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AN A PRIORI CAMPANATO TYPE REGULARITY CONDITION FOR LOCAL
MINIMISERS IN THE CALCULUS OF VARIATIONS

Thomas J. Dodd1

Abstract. An a priori Campanato type regularity condition is established for a class of W1X local
minimisers u of the general variational integral ∫

Ω

F (∇u(x)) dx

where Ω ⊂ R
n is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies

the growth condition
F (ξ) ≤ c(1 + |ξ|p)

for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space
Lp,µ(Ω, R

N×n), μ < n, Campanato space Lp,n(Ω, RN×n) and the space of bounded mean oscillation
BMO(Ω, R

N×n). The admissible maps u : Ω → R
N are of Sobolev class W1,p, satisfying a Dirichlet

boundary condition, and to help clarify the significance of the above result the sufficiency condition
for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.
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1. Introduction

We are concerned with showing the partial regularity of a special class of local minimisers u ∈ W1,p(Ω,RN )
of the multiple integral

I[u] =
∫

Ω

F (∇u), (1.1)

where Ω ⊂ R
n is a bounded open set, F : R

N×n → R is strongly quasiconvex, C2, and for a p > 1 satisfies the
polynomial growth condition

F (ξ) ≤ c(1 + |ξ|p)
for all ξ ∈ R

N×n.
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Let (X, ‖ · ‖) denote a normed space continuously embedded in Lp
loc(Ω,R

N×n). By a W1X-local minimiser
we mean a map u for which there exists a δ > 0 such that I[u] ≤ I[u] whenever

u ∈ u+ W1,p
0 (Ω,RN ) (1.2)

and
‖∇u−∇u‖ ≤ δ. (1.3)

In this paper we restrict our attention to a special class of W1X-local minimisers u ∈ W1,p(Ω,RN ) with
X = Lp,μ(Ω,RN×n), the Campanato space with exponents p and μ ≥ 0, for which we prove partial regularity for
μ ≤ n under a δ-smallness condition of the Lp,μ-norm of ∇u over all open balls B ⊂ Ω in the limit as radius of
the balls approach zero. It is important to note that the δ here is not arbitrarily small as, for example, in [16].
It is fixed by the local minimiser condition (1.3) and we impose no additional condition on its size to prove the
above result.

We will show that the equivalent regularising condition for Bounded Mean Oscillation type local minimisers,
X = BMO(Ω,RN×n), is (1.4) and that in the context of partial regularity such minimisers are interchangeable
with W1Lp,n-local minimisers. Thus we clarify our partial regularity result for the case μ = n by extending
a sufficiency condition for Lipschitz extremals to be local minimisers of X = BMO(Ω,RN×n) type to the non-
Lipschitz case, with a view to showing that there exists a local minimiser of (1.1) that is not strong in the sense
of [15]. I.e. not partially regular without the regularising condition

lim sup
R→0+

⎛
⎜⎝ sup

x∈Ω′
r∈(0,R)

−
∫

Ω(x,r)

|∇u− (∇u)x,r|dy

⎞
⎟⎠ < δ (1.4)

for every open set Ω′ compactly contained in Ω, and where δ corresponds to (1.3).

A regularity theorem for a new class of local minimisers

We will need the following definition for the statement of our result.

Definition 1 (Campanato space). Let Ω ⊂ R
n be open and bounded define Ω(x0, R) := Ω ∩ B(x0, R). Then

for p > 1 and μ ≥ 0 the Campanato space Lp,μ(Ω) [4,11], consists of all f ∈ Lp
loc(Ω) such that

[f ]p,μ,Ω := sup
x0∈Ω

0<R<diam(Ω)

(
1
Rμ

∫
Ω(x0,R)

|f − fx0,R|p dx

) 1
p

<∞.

The Lp,μ(Ω)-norm is given by
‖f‖p,μ,Ω ≡ ‖f‖Lp + [f ]p,μ,Ω.

We say that f is locally Lp,μ in Ω, denoted Lp,μ
loc (Ω), if for each open Ω′ compactly contained in Ω, [f ]p,μ,Ω′ <∞.

We will also need the definition of the space of functions of bounded mean oscillation with domain R
n and

an open and bounded set Ω ⊂ R
n, respectively.

Definition 2 (BMO space). Let Ω be open and bounded or the entire space R
n. Then the John-Nirenberg

space BMO(Ω) [11,14] consists of all f ∈ L1
loc(Ω) such that

[f ]∗,Ω := sup
B⊂Ω

(
−
∫

B

|f − fB| dx
)
<∞,

where the supremum is taken over all open balls contained in u. If Ω = R
n then the BMO-norm is given by

‖f‖BMO ≡ [f ]∗,Rn .
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Otherwise the BMO(Ω)-norm is given by

‖f‖∗,Ω ≡ ‖f‖L1 + [f ]∗,Ω.

We say that f is locally BMO in Ω if for each open Ω′ compactly contained in Ω, [f ]∗,Ω′ <∞.

Notation. We have used fx0,R to denote the average of f over Ω(x0, R)

fx0,R = −
∫

Ω(x0,R)

f =
1

|Ω(x0, R)|
∫

Ω(x0,R)

f(x) dx.

Depending on the context we may write fx,r for the average over the ball B = B(x, r). We may also write
this as fB and we will denote the unit ball as B1 = B(0, 1) to avoid confusion with B. Finally for μ < n and
a sufficiently regular boundary ∂Ω, the Campanato space Lp,μ(Ω) is equivalent to the Morrey space Lp,μ(Ω)
defined as the space of functions f for which the norm

‖f‖p,μ = sup
x0∈Ω

0<R<diam(Ω)

(
1
Rμ

∫
Ω(x0,R)

|f |p dx

)
(1.5)

is finite. In this case we refer to the space as Morrey-Campanato space. The inclusion Lp,μ(Ω) ↪→ Lp,μ(Ω) is a
trivial result of

−
∫

Ω(x0,R)

|u− ux0,R|p ≤ 2p inf
ξ∈Rn

−
∫

Ω(x0,R)

|u− ξ|p

and holds for all open Ω. For the opposite inclusion some work is required to derive the relevant inequality,

‖u‖p,μ,Ω ≤ c(n,Ω, p, μ)
(
|Ω|− μ

np ‖u‖p,Ω + [u]p,μ,Ω

)
(1.6)

which only holds for exponents 0 < μ < n and for domains without external cusps, e.g. domains with Lipschitz
boundary (see [11], Sect. 2.3).

For any normed space Y we let Y(Ω,RN ) denote the space of vector valued maps u : Ω → R
N and Y(Ω,RN×n)

the space of matrix valued maps u : Ω → R
N×n. We use |·| to denote the usual euclidean norms, e.g. for matrices

ξ ∈ R
N×n we let

|ξ| :=
√

trace(ξT ξ).

We combine the assumptions on the integrand F : R
N×n → R of I[·] in [5] for 1 < p < 2 with those in [15] for

p ≥ 2. The assumptions are as follows:
(H1) F ∈ C2;
(H2) |F (ξ)| ≤ c(1 + |ξ|p) for every ξ ∈ R

N×n, some constant c and p > 1;
(H3) for some constant ν > 0, every ξ ∈ R

N×n and every ϕ ∈ C1
C(Rn,RN ),

ν

∫
Rn

(|∇ϕ|2 + |∇ϕ|p) ≤
∫

Rn

(F (ξ + ∇ϕ) − F (ξ)) when p ≥ 2 (1.7)

ν

∫
Rn

(1 + |ξ|2 + |∇ϕ|2) p−2
2 |∇ϕ|2 ≤

∫
Rn

(F (ξ + ∇ϕ) − F (ξ)) when 1 < p < 2. (1.8)

The conditions (1.7) and (1.8) of (H3), known as strong quasiconvexity, were first introduced by Evans in his
paper on partial regularity of absolute minimisers of I[·] (p ≥ 2) [8]. Note that for p ≥ 2 (1.7) is the weaker
of the two conditions. (H2) replaces the original assumption of [8], namely a condition controlling the second
derivative of F . For strong quasiconvexity this generalisation is due to Acerbi and Fusco [1] and later adapted
to the 1 < p < 2 case by Carozza et al. [6].
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The following result is a consequence of the various embeddings and isomorphisms linking Campanato, Morrey
and BMO spaces on balls (see Sect. 2), Poincaré’s inequality and standard compactness arguments, allowing the
extension of the local minimiser version [5,15] of the “blow up method” for quasiconvex functionals I[·] [1,3,6,8],
to a class of local minimisers characterised by the Morrey-Campanato metric.

Theorem 1. Consider the functional I[·] of (1.1) satisfying the hypotheses (H1)–(H3). Suppose that u ∈
W1,p(Ω,RN ) for p ∈ (1,∞) is a W1Lp,μ-local minimiser of I[·]: there exists a δ > 0 such that I[u] ≤ I[u]
whenever u ∈ u+ W1,p

0 (Ω,RN ) and ‖∇u−∇u‖p,μ;Ω ≤ δ, so that ∇u satisfies the regularising condition

lim sup
R→0+

⎛
⎜⎝ sup

x0∈Ω′
r∈(0,R)

1
rμ

∫
Ω(x,r)

|∇u− (∇u)Ω(x,r)|p dx

⎞
⎟⎠ < δ (1.9)

for every open set Ω′ compactly contained in Ω. Then for μ ≤ n there exists an open set Ω0 ⊂ Ω of full
n-dimensional measure, such that the minimiser u ∈ C1,α

loc (Ω0,R
N ) for every α ∈ (0, 1).

Partial regularity of non-Lipschitz W1BMO-local minimisers follows from Lemma 3.3 in the proof of Theo-
rem 1 and the isomorphism L,n,p(B,RN×n) ∼= BMO(B,RN×n) on balls B ⊂ R

n (see Sect. 2 and Lem. 3.3 for
details):

Corollary 1.1. Consider the functional I[·] of (1.1) satisfying the hypotheses (H1)–(H3). Suppose that u ∈
W1,p(Ω,RN ) for p ∈ (1,∞) is a W1BMO-local minimiser of I[·]: There exists a δ > 0 such that I[u] ≤ I[u]
whenever u ∈ u + W1,p

0 (Ω,RN ) and ‖∇u − ∇u‖∗;Ω ≤ δ, so that ∇u satisfies the regularising condition (1.4).
Then there exists an open set Ω0 ⊂ Ω of full n-dimensional measure, such that the minimiser u ∈ C1,α

loc (Ω0,R
N)

for every α ∈ (0, 1).

Remark 1. By Lemma 2.1, Section 2, the embedding inequality for Morrey and Campanato spaces, condi-
tion (1.9) is satisfied if we assume ∇u ∈ Lp,ν

loc (Ω,RN×n) for ν > μ. In this case the condition reduces to

lim sup
R→0+

⎛
⎜⎝ sup

x0∈Ω
r∈(0,R)

1
rμ

∫
Ω(x,r)

|∇u− (∇u)Ω(x,r)|p dx

⎞
⎟⎠ = 0 (1.10)

for every open set Ω′ compactly contained in Ω.

As mentioned above, our proof of Theorem 1, will be based on the standard blow-up argument to show a
decay estimate on the excess defined for every ball B(x, r) ⊂ Ω by

E(x, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
∫

B(x,r)

|V (∇u) − V ((∇u)x,r)|2 1 < p < 2

−
∫

B(x,r)

(|∇u − (∇u)x,r|2 + |∇u− (∇u)x,r|p
)

p ≥ 2.

(1.11)

Here
V (ξ) = (1 + |ξ|2) p−2

4 ξ, ξ ∈ R
N×n.

From this decay estimate it is well known that partial regularity follows.

Significance of the regularity result

In [15] partial regularity for W1,q-local minimisers u ∈ W1,p(Ω,RN ) (q > p) was proved by assuming ∇u ∈
Lq

loc(Ω,R
N×n). Given the Sobolev class W1,q(Ω,RN ) for q > p, the inclusion W1,q(Ω,RN ) ⊂ W1Lp,μ(Ω,RN )

follows directly from Hölders inequality for the exponents μ ≤ n(1 − p/q). Thus for each q > p, W1Lp,μ
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(μ ≤ n(1 − p/q)) possess a weaker topology than W1,q and thus in this case a W1Lp,μ local minimiser is a
stronger notion of a local minimum than a W1,q local minimiser. The a priori δ-smallness condition (1.9) is
certainly a weaker requirement than condition u ∈ W1,q

loc(Ω,R
N ) when μ < n(1 − p/q) as the later condition

implies the arbitrary smallness condition (1.10). However it is not clear that the W1,q
loc condition placed on

the W1,q-local minimisers of [5,15] is necessary for partial regularity. In any case our a priori condition for
the general Morrey-Campanato class of minimisers fits in neatly with previous results for weaker notions of
local-minimisers, namely the results for W1BMO, W1,∞ local minimisers of Lipschitz class derived in [15]. In
fact given the equivalence of Campanato and BMO spaces when Campanato exponent μ = n we will show that
the results for W1BMO local minimisers follow when the minimiser u is of class W1,p(Ω), 1 < p <∞.

In particular results of [15] include a sufficiency theorem for Lipschitz extremals of I to be W1BMO-local
minima, demonstrating that there are many potential examples of Lipschitz maps that are also W1BMO-
local minimisers (a similar result was also obtained by Firoozye [10] under more restrictive conditions). Further
drawing on an example of [17] it was shown that for N = n = 2 there exists a Lipschitz W1BMO-local minimiser
of I satisfying the hypotheses (H1)–(H3), but which is non-differentiable on any open set. From this it is clear
that a regularising condition like (1.4) is necessary for partial regularity for Lipschitz W1BMO-local minimisers.
We note that these results are made possible by the sufficiency condition of [15] and the earlier result of [10] (for
an alternative sufficiency condition for W1,∞ sequential weak-* local minimisers with the assumption that the
minimiser is C1-smooth see [13]). Therefore before we prove Theorem 1 we pause to justify the regularity result
for W1BMO-local minimisers in the non-Lipschitz case. Following the spirit of [15] we extend the sufficiency
condition for W1BMO-local minimisers, to the non-Lipschitz case.

Positive second variation

It is shown in [15] that for C2 integrands F of the functional I[·] that positivity of the second variation of I[·]
at a given Lipschitz extremal u implies that u is not only a weak local minimiser, which is well known, but is in
fact a W1BMO local minimiser. As mentioned previously a similar result was also proved in [10] but the proof
requires stronger assumptions on the integrand F .

In the following we extend the result of [15] for extremals u of I[·] that are in W1,p(Ω,RN ) for 1 ≤ p <∞ by
adding a uniform continuity condition to the second derivative of F . We assume that F ′′ is uniformly continuous
with a modulus of continuity ω : [0,∞) → R, which is continuous, increasing, ω(0) = 0 and

sup
t>0

ω(2t)
ω(t)

<∞. (1.12)

The result is as follows:

Theorem 2. Let the integrand of (1.1), F : R
N×n → R be a C2 function, Ω ⊂ R

n be open and bounded and
u ∈ W1,p(Ω,RN ) 1 ≤ p <∞ be an extremal of (1.1) with strong positive second variation: for some δs > 0 and
all ϕ ∈ W1BMO(Rn,RN ) ∩ W1,1

0 (Ω,RN ),∫
Ω

F ′(∇u)[∇ϕ] = 0 (1.13)∫
Ω

F ′′(∇u)[∇ϕ,∇ϕ] ≥ δs

∫
Ω

|∇ϕ|2. (1.14)

Further assume
|F ′′(ξ) − F ′′(η)| ≤ ω(|ξ − η|) (1.15)

for all ξ, η ∈ R
N×n. Then there exists a δ∗(n,N, c, q) > 0 such that∫

Ω

F (∇u+ ∇ϕ) ≥
∫

Ω

F (∇u)

holds for all ϕ ∈ W1BMO(Rn,RN ) ∩ W1,1
0 (Ω,RN ), with ‖∇ϕ‖BMO(Rn,RN ) ≤ δ∗.
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Remark 2.
(i) The space W1BMO(Rn,RN ) ∩ W1,1

0 (Ω,RN ) is exactly the space of W1BMO(Rn,RN ) functions f , for
which f and ∇f are extended by 0 outside of Ω.

(ii) Beside excluding exponential growth of ω the doubling condition also excludes certain classes of piece-
wise polynomial growth. However we can accommodate the subclass of piecewise polynomials ω (not
necessarily increasing) that do not satisfy (1.12) but instead satisfy

ω̃(t) := sup
s≥1

(
s−k sup

r≤st
ω(r)

)
<∞

for some k > 0 and all t > 0. In this case one may easily show that ω(t) ≤ ω̃(t) and ω̃(αt) ≤ αkω̃(t) for
α ≥ 0. Thus we can replace ω with ω̃ in the proof of the theorem.

Finally this straight forward corollary to the above theorem gives the sufficiency conditions for non-Lipschitz
extremals of I[·] to be partially regular.

Corollary 1.2. Let the integrand of I[·], F : R
N×n → R be C2, Ω ⊂ R

n open and bounded. Let u ∈ W1,p(Ω,RN ),
1 ≤ p < ∞ be an extremal of I[·] with strongly positive second variation such that for some δs > 0 and all
ϕ ∈ W1BMO(Rn,RN ) ∩ W1,1

0 (Ω,RN ) we have (1.13) and (1.14). Suppose also that we have

|F ′′(ξ) − F ′′(η)| ≤ ω(|ξ − η|) (1.16)

such that F satisfies (H1)–(H3). Then u is partially regular in the sense of Theorem 1 provided ∇u satisfies the
regularity condition (1.4) with δ = δ∗ where δ∗ is given in Theorem 2.

Remark 3. In the case of p = ∞, F ′′ does not need to satisfy (1.16), see Theorem 6.1 of [15].

2. Preliminaries

We remind the reader of some well known relationships between Morrey, Campanato and BMO spaces
important for the proof of our result (for further reading see [11], Sects. 2.3 and 2.4). The following lemma
provides the inequality between Morrey space norms (Campanato space semi-norms) of different exponents and
is easily derived with Hölders inequality:

Lemma 2.1 (Morrey-Campanato embeddings). Let Ω ⊂ R
n be open and bounded, 1 ≤ p ≤ q < ∞ and

n−μ
p − n−ν

q ≥ 0 then Lq,ν(Ω) is continuously embedded in Lp,μ(Ω) and Lq,ν(Ω) is continuously embedded in
Lp,μ(Ω) with

‖f‖p,μ,Ω ≤ diam(Ω)
n−μ

p −n−ν
q ‖f‖q,ν,Ω, f ∈ Lq,ν(Ω)

and
[f ]p,μ,Ω ≤ diam(Ω)

n−μ
p −n−ν

q [f ]q,ν,Ω, f ∈ Lq,ν(Ω) (2.1)
respectively.

The next lemma summarises the relationships between Campanato and BMO spaces:

Lemma 2.2 (Campanato-BMO Isometry). Let 1 ≤ p <∞:
(i) For general Ω open and bounded in R

n, Lp,n(Ω) is continuously embedded in BMO(Ω).
(ii) If Ω = B0 where B0 is an arbitrary ball in R

n, Lp,n(Ω) is isomorphic to BMO(Ω).

Proof. Given the open bounded set Ω ⊂ R
n, it follows from Definitions 1 and 2 and Lemma 2.1 that

[f ]∗,Ω ≤ 1
|B1| [f ]1,n,Ω ≤ 1

|B1| [f ]p,n,Ω
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for f ∈ Lp,n(Ω) proving (i). Given

|B1|
(

1
2
r

)n

≤ |B0 ∩B|
for B of radius 0 < r ≤ diam(B0), centre x0 ∈ B0, it is easily shown that

1
rn

∫
B0∩B

|f − fB0∩B|p ≤ 2p+n|B1|−
∫

B

|f − fB|p, r > 0.

Thus part (ii) follows from the inequality, bounding Lp(B,RN×n) by BMO(B0,R
N×n),

−
∫

B

|f − fB|p ≤ c[f ]p∗,B0
(2.2)

for all B ⊂ B0. This inequality can be shown with a well known argument, reproduced here for the convenience
of the reader, that uses the celebrated result of John and Nirenberg [14]. This result states that for every
f ∈ BMO(B0) and σ > 0 there exist positive constants A and α that are independent of f and σ such that

|λσ,B | ≤ A exp
(
− ασ

[f ]∗,B0

)
|B|,

where λσ,B := {x ∈ B : |f − fB| > σ}. Given this we have by standard formula for integrals in terms of
distribution functions ∫

B

|f − fB|p = p

∫ ∞

0

σp−1|λσ,B|dσ

≤ pA

∫ ∞

0

σp−1 exp
(
− ασ

[f ]∗,B0

)
|B|dσ

= A ·
(

[f ]∗,B0)

α

)p

|B| · p
∫ ∞

0

tp−1e−tdt

≤ c∗|B|[f ]∗,B0 ,

here the improper integral of the penultimate estimate is equal to the Gamma function of p. Thus c∗ is dependent
on p, α and A proving (2.2). �

As in [5] we will use the properties of V highlighted in the following lemma. The lemma is proved in [6], for
1 < p < 2.

Lemma 2.3. Let 1 < p < 2 and V : R
K×k → R

K×k. Then, for any η, ξ ∈ R
K×k, t > 0:

(i) 2
p−2
4 min{|ξ|, |ξ| p

2 } ≤ |V (ξ)| ≤ min{|ξ|, |ξ| p
2 };

(ii) |V (tξ)| ≤ max{t, t p
2 }|V (ξ)|;

(iii) |V (ξ + η)| ≤ 2
p
2 [|V (ξ)| + |V (η)|];

(iv) p
2 (1 + |ξ|2 + |η|2) (p−2)

4 |ξ − η| ≤ |V (ξ) − V (η)| ≤ c(1 + |ξ|2 + |η|2) (p−2)
4 |ξ − η|;

(v) |V (ξ) − V (η)| ≤ c|V (ξ − η)|;
(vi) For each m > 0 there exists a cm <∞ such that

|V (ξ − η)| ≤ cM |V (ξ) − V (η)| if |η| ≤M

where c depends on k and p and cM on M and p.

Again following [5] we will use the extension of the theory of linear elliptic systems with weak solutions in
W1,2(Ω,RN ) to weak solutions in W1,1(Ω,RN ), observed in [6]. For the statement of the lemma we use the
summation convention.



118 T.J. DODD

Lemma 2.4. Suppose u ∈ W1,1(Ω,RN ) is a solution to the variational system∫
Ω

Aαβ
ij Dβu

jDαϕ
i dx = 0, ∀ϕ ∈ C1

0(Ω,R
N )

with constants Aαβ
ij satisfying the strong Legendre-Hadamard condition

Aαβ
ij ξ

iξjηαηβ ≥ ν|ξ|2|η|2 (ξ ∈ R
N , η ∈ R

n).

Then u ∈ C∞(Ω,RN ) and for any B(x0, R) ⊂ Ω and 0 < ρ ≤ R ≤ dist(x0, ∂Ω) the following estimates hold∫
B(x0,ρ)

|∇u− (∇u)x0,ρ|2 dx ≤ c
( ρ
R

)n+2
∫

B(x0,R)

|∇u− (∇u)x0,R|2 dx (2.3)

sup
B(x0,R/2)

|∇u| ≤ c−
∫

B(x0,R)

|∇u| dx, (2.4)

where c is dependent only on n, N , p, ν and max{|Aαβ
ij |}.

Proof. From [6], with (2.3) following from [11], Section 10.2, Theorem 10.7. �

3. Proof of Theorem 1

The proof is based on a blow-up technique originally developed by De Giorgi and Almgren in the context of
geometric measure theory, see [11], Section 9.6, and the references therein, and adapted to the setting of partial
regularity for elliptic systems by Giusti and Miranda [12]. Specifically once the following proposition is proved
partial regularity follows.

Proposition 3.1. For every L > 0, there exists C = C(L) > 0 with the property that for each τ ∈ (0, 1
2 ), there

exists ε = ε(L, τ) > 0 such that for all B(x, r) ⊂ Ω with |(∇u)x,r| ≤ L and E(x, r) < ε, we have

E(x, τr) ≤ C(L)τ2E(x, r).

The proof is indirect and was originally adapted for minimisers of the quasiconvex integral I[·] by Evans [8].
The basic idea is to assume blow up of the solution for a sequence of small balls around x and study the conver-
gence in the unit ball of the sequence of solutions for suitably re-scaled functionals so to obtain a contradiction.
This argument involves three main steps. In Step 1 we show that the limit of the blow up sequence of solutions
converges weakly in W1,p(Ω,RN ) for 1 < p < 2 and W1,2(Ω,RN ) for p ≥ 2. In Step 2 we show that the weak
limit of these solutions satisfies a linear uniformly elliptic system with constant coefficients. Finally in Step 3,
we show the strong convergence of the sequence of solutions to obtain the contradiction. To show this we use the
standard construction of comparison maps from a suitably rescaled version of the minimiser u ∈ W1,p(Ω), and
thus must prove that these maps satisfy the Morrey-Campanato local minimiser condition (1.3). It is in showing
that the local minimiser condition is satisfied, Lemma 3.3, that it is necessary to introduce the condition (1.9),
a generalisation of the condition for Lipschitz maps introduced in [15]. Having verified this we can proceed
with the methods of [5,15] without modification, deriving a pre-Caccioppoli inequality and using the measure
theoretic argument therein to obtain our result.

It is well known (see [6] and the reference therein) that given (H2) and (H3) control on F ′ follows and which
by simple manipulation implies

|F ′(ξ)| ≤ c0(1 + |ξ|2) p−1
2 (3.1)

for p > 1. In the sequel we will use the following lemma, a consolidation of Lemma 3.3 [6] and Lemma 2.3 [2]
for functions satisfying the above estimate. Note that Lemma 3.3 of [6] is proved in the same way as Lemma 2.3
of [2].
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Lemma 3.2. Let F : R
K×k → R be a function of class C2 with

|F ′(ξ)| ≤ c0(1 + |ξ|2) p−1
2 , p ≥ 1.

Then for any λ > 0 and ξ0 ∈ R
K×k with |ξ0| ≤ L, setting

Fξ0,λ(ξ) = λ−2 [F (ξ0 + λξ) − F (ξ0) − λF ′(ξ0)ξ] (3.2)

there exist constants c1 and c2 dependent only on c0, L, p such that for p ≥ 1,

|Fξ0,λ(ξ)| ≤ min
{
c1(1 + |λξ|2) p−2

2 |ξ|2, c2(|ξ|2 + λp−2|ξ|p)
}
· (3.3)

Proof of Proposition 3.1. Suppose the proposition is false. Then there exists an L > 0 and a sequence of balls
{B(xj , rj)} with the properties that

|(∇u)xj ,rj | ≤ L for all j,
and

E(xj , rj) → 0 as j → ∞
such that for every C > 0 there exists a τ ∈ (0, 1

2 ) with

E(xj , rjτ) > Cτ2E(xj , rj) for all j. (3.4)

We look for a C that contradicts this.

Step 1: We suppose the sequence of balls satisfies the above with vanishing radii, rj → 0 as j → ∞. We rescale
the minimiser on each ball to a sequence of maps, uj, on the unit ball in the usual way

uj(y) :=
u(xj + rjy) − u(xj) − ξjrjy

λjrj
, y ∈ B1

where the scaling is given by λ2
j := E(xj , rj), and ξj := (∇u)xj ,rj .

By assumption |ξj | ≤ L, so for a subsequence (for convenience not relabeled)

ξj → ξ∞ as j → ∞.

From the definition of uj, (uj)0,1 = 0, (∇uj)0,1 = 0, so for p ≥ 2

−
∫

B1

(
|∇uj |2 + λp−2

j |∇uj |p
)
≤ 1 (3.5)

and for 1 < p < 2, utilising part (vi) of Lemma 2.3,

−
∫

B1

|V (∇uj)|2 ≤ c0(p, L)
1
λ2

j

−
∫

Bj

|V (∇u) − V ((∇u)xj ,rj )|2

= c(p, L). (3.6)

This implies
‖∇uj‖Ls(p)(B1,RN×n) < cB(p, L), p > 1 (3.7)

where s(p) := min{2, p}. Note that part (i) of Lemma 2.3 is used in the derivation for 1 < p < 2. Thus by weak
compactness (3.7) implies for a further subsequence (again not relabeled)

∇uj ⇀ ∇u in Ls(p)(B1,R
N×n). (3.8)



120 T.J. DODD

Now setting Fj := Fξj ,λj in (3.2) of Lemma 3.2, so that Fj satisfies the associated growth estimates, we replace
the integral (1.1) with the sequence of integrals

Ij [u] =
∫

B1

Fj(∇u). (3.9)

It follows using strong quasiconvexity of F that each Fj satisfies a quasi-convexity condition

ν

∫
B1

(|∇ϕ|2 + λp−2
j |∇ϕ|p) ≤

∫
B1

(Fj(ξ + ∇ϕ) − Fj(ξ))

for all ϕ ∈ W1,p
0 (B1,R

N ) when p ≥ 2 and

ν

∫
B1

(1 + |ξj + λjξ|2 + |λj∇ϕ|2)
p−2
2 |∇ϕ|2 ≤

∫
B1

(Fj(ξ + ∇ϕ) − Fj(ξ)) (3.10)

for all ϕ ∈ W1,p
0 (B1,R

N ) when 1 < p < 2. Finally using the local minimality of u it follows that uj is a
W1X-local minimiser of Ij defined at (3.9). Precisely, Ij [uj] ≤ Ij [u] whenever

‖∇u−∇uj‖ ≤ δj :=

⎧⎪⎪⎨
⎪⎪⎩

δ

λjr
n−μ

p
j

, X = Lp,μ(B1), μ ≤ n

δ
λj
, X = BMO(B1),

(3.11)

with
u ∈ uj + W1,p

0 (B1,R
N ). (3.12)

Step 2 (u solves linear elliptic system): We wish to show that the limit u satisfies

∫
B1

F ′′(ξ∞) [∇u,∇ϕ] = 0, ∀ϕ ∈ C1
0(Ω,R

N ) (3.13)

since it then follows (given (H1) and (H3)) by Lemma 2.4 of the preliminaries that u is C∞ and

−
∫

B(0,τ)

|∇u− (∇u)0,τ |2dy ≤ C∗τ2 (p > 1). (3.14)

From this we may use part (i) of Lemma 2.3 to attain

−
∫

B(0,τ)

|V (∇u− (∇u)0,τ )|2dy ≤ C∗τ2 (3.15)

for the case 1 < p < 2. The proof of (3.13) is given in [5] for 1 < p < 2 and [15] for p ≥ 2 and remains unchanged
in this case. It only uses the following properties: that u ∈ W1,p(Ω,RN ) is an extremal of I; F ∈ C2, (H1),
and satisfies growth condition (3.1). We do not include the proof for brevity, but remark that the result follows
from these properties by application of Lemma 3.2 for the growth estimate of Fj and the bound (3.7) of Step 1.

Having shown (3.13) we note as a consequence of (H3) and the continuity of F , (H1), that F is strongly rank-
1-convex, i.e. F satisfies the strong Legendre-Hadamard condition, F ′′(ξ∞)[η, η] ≥ 2ν|η|2 with rank(η) ≤ 1.
Further by the continuity of F ′′, (H1), we have |F ′′(ξ∞)| ≤ M(L) where M(L) := sup|ξ|≤L |F ′′(ξ)|. Thus the
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coefficients of the Legendre-Hadamard condition are finite (and constant) and we may apply Lemma 2.4 to the
system (3.13), obtaining immediately that u ∈ C∞(B1,R

N), and by (2.3) and (2.4) of the same lemma,

−
∫

B(0,τ)

|∇u − (∇u)τ |2dy ≤ cτ2−
∫

B(0, 1
2 )

|∇u− (∇u) 1
2
|2

≤ cτ2−
∫

B(0, 1
2 )

|∇u|2

≤ cτ2

(
sup

B(0, 12 )

|∇u|
)2

≤ c1τ
2

(
−
∫

B(0,1)

|∇u|s(p)

) 2
s(p)

.

Finally, by ‖∇uj‖Ls(p)(B1,RN×n) < cB for all j, inequality (3.14) follows. Hence we have the estimate (3.15) for
a constant C∗ that only depends on ν and L (and n, N , F ′′).

As we mentioned earlier we are looking for a constant C that contradicts (3.4). By part (v) of Lemma 2.3
and the definition of uj we find,

lim sup
j→∞

E(xj , τrj)
λ2

j

≤ RHS (3.16)

where

RHS ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim sup
j→∞

c

λ2
j

−
∫

B(0,τ)

|V (λj(∇uj − (∇uj)0,τ ))|2 1 < p < 2

lim sup
j→∞

c−
∫

B(0,τ)

(
|∇uj − (∇uj)0,τ |2 p ≥ 2

+ λp−2
j |∇uj − (∇uj)0,τ |p

)
.

We will show at the end of Step 3, with a simple argument, that if ∇uj converges strongly in Ls(p)(B1,R
N×n),

(3.15) together with (3.16) gives the desired contradiction (recall λ2
j := E(xj , rj)). Therefore our third and final

step in proving Proposition 3.1 is to show suitable strong convergence of ∇uj in Ls(p)(B1,R
N×n) as defined

below.

Step 3 (Strong convergence of uj): In this step we will show that, for every σ < 1:

lim
j→∞

∫
B(0,σ)

1
λ2

j

|V (λj(∇uj −∇u))|2 = 0 (3.17)

for 1 < p < 2 and similarly

lim
j→∞

∫
B(0,σ)

(
|∇uj −∇u|2 + λp−2

j |∇uj −∇u|p
)

= 0 (3.18)

for p ≥ 2. The standard way to obtain (3.17)-(3.18) for global minimisers is by use of a Caccioppoli inequality.
In the local minimiser case we can not use the standard method to obtain an inequality of full Caccioppoli type
(see [15]). Instead we stop short of deriving the full inequality and use direct techniques introduced in [15] and
modified for 1 < p < 2 in [5] to complete our proof. This ‘pre-Caccioppoli’ inequality is proved as in the global
minimiser case with the construction of suitable comparison maps.
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Fix α ∈ (0, 1), B(x0, r) ⊂ B(0, 1) and let aj : R
n → R

N be the affine map such that ∇aj = (∇uj)x0,r and
(uj − aj)x0,r = 0. It follows from (3.7) that there exists a constant M such that

|∇aj | ≤M, for all j. (3.19)

Now let ρ : R
n → R be a Lipschitz cut off function satisfying 1B(x0,αr) ≤ ρ ≤ 1B(x0,r) and |∇ρ| ≤ 2

(1−α)r .
The standard comparison maps ϕj and ψj are defined by

ϕj := ρ(uj − aj) and ψj := (1 − ρ)(uj − aj).

We prove that u := aj + ψj satisfies the local minimiser condition (3.11) according to the following lemma:

Lemma 3.3. Define ψj as above and Ij as in (3.9). Let Bj = B(xj , rj) and assume that

lim sup
j→∞

[∇u]p,μ,Bj
< δ (3.20)

where δ > 0 is given by (1.9). Then if μ ≤ n, u := aj + ψj satisfies the W1Lp,μ-local minimiser condition i.e.
condition (3.11) with X = W1Lp,μ(B1), so that Ij [uj] ≤ Ij [aj + ψj ].

Corollary 3.4. Let
lim sup

j→∞
[∇u]∗,Bj < δ.

Then u := aj +ψj satisfies the W1BMO-local minimiser condition i.e. condition (3.11) with X = W1BMO(B1),
so that Ij [uj ] ≤ Ij [aj + ψj ].

Proof. First note uj − aj = ϕj + ψj , thus

[∇u−∇uj]p,μ,B1 = [∇ϕj ]p,μ,B1

= [ρ(∇uj −∇aj) + ∇ρ⊗ (uj − aj)]p,μ,B1 .

For μ ≤ n,

[∇uj −∇aj ]p,μ,B1 = sup
x∈B1

R∈(0,2)

1
λj

(
rμ
j

rn
j R

μ

∫
B(x,R)

|∇u− (∇u)B(x,R)|p
) 1

p

. (3.21)

Therefore it follows that

[∇u−∇uj ]p,μ,B1 ≤ 1

λjr
n−μ

p

j

(
[∇u]p,μ,Bj + Rj [u, α, r]

)
, (3.22)

where

Rj [u, α, r] :=
λjr

n−μ
p

j

(1 − α)r
[1B(x0,r)(uj − aj)]p,μ,B1 . (3.23)

Clearly the first term in (3.22) is bounded by δ/(λjr
n−μ

p

j ) for sufficiently large j ≥ J as a result of (3.20). To
show that u satisfies (3.11) we must show that Rj [u, α, r] → 0 as j → ∞ for arbitrarily fixed α, r ∈ (0, 1).
Although it is only necessary in the proof of Theorem 1 for a subsequence of {Rj} to converge to zero, we prove
that the full sequence converges to zero in the case μ < n.
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Case μ < n: For convenience we rewrite the sequence of functionals Rj as the functional Rα,r of the sequence
of functions f r

j i.e. we set Rα,r[f r
j ] := Rj [u, α, r] where f r

j is given by

f r
j := λp

j r
n−μ
j 1B(x0,r)(uj − aj). (3.24)

Our strategy is to show first that {f r
j } is bounded in W1,p(B1) as are all subsequences (it is actually uniformly

bounded in r but this is not important here). Then show the full sequence {f r
j } converges strongly to zero in

Lp(B1), 1 < p < ∞. We do this by using Rellich-Kondrackov to show that given any subsequence of {f r
j } a

further subsequence converges strongly to zero in Lp(B1), 1 < p <∞. Following from the boundedness of {f r
j }

in W1,p(B1) we then show that {f r
j } is also bounded in W1Lp,μ(B1). This allows the use of strong convergence

to zero in Lp(B1) to prove [f r
j ]1,p,μ → 0 for the full sequence {f r

j }.
In particular for the first step using (uj − aj)B(x0,r) = 0 and (3.20), it follows by Poincarés inequality on

balls that {f r
j } and any subsequence is bounded in W1,p(B1) for 1 < p <∞. Thus for any subsequence {f r

jk
},

using λj∇uj → 0 Ln a.e. and once again (uj − aj)B(x0,r) = 0, we have by Rellich-Kondrachov

f r
jk

→ 0 in Lp(B1), 1 < p <∞

for a further (suitably relabeled) subsequence. Therefore the full sequence {f r
j } converges strongly to zero in

Lp(B1), 1 < p < ∞. Next, given boundedness of the full sequence {f r
j } in W1,p(B1) we use the following

estimate derived from Poincarés inequality and the Morrey-Campanato inclusion (1.6) applicable to bounded
domains Ω without external cusps and valid for Morrey-Campanato exponent 0 < μ < n,

[f r
j ]p,μ,Ω ≤

⎧⎪⎨
⎪⎩

c(p, μ,Ω)‖∇f r
j ‖p,Ω, μ ≤ p

c(n, p, μ,Ω)
(
|Ω|−μ

np ‖∇f r
j ‖p,Ω + [∇f r

j ]p,μ−p,Ω

)
, μ > p.

(3.25)

This gives us boundedness of {f r
j } in W1Lp,μ(B1) since

[∇f r
j ]p,μ,B1 ≤ [∇u]p,μ,Bj

and
[∇f r

j ]p,μ−p,B1 ≤ c[∇f r
j ]p,μ,B1 , μ > p

by the Campanato embedding (2.1). Finally to prove [f r
j ]p,μ,B1 → 0 we split the family of intersections of

balls with B1 over which we take the supremum in the semi-norm [·]p,μ,B1 into the family of balls with radius
s ∈ (S, diam(B1)) and s ∈ (0, S). We deal with these two cases separately. In the first case diam(B1) > s > S,
by strong convergence of {f r

j } to zero in Lp(B1),

s−μ

∫
B1(x,s)

|f r
j − (f r

j )x,r|p < c(S)
∫

B1(x,s)

|f r
j − (f r

j )x,r|p

< 2p−1c(S)
(∫

B1

|f r
j |p +

∫
B1

|f r
j |p
)

→ 0

as j → ∞. For the second case the boundedness of {f r
j } in W1Lp,μ(B1) allows us to write the following. Given

ε > 0, take S such that cS < ε where c is a constant defined according to the inequality
∫

B1(x,s)

|f r
j − (f r

j )x,s|p ≤ csp+μ.
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Using Poincarés inequality for balls the above inequality follows from the Morrey-Campanato isomorphism (on
balls and their intersections) and the boundedness of {f r

j } in W1Lp,μ(B1). Hence given any ε > 0 there exists
a J such that for j ≥ J

[f r
j ]p,μ,B1 < ε

for the full sequence defined in (3.24). We remark that J is independent of r since convergence is uniform
in r. However this is not the case for Rα,r[f r

j ] which converges to zero for each pair (α, r) as required, but not
uniformly in either α or r.

Case μ = n: By the Campanato-BMO isometry, Lemma 2.1, there exists a c ∈ [|B1|, 2p+n|B1|c∗] such that

[uj − aj ]p,n,B1 = c[uj − aj ]∗,B1 . (3.26)

We estimate the above semi-norm using the L∞ norm,

[uj − aj ]∗,B1 ≤ sup
B⊂B1

(
ess . sup

x∈B
|(uj − aj)(x) − (uj − aj)B |

)
. (3.27)

To make sense of this estimate we use the fact that W1BMO(Ω) ↪→ W1,q(Ω) for all 1 ≤ q <∞ and general open
and bounded Ω. We set q > n, then make use of Morrey’s inequality. Our aim is to show that the sequence{

ess . sup
x∈B1

|λj(uj − aj)(x)|
}

(3.28)

converges to zero as j → ∞ (note that direct estimation of (3.27) results in supj [uj −aj ]∗,B1 ≤ ∞, not sufficient
to show λj [uj − aj]∗,B1 → 0). We start by showing that the sequence is bounded. By Morrey’s inequality

|(uj − aj)(x) − (uj − aj)(y)| ≤ cRx,y

(
−
∫

B(0,Rx,y)

|∇uj −∇aj |q
) 1

q

(3.29)

for Ln-a.e. x, y ∈ B1 and every Rx,y ≥ 1. The integral on the right may be estimated as follows

(
−
∫

B1

|∇uj −∇aj |q
) 1

q ≤ |(∇uj −∇aj)B1 | +
(
−
∫

B1

|∇uj −∇aj − (∇uj −∇aj)B1 |q
) 1

q

.

By noting that (∇uj)B1 = 0 and |∇aj | < M we see immediately that the first term on the right is uniformly
bounded. For the remainder we apply the equality of (3.21) for change of variables. Thus

(
−
∫

B1

|∇uj −∇aj |q
) 1

q ≤M + [∇uj −∇aj ]p,n,Bj

= M +
1
λj

[∇u]p,n,Bj . (3.30)

Therefore, given that we can extend ∇uj − ∇aj = 0 off Bj , choosing Rx,y = 2|x − y| (so that B(0, Rx,y) ⊂
B(0, 4)), we find that λj(u∗j − aj) where u∗j denotes the precise representative of uj , has a uniformly bounded
(1 − n

q )th-Hölder semi-norm over B1. Thus by the implied continuity of u∗j there exists for each component

(uj − aj)(k), k = 1, . . . , N , a point yk ∈ B1 such that (u∗j − aj)(k)(yk) = (u∗j − aj)
(k)
x0,r = (uj − aj)

(k)
x0,r = 0 and so

|(u∗j − aj)(k)(x)| ≤ |(u∗j − aj)(x) − (u∗j − aj)(yk)|. (3.31)

Therefore by taking Rx,y = 1 and substituting u∗j for uj in (3.29) it follows from (3.31) that the sequence
{λj(u∗j − aj)(k)} is bounded uniformly on B1 for each k = 1, . . . , N . Thus the whole sequence (3.28) is bounded
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as required. It now follows that λj(u∗j − aj) has a uniformly bounded (1 − n
q )th-Hölder norm over B1 and

thus the sequence {λj(u∗j − aj)} is Hölder equicontinuous on B1. Therefore {λj(u∗j − aj)} ⊂ C(B1) and by
its boundedness can uniquely be extended to C(B1) as can any subsequence {λjk

(u∗jk
− ajk

)}. Hence, after
extracting a further subsequence if required, by Arzel-Ascoli combined with the properties λj∇uj → 0 Ln-a.e.
and (uj − aj)x0,r = 0,

λjk
(u∗jk

− ajk
) → 0

uniformly on B1. This means, after extracting to a subsequence where necessary, that (3.28) tends to zero as
required and Rjk

[u, r, α] → 0 then follows from (3.27). �

Now it is straight forward to prove the Corollary to Lemma 3.3:

Proof of Corollary 3.4. From the proof of Lemma 3.3 it is clear, as a result of equivalence of Lp,n and BMO
on B1 and in particular equivalence relation (3.26), that we may replace [·]p,n,Bj and [·]p,n,B1 semi-norms with
[·]∗,Bj and [·]∗,B1 semi-norms in the proof of the lemma. �

