0, 1),

(3.1)

satisfies
y(T ) = 0, ∂ty(T ) = 0. (3.2)

By duality (namely the Hilbert Uniqueness Method, or HUM in short), this property is equivalent to the
observability inequality (1.4), see [21].
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Note that there might be several controls v ∈ L2(0, T ) such that (3.2) holds for solutions of (3.1). In the
sequel, we will say that such a v is an admissible control for (3.1).

Besides, there is an explicit method to compute the so-called HUM control vHUM , which is the one of minimal
L2(0, T )-norm among all admissible controls for (3.1). Indeed, set T ≥ 2 and consider the functional

J : H1
0 (0, 1) × L2(0, 1) → R

J (z0, z1) =
1
2

∫ T

0

(∂xz)2(0, t) dt −
∫ 1

0

y0(x)∂tz(x, 0) dx + 〈y1, z(., 0)〉H−1×H1
0
,

(3.3)

where z is the solution of the backward conservative wave equation

⎧⎨
⎩

∂2
ttz − ∂2

xxz = 0, (x, t) ∈ (0, 1) × (0, T ),
z(0, t) = z(1, t) = 0, t ∈ (0, T ),
z(x, T ) = z0(x), ∂tz(x, T ) = z1(x), x ∈ (0, 1).

(3.4)

Then J is strictly convex, coercive (see (1.4)), and therefore has a unique minimizer (Z0, Z1) ∈ H1
0 (0, 1) ×

L2(0, 1). The HUM control is then given by vHUM(t) = ∂xZ(0, t), where Z is the solution of (3.4) with initial
data (Z0, Z1).

Note also that the HUM control is the only admissible control v for (3.1) that can be written as v(t) = ∂xz(0, t)
for some z solution of (3.4) with initial data in H1

0 (0, 1) × L2(0, 1).
It is then natural to try to compute this control numerically. This question will be investigated in the sequel.

3.2. The semi-discrete setting

This part is inspired in [5,6] where similar results have been derived for uniform meshes.
We consider a mesh Sn as in (1.6) and derive an approximation scheme for (3.1) from a mixed finite element

method. The problem reads as follows: Given y0
n and y1

n defined on Sn, find a discrete control vn ∈ L2(0, T )
such that the solution yn of

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hj−1/2,n

4
(y′′

j−1,n + y′′
j,n) +

hj+1/2,n

4
(y′′

j,n + y′′
j+1,n)

=
yj+1,n − yj,n

hj+1/2,n
− yj,n − yj−1,n

hj−1/2,n
, j = 1, . . . , n, t ∈ [0, T ],

y0,n(t) = vn(t), yn+1,n(t) = 0, t ∈ (0, T ),
yj,n(0) = y0

j,n y′
j,n(0) = y1

j,n, j = 1, . . . , n,

(3.5)

satisfies

yj,n(T ) = 0, y′
j,n(T ) = 0, j = 1, . . . , n. (3.6)

Again, the study of this problem is based on a duality principle. Given any T > 2, we choose ε > 0 such that
T − 4ε > 2 and a smooth function ρ satisfying

{
ρ(t) = 1, if t ∈ [2ε, T − 2ε],
ρ(t) = 0, if t ∈ [0, ε] ∪ [T − ε, T ], and 0 ≤ ρ(t) ≤ 1, ∀t. (3.7)
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We then introduce the functional Jn defined by:

Jn(z0
n, z1

n) =
1
8

∫ T

0

ρ(t)|z′1,n|2(t) dt +
1
2

∫ T

0

(
z1,n(t)
h1/2,n

)2

dt

+

⎛
⎝h1/2,n

4
y1
1,nz1,n(0) +

n∑
j=1

hj+1/2,n

4
(y1

j,n + y1
j+1,n)(zj,n(0) + zj+1,n(0))

⎞
⎠

−
⎛
⎝h1/2,n

4
y0
1,nz′1,n(0) +

n∑
j=1

hj+1/2,n

4
(y0

j,n + y0
j+1,n)(z′j,n(0) + z′j+1,n(0))

⎞
⎠ ,

(3.8)

where zn is the solution of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

hj−1/2,n

4
(z′′j−1,n + z′′j,n) +

hj+1/2,n

4
(z′′j,n + z′′j+1,n)

=
zj+1,n − zj,n

hj+1/2,n
− zj,n − zj−1,n

hj−1/2,n
, j = 1, . . . , n, t ∈ [0, T ],

z0,n(t) = zn+1,n(t) = 0, t ∈ (0, T ),
zj,n(T ) = z0

j,n, z′j,n(T ) = z1
j,n, j = 1, . . . , n.

(3.9)

Then the following lemma holds:

Lemma 3.1. For any integer n, the functional Jn is strictly convex and coercive, and then has a unique
minimizer (Z0

n, Z1
n). Besides, for all n, if vn is the solution of

⎧⎨
⎩ −h1/2,n

4
v′′n +

1
h1/2,n

vn = −1
4
(ρZ ′

1,n)′ +
1

h2
1/2,n

Z1,n, t ∈ [0, T ],

v′n(0) = v′n(T ) = 0,

(3.10)

where Zn is the solution of (3.9) with initial data (Z0
n, Z1

n), then vn(t) is a control of (3.5) in time T .

