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THE REGULARISATION OF THE N-WELL PROBLEM BY FINITE ELEMENTS
AND BY SINGULAR PERTURBATION ARE SCALING EQUIVALENT

IN TWO DIMENSIONS

Andrew Lorent
1

Abstract. Let K := SO (2) A1 ∪ SO (2) A2 . . . SO (2) AN where A1, A2, . . . , AN are matrices of non-
zero determinant. We establish a sharp relation between the following two minimisation problems in
two dimensions. Firstly the N-well problem with surface energy. Let p ∈ [1, 2], Ω ⊂ R

2 be a convex
polytopal region. Define

Ip
ε (u) =

∫
Ω

dp (Du (z) , K) + ε
∣∣D2u (z)

∣∣2 dL2z

and let AF denote the subspace of functions in W 2,2 (Ω) that satisfy the affine boundary condition
Du = F on ∂Ω (in the sense of trace), where F �∈ K. We consider the scaling (with respect to ε) of

mp
ε := inf

u∈AF

Ip
ε (u) .

Secondly the finite element approximation to the N-well problem without surface energy. We will
show there exists a space of functions Dh

F where each function v ∈ Dh
F is piecewise affine on a regular

(non-degenerate) h-triangulation and satisfies the affine boundary condition v = lF on ∂Ω (where lF
is affine with DlF = F ) such that for

αp (h) := inf
v∈Dh

F

∫
Ω

dp (Dv (z) , K) dL2z

there exists positive constants C1 < 1 < C2 (depending on A1, . . . , AN , p) for which the following holds
true

C1αp

(√
ε
) ≤ mp

ε ≤ C2αp

(√
ε
)

for all ε > 0.
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1. Introduction

The main goal of this paper is to show the equivalence in two dimensions (in the sense of scaling) of two
different regularisations of a non-convex variational problem that forms a model of crystalline microstructure,
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specifically regularisation by second order gradients (otherwise known as singular perturbation) and regularisa-
tion by discretation via finite elements.

We focus on the simplest problem with non-trivial symmetries, the N -well problem in two dimensions. To
set the scene let us take the Ball-James [3,4], Chipot-Kinderlehrer [6] approach to crystal microstructure. We
have an energy function I on the space of deformations u : Ω ⊂ R3 → R3 which has the form

I (u) =
∫

Ω

W (Du (x)) dL2x, (1.1)

where W is the stored energy density function that describes the various properties of the material. The
function W has its minimum on a set of matrices known as the wells

K = SO (3)A1 ∪ SO (3)A2 . . . SO (3)AN . (1.2)

Roughly speaking the A1, A2, . . . , AN are symmetry related and represent the lattice states of the material.
Since w must be invariant with respect to rotation of the ambient space the wells K must have form (1.2).

Functional I is minimised over the space of functions that have affine boundary condition F �∈ K.
A key point is that functional I is not weakly lower semi-continuous. Minimising sequences form finer and

finer oscillations, as is to be expected in any model designed to capture properties of microstructure.
Surprisingly for certain choices of K of the form (1.2) in two or three dimensions, the quasiconvex hull

(see [27] for precise definitions and more information) of K (which we denote Kqc) is sufficiently rich to allow
for the existence of F ∈ Kqc\K for which there exists an exact minimiser of I over a space of function with

boundary conditions F . Specifically if K = SO (2) ∪ SO (2)H where H =
(λ 0
0 μ

)
and μλ ≥ 1 [35], or

K = SO (2)A1 ∪ SO (2)A2 . . . SO (2)Ak where A1, A2, . . . , Ak satisfy a certain condition [14], or if K are the
so call cubic to tetragonal wells K = SO (3)U1 ∪ SO (3)U2 ∪ SO (3)U3 where for λ > 1

U1 =

⎛⎝λ2 0 0
0 1

λ 0
0 0 1

λ

⎞⎠ , U2 =

⎛⎝ 1
λ 0 0
0 λ2 0
0 0 1

λ

⎞⎠ and U3 =

⎛⎝ 1
λ 0 0
0 1

λ 0
0 0 λ2

⎞⎠
[15], then in these cases there is an exact minimiser to I for some F ∈ Kqc\K. This follows from work of Müller-
Šverák [29,30], Sychev [33,34], Kirchheim [19,20] and Conti-Dolzmann-Kirchheim [11], see also Dacorogna-
Marcellini [12] for a different approach to some related problems. The approach of Müller-Šverák uses the
theory of “convex integration” (denoted by CI from this point) developed by Gromov, it is one of the simplest
results of the theory.

Functional I does not constrain oscillations of the gradient, it does not give a length scale or any restriction
on the fine geometry of the microstructure. For many materials, the observed length scale of the microstructure
is many orders larger than the atomic scale and for these materials functional I is only a first approximation.
To overcome this the following adaption of the functional I is commonly made, see [27], Section 6,

Iε (u) =
∫

Ω

W (Du (z)) + ε
∣∣D2u (z)

∣∣2 dL2z.

Roughly speaking this is a regularisation of I that constrains the minimiser u of I to have less than M
interfaces when typically M will be a negative power of ε that depends on K and W . For example if we
take K = SO (2) ∪ SO (2)H (with det (H) = 1) and W (·) ∼ d (·,K) then using the characterisation of
Šverák [35] (as will be explained later) we have the upper bound of inf Iε ≤ cε

1
6 . Let v (z) := u (

√
εz) ε−

1
2 , then∫

ε−
1
2 Ω

∣∣D2v
∣∣2 ≤ mεε

−1 ≤ cε−
5
6 . Now v satisfies the elliptic Euler Lagrange equation divDW (Dv) + Δ2v = 0

which by standard elliptic regularity meansDv is Holder with Holder exponentO (1), thus each interface running
through ε−

1
2 Ω contributes O

(
ε−

1
2

)
to
∫
ε−

1
2 Ω

∣∣D2v
∣∣2 so we have at most M ≤ cε

1
2 ε−

5
6 = cε−

1
3 such interfaces.
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There have been a number of studies of simplified versions of functional Iε [8,22,26]. However these works
focus on the case where Iε acts on scalar functions and the wells of Iε are given by two matrices. In this
case (scaling) sharp upper and lower bounds have been proved. For functional with wells that have rotational
invariance, i.e. of the form (1.2), nothing is known about the energy of minimisers.

Another way to constrain oscillation in the gradient is to minimise I directly over the space of functions that
are piecewise affine on a h sized triangular grid. This is known as the finite element approximation of I. There
have been many studies of finite element approximations to functionals of the form I, again for the simplified
case where the wells are given by sets of two or three matrices [5,7,23,24].

Our main achievement in this paper is to show that for the specific stored energy function W (·) ∼ dp (·,K)
(for some p ∈ [1, 2]) these two regularisations are scaling equivalent.

For the case where the wells of I are given by sets of two or three matrices (and W (·) ∼ d (·,K)) it is possible
to calculate the scaling of the energy of Iε and the scaling of the energy of the finite element approximation to I
[7,23]. To be more specific given matrices A, B with rank (A−B) = 1 using methods from [7] it can be shown
that for wells K1 = {A,B} the functional I1 minimised over the space of functions that are piecewise affine on a
h-sized triangular grid1 and have affine boundary condition F0 = μ0A+ (1 − μ0)B (for some μ0 ∈ (0, 1)) scales
like

√
h. Strictly speaking the functional studied in [7] acts on scalar functions but the method works for the

case stated above with minor modifications. In [23] three rank-1 connected matrices were considered, expanding

on the methods of [7] it was shown in [23] that if functional I2 has wells K2 =
{(−1 0

0 −1

)
,
(−1 0

0 1

)
,
(1 0
0 0

)}
(and W (·) ∼ d (·,K2)) then over the space of piecewise affine functions with boundary condition F1 =

(0 0
0 0

)
the energy of functional I2 scales like h

1
3 . Using very similar methods to [7] and [23] it is possible to show that

functionals Iaε :=
∫
Ω

d (Du,Ka) + ε
∣∣D2u

∣∣2 for a = 1, 2 are such that their energy scales like inf I1
ε ∼ ε

1
4 and

inf I2
ε ∼ ε

1
6 .

Thus for functionals whose wells are given by sets of two or three matrices our main theorem is of no interest,
for in these cases we can calculate the scaling and it can be seen instantly that the energy of functional Ia taken
over a space of function that are piecewise affine on a grid of size

√
ε scales in the same way as the energy of

functional Iaε . The point of this paper is that we study functional Iε with wells

K = SO (2)A1 ∪ SO (2)A2 . . . SO (2)AN

and for these wells the scaling of the energy of Iε and the scaling of the energy of I over the space of piecewise
affine functions are completely unknown. In this case our main theorem tells us that these two problem, one
discrete and one continuous, are scaling equivalent.

1.1. Background and statement of main result

To state our theorem we need to give some background. Given a polytopal region Ω and some small constant
ς ∈ (0, 1) we say a collection of disjoint triangles {τi} is an (h, ς)-triangulation of Ω if

⋃
i τi = Ω and every

triangle τi contains a ball of radius ςh and has diameter less than ς−1h. Given w ∈ S1 we denote by �ς
h (w)

the set of regular triangulations with respect to axis 〈w〉, w⊥ axis, by this we mean every triangle τi of distance
ς−1h from ∂Ω is a right angle triangle with sides parallel to 〈w〉, w⊥. Finally we let F ς,h

F (w) denote the space
of functions that are piecewise affine on some triangulation in �ς

h (w) and satisfy the affine boundary condition
u = lF on ∂Ω, where lF is a fixed affine function with DlF = F .

Given two connected subsets of matrices M,N ⊂M2×2 we say M and N are rank-1 connected if and only if
there exists A ∈M and B ∈ N and v ∈ S1 such that Av = Bv. The set of rank-1 directions connecting M , N
are the set of vectors v ∈ S1 satisfying Av = Bv for some A ∈M , B ∈ N .

1Whose edges are not parallel to the rank-1 connections between A and B.
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For given triangulation {τi} and function u ∈ F ς,h
F (w) and triangle τi we define the neighbouring gradients

by

Ni (u) =

{{
Du�τj

: τj ∩ τi �= ∅
}

for i such that τi ∩ ∂Ω = ∅{
Du�τj

: τj ∩ τi �= ∅
}
∪ {F} for i such that τi ∩ ∂Ω �= ∅.

(1.3)

And for u ∈ F ς,h
F we define the jump triangles by

J (u) :=
{
i : ∃ A,B ∈ Ni (u) such that |A− B| > ς−1

}
. (1.4)

Let σ be the minimum of the absolute values of the eigenvalues of A1, . . . , AN . Let w1 ∈ S1 be such that for
some w2 ∈ w⊥

1 we have that w1, w2,
w1−w2
|w1−w2| are not in the set of rank-1 directions connecting SO (2)Ai to

SO (2)Aj for any i �= j, let ς ∈
(
0, 10−1σ

)
we define function space

Dς,h
F (w1) :=

⎧⎨⎩v ∈ F ς,h
F (w1) :

∑
i∈J(v)

∑
M∈Ni(v)

∣∣Dv�τi
−M

∣∣2 ≤ ς−1h−2

∫
Ω

dp (Dv,K)

⎫⎬⎭ . (1.5)

When there is no ambiguity we will denote these function spaces just as F ς,h
F or Dς,h

F . Clearly infv∈Fς,h
F

Ip0 (v) ≤
infv∈Dς,h

F
Ip0 (v), the main reason for introducing function space Dς,h

F is that with our methods we can not show
the sharpness of the lower bound

inf
v∈Fς,

√
ε

F

Ip0 (v) ≤ c inf
v∈AF

Iε (v) (1.6)

(where AF is the subspace of functions in u ∈ W 2,2 (Ω) with Du = F in the sense of trace). So instead we will
prove the stronger lower bound inf

v∈Dς,
√

ε
F

Ip0 (v) ≤ c infu∈AF Iε (u) and it turns out that function space Dς,h
F has

enough structure to allow us to show the upper bound2

inf
u∈AF

Ipε (u) ≤ c inf
v∈Dς,

√
ε

F

Ip0 (v) . (1.7)

Our main theorem is the following.

Theorem 1.1. Let K := SO (2)A1 ∪ SO (2)A2 . . . SO (2)AN where A1, A2, . . . , AN ∈ M2×2 are matrices of
non-zero determinant. Let σ be the minimum of the absolute values of the eigenvalues of A1, . . . , AN .

Let w1 ∈ S1 be such that for some w2 ∈ w⊥
1 , the vectors w1, w2,

w1−w2
|w1−w2| are not in the set of rank-1 directions

connecting SO (2)Ai to SO (2)Aj for any i �= j. Let Ω ⊂ R
2 be a polytopal convex domain. For p ∈ [1, 2] define

Ipε (u) :=
∫

Ω

dp (Du (z) ,K) + ε
∣∣D2u (z)

∣∣2 dL2z.

Let F �∈ K and let AF denote the subspace of functions in W 2,2 (Ω) that have boundary condition Du = F

on ∂Ω in the sense of trace. For ς ∈
(
0, 10−1σ

)
let function space Dς,h

F (w1) be defined by (1.5). If we define

αp (h) := inf
v∈Dς,h

F (w1)
Ip0 (v) and mp

ε := inf
u∈AF

Ipε (u)

then there are positive constants C1 < 1 < C2 (depending only on σ, ς, p) for which

C1αp
(√
ε
)
≤ mp

ε ≤ C2αp
(√

ε
)

for all ε > 0. (1.8)

2For further explanation as to why function space Dς,h
F allows us to prove (1.7) where as with our methods we can not show

the same inequality for the larger function space Fς,h
F see Section 2.2.
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The point of introducing parameter ς into the definition of Dς,h
F is that we would like to use the greater

flexibility it allows for a potential future improvement of our main result. To explain this further note that the
definition of Dς,h

F gives us the inclusion

Lς,hF :=
{
v ∈ F ς,h

F : ‖Dv‖L∞(Ω) ≤ 4−1ς−1
}
⊂ Dς,h

F ,

so clearly we have the upper bound (1.7) for this function space. Given the results of [28] it seems reasonable
to hope that minimisers of a functional equivalent3 to Ipε for p > 1 are Q-Lipschitz (for some possibly large4

Q independent of ε) inside the whole domain Ω. In [28] this has only been proved for p = 2 in an interior
domain. If such a result could be proved the methods of this paper would allow us to show the lower bound
infv∈Lς,h

F
Ipε (v) ≤ c infu∈AF I

p
ε (u) which together with the upper bound would imply for p > 1 the equivalence

of the scaling of mp
ε to the scaling of Ipε over the space of Lipschitz finite elements. This is the principle reason

for introducing parameter ς.
In truth our main motivation for establishing Theorem 1.1 was that we hoped to use it as a tool to under-

standing the minimiser of Ipε . To explain this further we will simplify and take K = SO (2) ∪ SO (2)H where
H is a diagonal matrix of determinant 1 and we take p = 1.

As mentioned, nothing is known about the minimiser of the functional I1
ε . In particular it is completely

unknown if for very small ε the minimiser is something like the absolute minimiser of I0 provided by CI5. In
some sense this might seem reasonable, we refer to the

∫ ∣∣D2u
∣∣2 term as the “surface energy” and the

∫
d (Du,K)

term as the “bulk energy”, as ε → 0 the surface energy becomes less and less important, the main thing to be
minimised is the bulk energy and of course CI solutions have zero bulk energy.

This question is best expressed by considering the scaling of m1
ε . An upper bound of m1

ε ≤ cε
1
6 is provided by

the standard double laminate which follows from the characterisation of the quasiconvex hull of SO (2)∪SO (2)H
provided by [35], see Figure 1.

If mε ∼ ε
1
6+α for α > 0 then the minimiser will have to take a very different form than the double laminate.

On the other hand if α = 0 then energetically the minimiser does no better than the double laminate.
This question is important because CI solutions are important, many counter examples to natural conjectures

in PDE have been achieved via CI [13,19,31,32]. Minimising functional Iε is the simplest problem that constrains
oscillation in some slight way where we can hope to see the effect of the existence of exact minimisers of (1.1).

In the proof of Theorem 1.1 we have to work quite hard to establish the result for p = 1, we do so because
functional I1

ε is particularly clean in the sense that it is not necessary to consider laminates with “domain
branching” to construct upper bounds (contrast this with the case p = 2 [8,22]) as such the upper bound is
given by cε

1
6 and is domain independent.

Let w1 ∈ S1 be such that for w2 ∈ w⊥
1 we have w1, w2,

w1−w2
|w1−w2| do not belong to the rank-1 connections

between SO (2) and SO (2)H . If ũ ∈ F ς,h
F (w1) and τ1, τ2 ∈ �ς

h (w1) are such that d
(
Dũ�τ1 , SO (2)

)
≈ 0 and

d
(
Dũ�τ2 , SO (2)H

)
≈ 0, it is not too hard to see τ1 can not touch τ2, i.e. there must be a triangle τ3 between

τ1 and τ2 for which d
(
Du�τ3 ,K

)
≥ o(1).

For example if we have an interpolant of a laminate, and triangle τi cuts through an interface of the laminate
the affine map we get from interpolating the laminate on the corners of τi will have its linear part some distance
from the wells. See Figure 2.

3In order to apply the result of [28] we need a functional that is quadratic at infinity in a strong sense, but given W (·) ∼ dp (·, K)

it is easy to construct a function W̃ such that W = W̃ in a large ball BR and ‖W̃ − W‖L∞ ≤ c while W̃ (M) = |M |p for any

M �∈ B2R. Defining Ĩp
ε (v) =

∫
Ω W̃ (Dv)+ ε

∣∣D2v
∣∣2 we have

∣∣∣Ĩp
ε (v) − Ip

ε (v)
∣∣∣ ≤ c for any v ∈ W 2,2 (Ω) so obviously the energy of Ĩp

ε

and Ip
ε scale the same way with respect to ε and for the case p = 2 it is possible to apply the results of [28] to the minimiser of Ĩp

ε .
4Found via a compactness argument.
5We know it can not be a function u with I0 (u) = 0 because the result of Dolzmann-Müller [16], that any u with this property

and with the property that Du is a BV has to be laminate.
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SO(2)

SO(2)H

R1

Rλ

2R

F

G

H

0  0
1  0

0  0
0  0

−1  0
0  0

−1  0
0  −1

−1  0
0  1

Figure (b)

Figure (a)

(    )

(    )

(    )(    )

(    )

Figure 1. Rank-1 connections between sets of matrices.

Figure 2. A finite element approximation to a laminate.

So we can not lower the energy of I0 over F ς,h
F (w1) by simply making a laminate type function with finer

layers, there is a competition between the surface energy as given by the error contributed from the interfaces
and the bulk energy which in the case of the laminate is the width of the interpolation layer.
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As mentioned for functional I2 with wells
{(−1 0

0 −1

)
,
(−1 0

0 1

)
,
(1 0
0 0

)}
in [23] it was shown the energy

of I2 over the space F ς,h
F1

(where F1 =
(0 0
0 0

)
) scales like h

1
3 . From Šverák’s characterisation [35] we know the

exact arrangement of rank-1 connections between the matrices in the set SO (2)∪SO (2)H and a matrix in the
interior of the quasiconvex hull of SO (2)∪ SO (2)H , see Figure 1a. As we can see from Figures 1a and 1b, the
finite well functional I2 precisely mimics these rank-1 connections.

Conjecture 1.1. Let K = SO (2) ∪ SO (2)H where H is a diagonal matrix with eigenvalues σ, σ−1. Let
w1 ∈ S1 and w2 ∈ w⊥

1 be such that w1, w2, w1−w2
|w1−w2| are not in the set of rank-1 connections between SO (2) and

SO (2)H. Let Ω be a polytopal convex region, ς ∈
(
0, 10−1σ

)
. Given F ∈ int (Kqc), let function space F ς,h

F (w1)
denote the space of functions that are piecewise affine on some regular triangulation {τi} ∈ �ς

h (w1). There
exists c0 = c0 (σ, ς) > 0 such that

inf
u∈Fς,h

F

I1
0 (u) ≥ c0h

1
3 for all h > 0.

So from Theorem 1.1, if Conjecture 1.1 could be proved it would imply the scaling m1
ε ∼ ε

1
6 . Unfortunately

even though the minimisation of I1
0 over F ς,h

F is discrete problem, it appears to be quite hard to prove lower
bounds.

2. Sketch of the Proof

Written out in detail, the proof of Theorem 1.1 is not short, however the basic ideas are quite simple. We
give a sketch of the proof based on two lemmas that are only approximate principles, by this we mean that
either we can not prove them, or only a weaker form hold true. This may be a bit unconventional, but it seems
to us to be the best way to get to the heart of the matter without being flooded with details.

2.1. Lower bound

We focus on the case p = 1 and take Ω = Q1 (0). Let M =
[
ε−

1
2

]
. We cut the square Ω into M2 sub-squares of

side length 1
M , let c1, c2, . . . , cM2 be the centres of these squares. So Q1 (0) =

⋃M2

i=1Q 1
M

(ci). Let C1 = C1 (σ) be

some small constant we decide on later. Now we define the “bad” squares to be B :=
{
i :
∫
Q 1

M
(ci)

∣∣D2u
∣∣2 ≥ C1

}
.

Approximate principle 1. For any i ∈
{
1, 2, . . . ,M2

}
\B define vi (z) = u

(
ci + z

M

)
M we have that there

exists affine function Li with DLi ∈ K such that

‖vi − Li‖L∞(Q1(0)) ≤ c

∫
Q1(0)

d (Dvi,K) +
∣∣D2vi

∣∣2 . (2.1)

Approximate principle 2. The minimiser u of Iε is a Lipschitz.

Let us make it once again clear we can not prove either approximate principle, they are simply a device to
show the strategy of the proof. Now we split every sub-square Q 1

M
(ci) into two right angle triangles, denote

them τi, τi+M2 so the set {τ1, τ2, . . . , τ2M2} is a triangulation of Ω. Let ũ be the piecewise affine function we
obtain from u by defining ũ�τi

to be the affine map we get from interpolating u on the corners of τi.
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Now for any i �∈ B let ωi1, ωi2, ωi3 denotes the corners of τi, so l, q ∈ {1, 2, 3}∣∣∣∣∣Dũ�τi

(
ωil − ωiq∣∣ωil − ωiq

∣∣
)

−DLi

(
ωil − ωiq∣∣ωil − ωiq

∣∣
)∣∣∣∣∣ ≤M

∣∣(u (ωil)− Li
(
ωil
))

−
(
u
(
ωiq
)
− Li

(
ωiq
))∣∣

(2.1)

≤ c

∫
Q 1

M
(ci)

M2d (Du,K) +
∣∣D2u

∣∣2 . (2.2)

Since (2.2) holds true for every l, q ∈ {1, 2} we have
∣∣Dũ�τi

−DLi
∣∣ ≤ c

∫
Q 1

M
(ci)

M2d (Du,K) +
∣∣D2u

∣∣2. In

exactly the same way
∣∣∣Dũ�τi+M2 −DLi+M2

∣∣∣ ≤ c
∫
Q 1

M
(ci)

M2d (Du,K) +
∣∣D2u

∣∣2. So

∑
i∈{1,2,...,M2}\B

∣∣Dũ�τi
−DLi

∣∣L2 (τi) +
∣∣∣Dũ�τi+M2 −DLi+M2

∣∣∣L2 (τi+M2) ≤ cm1
ε . (2.3)

Now for any i ∈ B, since u is Lipschitz, for l, q ∈ {1, 2, 3} we have∣∣∣∣∣Dũ�τi

(
ωil − ωiq∣∣ωil − ωiq

∣∣
)∣∣∣∣∣ =

∣∣∣∣∣u
(
ωil
)
− u

(
ωiq
)∣∣ωil − ωiq

∣∣
∣∣∣∣∣ ≤ c

thus d
(
Dũ�τi

,K
)
≤ c and in the same way d

(
Dũ�τi+M2 ,K

)
≤ c so

∑
i∈B

∣∣Dũ�τi
−DLi

∣∣L2 (τi) +
∣∣∣Dũ�τi+M2 −DLi+M2

∣∣∣L2 (τi+M2 ) ≤ c

M2

∑
i∈B

∫
Q 1

M
(ci)

∣∣D2u
∣∣2 ≤ cm1

ε . (2.4)

So as {τi} is a
(√

ε, 10−1σ
)
-triangulation and from (2.3), (2.4) we have α (

√
ε) ≤ cm1

ε which establishes the
lower bound.

It is easy to construct a counter example to the “morally true” Lemma 1, however as a substitute we have
Proposition 5.1, see Section 5. Since i ∈ B it should seem reasonable that there exists k0 such that∫

Q1(0)

d (Dvi, SO (2)Ak0) ≤ c

∫
Q1(0)

d (Dvi,K) . (2.5)

This follows from a kind of capacity type argument that is Step 1 of Proposition 5.1. Alternatively imagine

we had slightly more integrability of D2vi and hence that
(∫

Q1(0)

∣∣D2vi
∣∣2+δ) 1

2+δ

is “small” (in fact vi satisfies
a fourth order elliptic PDE coming from the Euler Lagrange equation of u so we could indeed establish such
higher integrability via reverse Holder inequalities), then by Sobolev embedding we would have that Dvi stays
in a neighbourhood of some well SO (2)Ak0 and so (2.5) trivially follows.

Now if we were considering the dp (·,K) distance from the wells then we could apply Theorem 3.1 to obtain
sharp Lp control of the distance of Dvi from a matrix in K. For the p = 1 case Theorem 3.1 is false [10] and
so we need to use the fact that the “tangent space” to the set SO (2) around the identity is the set of skew
symmetric matrices. This allows us to apply the Korn type Poincaré inequality given by Lemma 3.1 to gain
sharp control of the L1 distance of vi from the affine function.

Note that Proposition 5.1 is not enough since in the argument given in (2.2) we need to control the function
exactly at the corners of the triangles. The trick to overcome this is the following. Let v : QM (0) → R2 be
defined by v (z) = u

(
z
M

)
M . By the Co-area formula we can find a grid of squares of side length 1, labelled
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S1, S2, . . . , SM2−4M such that for each i there exists affine function Li with DLi ∈ K such that

c

∫
∂Si

|v − Li| +
∣∣D2v

∣∣2 + d (Dv, SO (2) sym(DLi)) ≤
∫
N1(Si)

d (Dv,K) +
∣∣D2v

∣∣2 =: αi (2.6)

(where sym (A) denotes the symmetric part of matrix A we obtain by polar decomposition). We can split Si into
disjoint triangles τi, τi+M2 . Let ai, bi, ci be the corners of τi where [ai, bi] ∪ [bi, ci] = ∂τi ∩ ∂Si. The important
point is that Dv along [ai, bi] varies by at most

√
αi and so its not hard to show Dv (z) ∈ Bc√αi

(DLi) for
all z ∈ [ai, bi]. For simplicity let us assume sym(DLi) = Id.

Given b̃i ∈ [ai, bi], by trigonometry this allows to conclude

∣∣∣v (ai) − v
(
b̃i

)∣∣∣ ≥ (1 − cαi)
∣∣∣ai − b̃i

∣∣∣ .
And very easily from (2.6) (since we have assumed sym (DLi) = Id) we have

∣∣∣v (ai) − v
(
b̃i

)∣∣∣ ≤ (1 + cαi)
∣∣∣ai − b̃i

∣∣∣ .
The point b̃i can be easily chosen so that

∣∣∣v (b̃i)− Li

(
b̃i

)∣∣∣ ≤ cαi. In exactly the same way we can find

c̃i ∈ [ai, ci] such that |v (c̃i) − Li (c̃i)| ≤ cαi and ||v (ai) − v (c̃i)| − |ai − c̃i|| ≤ cαi. Let γ1 =
∣∣∣ai − b̃i

∣∣∣ and
γ2 = |ai − c̃i| so (defining Nδ (A) := {x : d (x,A) < δ}) we have

v (ai) ∈ Ncαi

(
∂Bγ1

(
b̃i

))
∩Ncαi (∂Bγ2 (c̃i)) . (2.7)

See Figure 4. From (2.7) it is not hard to show v (ai) ∈ Bcαi (Li (ai)). We can control the corners bi, ci in
the same way. Therefor if we define li to be the affine map we get from interpolating v on {ai, bi, ci} we have
d (Dli, DLi) ≤ cαi. Since

∑
i αi ≤ cε−1mp

ε this gives the lower bound.

2.2. Upper bound

To obtain the upper bound we will have to convert a function v that is piecewise affine on a (
√
ε, ς)-

triangulation into a function u ∈ W 2,2 (Ω) with affine boundary condition Du = F on ∂Ω (in the sense of
trace), recall we denote the space of such functions by AF . The most natural way to do this is to convolve v
with a function ψ√

ε where ψ√
ε (z) := ε−1ψ

(
z√
ε

)
and ψ ∈ C∞

0 (B1 (0) : R+) with ψ = 1 on B 1
2

(0).

Let G0 :=
{
i : d

(
Dv�τi

,K
)
≤ d(SO(2),SO(2)H)

8

}
and define E (x) :=

{
i : τi ∩B√

ε (x) �= ∅
}
. Suppose x ∈ Ω is

such that E (x) ⊂ G0, for simplicity we will assume d
(
Dv�τi

, SO (2)
)

= d
(
Dv�τi

,K
)

for every i ∈ E (x). Since
for any k, l ∈ E (x) with H1 (τk ∩ τ l) > 0 we have that there exists w ∈ S1 such that Dv�τk

w = Dv�τl
w and

thus
∣∣Dv�τk

−Dv�τl

∣∣ ≤ c
(
d
(
Dv�τk

, SO (2)
)

+ d
(
Dv�τl

, SO (2)
))

because if Dv�τk
∈ SO (2) and Dv�τl

∈ SO (2)
the fact that Dv�τk

w = Dv�τl
w would imply Dv�τk

= Dv�τl
, so the difference between Dv�τk

and Dv�τl
is

controlled by the distance of these matrices from SO (2).
A relatively easy generalisation of this is that for any x where E (x) ⊂ G0∣∣Dv�τk

−Dv�τl

∣∣ ≤ cmax
{
d
(
Dv�τi

,K
)

: i ∈ E (x)
}

for any k, l ∈ E (x) . (2.8)
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Now Du (x) =
∑

i∈E(x)Dv�τi

∫
τi
ψ√

ε (z − x) dL2z. Let’s pick i0 ∈ E (x) we then have

∣∣∣Du (x) −Dv�τi0

∣∣∣ =

∣∣∣∣∣∣
∑

i∈E(x)

(
Dv�τi

−Dv�τi0

)∫
τi

ψ√
ε (z − x) dL2z

∣∣∣∣∣∣
(2.8)

≤ cmax
{
d
(
Dv�τi

,K
)

: i ∈ E (x)
}
. (2.9)

So for any x ∈ Ω such that E (x) ⊂ G0, d (Du (x) ,K) is comparable to d
(
Dv�τi0

,K
)

with error given by

max
{
d
(
Dv�τi

,K
)

: i ∈ E (x)
}

and thus
∫
{x:E(x)⊂G0} d

p (Du (z) ,K) dL2z ≤ c
∑
i d
p
(
Dv�τi

,K
)
.

Since |Du (x)| ≤ c
∑
i∈E(x)

∣∣Dv�τi

∣∣ thus dp (Du (x) ,K) ≤ c
(∑

i∈E(x) d
p
(
Dv�τi

,K
)

+ 1
)

so as

L2 ({x ∈ Ω : E (x) �⊂ G0}) ≤ cL2
(⋃

i�∈G0
τi

)
≤ cmp

ε we have
∫
{x:E(x)�⊂G0} d

p (Du (x) ,K) ≤ cmp
ε .

So all that remains is to control the
∫
Ω

∣∣D2u
∣∣2 term. For x ∈ Ω such that E (x) ⊂ G0 this is relatively easy

since

D2u (x) = −
∫
Dv (z) ⊗Dψ√

ε (z − x) dL2z (2.10)

and as
∫
Dψ√

ε (z − x) dL2z = 0 we have

D2u (x) = −
∫ (

Dv (z) −Dv�τi0

)
⊗Dψ√

ε (z − x) dL2z

≤ cε−
1
2 max

{∣∣∣Dv�τj
−Dv�τi0

∣∣∣ : j ∈ E (x)
}
.

So ∣∣D2u (x)
∣∣2 ≤ cε−1

(
max

{∣∣∣Dv�τj
−Dv�τi0

∣∣∣ : j ∈ E (x)
})p

(2.8)

≤ cε−1 max
{
dp
(
Dv�τi

,K
)

: i ