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EXISTENCE THEOREM FOR NONLINEAR MICROPOLAR ELASTICITY ∗
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Abstract. In this paper we give an existence theorem for the equilibrium problem for nonlinear
micropolar elastic body. We consider the problem in its minimization formulation and apply the direct
methods of the calculus of variations. As the main step towards the existence theorem, under some
conditions, we prove the equivalence of the sequential weak lower semicontinuity of the total energy
and the quasiconvexity, in some variables, of the stored energy function.
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1. Introduction

In this paper we investigate the existence of solutions of the equilibrium problem of nonlinear three-dimensi-
onal micropolar elasticity. Micropolar continuum is a generalized continuum for which, in contrast to the
classical elasticity, the unknowns in the problem are the deformation field ϕ and independent microrotation
field R (a function with values in rotations); namely the points are allowed to rotate without stretch. Such
generalized continua are introduced by the Cosserat brothers in [5]. For the overview of the micropolar elasticity
see [7]. For the physical relevance of the micropolar (and micromorphic) elasticity in conjunction with finite
elasto-plasticity and elastic metallic foams see [18,21].

Existence theorems in the linearized micropolar elasticity are usually based on the uniform positivity of
the stored energy function (see [9] or [1]). A new approach has been taken by Neff in [10,16] which avoids
some inherent problems when relating the model to specific physical situations. The first existence theorems
for geometrically exact Cosserat and micromorphic models, based on convexity arguments are given in [17]
(micromorphic elasticity is more general theory than micropolar elasticity). Also, for generalized continua with
microstructure the existence theorem is given in [11] where convexity in the derivative of the variable which
describes microstructure is demanded (in the micropolar case that would mean convexity in ∇R). In our work
we extend these developments in the micropolar case to more general constitutive behavior.

The methods we apply are the direct methods of the calculus of variations. Therefore we consider the
equilibrium problem of the micropolar elasticity as the minimization problem for the total energy functional
and look for its minimizers. We restrict ourselves to the case of the stored density function satisfying the standard
growth conditions of order p as used in most works of classical finite elasticity. These conditions exclude to
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describe the failure of materials. We adapt methods from [3,6] applied in the case of classical elasticity. In the
classical elasticity under some conditions on the stored density function the sequential weak lower semicontinuity
of the total energy is equivalent to the quasiconvexity of the stored energy function in variable ∇ϕ. We extend
this result and give the necessary and sufficient condition on the stored energy function of the micropolar body
such that the total energy functional is sequentially weakly lower semicontinuous. This is important because
the sequential weak lower semicontinuity together with coerciveness of the internal energy implies the existence
of minimizers of the total energy. Moreover, the sequential weak lower semicontinuity plays the role in the
justification of the lower dimensional models from three-dimensional theories by means of Γ-convergence (for
the derivation and justification of the models for geometrically exact Cosserat plates and shells see [15,19]).
In micropolar theory the stored energy function should be quasiconvex in variable ∇ϕ and variable ω which
we introduce and which describes the derivatives of the micropolar rotation R. The main difficulty of the
problem is that we are dealing with the nonlinear manifold SO(3). On the other hand the main drawback of
the technique is that the condition p > 3 on the space W 1,p(Ω), where we look for solution, is imposed. This
excludes some interesting stored energy functions (like quadratic, which is analogous to the classical St. Venant
Kirchhoff material, see [4,25]). We hope we will be able to overcome this condition.

By Av we denote skew-symmetric matrix associated to its axial vector v, i.e. Avx = v × x. By aT we
denote the axial vector of T − TT i.e. T − TT = AaT

. Note that

T · Av = aT · v. (1.1)

Summation convention for the repeated indices is used. I denotes a unit matrix in the appropriate dimension.

2. Micropolar elasticity

Let Ω ⊂ R
m be an open bounded set with Lipschitz boundary. We assume Ω to be a reference configuration of

a micropolar body. That means, in contrast to the classical elasticity where the motion of a material particle is
fully described by a vector function called deformation function ϕ : Ω → R

3, that material particles undergo an
additional micromotion, corresponding to the rotation R : Ω → SO(3) of the material particle at the microscale.
Micropolar continua is a special case of the microstretch continua, both introduced by A.C. Eringen in mid
1960s. For the foundation of the theory see [7].

As R is a rotation there are vectors ωi such that

∂iR = ωi × R, i = 1, . . . ,m,

where the vector product is taken with respect to the columns of R. Vectors ωi can then be expressed in terms
of R =

(
R1 R2 R3

)
by

ωi =
1
2
Rj × ∂iRj , i = 1, . . . ,m. (2.1)

The strain measures (deformation tensors) are given by

U = R
T∇ϕ, Γ = R

T
ω, (2.2)

where ω = (ω1 ω2 ω3); here U is usually called the non-symmetric first Cosserat stretch tensor. Note here
that for instance for m = 3 in the rigid motion case U = I and Γ = 0. In the sequel we assume that the
material is homogeneous and that the energy is a function of ϕ,R,ω which is bounded below. To be more
precise we shall assume that there exists a continuous stored energy function W : R

3×m × SO(3) × R
3×m → R

(i.e. W (∇ϕ,R,ω) is the volume density of the internal energy of the body in the reference configuration). We
shall not consider more realistic case when W have singularities for det∇ϕ = 0. Our motivating examples for
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the stored energy function are polynomials in strains U,Γ. The total energy is then given by

I(ϕ,R) =
∫

Ω

(
W (∇ϕ,R,ω) − Πf (ϕ) − ΠM(R)

)
dV −

∫
ΓS

Πn(ϕ)dS −
∫

ΓC

ΠMc(R)dS. (2.3)

Let Γ ⊂ ∂Ω is a part of the boundary where the Dirichlet boundary conditions will be prescribed; ΓS ⊂ ∂Ω,
Γ∩ΓS = ∅ is a part of the boundary, where traction boundary conditions in the form of the potential of applied
surface forces ΠN are given. In addition, ΓC ⊂ ∂Ω, Γ∩ ΓC = ∅ is the part of the boundary where the potential
of external surface couples are applied. On the remaining part of the boundary ∂Ω\{Γ∪ ΓS ∪ ΓC} the body is
free of contact forces and couples. The potential of the external applied volume force is Πf and ΠM takes the
role of the potential of applied external volume couples. For simplicity we assume

Πf (ϕ) = 〈f ,ϕ〉, ΠM(R) = 〈M,R〉, Πn(ϕ) = 〈n,ϕ〉, ΠMc(R) = 〈Mc,R〉 (2.4)

for the potential of applied loads with given functions f : Ω → R
3, M : Ω → R

3×3,n : ΓS → R
3, Mc : ΓC →

R
3×3 and where 〈·, ·〉 stands for the standard scalar product.
Let the Dirichlet boundary conditions on Γ are given by gd : Γ → R

3, Rd : Γ → SO(3) and let

Φ = {(ϕ,R) ∈W 1,p(Ω,R3) ×W 1,p(Ω, SO(3)) : ϕ|Γ = gd,R|Γ = Rd},

where the boundary conditions are understood in the sense of traces and

W 1,p(Ω, SO(3)) = {R ∈ W 1,p(Ω,R3×3) : R(x) ∈ SO(3) for a.e. x ∈ Ω}

with the induced strong and weak topologies. Let us emphasize that the strong or the weak limit of the sequence
of the elements of W 1,p(Ω, SO(3)) is also an element of that space. This is due to the fact that both convergences
imply that Rk(x) → R(x) a.e. x in Ω at least on a subsequence and this implies that R(x) is a.e. a rotation.
The similar statement was needed in [20].

Let q be the conjugated exponent to p. We assume f ∈ Lq(Ω,R3), M ∈ Lq(Ω,R3×3), n ∈ Lq(ΓS ,R
3), Mc ∈

Lq(ΓC ,R
3×3), gd ∈ Lp(Γ,R3) and Rd : Γ → SO(3) measurable. The equilibrium problem of the micropolar

elastic body is now given by the minimization problem for the total energy functional I

find (ϕ,R) ∈ Φ, I(ϕ,R) = inf
(ψ,S)∈Φ

I(ψ,S). (2.5)

In the sequel we will study the minimizing sequence (ϕk,R
k
)k ∈ Φ of I, i.e.

I(ϕk,R
k
) → inf

(ψ,S)∈Φ
I(ψ,S).

Definition 2.1. Let X be a Banach space and I : X → R. I is sequentially weakly lower semicontinuous if for
all x ∈ X and all (xk)k ⊂ X such that xk ⇀ x weakly it follows

I(x) ≤ lim inf
k→∞

I(xk).

The following proposition is well known in the classical elasticity.

Proposition 2.2. Let Ω ⊂ R
m be an open bounded set with the Lipschitz boundary and p ∈ 〈1,∞〉. Let the

minimizing sequence of the energy functional I on Φ is bounded in W 1,p(Ω,R3) ×W 1,p(Ω, SO(3)) and assume
that I is sequentially weakly lower semicontinuous in the same space. Then any weak limit of the minimizing
sequence is a minimum point of I.
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Proof. Since (ϕk,R
k
) is bounded in W 1,p(Ω,R3) ×W 1,p(Ω, SO(3)) it converges and there exist a weak limit

(ϕ,R) at least for a subsequence. Note that R is the element of W 1,p(Ω, SO(3)). Let

m = inf
(ψ,S)∈Φ

I(ψ,S).

Note that compactness of the embeddings W 1,p(Ω) ↪→ Lp(Γ) implies that ϕ|Γ = gd, R|Γ = Rd. Now we have

m ≤ I(ϕ,R) ≤ lim inf
k→∞

I(ϕk,R
k
) = m

which concludes the proof. �

Remark 2.3. To guarantee the boundedness of the minimizing sequence one can, like in the classical elasticity,
assume meas (Γ) > 0 and the coerciveness of the stored energy function, i.e. that there exist constants C1 > 0,
C2 such that

W (A,R,B) ≥ C1(‖A‖p + ‖B‖p) + C2, ∀A,B ∈ R
3×m, R ∈ SO(3).

Note that there are some physically significant situations where this is violated (see [18] how to deal with them).

Using the compactness of the embedding W 1,p(Ω) ↪→ Lp(Γ) and W 1,p(Ω) ↪→ Lp(Ω) we see that the question
of the sequentially weakly lower semicontinuity of the total energy functional reduces to the question of the
sequentially weakly lower semicontinuity of the strain energy, i.e. of the functional (in the sequel denoted by I)

I(ϕ,R) =
∫

Ω

W (∇ϕ,R,ω).

Remark 2.4. The objectivity (frame-indifference) of the stored energy function implies

W (QA,QR,QB) = W (A,R,B), ∀A,B ∈ R
3×m, R,Q ∈ SO(3). (2.6)

Now plugging in Q = R
T

we conclude that there exists a function W̃ : R
3×m × R

3×m → R such that

W (A,R,B) = W̃ (R
T
A,R

T
B).

Therefore the stored energy function depends only on strains (this makes U and Γ to be strain measures). The
functions which satisfy (2.6) we call objective (frame-indifferent).

In the following two sections we will prove, under some conditions, the equivalence of the sequentially weakly
lower semicontinuity and the quasiconvexity of the stored energy function with respect to the first and last
variable. Therefore we have the following existence theorem.

Theorem 2.5. Let Ω ⊂ R
m be an open bounded set with the Lipschitz boundary and m < p < ∞. Let

W : R
3×m × SO(3)×R

3×m → R be a quasiconvex in the first and the last variable (see Thm. 3.9 for definition)
and objective function which satisfies

(a) (growth condition) W (A,R,B) ≤ K(1 + ‖A‖p + ‖B‖p), A,B ∈ R
3×m, R ∈ SO(3),

(b) (coercivity) there exist C1 > 0 and C2 ∈ R such that

W (A,R,B) ≥ C1(‖A‖p + ‖B‖p) + C2, ∀A,B ∈ R
3×m, R ∈ SO(3).

Then the total energy functional I given in (2.3) and (2.4) with meas(Γ) > 0 attains its minimum in the set Φ
if Φ is nonempty.

Proof. Directly from Proposition 2.2 and Corollary 4.11. �
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Remark 2.6. Note that we have assumed that the material is homogeneous, i.e. the stored energy function W
is independent of the space variable x. We believe that nonhomogeneous case can be treated as well, by adapting
the techniques from [6].

Remark 2.7. Let us consider the case when the coupling between ∇ϕ and ω is absent, i.e.

W (A,R,B) = W1(A,R) +W2(R,B)

(this occurs for centrosymmetric bodies, see [23], p. 14). Let W1 and W2 be quasiconvex and objective and for
m < p <∞ and 1 < r <∞ satisfy

(a) W1(A,R) ≤ K(1 + ‖A‖r), W2(R,B) ≤ K(1 + ‖B‖p) A,B ∈ R
3×m, R ∈ SO(3);

(b) there exist C1 > 0 and C2 ∈ R such that

W1(A,R) ≥ C1‖A‖r + C2, W2(R,B) ≥ C1‖B‖p + C2 ∀A,B ∈ R
3×m, R ∈ SO(3).

Then using the same techniques one can prove the existence of minimizers for the functional I in the set

Φ = {(ϕ,R) ∈W 1,r(Ω,R3) ×W 1,p(Ω, SO(3)) : ϕ|Γ = gd,R|Γ = Rd},

provided that meas (Γ) > 0.

Remark 2.8. If we introduce a simple isotropic quadratic stored energy function (as treated e.g. in [14]) of the
type

W (∇ϕ,R,ω) = μ‖symU − I‖2 + μc‖skewU‖2 +
λ

2
tr[U − I]2 + μLp

c‖ω‖p, p > 3

we conclude that the coerciveness assumption would imply μc > 0. This is undesirable property since there
are some physical situations where μc = 0 is a reasonable choice (see [18]). However, in the existence proof the
coerciveness is needed just to conclude that the minimizing sequence is bounded. Therefore we can deal with
this situation like in [17], using extended three dimensional Korn’s inequality proved in [24] (which improves the
result in [13]). Also note that the existence result for this energy (which can be proved by convexity arguments,
see [17]) is guaranteed by Remark 2.7.

Remark 2.9. Some nontrivial examples of stored energy functions covered by Theorem 2.5 can be found in
the form

W (A,R,B) = W1(R
T
A) +W2(R

T
B)

where W1,W2 are polyconvex functions (see [6], p. 99) that satisfy growth assumptions (a) and (b). As poly-
convexity implies quasiconvexity (see [6], p. 102) the Theorem 2.5 can be applied in this case.

At the end of this section note that usually the stored energy function W is chosen to depend on ∇ϕ,R
and ∂iR. Instead of that we have assumed the dependence on ∇ϕ,R and ω. Motivation for this change
was that, due to R being rotation (it belongs to the three-dimensional manifold SO(3)), derivatives of R are
dependent (there are 27 of them). However, ω has independent components and there is one-to-one, purely
algebraic, correspondence between (R, ∂R) and (R,ω) for R being a rotation. Note as well that there is an
analogy between vector columns of ω and angular velocity. For this change the Lemma 2.10 is essential. That
all 27 ∂iR derivatives can be controlled (and expressed) by 9 independent components is already noted in [22]
where CurlR is suggested as curvature measure. The reason why we work with ω is the way the oscillations of
R affect ω (see Lem. 3.7).

For R ∈ W 1,p(Ω, SO(3)) using (2.1) we associate the mapping R �→ ω(R) ∈ W 1,p(Ω,R3×3) and by abuse of
notation denote

ωi = ω(R)i =
1
2
Rj × ∂iRj , i = 1, . . . ,m.
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Lemma 2.10. Let Ω ⊂ R
m be a bounded open set and p ∈ 〈1,∞]. Let R

k
, R ∈ W 1,p(Ω, SO(3)) and let

ωk
i = ωk(R

k
)i,ωi = ω(R)i. Then R

k → R in W 1,p(Ω, SO(3)) if and only if

R
k → R in Lp(Ω,R9) and ωk

i → ωi in Lp(Ω,R3), i = 1, . . . ,m.

Moreover, the same holds for the weak convergence (weak * for p = ∞).

Proof. By approximating Ω by a increasing countable union of open sets which are finite union of open cubes
and compactness of the embedding W 1,p(Ω′) ↪→ Lp(Ω′) for Ω′ bounded open set with Lipschitz boundary, we
conclude that at least on a subsequence: R

k
(x) → R(x) for a.e. x ∈ Ω. Since ωk

i is given by terms ∂iR
k

jlR
k

mn

it is enough to prove that if fk → f (fk ⇀ f) in Lp(Ω) and gk → g a.e. and if there exists M such that
‖gk‖L∞(Ω) ≤M then fkgk → fg (fkgk ⇀ fg) in Lp(Ω). Let us consider the strong convergence first

∫
Ω

|fkgk − fg|p ≤ 2p−1
( ∫

Ω

|fk − f |p|gk|p +
∫

Ω

|f |p|gk − g|p
)
.

The first term on the right hand side tends to zero as fk → f in Lp(Ω) and ‖gk‖L∞(Ω) ≤M . The second term
on the right hand side tends to zero by the Lebesgue dominated convergence theorem.

For the weak convergence since fkgk is bounded in Lp(Ω) it is enough to use test functions ψ ∈ L∞(Ω). We
have to prove that

∫
Ω f

ggkψ → ∫
Ω fgψ. Similarly as before one has

∫
Ω

(fkgkψ − fgψ) =
∫

Ω

fk(gk − g)ψ +
∫

Ω

(fk − f)gψ.

The first term on the right hand side tends to zero by the Hölder inequality and the Lebesgue dominated
convergence theorem. The second term on the right hand side tends to zero by the property fk ⇀ f .

Since, by the same argumentation, every subsequence has its subsequence such that these convergences are
satisfied, we have proved the theorem. �

Remark 2.11. In the case p = 1 from Dunford-Pettis theorem we conclude

fk ⇀ f in L1 and gk → g a.e. and ‖gk‖L∞ ≤M =⇒ fkgk ⇀ fg in L1,

which implies the statement of Lemma 2.10 for p = 1 as well.

3. Necessity of quasiconvexity

In the sequel we shall show that quasiconvexity in the first and the last variable of the stored energy function
is a necessary condition for the sequentially weakly lower semicontinuity of the functional I. We first recall the
definition of quasiconvexity and proceed with a few technical lemmas.

Definition 3.1. The function f : R
n×m → R is quasiconvex if

f(A) ≤ 1
meas(D)

∫
D

f(A + ∇χ(x))dx

for every open bounded set D ⊂ R
m with Lipschitz boundary, for every A ∈ R

n×m and χ ∈ W 1,∞
0 (D,Rn).

In the last definition W 1,∞
0 (D,Rn) is understood in the sense of Meyers see [12] i.e. set of W 1,∞(D,Rn)

functions with the zero trace at the boundary; that is different from the closure of C∞
0 (D,Rn) in W 1,∞(D,Rn)

norm.
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One should also note that in the definition of quasiconvexity it is enough to demand the property for an
arbitrary cube D (see Dacorogna [6], Rem. viii, p. 101).

The following two lemmas are just the applications of Nemytsky operators, see [2], p. 15.

Lemma 3.2. Let Ω ⊂ R
m be a bounded set and p ∈ [1,∞〉. Let f : R

m → R be a continuous function that
satisfies growth condition

|f(A)| ≤ K(1 + ‖A‖p).

Let gk, g ∈ Lp(Ω; Rm) and gk → g strongly in Lp(Ω; Rm). Then∫
Ω

f(gk) →
∫

Ω

f(g).

Remark 3.3. For p = ∞ the Lemma holds with no growth condition on f .

Lemma 3.4. Let f : R
n×m → R be continuous and satisfies the growth condition |f(A)| < K(1 + ‖A‖p). Let

D be an open bounded set in R
m with Lipschitz boundary. Then we have

1
meas(D)

inf
χ∈C∞

0 (D,Rn)

∫
D

f(A + ∇χ(x))dx =
1

meas(D)
inf

χ∈W 1,∞
0 (D,Rn)

∫
D

f(A + ∇χ(x))dx

=
1

meas(D)
inf

χ∈W 1,p
0 (D,Rn)

∫
D

f(A + ∇χ(x))dx.

Remark 3.5. The first equality holds if f is just continuous, since for every χ ∈ W 1,∞
0 (D,R3) there exist

a sequence (ψk)k ⊂ C∞
0 (D,Rn) such that ‖ψk − χ‖L∞(Ω,Rn) → 0 and ‖∇ψk‖ ≤ M for some M > 0 and

∇ψk(x) → ∇χ(x) a.e. in D (see Meyers [12]). To establish the first equality in Lemma 3.4 use just the
continuity of f and the Lebesgue dominated convergence theorem.

In order to attain the quasiconvexity of the stored energy function in the classical elasticity one needs to
oscillate the deformation and to find the derivative of the oscillations. Here we need to oscillate the rotations
as well. The following two lemmas are crucial for proving the necessity of the quasiconvexity (Thm. 3.9).
Lemma 3.6 determines the essential part of the derivative of the particular oscillations of the identity rotation.
It enables us to define the oscillations of an arbitrary rotation (in Lem. 3.7) and to derive that the derivatives
of the oscillation of rotation (expressed by function ω) oscillate ω in the similar way as the derivatives of
oscillations of ϕ oscillate ∇ϕ. Recall that Ab denotes the antisymmetric matrix with axial vector b.

Lemma 3.6. Let D be a cube in R
m and let ψ ∈ C∞

0 (D,R3). We extend ψ by periodicity to R
m and define

Oδ(x) = exp(Aδψ( x
δ )) for 0 < δ < 1. Then there exist a constant K independently of ψ and δ such that

‖Oδ(x) − I‖ ≤ Kδ expM(ψ), x ∈ Ω,

‖∂iOδ(x) − A∂iψ( x
δ )‖ ≤ KδM(ψ)

(
exp(M(ψ)) − 1

)
, x ∈ Ω;

here M(ψ) = ‖ψ‖W 1,∞(D;R3).

Proof. From the definition of the exponential function it follows

exp(Aδψ( x
δ )) − I =

∞∑
k=1

δkAk
ψ( x

δ )

k!
·

For the operator norm one has ‖Ab‖ ≤ ‖b‖ and ‖AB‖ ≤ ‖A‖‖B‖. Therefore the first inequality in the statement
of the lemma follows.
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Differentiating Oδ term by term we obtain

∂iOδ(x) = A∂iψ( x
δ ) +

δ

2!

(
A∂iψ( x

δ )Aψ( x
δ ) + Aψ( x

δ )A∂iψ( x
δ )

)
+
δ2

3!

(
A2
ψ( x

δ )A∂iψ( x
δ ) + Aψ( x

δ )A∂iψ( x
δ )Aψ( x

δ ) + A∂iψ( x
δ )A

2
ψ( x

δ )

)
+ . . .

Taking A∂iψ( x
δ ) on the left hand side of the equation and taking the operator norm implies the second inequality

in the statement of the lemma. �
The following lemma is crucial for the proving of the necessity of the quasiconvexity. It tells that the

oscillations converge weakly in W 1,p(Ω; Rm).

Lemma 3.7. Let D be a cube, p ∈ 〈1,∞], ϕ ∈ W 1,p(D,R3) and R ∈ W 1,p(D, SO(3)). Let us extend χ,ψ ∈
C∞

0 (D,R3) to R
m by periodicity and for k ∈ N define

ϕk(x) = ϕ(x) +
1
k
χ(kx), R

k
(x) = exp(A 1

kψ(kx))R(x).

Then ϕk = ϕ,R
k

= R on ∂D and as k → ∞ one has

ϕk ⇀ ϕ, R
k
⇀ R

weakly in W 1,p(D,R3) i.e. weakly in W 1,p(D,R3×3). Moreover, there exists a constant K independent of ψ
such that

‖ωk(x) − ω(x) −∇ψ(nx)‖ ≤ K
1
k

exp (M(ψ))
(
M(ψ) + ‖ω(x)‖

)
, (3.1)

‖Rk
(x) − R(x)‖ ≤ K

1
k

expM(ψ) (3.2)

for a.e. x ∈ D where M(ψ) = ‖ψ‖W 1,∞
0 (D;R3) and ωk = ω(R

k
), ω = ω(R).

Proof. It is obvious that ϕk = ϕ,R
k

= R on ∂D and that ϕk → ϕ in L∞(D,R3). From Lemma 3.6 it follows
that R

k → R in L∞(D,R3×3). To prove the weak convergences for p > 1 is now equivalent to prove the
boundedness of the derivatives of ϕk and R

k
in Lp(Ω). For ϕk this is obvious since

∇ϕk(x) = ∇ϕ(x) + ∇χ(kx).

For R
k

is enough to establish (3.1) since ‖∂iR
k‖ ≤ ‖ωk‖‖Rk‖, so boundedness of ωk implies boundedness of

∂iR
k
. Let us calculate

∂iR
k
(x) = ∂iOk(x)R(x) + Ok(x)∂iR(x)

=
(
∂iOk(x) − A∂iψ(kx)

)
R(x) + A∂iψ(kx)R(x) +

(
Ok(x) − I

)
∂iR(x) + ∂iR(x).

Thus we have

ωk
i (x) = ωi(x) + ∂iψ(kx) +

1
2
(
R

k

j (x) −Rj(x)
) × ∂iRj(x) +

1
2

(
R

k

j (x) −Rj(x)
)
×

(
∂iψ(kx) ×Rj(x)

)
+

1
2
R

k

j (x) ×
[(
∂iOk(x) − A∂iψ(kx)

)
Rj(x)

]
+

1
2
R

k

j (x) ×
[(

Ok(x) − I
)
∂iRj(x)

]
.
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Now using Lemma 3.6 and ‖∂iRj‖ ≤ C‖ωi‖, for some C > 0, it follows (3.1). The estimate (3.2) is the direct
consequence of Lemma 3.6. �
Remark 3.8. The statement of the previous lemma also holds for p = 1. For that we need Remark 2.11, the
fact that ∇χ(kx) ⇀ 0, ∇ψ(kx) ⇀ 0 in L1(D,R3×3) and relation (3.1).

We are now ready for the main theorem. Since the weak * convergence in W 1,∞(Ω,Rm) implies weak conver-
gence in W 1,p(Ω,Rm) we shall prove the necessity of quasiconvexity for sequentially weakly lower semicontinuity
in spaces W 1,∞(Ω,Rm). We follow [6], p. 69.

Theorem 3.9. Let Ω ⊂ R
m be an open bounded set, let f : R

3×m × SO(3) × R
3×m → R be continuous and let

the functional defined by

I(ϕ,R) =
∫

Ω

f(∇ϕ(x),R(x),ω(x))dx

be sequentially weakly lower semicontinuous, i.e. it satisfies the condition

I(ϕ,R) ≤ lim inf
k→∞

I(ϕk,R
k
)

for every sequence ((ϕk,R
k
))k ⊂ W 1,∞(Ω; R3) × W 1,∞(Ω; SO(3)) that converges weak ∗ to (ϕ,R) in

W 1,∞(Ω; R3) ×W 1,∞(Ω; R3×3).
Then f is quasiconvex in the first and the last variable i.e. f satisfies

f(A,R,B) ≤ 1
meas(D)

∫
D

f(A + ∇χ(x),R,B + ∇ψ(x))dx

for every open bounded set D with Lipschitz boundary, for every A,B ∈ R
3×m, R ∈ SO(3) and for every

χ,ψ ∈W 1,∞
0 (D,R3).