Using Lemma 3.3/Corollary 3.4 we can now follow the method of [5] and derive an inequality of pre-
Caccioppoli type presented here for 1 < p < 2:

∫
B(x0,αr)

|V (λj(∇uj −∇u))|2 ≤ θ

∫
B(x0,r)

|V (λj(∇uj −∇u))|2 + c

∫
B(x0,r)

|V (λj(∇u−∇aj))|2

+ c

∫
B(x0,r)

|V (λj(uj − aj))|2
(1 − α)2r2

+ c

∫
B(x0,r)\B(x0,αr)

|V (λj(∇aj))|2 (3.32)

with θ < 1. In the case p ≥ 2 one simply replaces the function V (ξ) with |ξ|2 + |ξ|p. We summarise the proof
of (3.32) given in [5,6]. To start we estimate

1
λ2

j

∫
B(x0,αr)

|V (λj(∇uj −∇aj))|2 =
∫

B(x0,αr)

(1 + |λj∇ϕj |2)
p−2
2 |∇ϕj |2

in terms of Fj using quasiconvexity of Fj , (3.10). Given |ξj | ≤ L and (3.19) for all j, there exists a constant cJ > 0
dependent only on p, L and ν of (3.10) such that for j ≥ J (J sufficiently large), 1 ≤ cJν(1+ |ξj +λj∇aj |2) p−2

2 .
Thus

1
λ2

j

∫
B(x0,αr)

|V (λj(∇uj −∇aj))|2 ≤ cJν

∫
B(x0,r)

(1 + |ξj + λj∇aj |2 + |λj∇ϕj |2)
p−2
2 |∇ϕj |2

≤ cJ

∫
B(x0,r)

(Fj(∇aj + ∇ϕj) − Fj(∇aj)). (3.33)

To guarantee θ < 1 in (3.32) we estimate the right hand integral in such a way that we may remove B(x0, αr)
from the domain of integration B(x0, r). By construction, ∇aj + ∇ϕj = ∇uj on B(x0, αr), thus

∫
B(x0,r)

(Fj(∇aj + ∇ϕj) − Fj(∇aj)) ≤
∫

B(x0,r)\B(x0,αr)

(Fj(∇aj + ∇ϕj) − Fj(∇uj))

+
∫

B(x0,r)

(Fj(∇uj) − Fj(∇aj)).
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Now given Lemma 3.3/Corollary 3.4 (implying that for sufficiently large j, Ij [uj ] ≤ Ij [u] where u := aj + ψj)
and using ∇ψj = 0 on B(x0, αr) we obtain

∫
B(x0,r)

(Fj(∇aj + ∇ϕj) − Fj(∇aj)) ≤
∫

B(x0,r)\B(x0,αr)

(Fj(∇aj + ∇ϕj) − Fj(∇uj))

+
∫

B(x0,r)\B(x0,αr)

(Fj(∇aj + ∇ψj) − Fj(∇aj)).

Next by (3.3) of Lemma 3.2 and properties of V , Lemma 2.3 (and |∇ρ| ≤ 2/(1 − α)r)

∫
B(x0,r)

(Fj(∇aj + ∇ϕj) − Fj(∇aj)) ≤

c(c1, p)
λ2

j

∫
B(x0,r)\B(x0,αr)

(
|V (λj(∇uj −∇aj))|2 +

∣∣∣∣V (λj(uj − aj))
(1 − α)r

∣∣∣∣
2

+ |V (λj∇aj)|2
)
. (3.34)

Finally to obtain (3.32) with θ < 1 we first add and subtract ∇u within the first instance of V on the right
hand side of (3.34). Thus using Lemma 2.3, combining the result with (3.33) and then adding

1
λ2

j

∫
B(x0,αr)

|V (λj(∇u−∇aj))|2

to both sides, we obtain

1
λ2

j

∫
B(x0,αr)

(
|V (λj(∇uj −∇aj))|2 + |V (λj(∇u−∇aj))|2

)
≤

c

λ2
j

∫
B(x0,r)\B(x0,αr)

(|V (λj(∇u−∇aj))|2 + |V (λj(∇uj −∇u))|2)

+
c

λ2
j

∫
B(x0,r)\B(x0,αr)

(∣∣∣∣V (λj(uj − aj))
(1 − α)r

∣∣∣∣
2

+ |V (λj∇aj)|2
)

(3.35)

where the constant c depends only on p, c1 and cJ . Now using Lemma 2.3

1
λ2

j

∫
B(x0,αr)

|V (λj(∇uj −∇u))|2 ≤ 2p+1

λ2
j

∫
B(x0,αr)

(|V (λj(∇uj −∇aj))|2 + |V (λj(∇u−∇aj))|2
)
.

Thus by multiplying (3.35) through by 2p+1 and combining with the above we finalise the calculation by filling
the hole. I.e. by adding

c̃

λ2
j

∫
B(x0,αr)

|V (λj(∇uj −∇u))|2

to both sides (where c̃ := 2p+1 · c). Hence obtaining (3.32) with θ = c̃
c̃+1 .

Weak Convergence of measures: We follow precisely the argument of [5] for 1 < p < 2 and [15] for the case
p ≥ 2. Once again we reproduce it here for the convenience of the reader. In the case 1 < p < 2 [5] required a
Sobolev-Poincaré type inequality for the auxiliary function V as introduced in [6]. We present a refined version
of this inequality proved in [7]:



AN A PRIORI CAMPANATO TYPE REGULARITY CONDITION FOR LOCAL MINIMISERS 127

Lemma 3.5. Let p ∈ (1, 2), B(x0, r) ⊂ R
n with n ≥ 2 and set p# := 2n

n−p . Then

(
−
∫

B(x0,r)

∣∣∣V (u− ux0,r

r

)∣∣∣p#

dx

) 1
p#

≤ c

(
−
∫

B(x0,r)

|V (∇u)|2 dx

) 1
2

(3.36)

for any u ∈ W1,p(B(x0, r),RN ) and where c depends only on n, N , and p.

Unlike the inequality of [6], the radius of the ball is not increased on the right hand side but is kept the same.
Note that this refinement marginally simplifies, but is not critical for, the proceeding proof.

First we claim that
1
λ2

j

|V (λj(∇uj −∇u))|2Ln ⇀ μ in C0(B)∗ (3.37)

for 1 < p < 2 and (
|∇uj −∇u|2 + λp−2

j |∇uj −∇u|p
)
Ln ⇀ μ in C0(B)∗ (3.38)

for p ≥ 2 where μ is a Radon measure.
As in [5], this claim follows from the bound imposed on the sequence of measures in (3.37) by

∫
B

1
λ2

j

|V (λj(∇uj −∇u))|2 ≤ 2p+1c0(p, L)|B| −
∫

Bj

1
λ2

j

|V (∇u) − V ((∇u)xj ,rj )|2 + 2p+1

∫
B

|∇u|2

and estimate (3.6). Similarly the bound for the sequence in (3.38) follows from (3.5).
It is now straightforward to show that limit form of the pre-Caccioppoli inequality matches that of [15]. For

1 < p < 2 using properties of V as in [5]

lim
j→∞

1
λ2

j

∫
B(x0,r)

|V (λj(∇u −∇aj))|2 ≤
∫

B(x0,r)

|∇u−∇a|2

= ε1(r)rn

lim
j→∞

1
λ2

j

∫
B(x0,r)\B(x0,αr)

|V (λj∇aj)|2 ≤ c|∇a|2rn(1 − α)n

= ε2(r)rn(1 − α)n.

The final estimate follows from the Sobolev Poincaré inequality (3.36) of Lemma 3.5, Rellich-Kondrachov
compactness theorem and Vitali’s lemma.

From Sobolev Poincaré inequality (3.36)

∫
B(x0,r)

∣∣∣∣ 1
λj
V (λj(uj − aj))

∣∣∣∣
p#

≤ c1

and since p# > 2, ∫
B(x0,r)

∣∣∣∣ 1
λj
V (λj(uj − aj))

∣∣∣∣
2

≤ c2.

Thus given 2n
n−p > 1, the sequence {vj} defined by

vj(x) :=
1
λj
V (λj(uj − aj))
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is equi-integrable. Now by Rellich-Kondrachov compactness theorem uj → u in L1(B1). Thus for a suitably
relabeled subsequence it follows from the definition of V that

vj(x) → (u− a)(x) for Ln-a.e. x ∈ B1.

Hence by Vitali’s lemma

lim
j→∞

1
λ2

j

∫
B(x0,r)

|V (λj(uj − aj))|2
(1 − α)2r2

=
1

(1 − α)2r2

∫
B(x0,r)

|u− a|2

= ε3(r)
1

(1 − α)2
rn

for a suitably relabeled subsequence, where

ε1 : =
1
rn

∫
B(x0,r)

|∇u−∇a|2,

ε2 : = c|∇a|2,
ε3 : =

1
rn+2

∫
B(x0,r)

|∇u−∇a|2.

If we make the transformation V (ξ) �→ |ξ|2 + |ξ|p it is easily verified that these limits hold for p ≥ 2. Thus by
the pre-Caccioppoli inequality (3.32)

μ(B[x0, αr]) ≤ θμ(B[x0, r]) +
(

ε3(r)
(1 − α)2

+ ε2(r)(1 − αn) + ε1(r)
)
rn

for p > 1, and following the direct methods of [5,15] we obtain

lim inf
r→0+

μ(B[x0, r])
rn

= 0.

Hence by Vitali’s covering theorem
μ(B[0, σ]) = 0

for each fixed σ ∈ (0, 1) implying (3.17) and (3.18), completing Step 3.
We finish by recalling the estimate (3.16) from which

lim
j→∞

E(xj , τrj)
λ2

j

≤ lim
j→∞

c

λ2
j

−
∫

B(0,τ)

[
|V (λj(∇uj−∇u))|2+|V (λj(∇u−(∇u)0,τ))|2+|V (λj((∇u)0,τ −(∇uj)0,τ ))|2

]

by (iii) of Lemma 2.3, and (a+ b)p ≤ 2p−1(ap + bp). Thus by (3.15), (3.17) and (i) of the same lemma

lim
j→∞

E(xj , τrj)
λ2

j

≤ C∗(p, L)τ2 + lim
j→∞

|(∇u)0,τ − (∇uj)0,τ |2. (3.39)

Similarly we show for p ≥ 2 that

lim
j→∞

E(xj , τrj)
λ2

j

≤ C∗(p, L)τ2 + lim
j→∞

(
|(∇u)0,τ − (∇uj)0,τ |2 + λp−2

j |(∇u)0,τ − (∇uj)0,τ |p
)
. (3.40)

Now since ∇uj ⇀ ∇u weakly in Ls(p)(B(0, 1),RN×n) (s(p) = min{2, p}) the right hand limits in (3.39) and (3.40)
are zero.
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Thus

lim
j→∞

E(xj , τrj)
λ2

j

≤ C∗(p, L)τ2

which contradicts (3.4) with CL = 2C∗(p, L). �

Having proved the proposition, Theorem 1 follows by well known arguments (see [11] and references therein).

4. Proof of Theorem 2

Following [15], we use Taylors formula together with (1.13) to obtain

∫
Ω

(
F (∇u+ ∇ϕ) − F (∇u)

)
=
∫

Ω

∫ 1

0

(1 − t)
(
F ′′(∇u+ t∇ϕ) − F ′′(∇u)

)
[∇ϕ,∇ϕ]dt

+
1
2

∫
Ω

F ′′(∇u)[∇ϕ,∇ϕ]. (4.1)

Thus by the uniform continuity condition (1.15) and positive second variation at u, (1.14), we have

∫
Ω

(F (∇u+ ∇ϕ) − F (∇u)) ≥ 1
2

∫
Rn

(
δ|∇ϕ|2 − ω(|∇ϕ|)|∇ϕ|2). (4.2)

Note that we have used the fact that ∇ϕ = 0 off Ω.
We next we use the Orlicz version of the inequality of Fefferman and Stein [9] derived in [15]. Noting that the

derivation does not require f to be bounded or have compact support in R
n we reproduce the relevant lemma

for the convenience of the reader, omitting those conditions that are not relevant here. First we introduce the
required notation.

The Hardy Littlewood and Fefferman-Stein maximal functions of f : R
n → R

N×n are respectively

f∗(x) = sup
{B:x∈B}

−
∫

B

|f(y)|dy

and

f#(x) = sup
{B:x∈B}

−
∫

B

|f(y) − fB|dy

where we have taken suprema over all open balls B ⊂ R
n containing x.

Lemma 4.1. Let Φ: [0,∞) → [0,∞) be an increasing and continuous function with Φ(0) = 0 and consider the
Borel map f : R

n → R
N×n then

∫
Rn

Φ(|f∗|) ≤ 5n

ε

∫
Rn

Φ
( |f#|

ε

)
+ 2 · 53nε

∫
Rn

Φ(5n · 2n+1|f∗|). (4.3)

Now returning to (4.2), by applying Lemma 4.1 to Φ(t) = ω(t)t2 with sufficiently small ε together with
condition (1.12), we have the following for some positive finite constant c∗∫

Ω

(F (∇u+ ∇ϕ) − F (∇u)) ≥ 1
2

∫
Rn

(
δ|∇ϕ|2 − c∗ω(|∇ϕ#|)|(∇ϕ)#|2). (4.4)
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Now as in [15] we remark that by the Hardy Littlewood-Wiener maximal inequality there exists a constant
c0(n,N) > 0 such that ∫

Rn

|∇ϕ|2 ≥ c0

∫
Rn

|(∇ϕ)∗|2

and since (∇ϕ)# ≤ 2(∇ϕ)∗ we have

∫
Ω

(F (∇u+ ∇ϕ) − F (∇u)) ≥ 1
2

∫
Rn

(
δc0
4

− c∗ω(|∇ϕ#|)
)
|(∇ϕ)#|2. (4.5)

The final integral is positive when

c∗ω(|∇ϕ#|) ≤ δc0
4

· (4.6)

It follows that integral is finite when

sup
Rn

|(∇ϕ)#| ≤ ω−1

(
δc0
4c∗

)
=: δ∗. (4.7)

�
Finally we prove Corollary 1.2 of Theorem 2. The proof is straight forward and requires one to take note of

the distinction between ‖ · ‖BMO and [·]∗,Ω. For f ∈ BMO(Ω,RN×n) we clearly have the inequality

[f ]∗,Ω ≤ ‖f‖BMO.

Obtaining a reverse inequality for functions of the type BMO(Rn,RN×n) restricted to zero off Ω, is not so easy
and depends on the boundary of Ω. Luckily the latter inequality is not required here.

Proof. By Theorem 2 we have ∇u ∈ W1,p(Ω,RN ) is a W1BMO-local minimiser of I[·] for all ϕ ∈ W1BMO(Rn,

R
N ) ∩ W1,1

0 (Ω,RN ) (for any 1 ≤ p < ∞) with ‖∇ϕ‖BMO ≤ δ∗. This implies [∇ϕ]∗,Ω ≤ δ∗ and therefore is
true for all ϕ ∈ W1BMO(Ω,RN ) ∩ W1,1

0 (Ω,RN ) with [∇ϕ]∗,Ω ≤ δ∗. Hence all conditions of Theorem 1 are
satisfied. �
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