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OPTIMAL MEASURES FOR THE FUNDAMENTAL GAP
OF SCHRÖDINGER OPERATORS

Nicolas Varchon
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Abstract. We study the potential which minimizes the fundamental gap of the Schrödinger operator
under the total mass constraint. We consider the relaxed potential and prove a regularity result for
the optimal one, we also give a description of it. A consequence of this result is the existence of an
optimal potential under L1 constraints.
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1. Introduction

In quantum mechanics, the fundamental gap is the difference between the first two energy levels of a quantum
particle. If the particle is placed in a potential field V (x), the fundamental gap is the difference between the
first two eigenvalues of the Schrödinger operator −Δ + V (x). The point of our interest here is the potential
minimizing this difference.

More precisely, we want to minimize the fundamental gap among potentials belonging to the class of positive
Borel measures, with a mass constraint. Let Ω be a smooth bounded domain in R

N , we consider the following
optimization problem:

inf
μ∈M0(Ω)

{λ2(μ) − λ1(μ) + αμ(Ω)}, (1.1)

where M0(Ω) is the set of Borel measures which are absolutely continuous with respect to capacity of sets, α
is a nonnegative parameter and λ1(μ) and λ2(μ) are respectively the first and the second eigenvalues of the
system: { −Δuk + μuk = λk(μ)uk in Ω,

uk = 0 on ∂Ω.

The parameter α is a Lagrange multiplier, it allows to take into account the mass constraint. Without constraint,
the minimum is equal to zero and is attained by measures which are infinite on subsets E of Ω such that Ω \E
is not connected. If α is too large, the mass constraint becomes too strong and the minimum is trivial.

The problem of minimizing the fundamental gap among potentials V of a given Lp norm has already a large
literature; we refer to [12] for a survey of results. The case of L∞ constraint has been studied by several authors,
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and in particular in [1], where the authors consider potentials in the class {V ∈ L∞(Ω); 0 ≤ V ≤ M} and prove
that the minimizer is a bang-bang function of the form V = Mχω where ω is a subset of Ω. They consider also
an Lp constraint with p > N

2 ; they obtain then that in the class {V ∈ Lp(Ω); ‖V ‖Lp(Ω) ≤ M} the minimizer
is a regular function, satisfying u2

2 − u2
1 = −c|V |p−2V in Ω, where u1 and u2 are the eigenfunctions associated

respectively to λ1(V ) and λ2(V ). Moreover, in both cases, it appears that the second eigenvalue at the optimum
is non degenerate.

In this work, we show at first that the problem (1.1) admits a solution and that the second eigenvalue for
the optimal potential is non degenerate, as in the case of Lp constraints. We prove then that this solution is
absolutely continuous with respect to the Lebesgue measure and we give its characterization. This is the main
theorem of this work:

Theorem 1.1. Let μ be a solution of problem (1.1) with 0 < α < |Ω|−1. Then μ is absolutely continuous with
respect to the Lebesgue measure and verifies

μ =
2
α

[
λ1(μ)u2

1 − λ2(μ)u2
2 + |∇u2|2 − |∇u1|2

]
.L{u2

1−u2
2=α},

where u1 and u2 are two normalized eigenfunctions associated respectively to λ1(μ) and λ2(μ).

As an immediate consequence of this result, we get existence of a solution to the minimization problem under
a constraint of class L1:

inf
V ∈L1(Ω)

V ≥0

{λ2(V ) − λ1(V ) + α‖V ‖L1(Ω)}· (1.2)

In a sense, we recover the result of [1] for constraints of Lp type, the equality u2
1 − u2

2 = α on the optimal
measure’s support corresponding to u2

2 − u2
1 = −c|V |p−2V for p = 1.