Proof. We have to prove that

f(A,R0,B) ≤ 1
meas(D)

∫
D

f(A + ∇χ(x),R0,B + ∇ψ(x))dx (3.3)

for all A,B ∈ R
3×m, R0 ∈ SO(3) and χ,ψ ∈ W 1,∞

0 (D; R3) where D is some cube. It is enough to establish
(3.3) for χ,ψ ∈ C∞

0 (D; R3) by Remark 3.5.
We look at the case m = 3 (the proof is the same for m = 1, 2). Let us denote the vector columns of the

matrix B by b1, b2, b3, i.e. B = [b1 b2 b3]. Let D = [0, α]3 ⊂ Ω and let χ,ψ ∈ C∞
0 (D,R3). We extend χ,ψ

to R
3 by periodicity. For h ∈ N denote Qh ≡ 1

hD ≡ [0, α
h ]3. We define

ϕ(x) = Ax, R(x) = exp(Ax1b1) exp(Ax2b2) exp(Ax3b3)R0,

where x = (x1, x2, x3). The functions ϕ,R are of class C∞ and ω(0) = B. We also define

ϕk
h(x) =

{
ϕ(x) x ∈ Ω\Qh

ϕ(x) + 1
khχ(khx) otherwise,

R
k

h(x) =
{

R(x) x ∈ Ω\Qh

exp(A 1
khψ(khx))R(x) otherwise.

Using Lemma 3.7, for h fixed, one has ϕk
h = ϕ,R

k

h = R on ∂Ω and

ϕk
h ⇀ ϕ weak * in W 1,∞(Ω,R3), as k → ∞,

R
k

h ⇀ R weak * in W 1,∞(Ω,R3×3), as k → ∞.
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Since ψ,χ ∈ C∞
0 (D,R3) and ϕ,R are C∞ it follows that R

k

h,ϕ
k
h are C∞. Moreover, their derivatives are

uniformly bounded by a constant independent of k (and h).
We now split Qh into cubes Qk

h,j, j = 0, . . . , k3 − 1 of length α
kh and denote by P k

h,j , j = 0, . . . , k3 − 1, the
corner of Qk

h,j closest to 0. Therefore

Qh =
k3−1⋃
j=0

Qk
h,j =

k3−1⋃
j=0

(
P k

h,j +
1
kh
D

)
.

We now consider

I(ϕk
h,R

k

h) =
∫

Ω

f(∇ϕk
h(x),R

k

h(x),ωk
h(x))dx

=
∫

Ω\Qh

f(∇ϕ(x),R(x),ω(x))dx +
∫

Qh

f(∇ϕk
h(x),R

k

h(x),ωk
h(x))dx

=
∫

Ω\Qh

f(∇ϕ(x),R(x),ω(x))dx +
k3−1∑
j=0

∫
Qk

h,j

f(A + ∇χ(khx),R
k

h(x),ωk
h(x))dx

=
∫

Ω\Qh

f(∇ϕ(x),R(x),ω(x))dx

+
k3−1∑
j=0

∫
Qk

h,j

[f(A + ∇χ(khx),R
k

h(x),ωk
h(x)) − f(A + ∇χ(khx),R

k

h(x),ω(x) + ∇ψ(khx))]dx

+
k3−1∑
j=0

∫
Qk

h,j

[f(∇ϕk
h(x),R

k

h(x),ω(x) + ∇ψ(khx)) − f(A + ∇χ(khx),R(P k
h,j),ω(P k

h,j)

+ ∇ψ(khx))]dx

+
k3−1∑
j=0

∫
Qk

h,j

f(A + ∇χ(khx),R(P k
h,j),ω(P k

h,j) + ∇ψ(khx))dx

= I1(k) + I2(k) + I3(k) + I4(k).

In the sequel we consider the asymptotic of these terms, for fixed h, when k → ∞.
Boundedness of ω and (3.1) imply ‖ωk

h(x) − ω(x) − ∇ψ(khx)‖ → 0, uniformly with respect to x. The
uniform continuity of f on a compact set and L∞ bounds on A + ∇χ(khx),R

k

h(x),ωk
h(x),ω(x) + ∇ψ(khx)

imply I2(k) → 0.
The convergence R

k

h → R (by (3.2)), uniform continuity of R,ω, uniform continuity of f on a compact set
in the same way imply I3(k) → 0.

As Qk
h,j = P k

h,j + 1
khD, using periodicity of ψ,χ, one has

I4(k) =
k3−1∑
j=0

1
(kh)3

∫
D

f(A + ∇χ(y),R(P k
h,j),ω(P k

h,j) + ∇ψ(y))dy.

Recognizing the Riemann sum of the continuous function in the last expression, we obtain

lim
k→∞

I4(k) =
1

meas(D)

∫
Qh

∫
D

f(A + ∇χ(y),R(x),ω(x) + ∇ψ(y))dy dx.
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Therefore by assumption of the theorem we obtain

lim inf
k→∞

I(ϕk
h,R

k

h) =
∫

Ω\Qh

f(∇ϕ(x),R(x),ω(x))dx

+
1

meas(D)

∫
Qh

∫
D

f(A + ∇χ(y),R(x),ω(x) + ∇ψ(y))dy dx

≥ I(ϕ,R) =
∫

Ω

f(∇ϕ(x),R(x),ω(x))dx

and hence

1
meas(Qh)

∫
Qh

∫
D

f(A + ∇χ(y),R(x),ω(x) + ∇ψ(y))dy dx ≥ meas(D)
meas(Qh)

∫
Qh

f(A,R(x),ω(x))dx.

Now letting h→ ∞ and using continuity and the fact that R(0) = R0, ω(0) = B we have the claim. �

4. Sufficiency of quasiconvexity

In the sequel we prove the sufficiency of quasiconvexity for sequentially weakly lower semicontinuity. We shall
impose some conditions on the function f , but as we shall see these conditions are consequence of objectivity
of the function f . The main drawback is that we impose condition p > m.

The following lemma is crucial for the proof of the sufficiency of the quasiconvexity. It tells us that for
every weakly convergent sequence of rotations R

k
to the rotation R in the space W 1,p(Ω, SO(3)), p > m the

variables ωk are essentially of the form ω + ∇vk, where vk ⇀ 0 in W 1,p(Ω,R3). This establishes the analogy
between ω and ∇ϕ, since ∇ϕk = ∇ϕ+∇(ϕk−ϕ). Some kind of analogy was already established in Lemma 3.7,
although the specific oscillations of rotations are chosen there.

Lemma 4.1. Let Ω be an open bounded set with the Lipschitz boundary, Ω ⊂ R
m. Let R

k ∈ W 1,p(Ω, SO(3))
converges weakly to R in W 1,p(Ω,R3×3), where m < p ≤ ∞. Then there exist a sequence (sk)k which converges
to 0 strongly in Lp(Ω,R3×m) and a sequence (vk)k which converges weakly (weak * if p = ∞) to 0 in W 1,p(Ω,R3)
such that ωk = ω + ∇vk + sk, where

ωk
i =

1
2
R

k

j × ∂iR
k

j , ωi =
1
2
Rj × ∂iRj .

