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INFINITELY MANY SOLUTIONS FOR ASYMPTOTICALLY LINEAR PERIODIC
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Abstract. This paper is concerned with the following periodic Hamiltonian elliptic system

⎧⎨
⎩

−Δϕ+ V (x)ϕ = Gψ(x, ϕ, ψ) in R
N ,

−Δψ + V (x)ψ = Gϕ(x, ϕ, ψ) in R
N ,

ϕ(x) → 0 and ψ(x) → 0 as |x| → ∞.

Assuming the potential V is periodic and 0 lies in a gap of σ(−Δ + V ), G(x, η) is periodic in x
and asymptotically quadratic in η = (ϕ, ψ), existence and multiplicity of solutions are obtained via
variational approach.
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1. Introduction and main results

Consider the following Hamiltonian elliptic system⎧⎨
⎩

−Δϕ+ V (x)ϕ = Gψ(x, ϕ, ψ) in R
N ,

−Δψ + V (x)ψ = Gϕ(x, ϕ, ψ) in R
N ,

ϕ(x) → 0 and ψ(x) → 0 as |x| → ∞,
(ES)

where N ≥ 1, ϕ, ψ : R
N → R, V ∈ C(RN ,R) and G ∈ C1(RN × R

2,R).
For the case of a bounded domain, assuming V ≡ 0, there are a number of papers concerned with the systems

like or similar to (ES ). For example, see Benci and Rabinowitz [8], De Figueiredo and Ding [11], De Figueiredo
and Felmer [12], Hulshof and Van de Vorst [17] and their references for superlinear systems and earlier works,
see Kryszewski and Szulkin [18] and the references therein for asymptotically linear systems, see Pistoia and
Ramos [22] and their references for a singularly perturbed problem. Recently, De Figueiredo et al. [14] treated
the system with G(x, ϕ, ψ) = F (ϕ)+H(ψ), and a nontrivial solution was obtained via an Orlitz space approach.
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There are several authors who considered the systems on the whole space R
N . But most of them focused

on the case V ≡ 1, which is not only radial but also periodic. The main difficulty of such type of problems is
the lack of the compactness of the Sobolev embedding. An usual way to overcome the difficulty is imposing
a radial symmetry assumption on the nonlinearities and working on the radially symmetric function space,
which possesses a compact embedding. By this means, De Figueiredo and Yang [13] obtained a positive radially
symmetric solution which decays exponentially to 0 at infinity. Their results were generalized by Sirakov [25] in a
different way. Later, Bartsch and De Figueiredo [6] proved that the system admits infinitely many radial as well
as non-radial solutions if G is even in z. Li and Yang [21] proved, via a generalized linking theorem, that (ES )
has a positive ground state solution for V ≡ 1 and an asymptotically quadratic nonlinearity G(x, ϕ, ψ) = F (ϕ)+
H(ψ), and based on this result they obtained a positive solution for G(x, ϕ, ψ) =

∫ ϕ
0
f(x, t)dt +

∫ ψ
0

(x, s)ds if
f(x, ϕ) and g(x, ψ) have autonomous limits f̄(ϕ) and h̄(ψ) at infinity. Very recently, Ding and Lin [16] considered
semiclassical problems for systems of Schrödinger equations with subcritical and critical nonlinearities.

Another usual way is avoiding the indefinite character of the original functional by using the dual variational
method, see for instance Ávila and Yang [4,5], Alves et al. [3], Yang [28] and the references therein.

In this paper, we consider a periodic asymptotically linear elliptic system with 0 lying in a gap of σ(S), where
S := −Δ + V is the Schrödinger operator, and σ(S) denotes the spectrum of the operator S. We must face
two kinds of indefiniteness: one comes from the system itself and the other comes from each equation in the
system. As to our knowledge, there is no multiplicity result for the asymptotically linear systems. The purpose
of this paper is to obtain the existence and multiplicity of solutions. Since there is no radial assumption, we
have to work on H1(RN ) ×H1(RN ). Thanks to the periodic assumption, we can prove a weak version of the
Cerami condition similar to Coti-Zelati and Rabinowitz [9,10]. By establishing a proper variational framework,
we can obtain the multiplicity results via the critical point theory of strongly indefinite functional, which were
developed recently by Bartsch and Ding [7].

More precisely, for the potential V , we assume

(V0) V ∈ C(RN ,R) is 1-periodic in each xi for i = 1, . . . , N .

It is well known that, under (V0), S is semibounded from below and the spectrum σ(S) = σcont(S) is a union
of closed intervals (see Reed and Simon [23]), where σcont(S) denotes the continuous spectrum of the operator S.
The relationship between 0 and σ(S) is important to our approach. So we assume in addition that

(V1) 0 lies in a gap of σ(S).

By (V1), there holds

Λ̄ := sup[σ(S) ∩ (−∞, 0)] < 0 < Λ := inf[σ(S) ∩ (0,∞)].

In what follows, we use the notation η =: (ϕ, ψ). For the nonlinearity, we assume

(G0) G ∈ C1(RN × R
2, [0,∞)) is 1-periodic in each xi for i = 1, . . . , N ;

(G1) G(x, η) = o(|η|2) as |η| → 0.
(G2) |Gη(x, η)−G∞(x)η|/|η| → 0 as |η| → ∞, where G∞ ∈ C(RN ,R) is 1-periodic in each xi for i = 1, . . . , N ;
(G3) G0 := inf

x∈RN
G∞(x) > Λ, where Λ := max

{
Λ,−Λ̄

}
;

(G4) Ĝ(x, η) > 0 if η �= 0, and Ĝ(x, η) → ∞ as |η| → ∞, where Ĝ(x, η) = 1
2Gη(x, η)η −G(x, η);

(G′
4) there exists δ0 ∈ (0,Λ0) such that Ĝ(x, η) ≥ δ0 whenever |Gη(x, η)| ≥ (Λ0 − δ0)|η|, where Λ0 :=

min
{
−Λ̄,Λ

}
;

(G5) Ĝ(x, η) ≥ 0, and there exists δ1 > 0 such that Ĝ(x, η) > 0 if 0 < |η| ≤ δ1.

