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INJECTIVE WEAK SOLUTIONS IN SECOND-GRADIENT
NONLINEAR ELASTICITY

TiMOTHY J. HEALEY! AND STEFAN KROMER 2

Abstract. We consider a class of second-gradient elasticity models for which the internal potential
energy is taken as the sum of a convex function of the second gradient of the deformation and a
general function of the gradient. However, in consonance with classical nonlinear elasticity, the latter
is assumed to grow unboundedly as the determinant of the gradient approaches zero. While the
existence of a minimizer is routine, the existence of weak solutions is not, and we focus our efforts
on that question here. In particular, we demonstrate that the determinant of the gradient of any
admissible deformation with finite energy is strictly positive on the closure of the domain. With this
in hand, Gateaux differentiability of the potential energy at a minimizer is automatic, yielding the
existence of a weak solution. We indicate how our results hold for a general class of boundary value
problems, including “mixed” boundary conditions. For each of the two possible pure displacement
formulations (in second-gradient problems), we show that the resulting deformation is an injective
mapping, whenever the imposed placement on the boundary is itself the trace of an injective map.

Mathematics Subject Classification. 74B20, 49K20.

Received December 27, 2007.
Published online July 19, 2008.

1. INTRODUCTION

Existence theorems for properly formulated problems of finite, nonlinear elasticity in 2 or 3 dimensions are
somewhat scarce and incomplete. A celebrated result of elastostatics, due to Ball [2], provides for the existence
of minimizers of the potential energy in the Sobolev space WP, From a historical point of view, the construction
in [2] is quite delicate — accounting for the lack of convexity of the stored energy function via polyconvexity while
enforcing the physical requirement that the energy density “blows up” as the local volume ratio approaches
zero. However, as a direct consequence of the latter, it is generally not known if such minimizers correspond to
actual weak equilibrium solutions of the Euler-Lagrange equations, cf. [4].

The promise of models incorporating higher-gradient “interfacial” energy is that the analysis should be simpler
and potentially lead to solutions of the unregularized problem in the limit of vanishing interfacial energy. We
focus on the former in this paper; the basic existence of a minimizer is indeed routine. However, if we correctly
maintain the physical requirement that the classical energy density function blows up as the local volume ratio
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goes to zero, the question of weak solutions to the corresponding Euler-Lagrange equations is again delicate. It
is precisely this question that we pursue in this paper.

The outline of the work is as follows. In Section 2 we formulate the minimization problem for the pure
displacement problem on a bounded domain. We take the potential energy density to be the sum of two
functions — a convex function of the second gradient and a rather general function of the first gradient. As in
classical nonlinear elasticity, we require that the latter function grow unboundedly as the determinant of the
gradient approaches zero. We then routinely establish the existence of a minimizer in W2? N C1%, where the
latter denotes the usual Holder space for some a € (0,1). Section 3 is the heart of the paper. In particular,
we demonstrate that the determinant of the first gradient of any admissible deformation with finite energy is
strictly positive on the closure of the domain, after which we readily show that the minimizer yields a weak
solution of our second-gradient problem. If the prescribed boundary placement is the trace of an injective
mapping, we then show that the total deformation is also injective whenever its energy is finite. In Section 4
we indicate how our approach also leads to the existence of weak solutions for other boundary value problems,
including “mixed” boundary conditions. Unlike Section 3, this requires modest assumptions on the regularity
of the boundary.

Our results are applicable to deformations of finite energy in classical nonlinear elasticity, assuming sufficient
smoothness (of class C1'%). For energy minimizers in this setting, our results overlap with those of [6] (cf. also [5,
13]; the latter presents a sharper result for the case n = 2). We discuss this more fully in our final remarks in
Section 5.

2. PROBLEM FORMULATION

We consider a bounded domain  C R™, n > 2, and we associate its closure € with a reference configuration
for a material body. Deformations of the body are orientation-preserving mappings f : Q — R, i.c., f(x)
is the placement of the material point occupying position x in the reference configuration. In the sequel we
denote the set of all linear transformation of R™ into itself by L(R™), and BL(R"™) denotes the set of all bilinear
transformations of R” x R™ into R™ that are symmetric in their arguments, i.e., Alz,y] = Aly,z] V =,y € R",
A € BL(R™). For each fixed x € R", the gradient and second gradient of the deformation belong to Df(z) €
L(R™) and D?f(z) € BL(R"), respectively. The determinant of F € L(R™) is denoted det F, and GL™(R™)
denotes the set of all F € L(R™) such that det F' > 0. SO(3) € GLT(R") is the set of all proper rotations. All
function spaces employed in this work contain n-vector-valued functions. For convenience and without loss of
generality, we consistently shorten the notation, e.g., we write LP(Q) instead of LP(€2,R™), C"(Q) instead of
C™(Q,R™), etc.

The elastic body is presumed homogeneous, and its material response is described by two classes of energy
density functions, ® : GLT(R") — [0,00) and ¥ : BL(R") — [0,0), each of which satisfy the principle of
objectivity:

U(QRoG)=V(G), P(QoF)=d(F) VQeSO(@3). (2.1)

Let f, : Q +— R™ be given, which specifies the placement of the boundary 92, and which is presumed to have
the following properties:

fo e W2P(Q)NCYP(Q), det Df, > 0 on Q, (2.2)
where § € (0,1) and p are constants satisfying

p>mnand > (p—n)/n. (2.3)

The total potential energy of the elastic body is given by

E(u) := /Q[\II(DQf) +®(Df)]dx, where f=u+ fo. (2.4)



INJECTIVE WEAK SOLUTIONS IN SECOND-GRADIENT NONLINEAR ELASTICITY 865

Since f is a deformation, we seek to minimize (2.4) over the admissible class of functions
A= {uc W2P(Q) : det(Du + Df,) > 0 a.e. in Q}. (2.5)
We assume the following physically reasonable conditions for the energy density functions:

U : BL(R") — [0, 00) is continuous and convex,

1
o lGI" s W(@) < ClGf + Cu, (2.6)
for all G € BL(R™), and

@ : GLT(R™) — [0, 00) is continuous,

O(F) — +o0 as det F \ 0,

O(F) := +oo if det F <0, 27)
cf. [2]. Here, C > 0 and Cy > 0 are constants.

It’s worth mentioning that, since the higher-gradient term in (2.4) is convex, we do not require much structure
on the stored energy function ®(F'), e.g., polyconvexity. In particular, our results are applicable to cases in
which ®(F) has a multi-well structure, appropriate for phase-transition problems. With these assumptions in
hand, we obtain a rather standard result:

Proposition 2.1. Given (2.2), (2.3), (2.6) and (2.7), then E attains its minimum on A, i.e., there is at least
one u, € A such that E(u,) = inf,eq4 E(u).

Proof. Let {u;} C A denote a minimizing sequence so that E(u;) — inf E' as j — co. Observe that E(0) < oo,
and thus, we may assume that {E(u;)} is bounded in R. By virtue of (2.6), we deduce that [, | D?u; + DQfO‘p dz
is bounded, and, since f, € W2P () is fixed, fQ ‘DQUJ- ‘p dx is also bounded. By a version of Poincaré’s inequality,
we conclude that {u;} is bounded in W2?(2). Let u. denote the weak limit of the sequence in W2P(Q). By
compact embedding, passing to a subsequence if necessary, we have that u; — u, strongly in WLP(Q), with
uj(z) — u«(x) and Duj(z) — Duy(x) for almost every x € €. Fatou’s lemma then delivers