Proof. By direct calculation we obtain

ωk
i = ωi + ∂i

(
1
2
Rj ×Rk

j

)
+ (R

k

j −Rj) × ∂iRj +
1
2
(R

k

j −Rj) × ∂i(R
k

j −Rj).

Let
vk =

1
2
Rj ×Rk

j , sk
i = (R

k

j −Rj) × ∂iRj +
1
2
(R

k

j −Rj) × ∂i(R
k

j −Rj).

By the Sobolev embedding theorem ‖Rk

j − Rj‖L∞(Ω;R3×3) converges to 0. Using it and the boundedness of

(R
k
)k ⊂W 1,p(Ω; R3×3) the statement of the lemma follows. �

The following lemma is known in the measure theory.

Lemma 4.2. Let Ω be a finite union of open cubes and f ∈ Lp(Ω; R), p ∈ [1,∞〉. For each n ∈ N we divide Ω
in a finite union of cubes Ds of diameter less or equal 1/n and define numbers

As =
1

meas(Ds)

∫
Ds

f(x)dx.
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Then the sequence of functions defined by

fn(x) =
∑

s

As1Ds(x)

converges strongly to f in Lp(Ω; R).

Remark 4.3. For p = ∞ we can just conclude that ‖fn‖L∞(Ω) ≤ ‖f‖L∞(Ω) and that fn(x) → f(x) for a.e.
x ∈ Ω (see [8], p. 93).

We now turn ourselves to the main theorem. As a first step we consider the case when f depends only on
∇ϕ,ω (which is physically unrealistic since the fields of deformation and microrotation completely decouple).
We adapt the proof from [6], Theorem 2.3, p. 158, using Lemma 4.1.

Theorem 4.4. Let Ω ⊂ R
m be an open bounded set with the Lipschitz boundary and m < p < ∞. Let

f : R
3×m × R

3×m → R be a quasiconvex function and that there are K > 0 and β ≥ 0 such that
(a) f(A,B) < K(1 + ‖A‖p + ‖B‖p),
(b) |f(A1,B1)− f(A2,B2)| < K(1+‖A1‖p−1 +‖B1‖p−1 +‖A2‖p−1 +‖B2‖p−1)(‖A1 −A2‖+‖B1−B2‖),
(c) f(A,B) ≥ −β.

Let

I(ϕ,R) =
∫

Ω

f(∇ϕ(x),ω(x))dx.

Then for every sequence ((ϕk,R
k
))k ⊂ W 1,p(Ω,R3) × W 1,p(Ω, SO(3)) which converges weakly to (ϕ,R) in

W 1,p(Ω,R3) ×W 1,p(Ω,R3×3) one has

I(ϕ,R) ≤ lim inf
k→∞

I(ϕk,R
k
).

Proof. Let us take (ϕk,R
k
) ∈ W 1,p(Ω,R3) ×W 1,p(Ω, SO(3)) such that

(ϕk,R
k
) ⇀ (ϕ,R) weakly in W 1,p(Ω,R3) ×W 1,p(Ω; R3×3).

Using Lemma 4.1 we form the sequences (sk)k, (vk)k such that sk converges to 0 strongly in Lp(Ω; R3×m), vk

which converges weakly to 0 in W 1,p(Ω; R3) and ωk = ω + ∇vk + sk.
Let ε > 0. Then there exist δ such that

meas(S) < δ ⇒
∫

S

|f(∇ϕ,ω)| < ε.

This is possible because, due to the conditions (a) and (c), the mapping x → f(∇ϕ(x),ω(x)) is in L1(Ω). We
then approximate Ω by a union of cubes Ds whose edge length is 1

2N ; we denote this union by HN = ∪sDs. We
then choose N large enough so that

meas(Ω\HN) ≤ min(
ε

β
, δ).

Let

As =
1

meas(Ds)

∫
Ds

∇ϕ(x)dx, Bs =
1

meas(Ds)

∫
Ds

ω(x)dx.

Since (∇ϕ,ω) ∈ Lp(Ω; R3×m × R
3×m) we can choose N larger if necessarily such that

∑
s

∫
Ds

‖∇ϕ(x) − As‖p +
∑

s

∫
Ds

‖ω − Bs‖p <
εp

Mp
,
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by Lemma 4.2. Here the constant M is chosen to satisfy

M
p

p−1 >

∫
Ω

(1 + ‖∇ϕk‖p + ‖ω + ∇vk‖p + ‖As‖p + ‖∇ϕk −∇ϕ‖p + ‖Bs‖p + ‖∇vk‖p)dx

for every k. Such M exists as all the terms on the right hand side are bounded either as they are weakly
convergent or by

∫
HN

‖As‖p ≤ ∫
HN

‖∇ϕ‖p and
∫

HN
‖Bs‖p ≤ ∫

HN
‖ω‖p.

We now consider

I(ϕk,R
k
) − I(ϕ,R) =

∫
Ω

[f(∇ϕk(x),ωk(x)) − f(∇ϕ(x),ω(x))]dx

=
∫

Ω

[f(∇ϕk(x),ω(x) + ∇vk(x) + sk(x)) − f(∇ϕk(x),ω(x) + ∇vk(x))]dx

+
∫

Ω

f(∇ϕk(x),ω(x) + ∇vk(x)) − f(∇ϕ(x),ω(x))]dx

= J1(k) + J2(k).

Using the condition (b) and the Hölder inequality we estimate the first integral

J1(k)≤
∫

Ω

K
(
1 + 2‖∇ϕk‖p−1 + ‖ω + ∇vk + sk‖p−1 + ‖ω + vk‖p−1

)
‖sk‖

≤K1

(∫
Ω

1 + 2‖∇ϕk‖p + ‖ω + ∇vk + sk‖p + ‖ω + vk‖p

) p−1
p

(∫
Ω

‖sk‖p

) 1
p

.

As it weakly converges the first factor is bounded. Moreover the second factor converges to 0. Thus J1(k)
converges to 0, so for k large enough |J1(k)| < ε. We now proceed to estimate J2(k):

J2(k) =
∫

Ω\HN

[
f(∇ϕk(x),ω(x) + ∇vk(x)) − f(∇ϕ(x),ω(x))

]
dx

+
∑

s

∫
Ds

[
f(∇ϕ(x) + (∇ϕk(x) −∇ϕ(x)),ω(x) + ∇vk(x))

− f(As + (∇ϕk(x) −∇ϕ(x)),Bs + ∇vk(x))
]
dx

+
∑

s

∫
Ds

[
f(As + (∇ϕk(x) −∇ϕ(x)),Bs + ∇vk(x)) − f(As,Bs)

]
dx

+
∑

s

∫
Ds

[
f(As,Bs) − f(∇ϕ(x),ω(x))

]
dx

= J3(k) + J4(k) + J5(k) + J6(k).