The proof of Lemma 3.1 is the same as in [5]. For completeness, we will give a sketch of the proof hereafter.
For convenience, we introduce the operators PSn , QSn and RSn which map discrete data an = (aj,n)j∈{1,...,n}

given on a mesh Sn as in (1.6) to functions defined on (0, 1) by:

PSnan(x) = aj,n + (aj+1,n − aj,n)
(

x − xj,n

hj+1/2,n

)
,

QSnan(x) =
aj,n + aj+1,n

2
,

RSnan(x) =
hj+1/2,n

4
(aj,n + aj+1,n) +

n∑
k=j+1

hk+1/2,n

(
ak,n + ak+1,n

2

)
,

on [xj,n, xj+1,n],

with the convention a0,n = an+1,n = 0. With these definitions, PSn and QSn are extension operators, and RSn

corresponds to a piecewise continuous approximation operator of the discrete integrals x �→ ∫ 1

x
QSnan(s) ds.

Let us rewrite all discrete computations in terms of the operators PSn , QSn , RSn . First, for any solution zn

of (3.9), the energy (1.8) writes

En(t) =
1
2

‖QSnzn(t)‖2
L2(0,1) +

1
2

‖∂x(PSnzn(t))‖2
L2(0,1) . (3.11)
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Second, the functional Jn reads as

Jn(z0
n, z1

n) =
1
8

∫ T

0

ρ(t)|z′1,n|2(t) dt +
1
2

∫ T

0

(
z1,n(t)
h1/2,n

)2

dt

+
∫ 1

0

(RSny1
n)(∂xPSnzn(0)) dx −

∫ 1

0

(QSny0
n)(QSnz′n(0)) dx. (3.12)

We are now in position to sketch the proof of Lemma 3.1.

Sketch of the proof of Lemma 3.1. Fix an integer n ∈ N. The functional Jn is strictly convex, and its coercivity
is obvious since we are working in a finite dimensional setting. It follows that Jn has a unique minimizer
(Z0

n, Z1
n).

Let us compute the Fréchet derivative of Jn in the minimizer (Z0
n, Z1

n): For any (z0
n, z1

n), the solution zn

of (3.9) on Sn satisfies (recall the definition (3.7) of ρ):

0 =
∫ T

0

(
−1

4
(ρ(t)Z ′

1,n(t))′ +
1

h2
1/2,n

Z1,n(t)

)
z1,n(t) dt

+
∫ 1

0

(RSny1
n)(∂xPSnzn(0)) dx −

∫ 1

0

(QSny0
n)(QSnz′n(0)) dx,

which rewrites, in terms of vn defined in (3.10), as

0 =
1
4

∫ T

0

h1/2,nv′nz′1,n dt +
∫ T

0

vn
z1,n

h1/2,n
dt

+
∫ 1

0

(RSny1
n)(∂xPSnzn(0)) dx −

∫ 1

0

(QSny0
n)(QSnz′n(0)) dx. (3.13)

Now, consider yn the solution of (3.5) with boundary control vn. Multiplying (3.5) by zn solution of (3.9)
with initial data (z0

n, z1
n), we get, after tedious computations that are left to the reader, that

0 =
1
4

∫ T

0

h1/2,nv′nz′1,n dt +
∫ T

0

vn
z1,n

h1/2,n
dt

+
∫ 1

0

(RSny1
n)(∂xPSnzn(0)) dx −

∫ 1

0

(QSny0
n)(QSnz′n(0)) dx

−
∫ 1

0

(RSny′
n(T ))(∂xPSnz0

n) dx +
∫ 1

0

(QSnyn(T ))(QSnz1
n) dx. (3.14)

Combined with (3.13), this yields that the solution yn of (3.5) satisfies the following property: For any
(z0

n, z1
n),

−
∫ 1

0

(RSny′
n(T ))(∂xPSnz0

n) dx +
∫ 1

0

(QSnyn(T ))(QSnz1
n) dx = 0.

This obviously implies (3.6). �

It is natural to ask if the discrete controls vn constructed in Lemma 3.1 converge to an admissible control
for (3.1) under some assumptions on the convergence of (y0

n, y1
n). We will prove that this is indeed the case.
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Given a sequence of meshes (Sn)n, we say that the sequence of discrete data (an, bn)n defined on the meshes Sn

strongly converges to (a, b) in L2(0, 1) × H−1(0, 1) if:

QSnan → a in L2(0, 1), and RSnbn →
(

x �→
∫ 1

x

b(s) ds

)
in L2(0, 1). (3.15)

Remark that this definition makes sense, since for b ∈ H−1(0, 1), classical arguments allow to define the function
x �→ ∫ 1

x b(s) ds in L2(0, 1).

Theorem 3.2. Let (y0, y1) ∈ L2(0, 1) × H−1(0, 1) and T > 2.
Given M ≥ 1, we consider a sequence (Sn) of M -regular meshes, and a sequence of initial data (y0

n, y1
n) which

strongly converges to (y0, y1) in L2(0, 1) × H−1(0, 1) in the sense of (3.15).
Then the sequence of discrete controls (vn)n given by Lemma 3.1 strongly converges in L2(0, T ) to the HUM

control vHUM for (3.1) with initial data (y0, y1).

First of all, let us mention that, given (y0, y1) ∈ L2(0, 1) × H−1(0, 1), it is possible to find a sequence of
initial data (y0

n, y1
n) which strongly converges to (y0, y1) in L2(0, 1) × H−1(0, 1) in the sense of (3.15). We will

briefly explain later (Rem. 3.5 below) how this can be done.

The proof of Theorem 3.2 is mainly based on inequality (1.11), that implies that the discrete controls vn are
bounded in L2(0, T ). Once this is proved, the result can be deduced from classical convergence properties of
the scheme.

Proof. The proof is divided into several steps. First, we prove uniform bounds on the sequence vn. Second,
we prove that any weak limit of vn is an admissible control for (3.1). Third, we prove that there is only one
weak limit, which coincides with the HUM-control vHUM of (3.1). We finally prove the strong convergence of
the controls vn in L2(0, T ).