Remark 1.1. There are some functions which satisfy (G0)–(G5). For example, G(x, η) = a(x)|η|2(1− 1
ln(e+|η|) ),

where inf a(x) > Λ and is 1-periodic in each xi for i = 1, . . . , N .

Observe that, due to the periodicity of V , G, if (ϕ, ψ) is a solution of (ES ), then so is (a ∗ ϕ, b ∗ ψ) for each
a, b ∈ Z

N , where (a ∗ ϕ)(x) = ϕ(x + a) and (b ∗ ψ)(x) = ψ(x+ b). Two solutions (ϕ1, ψ1) and (ϕ2, ψ2) are said
to be geometrically distinct if a ∗ ϕ1 �= ϕ2 and b ∗ ψ1 �= ψ2 for all a, b ∈ Z

N . Our main result is the following:
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Theorem 1.1. Let (V0)–(V1), (G0)–(G3), (G5) and (G4) or (G′
4) be satisfied. Then (ES) has a least energy

solution. If additionally G(x, η) is even in η then (ES) has infinitely many geometrically distinct solutions.

The paper is organized as follows. In Section 2, we set up the framework in which we study the variational
problem associated to (ES ). The linking structure of the functional will be discussed in Section 3. Some
properties of (C)c sequences will be showed in Section 4. The proof of Theorem 1.1 announced above will be
given in the last section.

2. Variational setting

Below by | · |q we denote the usual Lq-norm, c or ci stand for different positive constants. Let X and Y
be two Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , we always choose the equivalent norm ‖(x, y)‖X×Y =
(‖x‖2

X + ‖y‖2
Y )1/2 on the product space X × Y . In particular, if X and Y are two Hilbert spaces with inner

products (·, ·)X and (·, ·)Y , we choose the inner product ((x, y), (w, z))X×Y = (x,w)X + (y, z)Y on the product
space X × Y .

Let {Eλ}λ∈R
be the spectral family of S. Assumption (V1) implies an orthogonal decomposition:

L2 := L2(RN ,R) = L+ ⊕ L−, z = z− + z+,

where L− = E0L
2 and L+ = (Id−E0)L2. Denoting by |S| the absolute value of S and its square root operator

is

|S|1/2 =
∫ ∞

−∞
|λ|dE(λ) : D(|S|1/2) → L2,

where

D(|S|1/2) =
{
u ∈ L2|

∫ ∞

−∞
|λ|d(E(λ)u, u)L2 <∞

}
.

Let H = D(|S|1/2) be the Hilbert space with the inner product

(u, v)H = (|S|1/2u, |S|1/2v)L2

and the corresponding norm ‖u‖H = (u, u)1/2H . There is an induced decomposition

H = H− ⊕H+, H± = H ∩ L±,

which is orthogonal with respect to the inner products (·, ·)L2 and (·, ·)H . Then for any u ∈ H , u = u+ + u−,
u± ∈ H±, there holds ∫

RN

|∇u|2 + V (x)u2 = ‖u+‖2
H − ‖u−‖2

H . (2.1)

Let E = H ×H with the inner product

((u, v), (ϕ, φ)) = (u, ϕ)H + (v, ψ)H

and the corresponding norm
‖(u, v)‖ = [‖u‖2

H + ‖v‖2
H ]1/2.

Recall that E ↪→ Lp(RN ,R2) is continuous for p ∈ [2, 2∗] and E ↪→ Lploc(R
N ,R2) is compact for p ∈ [2, 2∗),

where 2∗ is the Sobolev critical exponent. On E we define the following functional

I(η) = I(ϕ, ψ) =
∫

RN

∇ϕ∇ψ + V (x)ϕψ −
∫

RN

G(x, η),
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for η = (ϕ, ψ) ∈ E. Our hypotheses imply that I ∈ C1(E) and a standard argument shows that its critical
points are weak solutions of (ES ).

Setting
E+ = H+ ×H−, E− = H− ×H+,

then for any z = (u, v) ∈ E, we have

z = z+ + z−, where z+ = (u+, v−), z− = (u−, v+).

Clearly, E+ and E− are orthogonal with respect to the inner products (·, ·)L2×L2 and (·, ·). Hence E = E+⊕E−.
Now we introduce a change of variable ⎧⎪⎨

⎪⎩
ϕ =

u+ v√
2
,

ψ =
u− v√

2
,

(2.2)

and set H(x, z) = H(x, u, v) := G(x, u+v√
2
, u−v√

2
), where here and in what follows we write z = (u, v) and

|z| = (|u|2 + |v|2)1/2.
The assumptions on G imply that H satisfies
(H0) H ∈ C1(RN × R

2, [0,∞)) is 1-periodic in each xi for i = 1, . . . , N ;
(H1) H(x, z) = o(|z|2) as |z| → 0.
(H2) |Hz(x, z) −G∞(x)z|/|z| → 0 as |z| → ∞, where G∞ is given in (G2);
(H3) G0 := inf

x∈RN
G∞(x) > Λ;

(H4) Ĥ(x, z) > 0 if z �= 0, and Ĥ(x, z) → ∞ as |z| → ∞;
(H ′

4) there exists δ0 ∈ (0,Λ0) such that Ĥ(x, z) ≥ δ0 whenever |Hz(x, z)| ≥ (Λ0 − δ0)|z|;
(H5) Ĥ(x, z) ≥ 0, and there exists δ1 > 0 such that Ĥ(x, z) > 0 if 0 < |z| ≤ δ1.