Since f ≥ −β, using the definition of δ and N , we have

J3(k) ≥ −βmeas(Ω\HN ) −
∫

Ω\HN

f(∇ϕ(x),ω(x))dx > −2ε.
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Using the condition (b) we obtain

J4(k) ≤
∑

s

∫
Ds

K
(
1 + ‖∇ϕk‖p−1 + ‖ω + ∇vk‖p−1 + ‖As + ∇ϕk −∇ϕ‖p−1

+ ‖Bs + ∇vk‖p−1
)
(‖∇ϕ− As‖ + ‖ω − Bs‖)

≤ K1(p)
∑

s

( ∫
Ds

1 + ‖∇ϕk‖p + ‖ω + ∇vk‖p + ‖As‖p + ‖∇ϕk −∇ϕ‖p

+ ‖Bs‖p + ‖∇vk‖p
) p−1

p
(∫

Ds

‖∇ϕ− As‖p + ‖ω − Bs‖p
) 1

p

≤ K1(p)
( ∫

HN

(
1 + ‖∇ϕk‖p + ‖ω + ∇vk‖p + ‖As‖p + ‖∇ϕk −∇ϕ‖p

+ ‖Bs‖p + ‖∇vk‖p
)) p−1

p
(∫

HN

‖∇ϕ− As‖p + ‖ω − Bs‖p
) 1

p

< K1(p)M
ε

M
= K1(p)ε,

where we have used the Hölder inequality on each Ds and the Hölder inequality for numbers.
In the same way we can estimate J6(k). Estimation of J5(k) is essential. We have to prove that for

ϕk = ϕk −ϕ,vk which converge weakly to 0 in W 1,p(Ω; R3) and for D an arbitrary cube in R
m one has

lim inf
k→∞

∫
D

f(A + ∇ϕk(x),B + ∇vk(x))dx ≥ f(A,B)meas(D)

we have to infer it from the quasiconvexity (see [6], pp. 163–166).
Therefore for all ε > 0

lim inf
k→∞

I(ϕk,R
k
) − I(ϕ,R) ≥ −2ε,

which implies the statement of the theorem. �
Remark 4.5. In case p = ∞ the same holds without the assumptions (a), (b) and (c). The integrals J1(k),
J4(k), J6(k) → 0 by the Lebesgue theorem of the dominated convergence, the uniform continuity of f on
bounded subsets of R

3×m × R
3×m and Remark 4.3.

We now turn ourselves in the general functionals of the type

I(ϕ,R) =
∫

Ω

f(∇ϕ(x),R(x),ω(x))dx.

We impose the following assumptions on the function f :
(a) f(A,R,B) ≤ K(1 + ‖A‖p + ‖B‖p), A,B ∈ R

3×m, R ∈ SO(3);
(b) |f(A1,R,B1)− f(A2,R,B2)| ≤ K(1+‖A1‖p−1 +‖B1‖p−1 +‖A2‖p−1 +‖B2‖p−1)(‖A1 −A2‖+‖B1−

B2‖), A1,A2,B1,B2 ∈ R
3×m, R ∈ SO(3);

(c) f ≥ −β, for some β ≥ 0;
(d) |f(A,R1,B) − f(A,R2,B)| ≤ K(1 + ‖A‖p + ‖B‖p)‖R1 − R2‖, A,B ∈ R

3×m, R1,R2 ∈ SO(3).
We follow [6], pp. 167–169.

Theorem 4.6. Let Ω ⊂ R
m be an open bounded set with the Lipschitz boundary and m < p < ∞. Let

f : R
3×m × SO(3) × R

3×m → R be quasiconvex in the first and the last variable and satisfies (a)–(d). Let

I(ϕ,R) =
∫

Ω

f(∇ϕ(x),R(x),ω(x))dx.
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Then for every sequence ((ϕk,R
k
))k ⊂ W 1,p(Ω,R3) × W 1,p(Ω, SO(3)) which converges weakly to (ϕ,R) in

W 1,p(Ω,R3) ×W 1,p(Ω,R3×3) one has

I(ϕ,R) ≤ lim inf
k

I(ϕk,R
k
).

Proof. Let ε > 0 and define HN , Ds as in the proof of Theorem 4.4 (note that x→ f(∇ϕ(x),R(x),ω(x)) is an
integrable function). Since, by the Sobolev embedding theorem, R is continuous on Ω in construction of Ds we
can choose N large enough such that

‖R(x) − R(xs)‖ ≤ ε

KM
, x ∈ Ds,

for every s, where xs is the center of Ds. Here K is the constant from the conditions (a), (b) and (d) and M is
such that

1 + 2
∫

Ω

‖∇ϕk(x)‖p + 2
∫

Ω

‖∇ϕ(x)‖p + 2
∫

Ω

‖ωk(x)‖p + 2
∫

Ω

‖ω(x)‖p < M ;

such M exists due to the weak convergence in Lp of the functions on the left hand side. Then one has

I(ϕk,R
k
) − I(ϕ,R) =

∫
Ω\HN

[
f(∇ϕk(x),R

k
(x),ωk(x)) − f(∇ϕ(x),R(x),ω(x))

]
dx

+
∫

HN

[
f(∇ϕk(x),R

k
(x),ωk(x)) − f(∇ϕk(x),R(x),ωk(x))

]
dx

+
∑

s

∫
Ds

[
f(∇ϕk(x),R(x),ωk(x)) − f(∇ϕk(x),R(xs),ωk(x))

]
dx

+
∑

s

∫
Ds

[
f(∇ϕk(x),R(xs),ωk(x)) − f(∇ϕ(x),R(xs),ω(x))

]
dx

+
∑

s

∫
Ds

[
f(∇ϕ(x),R(xs),ω(x)) − f(∇ϕ(x),R(x),ω(x))

]
dx

= J1(k) + J2(k) + J3(k) + J4(k) + J5(k).

Using the same arguments as in the proof of Theorem 4.4 (for J3(k)) we accomplish that J1(k) > −2ε for all k.
Let us estimate J2(k). Using the condition (d) we have that

|J2(k)| < K

∫
HN

(
1 + ‖∇ϕk‖p + ‖∇ϕ‖p + ‖ωk‖p + ‖ω‖p

)
‖Rk − R‖.

Since R
k → R uniformly on Ω, by the Sobolev embedding theorem, we can choose k large enough such that

|J2(k)| < ε. Again using (d) we obtain that for k large enough |J3(k)|, |J5(k)| < ε.
Estimation of J4(k) is essential. Using Theorem 4.4 on each Ds we obtain

lim inf
k→∞

∫
Ds

f(∇ϕk(x),R(xs),ωk(x))dx −
∫

Ds

f(∇ϕ(x),R(xs),ω(x)) dx ≥ 0.

Therefore lim infk→∞ J4(k) ≥ 0, so for all ε > 0 we obtain

lim inf
k→∞

I(ϕk,R
k
) − I(ϕ,R) ≥ −5ε,

which implies the statement of the theorem. �
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Remark 4.7. In case p = ∞ we only need the continuity of f and quasiconvexity in the first and the last
variable of f .