Uniform bounds. Since Jn(Z0
n, Z1

n) ≤ Jn(0, 0) = 0, we have that

1
8

∫ T

0

ρ(t)|Z ′
1,n|2(t) dt +

1
2

∫ T

0

(
Z1,n(t)
h1/2,n

)2

dt ≤
√

2E∗n(0)
√
‖RSny1

n‖2
L2(0,1) + ‖QSny0

n‖2
L2(0,1),

where E∗n(t) denotes the energy of Zn(t), which is constant. In view of the definition of ρ, since we assume that
the meshes Sn are M -regular, inequality (1.11) holds. This, combined with the fact that (QSny0

n) and (RSny1
n)

are convergent in L2(0, 1) and therefore bounded, leads us to

kT E∗n(T ) ≤ 1
8

∫ T

0

ρ(t)|Z ′
1,n|2(t) dt +

1
2

∫ T

0

(
Z1,n(t)
h1/2,n

)2

dt ≤ C. (3.16)

Besides, multiplying (3.10) by h1/2,nvn and integrating in time gives

∫ T

0

h2
1/2,n

4
|v′n(t)|2 + |vn(t)|2 dt =

∫ T

0

(
h1/2,n

4
ρ(t)Z ′

1,n(t)v′n(t) +
Z1,n(t)
h1/2,n

vn(t)
)

dt

≤
(∫ T

0

h2
1/2,n

4
|v′n(t)|2 + |vn(t)|2 dt

)1/2(∫ T

0

ρ(t)
4

|Z ′
1,n|2(t) dt +

∫ T

0

(
Z1,n(t)
h1/2,n

)2

dt

)1/2

, (3.17)

and therefore we obtain ∫ T

0

h2
1/2,n

4
|v′n(t)|2 + |vn(t)|2 dt ≤ C. (3.18)
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We have thus proved, using the M -regularity assumption, that the sequence of discrete controls vn is bounded
in L2(0, T ). Therefore there exists a function v ∈ L2(0, T ) such that

vn ⇀ v, in L2(0, T ) weak, and h1/2,nv′n ⇀ 0, in L2(0, T ) weak. (3.19)

The second statement in (3.19) comes from the continuity of the derivation in the sense of distributions.

The function v is an admissible control for (3.1). We need the following classical lemma on the
convergence of the numerical schemes (which can be found for instance in [7]):

Lemma 3.3. Consider two smooth functions (u0, u1) on (0, 1) such that u0(0) = u0(1) = 0 and u(x, t) the
solution of the conservative system (1.1) with initial data (u0, u1).

Given a sequence (Sn)n of M -regular meshes, for all n ∈ N, we denote by un(t) the solution of the conservative
semi-discrete scheme (1.7) with initial data

u0
j,n = u0(xj,n), u1

j,n = u1(xj,n), j ∈ {1, . . . , n}·

Then (PSnuj,n, QSnu′
j,n) strongly converges to (u, u′) in C([0, T ]; H1

0 (0, 1) × L2(0, 1)) and

u1,n(t)
h1/2,n

→ ∂xu(0, t) in L2(0, T ), and u′
1,n(t) → 0 in L2(0, T ). (3.20)

This result is of course still true for the backward system (3.4) and its semi-discrete approximations (3.9).
Now, consider two smooth functions (z0, z1), and define, as in Lemma 3.3, the solution z of the backward

wave equation (3.4) with initial data (z0, z1), and the solution zn of the semi-discrete systems (3.9), with initial
data (z0(xj,n), z1(xj,n)).

Using (3.19) and Lemma 3.3, we can pass to the limit in (3.13) and obtain that the solution z of (3.4) satisfies:

0 =
∫ T

0

v(t)∂xz(0, t) dt + 〈y1, z(., 0)〉H−1(0,1)×H1
0 (0,1) −

∫ 1

0

y0(x)∂tz(x, 0) dx. (3.21)

By a density argument, this identity can be extended to any (z0, z1) ∈ H1
0 (0, 1) × L2(0, T ).

Besides, for any (z0, z1) ∈ H1
0 (0, 1) × L2(0, 1), as in (3.14), multiplying the solution of (3.1) with boundary

condition y(0, t) = v(t) and initial data (y0, y1) by z solution of (3.4) with initial data (z0, z1), we obtain that

0 =
∫ T

0

v(t)∂xz(0, t) dt + 〈y1, z(., 0)〉H−1(0,1)×H1
0 (0,1) −

∫ 1

0

y0(x)∂tz(x, 0) dx

− 〈∂ty(T ), z0〉H−1(0,1)×H1
0 (0,1) +

∫ 1

0

y(T, x)z1(x) dx.

Hence we deduce from (3.21) that

〈∂ty(T ), z0〉H−1(0,1)×H1
0 (0,1) −

∫ 1

0

y(T, x)z1(x) dx = 0.

Therefore y satisfies (3.2). This precisely means that v is an admissible control for (3.1).

The limit v is the HUM control vHUM. It is sufficient to prove that v(t) coincides with some ∂xz(t, 0),
where z is the solution of (3.4) for some initial data (z0, z1) ∈ H1

0 (0, 1) × L2(0, 1), see for instance [21].
From (3.16), there exist two functions Z0 ∈ H1

0 (0, 1) and Z1 ∈ L2(0, 1) such that

PSnZ0
n ⇀ Z0, H1

0 (0, 1) weak, and QSnZ1
n ⇀ Z1, L2(0, 1) weak.
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Using the weak formulations of (3.9) and the conservation of the energy, we can prove (the proof can be adapted
in a standard way from the arguments in [7], and in particular from Lem. 3.3 stated above, and is left to the
reader) that:

(PSnZn, QSnZn) ⇀ (Z, Z ′) in L∞(0, T ; H1
0 (0, 1) × L2(0, 1)) ∗ weak,

∀t ∈ [0, T ], (PSnZn(t), QSnZn(t)) ⇀ (Z(t), Z ′(t)) in H1
0 (0, 1) × L2(0, 1) weak,

(3.22)

where Z is the solution of (3.4) with initial data (Z0, Z1). Besides, one easily shows that

Z1,n

h1/2,n
− h1/2,n

4
Z ′′

1,n ⇀ ∂xZ(0, t), in D′(0, T ). (3.23)

But Z1,n/h1/2,n is bounded in L2(0, T ) from (3.16), and therefore h1/2,nZ ′′
1,n ⇀ 0 in D′(0, T ). This also gives

that

Z1,n

h1/2,n
⇀ ∂xZ in D′(0, T ), Z1,n ⇀ 0 in D′(0, T ), h1/2,n(ρZ ′

1,n)′ ⇀ 0 in D′(0, T ). (3.24)

Combined with the definition of vn in Lemma 3.1, it follows that

−
h2

1/2,n

4
v′′n + vn ⇀ ∂xZ(0, t), in D′(0, T ).

But, since vn is bounded in L2(0, T ) by (3.18),

h2
1/2,nv′′n ⇀ 0 in D′(0, T ),

and therefore v(t) = ∂xZ(0, t) in D′(0, T ).
Since we have already proved that v is an admissible control for (1.1), this proves that v is the HUM

control vHUM.

Strong convergence. Since the weak convergence is already proven, it is sufficient to prove the convergence
of the L2(0, T )-norms.

Since v(t) = ∂xZ(0, t) for a solution Z of (3.4) with initial data (Z0, Z1), we get from (3.21) that:

0 =
∫ T

0

(∂xZ(0, t))2 dt + 〈y1, Z(., 0)〉H−1(0,1)×H1
0 (0,1) −

∫ 1

0

y0(x)∂tZ(x, 0) dx. (3.25)

But (3.13) gives:

0 =
1
4

∫ T

0

ρ(t)|Z ′
1,n(t)|2 dt +

∫ T

0

∣∣∣Z1,n(t)
h1/2,n

∣∣∣2 dt

+
∫ 1

0

(RSny1
n)(x)∂x(PSnZn)(x, 0) dx −

∫ 1

0

(QSny0
n)(x)(QSnZ ′

n)(x, 0) dx.

Convergences (3.22) and (3.15) imply that we can pass to the limit in the linear term, and therefore, by (3.25),
we get:

1
4

∫ T

0

ρ(t)|Z ′
1,n(t)|2 dt +

∫ T

0

∣∣∣Z1,n(t)
h1/2,n

∣∣∣2 dt →
∫ T

0

|∂xZ(0, t)|2 dt.
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Combined with the weak convergences (3.24), this proves the following strong convergences:
⎧⎪⎨
⎪⎩

√
ρZ ′

1,n → 0,

Z1,n

h1/2,n
(t) → ∂xZ(0, t),

in L2(0, T ).

But, from the definition (3.10) of vn, the convergence (3.19) implies that:

∫ T

0

h2
1/2,n

4
|v′n(t)|2 + |vn(t)|2 dt =

∫ T

0

h1/2,n

4
ρ(t)Z ′

1,n(t)v′n(t) +
Z1,n(t)
h1/2,n

vn(t) dt

−→
∫ T

0

∂xZ(0, t)v(t) dt =
∫ T

0

v(t)2 dt.

Hence we deduce from (3.19) that:

h1/2,nv′n → 0 in L2(0, T ), and vn → v = vHUM in L2(0, T ),

which concludes the proof of Theorem 3.2. �

Remark 3.4. The proof of Theorem 3.2 slightly differs from the one in [5], which presented an approach based
on the spectral decomposition of the solutions. This technique, in our context, seems more technically involved
than the one presented above, since the spectrum is not as explicit as in the case of a uniform mesh.

Remark 3.5. Let us briefly comment the hypothesis (3.15), and prove that, given (a, b) ∈ L2(0, 1)×H−1(0, 1)
and a sequence Sn of M -regular meshes, there exists a sequence of discrete data (an, bn) defined on the mesh Sn

which strongly converges to (a, b) in L2(0, 1) × H−1(0, 1) in the sense of (3.15).
Indeed, for a ∈ L2(0, 1), define an = ASn(a) as follows (recall the convention an+1,n = 0):

aj,n + aj+1,n =
2

hj+1/2,n

∫ xj+1,n

xj,n

a(x) dx, 1 ≤ j ≤ n.

If a is continuous on [0, 1], one easily checks that

‖QSn(ASn(a)) − a‖L2(0,1) → 0.

Besides, if a is in L2, we have that

‖QSn(ASn(a))‖L2(0,1) ≤ C ‖a‖L2(0,1) .

This, using the density of the continuous functions in L2(0, 1), is sufficient to prove that the sequence of discrete
data an = QSn(ASn(a)) converges to a in L2(0, 1) for all a ∈ L2(0, 1).

For the approximation of b ∈ H−1(0, 1), we look for an approximation of

B(x) =
∫ 1

x

b(s) ds,

which lies in L2(0, 1). Thus, the sequence Bn = ASnB provides discrete data which satisfy QSn(Bn) → B in
L2(0, 1) when n → ∞. It is then sufficient to find discrete data bn such that RSnbn = QSnBn, and this can be
done explicitly.
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4. Application to the damped wave equation

4.1. The continuous setting

We consider the continuous damped wave equation on the interval (0, 1):⎧⎨
⎩

∂2
ttw − ∂2

xxw + 2σ∂tw = 0, (x, t) ∈ (0, 1) × (0,∞),
w(0, t) = w(1, t) = 0, t ∈ (0,∞),
w(x, 0) = w0(x), ∂tw(x, 0) = w1(x), x ∈ (0, 1),

(4.1)

with w0 ∈ H1
0 (0, 1) and w1 ∈ L2(0, 1).

We assume that the damping function σ = σ(x) is bounded, non-negative and bounded from below by a
positive number on a subinterval J , that is there exists α > 0, such that

σ(x) ≥ α, ∀x ∈ J, and ‖σ‖∞ = K. (4.2)

Then the energy, defined by (1.2), satisfies the dissipation law

dE

dt
(t) = −2

∫ 1

0

σ(x)|∂tw(t, x)|2 dx, t ≥ 0. (4.3)

It is well-known that, under the assumption (4.2), the energy is exponentially decaying: There exist positive
constants C and μ such that

E(t) ≤ C E(0) exp(−μt), t ≥ 0. (4.4)
Using classical arguments in stabilization theory (see [16]), the energy of (4.1) is exponentially decaying if and
only if the observability inequality (1.5) holds for solutions of the conservative system (1.1).

4.2. The semi-discrete setting

We consider a mesh Sn as in (1.6), and discretize equation (4.1) according to the mixed finite element method:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hj−1/2,n

4
(w′′

j−1,n + w′′
j,n) +

hj+1/2,n

4
(w′′

j,n + w′′
j+1,n) =

− hj−1/2,nσj−1/2,n

2
(w′

j−1,n + w′
j,n) − hj+1/2,nσj+1/2,n

2
(w′

j,n + w′
j+1,n)

+
wj+1,n − wj,n

hj+1/2,n
− wj,n − wj−1,n

hj−1/2,n
, j = 1, . . . , n, t ∈ [0,∞),

w0,n(t) = wn+1,n(t) = 0, t ∈ [0,∞),
wj,n(0) = w0

j,n, w′
j,n(0) = w1

j,n, j = 1, . . . , n,

(4.5)

where σj+1/2,n is an approximation on [xj,n, xj+1,n] of the damping function σ in (4.1) which is assumed to
satisfy the following properties:

σj+1/2,n ≥ α, ∀[xj,n, xj+1,n] ⊂ J, and 0 ≤ σj+1/2,n ≤ K, ∀j ∈ {0, . . . , n}, (4.6)

where α, K and J are as in (4.2).
The energy (1.8) of solutions of (4.5) satisfies

dEn

dt
(t) = −2

n∑
j=0

hj+1/2,nσj+1/2,n

(
w′

j,n(t) + w′
j+1,n(t)

2

)2

· (4.7)



320 S. ERVEDOZA

Obviously, this dissipation law corresponds to a discrete version of (4.3).
The question we investigate is the following: Given a sequence (Sn)n of meshes, can we find positive constants

C and μ independent of n such that

En(t) ≤ C En(0) exp(−μt), t ≥ 0, (4.8)

for any solution of (4.5) on Sn?

Similarly as in the continuous setting, this property is equivalent to the uniform observability inequality (1.12)
for solutions of the conservative system (1.7) (see for instance [27]). Therefore Theorem 1.2 leads to the following
result:

Theorem 4.1. Let M ≥ 1, and consider a sequence (Sn)n of M -regular meshes and a sequence of damping
functions σn satisfying (4.6).

Then there exist positive constants C and μ such that for all n, inequality (4.8) holds for any solution of (4.5)
on Sn.

The proof of Theorem 4.1, which can be adapted in a standard way from [16] or [27], is left to the reader.

Remark 4.2. Note that this method yields an estimate on the decay rate μ appearing in (4.8), which is far
from being optimal in general. This is a drawback of the method, which is based on a perturbation argument
of the conservative system. Even in the continuous setting, the decay rate parameter obtained through this
method is not in general the sharp one, which is known to coincide (at least in the one dimensional case) with
the spectral abscissa (see [8]).

Remark 4.3. The analysis proposed here can be applied as well to the 1d Perfectly Matched Layers equations
(see [2,10]), which, roughly, consists in a damped wave equation written in hyperbolic form:

⎧⎪⎪⎨
⎪⎪⎩

∂tp + ∂xq + σp = 0, (x, t) ∈ (0, 1) × (0,∞),
∂tq + ∂xp + σq = 0, (x, t) ∈ (0, 1) × (0,∞),
q(0, t) = p(1, t) = 0, t ∈ (0,∞),
q(x, 0) = q0(x), p(x, 0) = p0(x), x ∈ (0, 1),

(4.9)

where σ satisfies the assumptions (4.2).
In [10], it is proven that the 1d PML system is exponentially stable: The energy of solutions of (4.9),

defined as

E(t) =
1
2

∫ 1

0

|p(t, x)|2 + |q(t, x)|2 dx,

is exponentially decaying.
Besides, stabilization properties for space semi-discrete approximation schemes on uniform meshes are studied

in [10]: It is proved that finite difference approximation schemes are not uniformly exponentially stable, but
adding a viscosity term in space makes the schemes uniformly exponentially stable.

We claim that the so-called Box scheme (see for instance [4,13]) on M -regular meshes for the 1d PML
equations also are exponentially stable. To be more precise, for Sn an M -regular mesh, we consider the space
approximation scheme of (4.9) given by:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
p′j,n + p′j+1,n

2

)
+
(

qj+1,n − qj,n

hj+1/2,n

)
+ σj+1/2,n

(
pj,n + pj+1,n

2

)
= 0, 0 ≤ j ≤ n, t ≥ 0,(

q′j,n + q′j+1,n

2

)
+
(

pj+1,n − pj,n

hj+1/2,n

)
+ σj+1/2,n

(
qj,n + qj+1,n

2

)
= 0, 0 ≤ j ≤ n, t ≥ 0,

q0,n(t) = pn+1,n(t) = 0, t ≥ 0.

(4.10)
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Then the energy of solutions (pn, qn) of (4.10), defined by

En(t) =
1
2

n∑
j=0

hj+1/2,n

((
pj,n + pj+1,n

2

)2

+
(

qj,n + qj+1,n

2

)2
)

+
1
8

(
1

n + 1

)2 n∑
j=0

hj+1/2,n

((
p′j,n + p′j+1,n

2

)2

+
(

q′j,n + q′j+1,n

2

)2
)

, (4.11)

is exponentially decaying, uniformly with respect to n. The proof of this result will be published elsewhere.

5. Fully discrete schemes

In this section, we briefly explain how the results in [11,12] can be combined with Theorem 1.2 to obtain
observability and stabilization results in the fully discrete setting.

5.1. Observability for fully discrete approximation schemes of (1.7)

This subsection is based on the results in [12]. For Δt > 0, with the same notations as in (1.7), we introduce
the following fully discrete approximation scheme (corresponding to the midpoint scheme):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hj−1/2,n

4

(
uτ+1

j−1,n + uτ−1
j−1,n − 2uτ

j−1,n

(Δt)2
+

uτ+1
j,n + uτ−1

j,n − 2uτ
j,n

(Δt)2

)

+
hj+1/2,n

4

(
uτ+1

j,n + uτ−1
j,n − 2uτ

j,n

(Δt)2
+

uτ+1
j+1,n + uτ−1

j+1,n − 2uτ
j+1,n

(Δt)2

)

=
1

hj+1/2,n

(
uτ−1

j+1,n + 2uτ
j+1,n + uτ+1

j+1,n

4
− uτ−1

j,n + 2uτ
j,n + uτ+1

j,n

4

)

− 1
hj−1/2,n

(
uτ−1

j,n + 2uτ
j,n + uτ+1

j,n

4
− uτ−1

j−1,n + 2uτ
j−1,n + uτ+1

j−1,n

4

)
, j = 1, . . . , n, τ ∈ N,

uτ
0,n = uτ

n+1,n = 0, τ ∈ N,(
u0

j,n + u1
j,n

2

)
= Uj,n,

(
u1

j,n − u0
j,n

Δt

)
= Vj,n, j = 1, . . . , n.

(5.1)

In (5.1), uτ
j,n stands for an approximation of the solution un of (1.7) at the point xj,n and time tτ = τΔt.

The energy of solutions of (5.1), defined by

Eτ+1/2
n =

1
2

n∑
j=0

hj+1/2,n

[
1

hj+1/2,n

(
uτ

j+1,n + uτ+1
j+1,n

2
− uτ

j,n + uτ+1
j,n

2

)]2

+
1
2

n∑
j=0

hj+1/2,n

[
1

Δt

(
uτ+1

j,n + uτ+1
j+1,n

2
− uτ

,n + uτ
j+1,n

2

)]2

, (5.2)

is independent of τ ∈ N.
Introduce, for s > 0, the filtered class

Cn(s) = span
{

φk
n such that the corresponding eigenvalue λk

n satisfies |λk
n| ≤ s

}
·



322 S. ERVEDOZA

Then the results in [12] apply. Combined with Theorem 1.2, they yield:

Theorem 5.1. Let M be a real number greater than one, and consider a sequence (Sn)n of M -regular meshes.
Let δ be a positive number.

Then there exist a time T and positive constants kT and KT such that for all integer n and Δt > 0, any
solution un of (5.1) with initial data

(Un, Vn) ∈ Cn(δ/Δt)2 (5.3)

satisfies

kT E1/2
n ≤ Δt

∑
τΔt∈[0,T ]

⎡
⎣ (

uτ
1,n + uτ+1

1,n

2h1/2,n

)2

+

(
uτ+1

1,n − uτ
1,n

Δt

)2
⎤
⎦ ≤ KT E1/2

n . (5.4)

Besides, if J = (a, b) ⊂ (0, 1) denotes a subinterval of (0, 1), then there exist a time T and a constant CT such
that for all integer n and Δt > 0, any solution un of (5.1) with initial data (Un, Vn) satisfying (5.3) satisfies

E1/2
n ≤ CT Δt

∑
τΔt∈[0,T ]

∑
xj,n∈J

hj+1/2,n

[
1

Δt

(
uτ+1

j,n + uτ+1
j+1,n

2
− uτ

,n + uτ
j+1,n

2

)]2

· (5.5)

Note that if the CFL type condition

(n + 1)2(Δt) ≤ δπ

4M
(5.6)

is satisfied, then condition (5.3) is always satisfied due to (2.11), and then no filtering condition is required for
estimates (5.4) to hold.

Note that the filtering condition (5.3) is needed for having uniform observability results. This will be proved
elsewhere.

Also remark that the results in [12] apply to a wider class of time-discretization schemes. We refer the
interested reader to [12] for precise statements.

As in the time continuous case, Theorem 5.1 can be applied to obtain convergence of the discrete controls
computed on the fully discrete schemes toward the HUM control of the continuous system, provided that, for
some δ > 0, the CFL type condition (5.6) is always satisfied when Δt → 0, n → ∞.

5.2. Stabilization properties

This section is based on the recent article [11], where stabilization issues were discussed for fully discrete
versions of abstract damped systems such as (4.5). Roughly speaking, the results in [11] follow the investigation
in [12], and present two different cases:

• When the space and time discretization parameters are not related, one needs to add a numerical
viscosity term in time at scale 1/Δt to efficiently damp out the high-frequency components which
cannot be observed on the corresponding conservative fully discrete equations (5.1) (see Thm. 5.1).

• When a CFL type condition similar to (5.6) is satisfied, the natural fully discrete scheme associated
to (4.5) indeed are uniformly exponentially stable, with respect to both space and time discretization
parameters.
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We first rewrite equations (4.5) as a system of two first order in time equations, by setting vj,n = w′
j,n in (4.5).

The full system then writes w′
j,n = vj,n and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hj−1/2,n

4
(v′j−1,n + v′j,n) +

hj+1/2,n

4
(v′j,n + v′j+1,n) =

− hj−1/2,nσj−1/2,n

2
(vj−1,n + vj,n) − hj+1/2,nσj+1/2,n

2
(vj,n + vj+1,n)

+
wj+1,n − wj,n

hj+1/2,n
− wj,n − wj−1,n

hj−1/2,n
, j = 1, . . . , n, t ∈ [0,∞),

w0,n(t) = wn+1,n(t) = v0,n(t) = vn+1,n(t) = 0, t ∈ [0,∞),
wj,n(0) = w0

j,n, vj,n(0) = w1
j,n, j = 1, . . . , n.

We then discretize in time these equations according to the midpoint scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃τ+1
j,n − wτ

j,n

Δt
=

vτ
j,n + ṽτ+1

j,n

2
,

hj−1/2,n

4(Δt)

(
(ṽτ+1

j−1,n + ṽτ+1
j,n ) − (vτ

j−1,n + vτ
j,n)

)
+

hj+1/2,n

4(Δt)

(
(ṽτ+1

j,n + ṽτ+1
j+1,n) − (vτ

j,n + vτ
j+1,n)

)

=
1

2hj+1/2,n

(
(wτ

j+1,n + w̃τ+1
j+1,n) − (wτ

j,n + w̃τ+1
j,n )

)
− 1

2hj−1/2,n

(
(wτ

j,n + w̃τ+1
j,n ) − (wτ

j−1,n + w̃τ+1
j−1,n)

)

− hj−1/2,n

4
σj−1/2,n

(
(vτ

j−1,n + ṽτ+1
j−1,n) + (vτ

j,n + ṽτ+1
j,n )

)

− hj+1/2,n

4
σj+1/2,n

(
(vτ

j,n + ṽτ+1
j,n ) + (vτ

j+1,n + ṽτ+1
j+1,n)

)
, j = 1, . . . , n, τ ∈ N.

(5.7)
One then needs to complete this set of equations with a relation between the quantities (w̃τ+1, ṽτ+1) and

(wτ+1, vτ+1). We will consider two different ways of doing this:

• With a numerical viscosity term:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hj−1/2,n

4(Δt)

(
(wτ+1

j−1,n + wτ+1
j,n ) − (w̃τ+1

j−1,n + w̃τ+1
j,n )

)
+

hj+1/2,n

4(Δt)

(
(wτ+1

j,n + wτ+1
j+1,n) − (w̃τ+1

j,n + w̃τ+1
j,n )

)

= (Δt)2
(

wτ+1
j+1,n − wτ+1

j,n

hj+1/2,n
− wτ+1

j,n − wτ+1
j−1,n

hj−1/2,n

)
, j = 1, . . . , n, τ ∈ N,

hj−1/2,n

4(Δt)

(
(vτ+1

j−1,n + vτ+1
j,n ) − (ṽτ+1

j−1,n + ṽτ+1
j,n )

)
+

hj+1/2,n

4(Δt)

(
(vτ+1

j,n + vτ+1
j+1,n) − (ṽτ+1

j,n + ṽτ+1
j,n )

)

= (Δt)2
(

vτ+1
j+1,n − vτ+1

j,n

hj+1/2,n
− vτ+1

j,n − vτ+1
j−1,n

hj−1/2,n

)
, j = 1, . . . , n, τ ∈ N.

(5.8)

• Without any numerical viscosity term:

wτ+1
j,n = w̃τ+1

j,n , vτ+1
j,n = ṽτ+1

j,n , j = 1, . . . , n, τ ∈ N. (5.9)

In both situations, we impose the boundary conditions

wτ
0,n = wτ

n+1,n = vτ
0,n = vτ

n+1,n = w̃τ
0,n = w̃τ

n+1,n = ṽτ
0,n = ṽτ

n+1,n = 0, τ ∈ N. (5.10)
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The energy of solutions of (5.7)-(5.8)-(5.10) (or of (5.7)-(5.9)-(5.10)), given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Eτ
n =

1
2

n∑
j=0

hj+1/2,n

(
wτ

j+1,n − wτ
j,n

hj+1/2,n

)2

+
1
2

n∑
j=0

hj+1/2,n

(
vτ

j,n + vτ
j+1,n

2

)2

, τ ∈ N,

Ẽτ
n =

1
2

n∑
j=0

hj+1/2,n

(
w̃τ

j+1,n − w̃τ
j,n

hj+1/2,n

)2

+
1
2

n∑
j=0

hj+1/2,n

(
ṽτ

j,n + ṽτ
j+1,n

2

)2

, τ ∈ N,

(5.11)

is decaying, since one can check that, in both cases,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẽτ+1
n − Eτ

n

Δt
= −2

n∑
j=0

hj+1/2,nσj+1/2,n

(
vτ

j,n + vτ
j+1,n + ṽτ+1

j,n + ṽτ+1
j+1,n

4

)2

, τ ∈ N,

Eτ+1
n − Ẽτ+1

n

Δt
≤ 0, τ ∈ N.

Let us briefly analyze the equations (5.7)-(5.8)-(5.10) and (5.7)-(5.9)-(5.10). Equation (5.7) corresponds to
the time-continuous equation (4.5), discretized in time using the midpoint scheme.

The equation (5.8) does not correspond to the time continuous equation (4.5), but introduces in the time-
discrete setting a strong dissipation (actually of parabolic nature) of the high-frequency components of the
solutions, which is needed to prove uniform stabilization properties in the fully discrete setting. If consider-
ing (5.9) instead, then the high-frequency components of the solutions are not efficiently damped out by the
time-discrete approximation schemes, except if they simply do not exist, which can be guaranteed by imposing
a CFL type condition on the discretization parameters.

To be more precise, using [11], we obtain:

Theorem 5.2. Let M be a real number greater than one, and consider a sequence (Sn)n of M -regular meshes,
and a sequence of damping functions σn satisfying (4.6).

(1) Then there exist positive constants C and μ such that for all n and Δt > 0, any solution of (5.7)-(5.8)-
(5.10) satisfies

Eτ
n ≤ C E0

n exp(−μτΔt), τ ∈ N. (5.12)
(2) The same conclusion holds for solutions of (5.7)-(5.9)-(5.10) providing that the quantity (n + 1)2Δt is

bounded when n → ∞, Δt → 0.

We emphasize that system (5.7)-(5.9)-(5.10) may be non uniformly exponentially stable with respect to both
Δt > 0 and n when no CFL condition is required. In this case, one indeed needs to introduce a numerical
viscosity term in the equations to ensure uniform stabilization properties. Note that several other numerical
viscosity terms are possible: we refer to [11] for general assumptions on the numerical viscosity term needed in
the equations.

6. Further comments

In this paper, we have analyzed a space semi-discrete scheme derived from a mixed finite element method for
a 1d wave equation, which has a good behavior with respect to both stabilization and controllability properties
for a large class of nonuniform meshes.

1. The key point of our analysis is the description of the spectrum of the space discrete operator given in
Theorems 2.1–2.3. It is particularly surprising that the spectrum can be described in a rather explicit way for
any mesh. This does not seem to be the case for other classical schemes, as the ones provided by finite difference
or finite element methods. To our knowledge, in these cases, only asymptotic distributions of the eigenvalues
are available, see for instance [3] and the literature therein.

2. It would be particularly challenging to understand the behavior of the discrete waves in higher dimension
on nonuniform meshes. To our knowledge, this question has not been addressed so far. We expect this question
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to be difficult to address with the tools used until now, which require either a good knowledge of the eigenvalues
(see [5,6,17,23–26,31] and our own approach) or the existence of multipliers that behave well (see [10,27,28]) on
the discrete systems. This issue is currently under investigation by the author.

3. It would be interesting to estimate the (asymptotic) decay rate for the semi-discrete damped equation
as in the continuous case, see [8]. In the continuous case, the computation of the decay rate of the energy is
technically involved and requires to work directly on the damped system. We refer to the works [8,9,20] that
deal with these questions for damped wave equations.

To our knowledge, even in the case of uniform meshes, this question is still open. Only some partial results
in this direction are available in [10] for the space semi-discrete Perfectly Matched Layers equations (see [2]).

Acknowledgements. The author is grateful to E. Zuazua and J.-P. Puel for several suggestions and remarks related to
this work.
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[2] J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200.
[3] E. Bogomolny, O. Bohigas and C. Schmit, Spectral properties of distance matrices. J. Phys. A 36 (2003) 3595–3616.
[4] T.J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs. J. Phys. A 39 (2006) 5287–5320.
[5] C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element

method. Numer. Math. 102 (2006) 413–462.
[6] C. Castro, S. Micu and A. Münch, Numerical approximation of the boundary control for the wave equation with mixed finite

elements in a square. IMA J. Numer. Anal. 28 (2008) 186–214.
[7] L.C. Cowsar, T.F. Dupont and M.F. Wheeler, A priori estimates for mixed finite element methods for the wave equations.

Comput. Methods Appl. Mech. Engrg. 82 (1990) 205–222.
[8] S. Cox and E. Zuazua, The rate at which energy decays in a damped string. Comm. Partial Differ. Equ. 19 (1994) 213–243.
[9] S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J. 44 (1995)

545–573.
[10] S. Ervedoza and E. Zuazua, Perfectly matched layers in 1-d: Energy decay for continuous and semi-discrete waves. Numer.

Math. 109 (2008) 597–634.
[11] S. Ervedoza and E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures

Appl. (to appear).
[12] S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254

(2008) 3037–3078.
[13] J. Frank, B.E. Moore and S. Reich, Linear PDEs and numerical methods that preserve a multisymplectic conservation law.

SIAM J. Sci. Comput. 28 (2006) 260–277 (electronic).
[14] R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput.

Phys. 103 (1992) 189–221.
[15] R. Glowinski, W. Kinton and M.F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave

equation. Internat. J. Numer. Methods Engrg. 27 (1989) 623–635.
[16] A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal. Math. 46 (1989)
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