It follows from (2.1) and (2.2) that

∫
RN

∇ϕ∇ψ + V (x)ϕψ =
1
2

∫
RN

(|∇u|2 + V (x)u2 − |∇v|2 − V (x)v2)

=
1
2
(‖u+‖2

H − ‖u−‖2
H − ‖v+‖2

H + ‖v−‖2
H)

=
1
2
(‖z+‖2 − ‖z−‖2).

Thus, we have an equivalent functional

Φ(z) = Φ(u, v) =
1
2
(‖z+‖2 − ‖z−‖2) − Ψ(z), (2.3)

where Ψ(z) =
∫

RN H(x, z). It is obvious that z = (u, v) is a critical point of Φ if and only if ((u + v)/
√

2, (u −
v)/

√
2) is a critical point of I. In what follows, we shall seek for the critical points of Φ under the assumptions

on H . The functional Φ is strongly indefinite; such type of functionals have appeared extensively in the study
of differential equations via critical point theory, see for example [19,26,27] and the references therein.

3. Linking structure

In this section, we discuss the linking structure of Φ.

Lemma 3.1. Suppose (H0)–(H2) are satisfied. Then there is a ρ > 0 such that κ := inf Φ(∂Bρ ∩ E+) > 0.
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Proof. Observe that, given ε > 0, there is Cε > 0 such that

|Hz(x, z)| ≤ ε|z|+ Cε|z|p−1 (3.1)

and
|H(x, z)| ≤ ε|z|2 + Cε|z|p (3.2)

for all (x, z), where p > 2. Now, the conclusion follows in a standard way. �
By (H3), we can take a number γ such that

Λ < γ < G0. (3.3)

Since σ(S) is absolutely continuous, the subspace Y1 := (Eγ − E0)L2 and Y2 := (E0 − E−γ)L2 are infinite
dimensional subspaces of H+ and H−, respectively. Recall that {Eλ}λ∈R

is the spectral family of S. Then

Λ|u|22 ≤ ‖u‖2
E0

≤ γ|u|22 for all u ∈ Y1,

Λ|v|22 ≤ ‖v‖2
E0

≤ γ|v|22 for all v ∈ Y2.

Set W0 := Y1 × Y2, then W0 is an infinite dimensional subspace of E+ and

Λ|w|22 ≤ ‖w‖2
E0

≤ γ|w|22 for all w ∈W0. (3.4)

Let {αn} and {βn} be two sequences so that

Λ = α0 < α1 < α2 < . . . ≤ γ,

Λ̄ = β0 > β1 > β2 > . . . ≥ max {−γ, inf σ(S)} .
For each n ∈ N, take an element en ∈ (Eαn − Eαn−1)L2 with ‖en‖ = 1 and define Y n1 := span {e1, . . . , en}.
Similarly, take fn ∈ (Eβn−1 −Eβn)L2 with ‖fn‖ = 1 and define Y n2 := span {f1, . . . , fn}. Then Wn := Y n1 × Y n2
is a increasing sequence of finite dimensional subspaces of E+. For any subspace Wn of W0 set En = E− ⊕Wn.

Lemma 3.2. Let (H0) and (H2)–(H3) be satisfied and ρ > 0 be given by Lemma 3.1. Then sup Φ(En) < ∞,
and there is a sequence Rn > 0 such that sup Φ(En\Bn) < inf Φ(Bρ), where Bn := {z ∈ En : ‖z‖ ≤ Rn}.
Proof. It is sufficient to prove that Φ(z) → −∞ in En as ‖z‖ → ∞. If not, then there are M > 0 and {zj} ⊂ En
with ‖zj‖ → ∞ such that Φ(zj) ≥ −M for all j. Denote yj := zj/‖zj‖, passing to a subsequence if necessary,
yj ⇀ y, y−j ⇀ y− and y+

j → y+. Since Ψ(z) ≥ 0,

1
2
(‖y+

j ‖2 − ‖y−j ‖2) ≥ 1
2
(‖y+

j ‖2 − ‖y−j ‖2) − Ψ(zj)
‖zj‖2

=
Φ(zj)
‖zj‖2

≥ −M
‖zj‖2

,

(3.5)

from where it follows that
1
2
‖y−j ‖2 ≤ 1

2
‖y+
j ‖2 +

M

‖zj‖2
· (3.6)

We claim that y+ �= 0. Indeed, if not, (3.6) yields that ‖y−j ‖ → 0. Thus ‖yj‖ → 0, which contradicts with
‖yj‖ = 1. Since

‖y+‖2 − ‖y−‖2 −
∫

RN

G∞(x)|y|2 ≤ ‖y+‖2 − ‖y−‖2 −G0|y|22

≤ −(G0 − γ)|y+|22 < 0,
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then there exists Ω ⊂ R
N such that

‖y+‖2 − ‖y−‖2 −
∫

Ω

G∞(x)|y|2 < 0. (3.7)

Setting R(x, z) := H(x, z) − 1
2G∞(x)|z|2, then |R(x, z)| ≤ c|z|2 for some c > 0, R(x, z)/|z|2 → 0 as |z| → ∞

uniformly in x. By Lebesgue’s dominated convergence theorem we have

lim
j→∞

∫
Ω

|R(x, zj)|
‖zj‖2

= lim
j→∞

∫
Ω

|R(x, zj)|
|zj |2

|yj|2 = 0. (3.8)

Thus (3.5), (3.7)–(3.8) imply that

0 ≤ lim
j→∞

[
1
2
(‖y+

j ‖2 − ‖y−j ‖2) −
∫

Ω

H(x, zj)
‖zj‖2

]

= lim
j→∞

[
1
2
(‖y+

j ‖2 − ‖y−j ‖2) − 1
2

∫
Ω

G∞(x)|yj |2 −
∫

Ω

R(x, zj)
‖zj‖2

]

≤ 1
2
(‖y+‖2 − ‖y−‖2 −

∫
Ω

G∞(x)|y|2) < 0.