Now we shall see that the properties (b) and (d) are consequences of objectivity and quasiconvexity. This
enables us to restate Theorem 4.6 with assumptions (b) and (d) replaced by objectivity of f . First we state one
helpful lemma (see [6], p. 156).

Lemma 4.8. Let f : R
n → R be convex in each variable and α ≥ 0, p ≥ 1. Let

|f(x)| ≤ α(1 + ‖x‖p), x ∈ R
n.

Then there exists γ ≥ 0 such that:

|f(x) − f(y)| ≤ γ
(
1 + ‖x‖p−1 + ‖y‖p−1

)‖x− y‖, x, y ∈ R
n.

Proposition 4.9. Let f : R
3×m × SO(3) × R

3×m → R be objective quasiconvex stored energy function which
satisfies growth condition

|f(A,R,B)| ≤ K(1 + ‖A‖p + ‖B‖p).
Then there exists g : R

3×m × R
3×m → R such that

(i) f(A,R,B) = g(R
T
A,R

T
B);

(ii) g is quasiconvex i.e.

g(A,B) ≤ 1
meas(D)

∫
D

g(A + ∇χ(x),B + ∇ψ(x))dx

for every open bounded set D with Lipschitz boundary, for every A,B ∈ R
3×m and for every χ ∈

W 1,∞
0 (D; R3), ψ ∈W 1,∞

0 (D; R3);
(iii) g satisfies the conditions

|g(A,B)| ≤ K(1 + ‖A‖p + ‖B‖p),
|g(A1,B1) − g(A2,B2)| ≤ K

(
1 + ‖A1‖p−1 + ‖B1‖p−1 + ‖A2‖p−1 + ‖B2‖p−1

)(‖A1 − A2‖ + ‖B1 − B2‖
)
.

Furthermore f satisfies conditions (b) and (d).
If f is coercive i.e. if there exist constants C1 > 0, C2 such that

f(A,R,B) ≥ C1(‖A‖p + ‖B‖p) + C2, ∀A,B ∈ R
3×m, R ∈ SO(3)

then g is also coercive with the same constants i.e.

g(A,B) ≥ C1(‖A‖p + ‖B‖p) + C2.

Proof. Since f is objective we have

f(QA,QR,QB) = f(A,R,B), Q ∈ SO(3).

Taking Q = R
T

we can define g by
g(A,B) = f(A, I,B),

where I is the identity matrix. That g is quasiconvex directly follows from quasiconvexity of f for the special
case R = I. Also, from the growth condition for f we easily see that g satisfies growth condition

|g(A,B)| < K(1 + ‖A‖p + ‖B‖p). (4.1)
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Since every quasiconvex function is convex in each variable (see [6]) using Lemma 4.8 we conclude

|g(A1,B1) − g(A2,B2)|≤K
(
1 + ‖A1‖p−1 + ‖B1‖p−1 + ‖A2‖p−1 + ‖B2‖p−1

)(‖A1 − A2‖ + ‖B1 − B2‖
)
.

f satisfies (b) because

|f(A1,R,B1) − f(A2,R,B2)| = |g(RT
A1,R

T
B1) − g(R

T
A2,R

T
B2)|

≤ K
(
1 + ‖RT

A1‖p−1 + ‖RT
B1‖p−1 + ‖RT

A2‖p−1 + ‖RT
B2‖p−1

)
× (‖RT

A1 − R
T
A2‖ + ‖RT

B1 − R
T
B2‖

)
≤ K1

(
1 + ‖A1‖p−1 + ‖B1‖p−1 + ‖A2‖p−1 + ‖B2‖p−1

)(‖A1 − A2‖ + ‖B1 − B2‖
)
.

Let us see why f satisfies (d)

|f(A,R1,B) − f(A,R2,B)| = |g(RT

1 A,R
T

1 B) − g(R
T

2 A,R
T

2 B)|
≤ K(1 + ‖RT

1 A‖p−1 + ‖RT

1 B‖p−1 + ‖RT

2 A‖p−1 + ‖RT

2 B‖p−1)(‖RT

1 A − R
T

2 A‖ + ‖RT

1 B − R
T

2 B‖)
≤ K1(1 + ‖A‖p + ‖B‖p)‖R1 − R2‖. �

The converse of Proposition 4.9 also holds.

Proposition 4.10. Let g : R
3×m × R

3×m → R be quasiconvex function which satisfies growth condition

|g(A,B)| ≤ K(1 + ‖A‖p + ‖B‖p).

Then the function f : R
3×m × SO(3) × R

3×m → R defined by:

f(A,R,B) := g(R
T
A,R

T
B)

is continuous, objective, quasiconvex in the first and last variable and satisfies the conditions (a), (b) and (d).
If g is coercive then f is also coercive.

Proof. Let us see why f is quasiconvex. Let D be a cube, ψ,χ ∈ C∞
0 (D,R3) and A,B ∈ R

3×m, R ∈ SO(3).
We have to prove that

f(A,R,B) ≤ 1
meas(D)

∫
D

f(A + ∇χ(x),R,B + ∇ψ(x))dx.

Since g is quasiconvex and R
T
ψ,R

T
χ ∈ C∞

0 (D,R3) we have that

f(A,R,B) = g(R
T
A,R

T
B)

≤ 1
meas(D)

∫
D

g(R
T
A + R

T∇χ(x),R
T
B + R

T∇ψ(x))dx

=
1

meas(D)

∫
D

f(A + ∇χ(x),R,B + ∇ψ(x))dx.

The objectivity of f follows immediately. The continuity of f is the direct consequence of the continuity of g.
The condition (a) is the direct consequence of the p-growth of g. The conditions (b) and (d) follow in the same
way as in Proposition 4.9 using the fact that, since it is quasiconvex, g satisfies

|g(A1,B1) − g(A2,B2)|≤K
(
1 + ‖A1‖p−1 + ‖B1‖p−1 + ‖A2‖p−1 + ‖B2‖p−1

)(‖A1 − A2‖ + ‖B1 − B2‖
)
.
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To prove the coerciveness of f if g is coercive let us note that an arbitrary norm ‖ · ‖ is equivalent with some
unitary invariant norm of matrices. Therefore there exists a constant C > 0 such that

‖RA‖ ≥ C‖A‖, A ∈ R
3×m, R ∈ SO(3).

The coerciveness of f is now a direct consequence of the coerciveness of g. �

Finally, we restate the Theorem 4.6 for objective function f .

Corollary 4.11. Let Ω ⊂ R
m be an open bounded set with the Lipschitz boundary and m < p < ∞. Let

f : R
3×m × SO(3) × R

3×m → R be a quasiconvex in the first and the last variable, objective function which
satisfies (a) and (c). Let

I(ϕ,R) =
∫

Ω

f(∇ϕ(x),R(x),ω(x))dx.

Then for every sequence ((ϕk,R
k
))k ⊂ W 1,p(Ω,R3) × W 1,p(Ω, SO(3)) which converges weakly to (ϕ,R) in

W 1,p(Ω,R3) ×W 1,p(Ω,R3×3) one has

I(ϕ,R) ≤ lim inf
k

I(ϕk,R
k
).
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