1iminf/ ®(Duj + Df,)dx > / ®(Duy + Df,)dx. (2.8)
J—00 O O
Now from (2.6), it follows that the functional E(w) := Jo ¥(D*w)dz, E : W2P(Q) — R is convex and hence
weakly lower semi-continuous, e.g., [10]. In particular, we have

liminf/ U(D?u; + D2f,)dx > / U(D*u, + D*f,)d. (2.9)
1= JO Q
Together, (2.8) and (2.9) imply that inf E > FE(u.), i.e., u, is a global minimizer. Clearly u, € A. Otherwise

we would have Du, +Df, = 0 a.e. on some subset of {2 of non-zero measure, which, in view of (2.7), would give
E(0) < E(uy) = 0. O

Remark 2.2. The presumed Hélder-continuity of D f, is not necessary for the purposes of Proposition 2.1.
However, by (2.2), (2.3) and continuous embedding [1], observe that each u + f, € C**(Q) for u € W2P(Q),
with A = (p — n)/p. Thus the second term in (2.4) is well defined in the absence of a growth condition, which
would otherwise be required, at least if the domain is not smooth enough for an embedding theorem to hold for
fo. We also mention that a version of Proposition 2.1 holds when 1 < p < n if we add an appropriate growth
condition on ®. Our results that follow depend crucially upon (2.2) and (2.3).
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3. INJECTIVE WEAK SOLUTIONS

The existence of a minimizer within the setting of Section 2 is much simpler than that of classical nonlinear
elasticity [2,7]. However, similar to the classical formulation, the physically reasonable growth condition (2.7)
precludes any immediate conclusions concerning whether the minimizer is actually a weak solution of the Euler-
Lagrange equations. The difficulty stems from the fact that, due to the construction of a minimizer u, € A
(cf. (2.5)), the functional E need not be Gateaux differentiable at w,. In this section we demonstrate a way
to overcome this difficulty. For that purpose, we first need sharper hypotheses in addition to those laid out in
Section 2:

det Df, > > 0on ), (3.1)
1
O(F) > 5(det F)™ % VY FeGLYR"), (3.2)
where ¢ > 0, C > 0 and g > 0 are constants, with
pn
> 3.3
R (3.3)

and p > n as before.
Our main result is the following:

Theorem 3.1. Given (2.2), (2.3), (2.6) and (3.1)—(3.3), then for every k > inf E there is a constant K > 0
such that _
det(Du+ Df,) > K on Q (3.4)

holds for every u € A with E(u) < k. Here, K generally depends on &, f,, n, p, q, the constants in (2.6), (3.1),
(3.2), and the measure of 2, but not on u.

In particular, we obtain:
Corollary 3.2. Given the hypotheses of Proposition 2.1 and Theorem 3.1, then there is a constant K > 0 such

that every minimizer u, satisfies _
det(Du, + Df,) > K on Q, (3.5)

where K generally depends on inf E, f,, n, p, q, the constants in (2.6), (3.1), (3.2), and the measure of 2, but
not on Us.

Proof. From Proposition 2.1, we have the existence of at least one minimizer u. € A, i.e., E(u,) = inf F, and
Theorem 3.1 yields the assertion. U

If ¥ and ® are smooth enough, we immediately conclude:
Corollary 3.3. In the setting of Corollary 3.2, suppose that ¥ and ® are of class C*, with
|DU(G)| < Co(|G)P" +1) V¥ G e BL(RY), (3.6)

for some positive constant Cy. Then any minimizer u, satisfies the weak form of the FEuler-Lagrange equation,
viz.,

/ [DW(D?u, + D%f,) - D*¢ + D®(Du, + Df,) - D¢]dx = 0, (3.7)
Q
for all test functions ¢ € W2P(Q).

Proof. By standard arguments [8], the smoothness and growth condition (3.6) ensure that the functional F is
Gateaux differentiable on A, := {u € A : det(Du+ Df,) > n on Q}, for each fixed n > 0. Hence (3.7) holds for
every ¢ € C2°(Q); the left side of (3.7) is the Gateaux derivative of E at u, in the direction of ¢. By a density
argument, we infer the validity of (3.7) for all p € W2P(Q). O
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Another important ramification of Theorem 3.1 is:
Corollary 3.4. Given the hypotheses of Theorem 3.1, assume that
fo is injective on Q, and (3.8)

int Q = Q. (3.9)
Then for every u € A with finite energy, the mapping

f=u+ f, is injective on Q.

Proof. We first note that f € C1*(Q), for a := (p — n)/p, ¢f Remark 2.2. Clearly we have f(z) = f,()
V 2 € 0. The assertion then follows from (3.4), (3.8), (3.9) and a well-known argument employing the Brouwer
degree, e.g., [7]. O

The proof of Theorem 3.1 relies upon the following:

Lemma 3.5. Let J € C%(Q), a € (0,1), be such that J(x) > 0 a.e. in a bounded domain Q C R™. In addition,
suppose. [ (J(x))"9dx < L for some ¢ > n/a and [/l ca @y < M, where L, M are positive constants. Then for
every § > 0, there is a positive constant ¢ such that

Jy)>c VyeQs:={xeQ:dist(z;00) > d},
where ¢ depends upon 6, M, L,q and n but not on y,J or Q.
Proof. For a given ¢ > 0, define a function A : [0,00) — (0,00) U {400} via

5
h(t) = wn_1 / (t + Mre)~ T tdr, (3.10)
0

where wy,_1 denotes the (n — 1)-dimensional measure of the unit sphere in R™. We note that h is strictly
decreasing with h(t) — oo as t \, 0, the latter following from the fact that the exponent of “r” in (3.10) (at
t =0) is equal to —ag+n —1 < —1 (since ¢ > n/a). Thus, there is a positive constant ¢ such that

h(t) < L if and only if ¢ > c. (3.11)
By assumption
J(@) < J(y) + Mz —y|*, (3.12)
for every pair of points z,y € Q. By virtue of (3.10) and (3.12), we find, for every fixed y € Qs,
M) < [ @) <L (3.13)
Bs(y)
The result now follows directly from (3.11) and (3.13). O

Remark 3.6. If J only belongs to Cf_(£2), the proof above still goes through with minor modifications. We

then obtain that J > ¢ > 0 in Q5. Here, the constant M has to be replaced by Ms > ||/ ca(qy)-

Proof of Theorem 3.1. For any u € A, we have that

J :=det(Du+ Df,) > 0 a.e. in (. (3.14)
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As observed before (c¢f. Rem. 2.2), note that bounded energy implies that u + f, is bounded in C*(Q), for
a:=(p—n)/p, ie,
lu+ f0||clya(§) < (s,

which, in turn, delivers
[Tl e @y < Ca (3.15)
for positive constants Cs, Cy4. In particular,
J(@) = J(y) — Calz —y|”, (3.16)
for every pair of points z,y € Q. Now J = det Df, on 92, due to u € W2P(Q). Thus, by (3.1) we have
J(y) > ¢ for all y € ON.
Combining this with (3.16), we conclude that there is a positive constant ¢ := (¢/(2C4))*/® such that
J(x) >¢/2 for all z € Q with dist(z;00Q) < 6. (3.17)

On the other hand, from (3.2) we find
/(J(m))*qu < CE(u) < Ck =: L, (3.18)
Q

where ¢ > a/n, in view of (3.3). Thus, Lemma 3.5 is applicable, i.e., there is a positive constant ¢ such that
J(x) >¢ Ve Q with dist(z;00) > 4. (3.19)

The assertion now follows from inequalities (3.17), (3.19) and choosing K := min{¢/2,¢}. O

4. OTHER BOUNDARY VALUE PROBLEMS

The proof of Theorem 3.1 ostensibly depends upon the imposition of “strong” Dirichlet conditions, i.e.,
u € W2P(Q), cf. (2.5). Only these yield sufficient control close to the boundary for the proof to go through.
The qualifier “strong” here refers to the fact that for smooth u, v = 0 and Du = 0 are imposed on sufficiently
smooth portions of the boundary. In any case, a virtue of Theorem 3.1 is that no regularity of the boundary is
required. For more general, physically realistic boundary conditions, we need a version of Lemma 3.5 “up to the
boundary”, for which mild assumptions on the latter are needed. In particular, we impose the cone condition
in the sense of [1], which we now recall: given an angle v € (0,7/2] and a radius 6 > 0, we let V., = V.(v,9)
denote the open cone “in direction” e € S™" !given by

Ver={yeR":0<|y| <4, e-y > cos(v)|yl} (4.1)

We let “x + V.” denote the translated cone with vertex at the point x. We say that {2 has the cone property if
there exist an angle v and a radius J such that for every = € ,

T+ Vo) C Q, (4.2)

for a suitable e(x) € S~ 1.

Lemma 4.1. Let J € C*(Q) satisfy precisely the same conditions as those of Lemma 3.5, where Q is a bounded
domain that has the cone property. Then there is a positive constant ¢ such that

Jy)>c Vyeq, (4.3)
where ¢ depends upon v,0, M, L,q and n but not on y,J or Q.
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Proof. The proof is similar to that of Lemma 3.5. For a unit vector e € S"~!, we now define g : [0,00) —
(0,00) U {400} via

g(t) :== /v (t+M|z|*) *dax = |B|5V(6(|))|

e

(t+ M |z|)" *da, (4.4)
B5(0)

where V, is the cone defined in (4.1). Observe that g(¢) is independent of e. As in the proof of Lemma 3.5,
using ¢ > n/a, we note that there is a number ¢ > 0 such that

g(t) < L if and only if t > c. (4.5)

Now fix y € Q. Due to the cone property, there is unit vector e(y) such that y 4 V() C 2N Bs(y), and thus
from (3.16) and (4.4) we find

9(J(y)) s/

(T(y) + M |z — y|*)~9dz < / (J(x)) 9dz < L. (4.6)
QNBs(y)

Q

For y € Q, the result follows directly from (4.5) and (4.6). Since c is independent of ¥, it extends to all y € Q
by continuity. O

We now indicate the validity of our results for other representative boundary value problems. In what follows
we always assume that the bounded domain  has the cone property and that the boundary 92 is locally
Lipschitz. In particular, the latter is only needed for the embedding W2P(§2) < C1*(Q), cf. [1].

4.1. The weak Dirichlet problem

We adopt all of the hypotheses of Section 2, wviz., (2.2), (2.3), (2.6) and (2.7). In this case, we consider
minimizing (2.4) over the admissible class

Ag = {u € W?P(Q):u =0 ae. on 9, det(Du + Df,) >0 a.e. in Q}. (4.7)

An obvious adjustment to the arguments in the proof of Proposition 2.1 yields the existence of a minimizer,
again denoted u, € Ay. Next we adopt hypothesis (3.2), (3.3) in which case we are in the situation of Lemma 4.1.
Indeed, as in the proof of Theorem 3.1 with definition (3.14), we see that (3.15) and (3.18) are again valid.
Hence Lemma 4.1 yields a positive constant K such that

det(Du, + Df,) > K on Q, (4.8)

where K generally depends on inf E, f,, n, p, q, 7,0, the constants in (2.6), (3.2), and the measure of €2, but not
on u,. Again with the hypotheses of Corollary 3.3, we find that u. corresponds to a weak solution, i.e., (3.7)
holds now for all test functions ¢ € {¢ € W?P(Q) : ¢ = 0. a.e. on 99}. Finally, assuming (3.8), we again
conclude

uy + f, is injective on €. (4.9)

4.2. A mixed boundary value problem

Next we consider the typical “mixed” problem of nonlinear elasticity, whereby the placement is prescribed
over only a portion of the boundary. Let I', UT'; = 092 denote a disjoint union such that the area measure of
each subset is non-zero. In this case we minimize (2.4) over the admissible class

A = {u € W?P(Q) : u =0 a.e. on Ty, det(Du+ Df,) >0 a.e. in Q}.
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Proceeding as above, we obtain the existence of a minimizer u, € A,, satisfying (4.8). Again with the hypotheses
of Corollary 3.3, we find that (3.7) holds now for all test functions ¢ € {¢ € W2?P(Q) : ¢ =0 a.e. on I',}. The
lack of control on (u. + f,) |, apparently precludes (4.9).

4.3. Further generalizations

There are many other possibilities for mixed problems in our second-gradient theory (cf. [11]), for which
Lemma 4.1 is applicable. Also, the presence of “dead load” body forces and/or surface tractions (and/or
“hyper” body forces and/or “hyper” surface tractions, also now possible in our second-gradient theory) presents
no difficulties to our analysis, since their inclusion simply leads to the addition of continuous linear functionals
in the potential energy. For example, in the weak Dirichlet problem, let @ € L'(9f) be a prescribed hyper
surface traction. Then the total potential energy is now (2.4) minus the linear functional

L(u) := ” w - (Du - n)dz.

where “Du-n” denotes the directional derivative along the unit normal n. Observe that Du is Holder continuous
(Rem. 2.2), while the unit normal vector field n exists a.e. on 99, cf. [12]. Clearly L is bounded on W2?(Q) —
Ch(Q).

5. CONCLUDING REMARKS

The additive, second-gradient energy density ¥(-) in (2.4), characterized by convexity, represents one of the
simplest, physically realistic models within the category of second-gradient elasticity. The Cahn-Hilliard model
is of this type, viz., ¥ (G) = § |G |27 where € > 0 is a small parameter. Note that our results are not applicable
to that case, however, due to the required growth conditions, ¢f. (2.3), (2.6). Proposition 2.1 holds under the
weaker assumption that ¥(-) be quasiconvex [8-10].

Our results are also applicable to sufficiently smooth deformations with finite energy in classical nonlinear
elasticity (¥ = 0 in (2.4)). Recall that if in addition to (2.7), ®(-) is polyconvex and satisfies appropriate
growth conditions, then the existence of a minimizer in W1P(Q) is well known [2]. Hence, in particular, if
it happens that such a minimizer u, also belongs to C*(Q), then Corollaries 3.2 and 3.3 hold, as well as
Corollary 3.4 for u = u,. In this regard, our results overlap with those [6], which treats sufficiently smooth
minimizers in classical nonlinear elasticity. In particular, with the presumption that a minimizer is in C' 17“(5),
the equivalent of Corollary 3.2 is established in [6]. Moreover, the proof of Theorem 2.5 in [6] relies on a
nonconstructive argument closely related to Lemma 3.5. In contrast to our approach, it exploits that (in our
notation) (det(Dus + D fp))~* is integrable for any s > 0. In our case, the latter is guaranteed only for s < g,
directly by finite energy alone, whereas in [6] it is observed that this integrability can be obtained (for arbitrary
s > 0), exploiting the fact that a minimizer u, is always a weak solution of the Eshelby conservation law [3,4].
However, this requires ® to be of special form (¢f. (2.1)—(2.3) in [6]), while we, on the other hand, have to
assume (2.3) and (3.3). Our method thus provides an alternative approach — constructively from Lemma 3.5 or
Lemma 4.1 and without direct appeal to the Eshelby conservation law. Finally we emphasize that the arguments
in [6], leading to the positivity of the determinant of the deformation, genuinely require energy minimality (via
the Eshelby conservation law), whereas our approach holds for all admissible deformations of bounded energy.

Also note that for the purposes of the present paper, avoiding the generalized version of the latter is essential.
That is, any attempt to use it in an analogous way as in [6] apparently fails unless one is willing to impose severe
additional regularity assumptions on the solution to deal with the terms associated with the second gradient
term in the energy.
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