Now the desired conclusion follows from this contradiction. �
As a consequence, we have:

Lemma 3.3. Let (H0) and (H2)–(H3) be satisfied and κ > 0 be given by Lemma 3.1. Then letting e ∈ W0 with
‖e‖ = 1, there is R1 > ρ such that Φ|∂Q ≤ κ, where Q := {z = z− + se : z− ∈ E−, s ≥ 0, ‖z‖ ≤ R1}.

4. The (C)c-sequence

Lemma 4.1. Suppose that (H0)–(H2) and (H4) or (H ′
4) are satisfied. Then any (C)c-sequence of Φ is bounded.

Proof. Let {zj} be such that Φ(zj) → c and (1 + ‖zj‖)Φ′(zj) → 0. Suppose to the contrary that {zj} is
unbounded. Setting yj := zj/‖zj‖, then ‖yj‖ = 1. Without loss of generality, we can assume that yj ⇀ y in E.
Observe that for j large

C ≥ Φ(zj) −
1
2
Φ′(zj)zj =

∫
RN

Ĥ(x, zj), (4.1)

and
Φ′(zj)(z+

j − z−j ) = ‖zj‖2 −
∫

RN

Hz(x, zj)(z+
j − z−j )

= ‖zj‖2

[
1 −

∫
RN

Hz(x, zj)(y+
j − y−j )

‖zj‖

]
·

(4.2)

Suppose that (H4) holds. Set for r ≥ 0,

g(r) := inf
{
Ĥ(x, z)|x ∈ R

N and z ∈ R
2 with |z| ≥ r

}
·

By (H4), g(r) → ∞ as r → ∞.
For 0 ≤ a < b, let

Ωj(a, b) =
{
x ∈ R

N |a ≤ |zj(x)| < b
}

and

Cba = inf

{
Ĥ(x, z)
|z|2 |x ∈ R

N with a ≤ |z(x)| ≤ b

}
·
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One has
Ĥ(x, zj(x)) ≥ Cba|zj(x)|2 for all x ∈ Ωj(a, b).

It follows from (4.1) that

C ≥
∫

Ωj(0,a)

Ĥ(x, zj) +
∫

Ωj(a,b)

Ĥ(x, zj) +
∫

Ωj(b,∞)

Ĥ(x, zj)

≥
∫

Ωj(0,a)

Ĥ(x, zj) + Cba

∫
Ωj(a,b)

|zj |2 + g(b)|Ωj(b,∞)|.
(4.3)

Using (4.3) one has

|Ωj(b,∞)| ≤ C

g(b)
→ 0 (4.4)

as b→ ∞ uniformly in x, and for any fixed 0 < a < b,

∫
Ωj(a,b)

|yj |2 =
1

‖zj‖2

∫
Ωj(a,b)

|zj |2 ≤ C

Cba‖zj‖2
→ 0 (4.5)

as j → ∞. It follows from (4.4) that, for any s ∈ [2, 2∗)

∫
Ωj(b,∞)

|yj |s ≤
(∫

Ωj(b,∞)

|yj |2
∗
) s

2∗

|Ωj(b,∞)|
2∗−s
2∗ ≤ c|Ωj(b,∞)|

2∗−s
2∗ → 0 (4.6)

as b→ ∞ uniformly in j. In virtue of (4.5), for any s ∈ [2, 2∗), there holds

∫
Ωj(a,b)

|yj |s ≤ c

(∫
Ωj(a,b)

|yj |2
)(2∗−s)/(2∗−2)

→ 0 as j → ∞. (4.7)

From (4.2), ∫
RN

Hz(x, zj)(y+
j − y−j )|yj |

|zj|
→ 1. (4.8)

Let 0 < ε < 1/3. By (H1) there is aε > 0 such that

|Hz(x, z)| <
ε

c
|z|

for all |z| ≤ aε. Consequently,

∫
Ωj(0,aε)

Hz(x, zj)(y+
j − y−j )|yj |

|zj |
≤
∫

Ωj(0,aε)

ε

c
|y+
j − y−j ||yj |

≤ ε

c
|yj |22 < ε

(4.9)

for all j.
By (H1) and (H2), there is some C > 0 such that

|Hz(x, z)| ≤ C|z| (4.10)
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for all (x, z). By (4.6) and Hölder inequality, we can take large bε such that

∫
Ωj(bε,∞)

Hz(x, zj)(y+
j − y−j )|yj |

|zj|
≤ C

∫
Ωj(bε,∞)

|y+
j − y−j ||yj |

≤ C|Ωj(bε,∞)| 1
N

(∫
Ωj(bε,∞)

|y+
j − y−j |2

) 1
2
(∫

Ωj(bε,∞)

|yj |2
∗
) 1

2∗

≤ ε

(4.11)

for all j. By (4.5) there is j0 such that

∫
Ωj(aε,bε)

Hz(x, zj)(y+
j − y−j )|yj |

|zj |
≤ C

∫
Ωj(aε,bε)

|y+
j − y−j ||yj |

≤ C|yj |2
( ∫

Ωj(aε,bε)

|yj |2
) 1

2 ≤ ε

(4.12)

for all j ≥ j0. By (4.9) and (4.10)–(4.12), one has

lim sup
n→∞

∫
R3

Hz(x, zj)(z+
j − z−j )

‖zj‖2
≤ 3ε < 1,

which contradicts (4.8).
In the case that (H ′

4) holds. By the Lions’ concentration compactness principle, only two cases needed to be
considered: {yj} is vanishing or {yj} is nonvanishing.

If {yj} is vanishing, then by the vanishing lemma we have yj → 0 in Lp(RN ) × Lp(RN ) for p ∈ (2, 2∗). In
virtue of (H ′

4), set

Ωj :=
{
x ∈ R

N | |Hz(x, zj(x))|
|zj(x)|

≤ Λ0 − δ0

}
·

Then Λ0|yj|22 ≤ ‖yj‖2 = 1 and we have

∣∣∣∣∣
∫

Ωj

Hz(x, zj)(y+
j − y−j )

‖zj‖

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωj

Hz(x, zj)(y+
j − y−j )|yj |

|zj|

∣∣∣∣∣
≤ (Λ0 − δ0)|yj |22

≤ Λ0 − δ0
Λ0

for all j. This, jointly with (4.8), implies that for Ωcj = R
N \Ωj

lim
j→∞

∫
Ωc

j

Hz(x, zj)(y+
j − y−j )|yj |

|zj |
> 1 − Λ0 − δ0

Λ0
=
δ0
Λ0

·

On the other hand, by (4.10) there holds for an arbitrarily fixed s ∈ (2, 2∗),

∫
Ωc

j

Hz(x, zj)(y+
j − y−j )|yj |

|zj|
≤ C

∫
Ωc

j

|y+
j − y−j ||yj |

≤ C|yj |2|Ωcj |(s−2)/2s|yj |s.
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Since |yj|s → 0 and |yj |2 is bounded, one has |Ωcj | → ∞. From (H ′
4), Ĥ(x, z) ≥ δ0 on Ωcj and hence

∫
RN

Ĥ(x, zj) ≥
∫

Ωc
j

Ĥ(x, zj) ≥ δ0|Ωcj | → ∞,

contrary to (4.1).
If {yj} is nonvanishing, i.e., there exist α > 0, R <∞ and {aj} ⊂ R

N such that

lim inf
j→∞

∫
B(aj ,R)

|yj|2 ≥ α.

Set z̃j(x) = zj(x + aj), ỹj(x) = yj(x + aj) and ηj(x) = η(x + aj) for each η = (ϕ, ψ) ∈ C∞
0 (RN ) × C∞

0 (RN ).
Now from (H2) there holds

Φ′(zj)ηj = (z+
j − z−j , ηj) − (G∞(x)zj , ηj)L2×L2 −

∫
RN

Rz(x, zj)ηj

= ‖zj‖
[
(y+
j − y−j , ηj) − (G∞(x)yj , ηj)L2×L2 −

∫
RN

Rz(x, zj)ηj
|yj|
|zj|

]

= ‖zj‖
[
(ỹ+
j − ỹ−j , η) − (G∞(x)ỹj , η)L2×L2 −

∫
RN

Rz(x, z̃j)η
|ỹj |
|z̃j |

]

and hence

(ỹ+
j − ỹ−j , η) − (G∞(x)ỹj , η)L2×L2 −

∫
RN

Rz(x, z̃j)η
|ỹj |
|z̃j |

= o(1). (4.13)

Since ‖ỹj‖ = ‖yj‖ = 1, up to a subsequence we may assume that ỹj ⇀ ỹ in E, ỹj → ỹ in L2
loc(R

N ) × L2
loc(R

N )
and ỹj(x) → ỹ(x) a.e. in R

N . Clearly, ỹ �= 0. Observe that

∣∣∣∣
∫

RN

Rz(x, z̃j)η
|ỹj |
|z̃j |

∣∣∣∣ ≤
∣∣∣∣
∫

RN

Rz(x, z̃j)η|ỹ|
|z̃j|

∣∣∣∣+
∣∣∣∣
∫

RN

Rz(x, z̃j)η|ỹj − ỹ|
|z̃j |

∣∣∣∣ = I + II.

Since Rz(x,z̃j)η|ỹ|
|z̃j| → 0 a.e. in R

N , it follows from the dominated convergence theorem that I → 0. By local
compactness of embedding, one has

II =

∣∣∣∣∣
∫
suppη

Rz(x, z̃j)η|ỹj − ỹ|
|z̃j |

∣∣∣∣∣ ≤ C|η|2|ỹj − ỹ|L2(suppη) → 0.

Combining the above two estimates for I and II, we have

∫
RN

Rz(x, z̃j)η
|ỹj |
|z̃j |

→ 0,

and letting j → ∞ in (4.13) we get

(ỹ+ − ỹ−, η) − (G∞(x)ỹ, η)L2×L2 = 0, for each η = (ϕ, ψ) ∈ C∞
0 (RN ). (4.14)

Let ỹ = (ζ, ξ), then ỹ+ − ỹ− = (ζ+ − ζ−, ξ− − ξ+). Thus from (4.14) we have

(ζ+ − ζ−, ϕ)H + (ξ− − ξ+, ψ)H − (G∞(x)ζ, ϕ)L2 − (G∞(x)ξ, ψ)L2 = 0,
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which implies that {
−Δζ + V (x)ζ = G∞ζ,
Δξ + V (x)ξ = G∞ξ.

Hence ζ is an eigenfunction of S1 := −Δ + (V − G∞) and ξ is an eigenfunction of S2 := −Δ + (G∞ − V ),
which contradicts with the fact that Si has only continuous spectrum for i = 1, 2 since V − G∞ is 1-periodic.
Therefore {zj} is bounded in E. �

Let {zj} ⊂ E be a (C)c-sequence of Φ, by Lemma 3.1, it is bounded, up to a subsequence, we may assume
zj ⇀ z in E, zj → z in Lploc for p ∈ [2, 2∗) and zj(x) → z(x) a.e. on R

N . Plainly, z is a critical point of Φ.
Recall that a mapping f from a Banach space X to another Banach space Y is called a BL-split, if for every

sequence {xn} in X with xn ⇀ x it holds that f(xn) − f(xn − x) → f(x) in Y (see Ackermann [2]). We adopt
here a cut-off technique developed in Ackermann [1,2]. Let η : [0,∞) → [0, 1] be a smooth function satisfying
η(s) = 1 if s ≤ 1, η(s) = 0 if s ≥ 2. Define z̃j(x) = η(2|x|/j)z(x), then z̃j → z in E. In a similar way to
Lemma 3.2 in Ackermann [1] (see also Lem. 4.4 in Ding and Jeanjean [15]), we can obtain the following:

Lemma 4.2. Under the assumptions of Theorem 1.1, Ψ(·) and Ψ′(·) are both BL-splits.

Let K := {z ∈ E|Φ′(z) = 0, z �= 0} be the set of nontrivial critical points of Φ.

Lemma 4.3. Under the assumptions of Lemma 4.1, the following two conclusions hold
(1) ν := inf {‖z‖ : z ∈ K} > 0;
(2) θ := inf {Φ(z)|z ∈ K} > 0.

Proof. (1) For any z ∈ K, there holds

0 = Φ′(z)(z+ − z−) = ‖z‖2 −
∫

RN

Hz(x, z)(z+ − z−),

jointly with (3.1), which implies that

‖z‖2 ≤ ε|z|22 + Cε|z|pp ≤ cε‖z‖2
2 + cCε‖z‖p,

where p ∈ (2, 2∗). Choose ε small enough, hence

0 <
(

1 − cε

cCε

) 1
p−2

≤ ‖z‖

for each z ∈ K.
(2) Suppose to the contrary that there exist a sequence {zj} ∈ K such that Φ(zj) → 0. By (1), ‖zj‖ ≥ ν.

Clearly, {zj} is a (C)0-sequence of Φ, and hence is bounded by Lemma 4.1. Moreover, {zj} is nonvanishing.
By the invariance under translation of Φ, we can assume, up to a translation, that zj ⇀ z ∈ K. Since z = (u, v)
is a solution of (ES ), |z(x)| → 0 as |x| → ∞. Thus there is a bounded domain Ω ⊂ R

N with positive measure
such that 0 < |z(x)| < δ1 for x ∈ Ω by (H5). Then

o(1) = Φ(zj) = Φ(zj) −
1
2
Φ′(zj)zj =

∫
RN

Ĥ(x, zj) ≥
∫

Ω

Ĥ(x, zj),

letting j → ∞ yields

0 ≥ lim
j→∞

∫
Ω

Ĥ(x, zj) ≥
∫

Ω

Ĥ(x, z) > 0.

This ends the proof. �
In the following lemma we discuss further the (C)c-sequence. Let [l] denote the integer part of l ∈ R. The

following lemma is standard (see Coti-Zelati and Rabinowitz [9,10] and Séré [24]).
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Lemma 4.4. Under the assumptions of Theorem 1.1, let {zj} ⊂ E be a (C)c-sequence of Φ. Then either
(i) zj → 0 (and hence c = 0), or
(ii) c ≥ θ and there exist a positive integer l ≤ [c/θ], y1, . . . , yl ∈ K and sequences

{
aij
}
⊂ Z

N , i = 1, 2, . . . , l,
such that, after extraction of a subsequence of {zj},

∥∥∥zj − l∑
i=1

aij ∗ yi
∥∥∥→ 0,

l∑
i=1

Φ(yi) = c

and for i �= k,

|aij − akj | → ∞
as j → ∞.

5. Proof of Theorem 1.1

In this section we prove our Theorem 1.1. First, we recall some terminology from Bartsch and Ding [7]. Let
E be a Banach space with direct sum E = X⊕Y and corresponding projections PX , PY onto X,Y . Let S ⊂ X∗

be a dense subset, for each s ∈ S there is a semi-norm on E defined by

ps : E → R, ps(u) = |s(x)| + ‖y‖ for u = x+ y ∈ E.

We denote by TS the topology induced by the semi-norm family {ps}, and by w∗ denote the weak∗-topology
on E∗. Now, some notations are needed. For a functional Φ ∈ C1(E,R) we write Φa = {u ∈ E|Φ(u) ≥ a},
Φb = {u ∈ E|Φ(u) ≤ b} and Φba = Φa ∩ Φb. Recall that a set A ⊂ E is said to be a (C)c-attractor if for
any ε, δ > 0 and any (C)c-sequence {zj} there is j0 such that zj ∈ Uε(A ∩ Φc+δc−δ) for j ≥ j0. Given an
interval I ⊂ R, A is said to be a (C)I -attractor if it is a (C)c-attractor for all c ∈ I. Φ is said to be weakly
sequentially lower semicontinuous if for any uj ⇀ u in E one has Φ(u) ≤ lim inf

j→∞
Φ(uj), and Φ′ is said to be

weakly sequentially continuous if lim
j→∞

Φ′(uj)w = Φ′(u)w for each w ∈ E. Suppose

(Φ0) for any c ∈ R, Φc is TS-closed, and Φ′ : (Φc, TS) → (E∗, w∗) is continuous;
(Φ1) for any c > 0, there exists ξ > 0 such that ‖u‖ < ξ‖PY u‖ for all u ∈ Φc;
(Φ2) there exists ρ > 0 such that κ := inf Φ(Sρ ∩ Y ) > 0, where Sρ := {u ∈ E : ‖u‖ = ρ};
(Φ3) there exists a finite-dimensional subspace Y0 ⊂ Y and R > ρ such that we have for E0 := X ⊕ Y0 and

B0 := {u ∈ E0 : ‖u‖ ≤ R} that c̄ := supΦ(E0) <∞ and sup Φ(E0 \B0) < inf Φ(Bρ ∩ Y );
(Φ4) there is an increasing sequence Yn ⊂ Y of finite-dimensional subspaces and a sequence {Rn} of positive

numbers such that, letting En = X ⊕ Yn and Bn = BRn ∩ En, sup Φ(En) < ∞ and sup Φ(En \ Bn) <
inf Φ(Bρ ∩ Y );

(Φ5) for any interval I ⊂ (0,∞) there is a (C)I -attractorA with PXA bounded and inf {‖PY (z−w)‖ :z, w ∈ A ,
PY (z − w) �= 0} > 0.

Now we state two critical point theorems which will be used later (see Bartsch-Ding [7]).

Theorem 5.1. Let (Φ0)–(Φ2) be satisfied and suppose there are R > ρ > 0 and e ∈ Y with ‖e‖ = 1 such that
sup Φ(∂Q) ≤ κ where Q := {u = x+ te : x ∈ X, t ≥ 0, ‖u‖ < R}. Then Φ has a (C)c-sequence with κ ≤ c ≤
sup Φ(Q).
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Remark 5.1. If we set

ΓQ,S := {h ∈ C([0, 1] ×Q,E) : h satisfies (h1) − (h5)} ,

where

(h1) h : [0, 1]× (Q, TS) → (E, TS) is continuous;
(h2) h(0, u) = u for all u ∈ Q;
(h3) Φ(h(t, u)) ≤ Φ(u) for all t ∈ [0, 1], u ∈ Q;
(h4) h([0, 1]× ∂Q) ∩ (Sρ ∩ Y ) = ∅;
(h5) each (t, u) ∈ [0, 1] × Q has a TS -open neighbourhood W such that the set {v − h(s, u) : (s, v) ∈ W

×([0, 1]×Q)} is contained in a finite-dimensional subspace of E.

Then c has minimax characterization c = inf
h∈ΓQ,S

sup
u∈Q

Φ(h(1, u)).

Theorem 5.2. Assume Φ is even with Φ(0) = 0, let (Φ0)–(Φ2) and (Φ4)–(Φ5) be satisfied. Then Φ has possesses
an unbounded sequence of positive critical values.

Lemma 5.3. Φ defined in (2.3) satisfies (Φ0).

Proof. We first show that Φa is TS-closed for every a ∈ R. Consider a sequence {zj} ⊂ Φa which TS-converges
to z ∈ E, and write zj = z−j + z+

j , z = z− + z+. Then z+
j → z+ in norm topology and hence

{
z+
j

}
is bounded

in norm topology. Observe that there exists C > 0 such that

‖z−j ‖2 = ‖z+
j ‖2 − 2Φ(zj) − 2

∫
RN

H(x, zj) ≤ C

since H(t, x, z) ≥ 0. This implies the boundedness of
{
z−j
}

and hence z−j ⇀ z−. Therefore we have zj ⇀ z. It
is easy to check that Ψ is weakly sequentially lower semi-continuous by the fact that E ↪→ Lploc for p ∈ [2, 2∗)
and the Fatou’s Lemma, from where it follows that

a ≤ lim
n→∞Φ(zj) ≤ Φ(z),

so z ∈ Φa and hence Φa is TS-closed.
Next we show that Φ′ : (Φc, TS) → (E∗, w∗) is continuous. It suffices to show that Ψ′ has the same property,

recall Ψ(z) :=
∫

RN H(x, z). Suppose zj → z in TS topology. Then zj → z in Lploc(R
N )×Lploc(R

N ) for p ∈ [2, 2∗).
It is obvious that

Ψ′(zj)η =
∫

RN

Hz(x, zj)η →
∫

RN

Hz(x, z)η = Ψ′(z)η

as n → ∞ for all η = (ϕ, ψ) ∈ C∞
0 (RN ) × C∞

0 (RN ). Now using the density of C∞
0 (RN ) in E0 we can obtain

the desired conclusion. �

Lemma 5.4. Φ satisfies (Φ1).

Proof. For any c > 0 and z ∈ Φc, using the fact that H ≥ 0 one has

0 < c ≤ 1
2
(‖z+‖2 − ‖z−‖2).

This yields ‖z−‖ < ‖z+‖, and hence ‖z‖ ≤
√

2‖z+‖. �
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Proof of Theorem 1.1. 1. Existence of a nontrivial solution. WithX = E− and Y = E+ the condition (Φ0)
holds by Lemma 5.3 and (Φ1) holds by Lemma 5.4. Lemma 3.1 implies (Φ2). Lemma 3.3 shows that Φ possesses
the linking structure of Theorem 5.1. Therefore, using Theorem 5.1, there exists a sequence {zj} ⊂ E such that
Φ(zj) → c ≥ κ and (1 + ‖zj‖)Φ′(zj) → 0. By Lemma 4.1, {zj} is bounded. Now by the Lions’ concentration
compactness principle, either vanishing or nonvanishing occurs for the functions |zj|2. If vanishing occurs, by
the vanishing lemma, ∫

RN

Hz(x, zj)zj = o(1),
∫

RN

H(x, zj) = o(1).

Then

o(1) = Φ′(zj)zj =
1
2
(‖z+

j ‖2 − ‖z−j ‖2) −
∫

RN

Hz(x, zj)zj =
1
2
(‖z+

j ‖2 − ‖z−j ‖2) + o(1),

which implies that 1
2 (‖z+

j ‖2−‖z−j ‖2) = o(1). Hence Φ(zj) → 0 as j → ∞. This contradicts to Φ(zj) → c ≥ κ > 0
as j → ∞. So nonvanishing occurs, i.e., there exist α > 0, R <∞ and {aj} ⊂ R

N such that

lim inf
j→∞

∫
B(aj ,R)

|zj|2 ≥ α.

Setting z̃j(x) = zj(x+ aj), by the invariance under translation of Φ, {z̃j} is a (C)c-sequence of Φ and z̃j ⇀ z̃.
From

lim inf
j→∞

∫
B(0,R)

|z̃j|2 ≥ α > 0,

we see that z̃ �= 0, and hence z̃ is a nontrivial critical point of Φ.
2. Existence of a least energy solution. Claim that θ := inf {Φ(z)|z ∈ K} is achieved.

In fact, the process of part 1 shows that K is nonempty and hence θ is finite. Let {zj} ⊂ K be a minimizing
sequence for θ. Clearly, {zj} is a (C)θ-sequence of Φ, hence is bounded by Lemma 4.1. From (1) of Lemma 4.3,
‖zj‖ ≥ ν > 0, one can rule out the case of vanishing. Hence {zj} is nonvanishing. Similarly, passing to a
translation, z̃j has a nonzero weak limit z̃1 ∈ K and z̃j(x) → z̃1(x) a.e. in R

N , where z̃j is given as in the part 1
of the proof. By Fatou’s lemma,

θ = lim
j→∞

Φ(zj) = lim
j→∞

Φ(z̃j)

≥ lim inf
j→∞

∫
RN

Ĥ(x, z̃j)

≥
∫

RN

Ĥ(x, z̃1) = Φ(z̃1),

from where it follows that θ is achieved by z̃1 ∈ K. This is equivalent to say that Iinf := {I(η) : I ′(η) = 0, η �= 0}
is attained by η̃ := ((ũ + ṽ)/

√
2, (ũ − ṽ)/

√
2), where we write z̃1 = (ũ, ṽ).

Remark 5.2. If one strengthen (H5) to

(H6) Ĥ(x, z) ≥ 0 and Ĥ(x, z) > 0 if z �= 0,

then using the minimax characterization of c in Remark 5.1, one can show that c = θ by a Brouwer degree
argument, see Lemma 3.4 in Li and Yang [21] or Proposition 3.8 in Li and Szulkin [20] for more details. Hence
z̃ is also a least energy solution. But in general, we do not know whether the two critical points z̃ and z̃1 are
the same or not. (H6) guarantees that δ1 in (H5) is large enough, and the latter ensures that the two critical
values c and θ coincide with each other.
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3. Multiplicity. Φ is even provided G(x, η) is even in η. Lemma 3.2 says that Φ satisfies (Φ4). Next, we
assume

K/ZN is a finite set. (5.1)
In fact, if (5.1) is false, then the last conclusion of Theorem 1.1 holds automatically. In the sequel, we assume
(5.1) holds. Let F be a set consisting of arbitrarily chosen representatives of the Z

N -orbits of K. Then F is
a finite set by (5.1), and since Φ′ is odd we may assume that F = −F . If z ∈ K, then Φ(z) ≥ θ by (2) of
Lemma 4.3. Hence there exists θ ≤ ϑ such that

θ ≤ min
F

Φ = min
K

Φ ≤ max
K

Φ ≤ max
F

Φ ≤ ϑ.

For l ∈ N and a finite set B ⊂ E we define

[B, l] :=

{
j∑
i=1

ai ∗ zj|1 ≤ j ≤ l, ai ∈ Z
N , zj ∈ B

}
·

As in Coti-Zelati and Rabinowitz [9,10],

inf {‖z − z′‖ : z, z′ ∈ [B, l]} > 0. (5.2)

Now we check (Φ5). Given a compact interval I ⊂ (0,∞) with d := max I we set l = [d/θ] and A = [F , l]. We
have P+[F , l] = [P+F , l]. Thus from (5.2)

inf
{
‖z+

1 − z+
2 ‖ : z1, z2 ∈ A, z+

1 �= z+
2

}
> 0.

In addition, A is a (C)I -attractor by Lemma 4.4 and A is bounded because ‖z‖ ≤ lmax {‖z̄‖ : z̄ ∈ F} for all
z ∈ A. Therefore, by Theorem 5.2, Φ has a unbounded sequence of critical values which contradicts with the
assumption (5.1), and hence Φ has infinitely many geometrically distinct nontrivial critical points. Therefore,
our multiplicity result follows. This completes the proof. �
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[5] A.I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems. Nonlinear Differ. Equ. Appl. 12 (2005) 459–479.
[6] T. Bartsch and D.G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems, in Progress in Nonlinear Differential

Equations and Their Applications 35, Birkhäuser, Basel/Switzerland (1999) 51–67.
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