The paper is organized as follows: in Section 2, we introduce the mathematical tools. In Section 3, we look
for directionnal derivative of eigenvalue and we prove also that for α small enough, the minimum is not attained
by the measure identically equal to zero. In Section 4, we show existence of a minimum, give some necessary
conditions of optimality and the main Theorem 1.1. In the Appendix, we give the proofs of some technical
results dealing with eigenvalues and eigenvectors of the Schrödinger operator.

2. The mathematical setting

Let us now specify the optimization problem we study and the notation used throughout this paper.
In all what follows, D is a bounded open set in R

N and Ω is a connected smooth open set included in D.
The capacity of a subset A ⊂ D is defined by

Cap(A) = inf
{∫

D

|∇u|2dx : u ∈ UA

}
,

where UA is the set of all functions u of the Sobolev space H1
0 (D) such that u ≥ 1 almost everywhere in a

neighborhood of A.
If a property P (x) holds for all x ∈ E except for the elements of a set Z ⊂ E with Cap(Z) = 0, we say that

P (x) holds quasi-everywhere on E (shortly q.e. on E). The expression almost everywhere (shortly a.e.) refers,
as usual, to the Lebesgue measure.

We denote by L the N -dimensional Lebesgue measure. We denote the average of f over the set E with
respect to L by ∮

E

f dx =
1

L(E)

∫
E

f dx.



196 N. VARCHON

We recall the classical result about Lebesgue points: let f be a function in Lp(RN ) with 1 ≤ p < ∞ and let
B(x, ε) be the ball of center x and radius ε, then for a.e. x in Ω,

lim
ε→0

∮
B(x,ε)

|f − f(x)|p dx = 0. (2.1)

A point x for which (2.1) holds is called a Lebesgue point.
A function f : Ω 	→ R is said to be quasi-continuous if for every ε > 0 there exists a continuous function

fε : Ω 	→ R such that Cap ({fε �= f}) < ε. It is well known that every function u ∈ H1(RN ) has a quasi-
continuous representative, which is uniquely defined up to a set of capacity zero.

We define the admissible set M0(Ω) as the class of all nonnegative Borel measures on Ω such that μ(B) = 0
for every Borel subset B of Ω for which Cap(B) = 0. The expression

(∫
Ω

|∇u|2dx +
∫

Ω

u2dμ

)1/2

defines a norm on the Hilbert space Xμ = H1
0 (Ω) ∩ L2(Ω, μ). Let f be a function in L2(Ω); when we call u a

solution of the Dirichlet problem

− Δu + uμ = f (2.2)

we mean that u ∈ Xμ and is the unique solution of the variational problem∫
Ω

∇u∇v dx +
∫

Ω

uv dμ =
∫

Ω

fv dx ∀v ∈ Xμ(Ω). (2.3)

It is known that for all μ ∈ M0(Ω) and all f ∈ L2(Ω), there exists a unique uμ solution of (2.3). (See for
instance [5].)

We denote by Rμ the resolvent operator defined by:

Rμ : L2(Ω) → Xμ,
f 	→ u solution of (2.3).

The operator Rμ is linear, self-adjoint, positive, and continuous. By virtue of the Rellich Theorem, it is
also compact. There exist a sequence of positive eigenvalues (going to +∞) and a sequence of corresponding
eigenfunctions (defining a Hilbert basis of L2(Ω)) that we will denote by 0 < λ1(μ) ≤ λ2(μ) ≤ . . . and u1, u2, . . .
respectively, satisfying: for all k, uk is solution of the Dirichlet problem

−Δu + uμ = λk(μ)u.

Since the eigenfunctions are defined up to a constant, they can be normalized so as to verify∫
Ω

|uk|2 dx = 1.

Note that with the notation used previously, λk(0) is nothing else than the eigenvalue of the Laplacian −Δ
in Ω. In what follows, we will denote it simply by λk.

A useful tool is the variational characterization of the eigenvalues, known as the Poincaré principle or Courant-
Fischer Formula, see [7]. Let us define the Rayleigh quotient associated to the operator −Δ + μ by:

QRμ(u) =

∫
Ω
|∇u|2 dx +

∫
Ω
|u|2 dμ∫

Ω |u|2 dx
·
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Then we have

λk(μ) = min
Ek⊂Xµ

Ek subspace of dim k

max
u∈Ek,u�=0

QRμ(u). (2.4)

In the formula (2.4), the minimum is taken among all the subspaces Ek of Xμ of dimension k.
It can occur that the first eigenvalue λ1(μ) is multiple. It is the case, for instance, if μ = ∞E , where E is a

subset of Ω such that Ω \ E is not connected. But this cannot happen when the total mass μ(Ω) is finite:

Theorem 2.1. Let us assume that μ(Ω) < +∞. Then the first eigenvalue λ1(μ) is simple and the first
eigenfunction u1 has constant sign on Ω.

This result is a consequence of a more general result proved in [3]. In the Appendix, we repeat their proof
for our case.

As for the eigenfunctions’ regularity, we have the following result, proved in the Appendix as well:

Lemma 2.2. Let λk(μ) be an eigenvalue of order k, and let u be an eigenfunction associated to λk(μ). Then
u ∈ L∞(Ω) and verifies

‖u‖L∞(Ω) ≤ C‖u‖L2(Ω),

where C is a constant depending only of N , Ω and k.

The class M0(Ω) can be endowed with γ-convergence (see [10] or [2] for details). It is known that the
following properties are equivalent:

(i) (μn) γ-converges to μ

(ii) Rμn −→ Rμ strongly (i.e., in the operator norm) in L2(Ω).

As an immediate consequence of Theorem 2.3.1 in [12], one gets that strong convergence of operators implies
convergence of eigenvalues. In particular, if (μn) γ-converge to μ, then for every k ≥ 1,

λk(μn) −→ λk(μ). (2.5)

Recall a very useful tool in relaxed optimization problems: M0(Ω) endowed with γ-convergence is compact
(see [9]).

Every measure in M0(Ω) can be obtained as γ-limit of a sequence in L1(Ω) (see for instance [5] or [10]).
Therefore, the problem (1.1) is equivalent to the following

inf
V ∈L1(Ω)

{λ2(V ) − λ1(V ) + α‖V ‖L1(Ω)}· (2.6)

The main tool in the proof of Theorem 1.1 is a result of the paper [14]. We summarize here this result,
obtained by grouping Theorem 4.4 and Proposition 4.7 of [14], for the reader’s convenience.

Theorem 2.3. For every f ∈ L1(Ω), there exists a unique measure μ ∈ M0(Ω) and a unique function u ∈ Xμ

such that the couple (u, μ) satisfies the conditions:{ |u| ≤ α q.e. in Ω
|u| = α μ-a.e. in Ω,

and is solution of the variational equation∫
Ω

∇u∇ϕdx +
∫

Ω

uϕdμ =
∫

Ω

fϕdx, ∀ϕ ∈ Xμ ∩ L∞(Ω).
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Moreover, μ verifies the following statement:

μ =
1
α

(
f+ .L�{u = α} + f− .L�{u = −α}).

3. Directional derivative of an eigenvalue

In order to obtain some necessary conditions of optimality and prove that the second eigenvalue is not
degenerate at the minimum (Thm. 4.2 in the next section), we study here its directional derivative. This means
that we consider the eigenvalue as a function of the measure μ defining our Schrödinger operator. We then
follow the usual procedure: perturb μ linearly in a chosen direction: μt = μ + tν, and look for the limit of the
ratio [λ(μt) − λ(μ)]/t. This approach has been developed by Kato in [13], Chapters II and VIII. We prove also
at the end of this section that for α small enough, the solution of (1.1) is not trivial.

Let μ be a measure in M0(Ω). We denote by {μt}t>0 the family of measures defined by

μt = μ + tν, t > 0, (3.1)

where ν = ν+ − ν− with ν+ and ν− two measures of M0(Ω) which verify

∀A ⊂ Ω, ν−(A) ≤ μ(A), and ν+(A) ≤ μ(A) + L(A). (3.2)

It is clear that for all t < 1, μt ∈ M0(Ω) and that the norms ‖.‖Xµ , ‖.‖Xµt
are equivalent with the following

inequalities:

(1 − t)‖.‖Xµ ≤ ‖.‖Xµt
≤ (1 + t(1 + λ1

−1)
)‖.‖Xµ . (3.3)

The family of operators {Rμt}t>0 is continuous at t = 0. More precisely, we have:

Theorem 3.1. Let {μt}t>0 be the family of measures defined by (3.1) and (3.2). Then for t < 1
2 , there exists

a constant C depending only on Ω such that

‖Rμt(f) − Rμ(f)‖Xµ ≤ C t ‖f‖L2(Ω).

Proof. Let us note in the sequel ut = Rμt(f) and u = Rμ(f). Recall the variational equation verified by ut:

∀ϕ ∈ Xμ,

∫
Ω

∇ut∇ϕdx +
∫

Ω

utϕdμ + t

∫
Ω

utϕdμ =
∫

Ω

fϕdx. (3.4)

By taking ut as test function in (3.4) and thanks to the Poincaré inequality, we obtain

‖ut‖L2(Ω) ≤
‖f‖L2(Ω)

λ1
·

Consider now the variational equation solved by ut − u:

∀ϕ ∈ Xμ,

∫
Ω

∇(ut − u)∇ϕdx +
∫

Ω

(ut − u)ϕdμ = −t

∫
Ω

ut(ut − u)ϕdν. (3.5)

By taking ut − u as test function in (3.5) and using the Cauchy-Schwartz inequality, we get

‖ut − u‖2
Xµ

≤ t
‖f‖L2(Ω)

λ1

∫
Ω

|ut − u|2 d(ν+ + ν−). (3.6)
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Thanks to the condition (3.2), for all v ∈ Xμ,

∫
Ω

|v|2 d(ν+ + ν−) ≤
(
2 +

1
λ1

)
‖v‖Xµ . (3.7)

(3.6) and (3.7) together end the proof. �

As a consequence of this theorem, we have the following corollary.

Corollary 3.2. Let {ft}t>0 be a family of functions such that (ft) converges weakly to f in L2(Ω). Then

lim
t→0

‖Rμt(ft) − Rμ(f)‖Xµ = 0.

Proof. First of all, we note that

‖Rμt(ft) − Rμ(f)‖Xµ ≤ ‖Rμt(ft) − Rμ(ft)‖Xµ + ‖Rμ(ft) − Rμ(f)‖Xµ .

Since the family (ft) is uniformly bounded in L2(Ω) norm, by Theorem 3.1, the first term at the right-hand
side of the above inequality goes to zero at t = 0. For proving that the second term goes to zero as well, we
follow a classical method. Let us note ut = Rμ(ft); then ut solves:

∀ϕ ∈ Xμ,

∫
Ω

∇ut∇ϕdx +
∫

Ω

utϕdμ =
∫

Ω

ftϕdx. (3.8)

By taking ut as test function in (3.8) and thanks to the Poincaré inequality, we obtain

‖ut‖2
Xµ

≤
‖f‖2

L2(Ω)

λ1
·

Hence, every sequence (utn), where (tn) is a positive sequence converging to zero as n goes to infinity, has a
subsequence converging weakly in Xμ to a function u ∈ Xμ. By the Rellich theorem, this subsequence converges
strongly to u in L2(Ω). Passing to the limit in (3.8), we obtain that u = Rμ(f). Since the limit is unique, all
the sequence (utn) converges to u and so,

lim
t→0

‖ut − u‖L2(Ω) = 0.

By taking ut, once again, as test function in (3.8) and by passing to the limit, we obtain that the convergence
holds in Xμ. This ends the proof. �

As an immediate consequence of Theorem 3.1 we get that Rμt converges to Rμ in the operator norm in L2(Ω),
and consequently, for every k ∈ N

∗ (see [12]):

lim
t→0

λk(μt) = λk(μ). (3.9)

The next result deals with derivatives of eigenvalues. Note that we will not apply the general results of
Kato [13], since the derivability proof comes in our case rather directly from what has been said up to now.

Theorem 3.3. Let λk(μ) an eigenvalue of multiplicity m such that λk(μ) = . . . = λk+m−1(μ). Let (tn) be a
positive sequence converging to zero as n goes to +∞. There exists {uk; . . . ; uk+m−1} an orthonormal family
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of eigenfunctions associated to λk(μ), and a subsequence of (tn) (denoted with the same index) such that for all
(i; j) ∈ [k; k + m − 1]2, i �= j:

(i)
λi(μtn) − λi(μ)

tn
−→

∫
Ω

|ui|2 dν,

(ii)
∫

Ω

uiuj dν = 0.

To prove Theorem 3.3, we need the following technical lemma:

Lemma 3.4. Let up,t be an eigenvector associated to an eigenvalue λp(μt), and uq an eigenvector associated
to λq(μ). Then for all t > 0,

λp(μt) − λq(μ)
t

∫
Ω

up,tuq dx =
∫

Ω

up,tuq dν.

Proof. Since Xμ = Xμt , we can take uq as test function in the equation solved by up,t and up,t as test function
in the equation solved by uq. We obtain

∫
Ω

∇up,t∇uq dx +
∫

Ω

up,tuq dμt = λp(μt)
∫

Ω

up,tuq dx, and∫
Ω

∇uq∇up,t dx +
∫

Ω

uqup,t dμ = λp(μ)
∫

Ω

uqup,t dx.

By taking the difference of both equalities, we obtain the result. �

Proof of Theorem 3.3. Let us denote by {uk,t; . . . ; uk+m−1,t} an orthonormal (for the L2(Ω) scalar product)
family of eigenfunctions associated to eigenvalues {λk(μt); . . . ; λk+m−1(μt)}. Up to a subsequence, for all
i ∈ [k; k + m− 1], ui,tn converges weakly in L2(Ω) to a function ui. By Corollary 3.2, we know that Rμtn

(ui,tn)
converges in Xμ strongly to Rμ(ui). But since

Rμtn
(ui,tn) =

1
λi(μtn)

ui,tn ,

the sequence ui,tn converges to ui strongly in Xμ. So, ui is a normalized eigenfunction associated to λi(μ) and
{uk; . . . ; uk+m−1} is an orthogonal family in L2(Ω). By (3.2), ui,tn converges to ui in L2

ν+(Ω) and in L2
ν−(Ω).

By virtue of Lemma 3.4,

λi(μtn) − λi(μ)
tn

∫
Ω

ui,tnui dx =
∫

Ω

ui,tnui dν.

When passing to the limit in this equality, we get (i). Now, with i �= j,

λi(μtn) − λj(μ)
tn

∫
Ω

ui,tnuj dx =
∫

Ω

ui,tnuj dν.

But as λj(μ) = λi(μ), when passing to the limit, we obtain (ii). �

Theorem 3.3 applied at t = 0 allows to prove that the trivial solution is not a solution of problem (1.1).

Proposition 3.5. For α small enough, the solution of (1.1) is not trivial.
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Proof. Applying Theorem 3.3 with μ ≡ 0, we obtain that for every measure ν absolutely continuous with respect
to the Lebesgue measure,

lim
t−→0
t>0

1
t

[(
λ2(μt) − λ1(μt) + tαν(Ω)

) − (λ2(0) − λ1(0)
)]

=
∫

Ω

(
u2

2 − u2
1 + α

)
dν.

We assume that μ ≡ 0 is optimal. This means that the limit above is nonnegative for every admissible measure ν.
Then u2

2 − u2
1 + α ≥ 0 a.e. in Ω. But this is impossible for α small enough. Otherwise, we would obtain that

u2
2 = u2

1 a.e. in Ω, and so |∇u2|2 = |∇u1|2 a.e. in Ω; consequently λ1(0) = λ2(0), which contradicts connectedness
of Ω. �

4. The result

We first deal with the problem of existence of solutions.

Theorem 4.1. The problem (1.1) has at least one solution.

Proof. Let (μn) be a minimizing sequence for the problem (1.1). Up to a subsequence, we may assume that
(μn) γ-converges to a measure μ which belongs to M0(Ω). Since λ2(μ) and λ1(μ) are continuous and μ(Ω) is
lower semi-continuous under γ-convergence (see [6]), the measure μ is a solution of (1.1). �

The next theorem gives some necessary conditions of optimality for the solution of the optimization prob-
lem (1.1), as well as the simplicity of the optimal eigenvalue.

Theorem 4.2. Let μ be a solution to the problem (1.1) with α < |Ω|−1. Then:

(a) λ1(μ) and λ2(μ) are non degenerate;
(b) for u1, u2 two normalized eigenvectors associated respectively

to λ1(μ) and λ2(μ), one has
(i) u2

2 − u2
1 + α ≥ 0 a.e. n Ω,

(ii) u2
2 − u2

1 + α = 0 μ-a.e. in Ω.

Proof. λ1(μ) is non degenerate thanks to Theorem 2.1. Let us now prove (b).
According to Theorem 3.3, there exist: an orthonormal family {u1; u2; . . . ; um} of eigenfunctions where u1

is associated to λ1(μ) and {u2; . . . ; um} are associated to λ2(μ) and a positive sequence (tn) converging to zero
such that the conclusion of the theorem are valid for k = 1 and k = 2. Since μ is optimal, for all t > 0,

λ2(μt) − λ2(μ)
t

− λ1(μt) − λ1(μ)
t

− αν(Ω) ≥ 0.

But, for every k ≥ 2, λk(μt) ≥ λ2(μt) and λk(μ) = λ2(μ), then for all t > 0:

λk(μt) − λk(μ)
t

− λ1(μt) − λ1(μ)
t

− αν(Ω) ≥ 0. (4.1)

Passing to the limit in (4.1), we obtain∫
Ω

(|uk|2 − |u1|2 + α
)
dν ≥ 0. (4.2)

Suppose that u is any normalized eigenfunction associated to λ2(μ). We can write

u =
m∑

i=2

αie
(i), with

m∑
i=2

|αi|2 = 1.



202 N. VARCHON

Because of (ii) of Theorem 3.3

∫
Ω

(|u|2 − |u1|2 + α
)
dν =

∫
Ω

m∑
i=2

|αi|2
(|ui|2 − |u1|2 + α

)
dν.

Finally, using (4.2), we can conclude that for any normalized eigenfunction u associated to λ2(μ) and for every
measure ν respecting conditions (3.2), ∫

Ω

(|u|2 − |u1|2 + α
)
dν ≥ 0. (4.3)

The inequality (4.3) is valid for any measure ν of the form ν = ϕ .L where ϕ is a nonnegative function belonging
to L∞(Ω) and bounded by one. Since ϕ are arbitrary, it gives that |u|2 − |u1|2 + α ≥ 0 a.e. in Ω and also q.e.
in Ω because the functions u1 and u2 are quasi-continuous. Let us now consider ν = −μ in (4.3): we obtain
that |u|2 − |u1|2 + α = 0 μ-a.e. in Ω.

Let us now prove (a). Assume that λ2(μ) is degenerate, then there exist u2 and u3 two orthonormal eigen-
functions associated to λ2(μ). Since α < |Ω|−1, there exists δ > 0 such that {u2

1 > α + δ} is not a polar set for
the Lebesgue measure. Let x be a Lebesgue point of u1, u2, u3 and belonging to {u2

1 > α + δ}. Let us first note
that u2(x) and u3(x) are not equal to zero since from the optimality condition (b − i), we have∮

u2
2(y) dy ≥

∮ (
u2

1(y) − α
)
dy, (4.4)

so, passing to the limit in (4.4), we get u2
2(x) ≥ δ. (We prove in the same way that u3(x) �= 0.) Consider u

defined by u = βu2 + γu3 where β2 + γ2 = 1 and αu2(x) + γu3(x) = 0 (which is possible since u2(x), u3(x)
are not equal to zero). The function u is a normalized eigenfunction associated to λ2(μ). By the optimality
condition (b − i) and the fact that x is a Lebesgue point of u1 in {u2

1(x) ≥ α + δ}, we get

lim inf
ε→0

∮
|u(y)|2 dy ≥ δ. (4.5)

On the other hand,

∮
|u(y) − u(x)|2 dy ≤ 2

(
β2

∮
|u(y) − u(x)|2 dy + γ2

∮
|u(y) − u(x)|2 dy

)
.

Since u(x) = 0, it implies that

lim
ε→0

∮
|u(y)|2 dy = 0

which contradicts (4.5) and ends the proof. �
We now give and prove the main result of this paper.

Theorem 4.3. Let μ be a solution of the problem (1.1) with α < |Ω|−1. Then μ is absolutely continuous with
respect to the Lebesgue measure and verifies

μ =
2
α

[
λ1(μ)u2

1 − λ2(μ)u2
2 + |∇u2|2 − |∇u1|2

]
.L{u2

1−u2
2=α},

where u1 and u2 are two normalized eigenfunctions associated respectively to λ1(μ) and λ2(μ).
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Proof. Let w := u2
1 − u2

2, then by the Lemma 2.2, w ∈ Xμ ∩ L∞(Ω). A simple computation shows that w is
solution of ∫

Ω

∇w∇ϕdx +
∫

Ω

wϕdμ =
∫

Ω

gϕdx, ∀ϕ ∈ Xμ ∩ L∞(Ω), (4.6)

where g = 2
(
λ1(μ)u2

1 − λ2(μ)u2
2 + |∇u2|2 − |∇u1|2

)
. It is clear that g belongs to L1(Ω). Let w+ be the positive

part of w. By taking w+ϕ as test function in (4.6) we obtain that w+, which belongs to Xμ ∩ L∞(Ω), is
solution of ∫

Ω

∇(w+)2∇ϕdx + 2
∫

Ω

(w+)2ϕdμ =
∫

Ω

2
(
gw+ − |∇w+|2

)
ϕdx, ∀ϕ ∈ Xμ ∩ L∞(Ω).

From Theorem 4.2, it comes that (w+)2 satisfies (w+)2 ≤ α2 q.e. in Ω and (w+)2 = α2 μ-a.e. in Ω. Then,
applying Theorem 2.3, we obtain

μ =
1
α2

(gw+ − |∇w+|2)+χK ,

where K = {w+ = α}. But since |∇w+| = 0 a.e. in K, we obtain that

μ =
1
α

gχK .

This ends the proof. �

5. Appendix

In this section, we give the proofs of Theorem 2.1 and Lemma 2.2.

Theorem 5.1. Let us assume that μ(Ω) < +∞. Then the first eigenvalue λ1(μ) is simple and the first
eigenfunction associated to λ1(μ) has constant sign on Ω.

In order to prove this result, we need some results related to capacity of Sobolev functions. As in this paper,
we do not want to enter too much into the details, we refer to [2,15] for a very complete description of the
properties of Sobolev function and to [4] for the definition of a quasi-connected open set.

Proof. Let us denote by u a first eigenfunction. It is known that one has

QRμ(u) ≥ min
{
QRμ(u+), QRμ(u−)

}·
Then either u+ or u− is an eigenfunction, and by linearity the other one is an eigenfunction too. So we can
suppose that u is non negative in Ω.

Let us note F := {u = 0}. To prove that λ1(μ) is simple, it is sufficient to prove that Cap(F ) = 0. Indeed,
in this case, any other first eigenvector orthogonal to u is equal to zero. Let K be a smooth connected compact
set included in Ω. Consider the μ-capacity of F ∩ K in Ω defined by

Capμ(F ∩ K) = inf
v∈Xµ

v≥1 in F∩K

{∫
Ω

|∇v|2 dx +
∫

Ω

|v|2 dμ

}
· (5.1)

Since K ⊂ Ω and μ(Ω) is bounded, we have Capμ(F ∩K) < +∞. So, there exists w which realizes the infimum
of (5.1) (see [8] for details about μ-capacity). For every ϕ ∈ H1

0 (Ω \ F ) ∩ L2
μ(Ω) the Euler equation yields:

∫
Ω

∇w∇ϕdx +
∫

Ω

wϕdμ = 0. (5.2)
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Since u ∈ H1
0 (Ω \ F ) ∩ L2

μ(Ω), equation (5.2) is verified with u as test function. Then we obtain

∫
Ω

uw dx = 0.

Hence w = 0 q.e. in {u > 0}. Consider the quasi-open set {w > 1
2}. Up to a set of zero capacity, K is included

in {u > 0} ∪ {w > 1
2} with {u > 0} ∩ {w > 1

2} = ∅. But since K is connected, Cap(F ∩ K) = 0. And as it is
realized for every smooth connected compact set K ∈ Ω, we have Cap(F ) = 0. �
Lemma 5.2. Let λk(μ) be an eigenvalue of order k, and let u be an eigenfunction associated to λk(μ). Then
u ∈ L∞(Ω) and verifies

‖u‖L∞(Ω) ≤ C‖u‖L2(Ω).

Here, C is a constant depending only on N , Ω and k.

Proof. Let us note λ = λk(μ). Let w+ and w− be respectively the weak solutions of

−Δw+ + w+μ = λu+ and −Δw− + w−μ = λu− in Ω,

where u+ = max(u, 0) and u− = min(u, 0). By the maximum principle, −w− ≤ u ≤ w+ a.e. in Ω. Let w be the
weak solution of

−Δw = λ|u| in Ω.

Then, also by the maximum principle, w+ ≤ w and w− ≤ w a.e. in Ω. Hence |u| ≤ w in Ω. Moreover, the
regularity of the weak solution implies that w ∈ H2(Ω) with:

‖w‖H2(Ω) ≤ λC‖u‖L2(Ω),

where C = C(N, Ω). Let us define the sequence (wn)n∈N by w1 = w and for every n ≥ 2:

wn+1 ∈ H1
0 (Ω), and − Δwn+1 = λwn in Ω.

By induction, for every n ≥ 1,

wn+1 ≥ wn, and, ‖wn‖H2n(Ω) ≤ λCn‖u‖L2(Ω).

Hence we have |u| ≤ wn and for every n > N
4 , wn ∈ L∞(Ω) with ‖wn‖L∞(Ω) ≤ C‖u‖L2(Ω) where C = C(N, Ω, k).

This ends the proof. �
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[3] D. Bucur and T. Chatelain, Strict monotonicity of the second eigenvalue of the Laplace operator on relaxed domain. Bull.
Appl. Comp. Math. 1510–1566 (1998) 115–122.

[4] D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000)
985–996.

[5] G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions.
Appl. Math. Optim. 23 (1991) 17–49.



OPTIMAL MEASURES FOR THE FUNDAMENTAL GAP OF SCHRÖDINGER OPERATORS 205
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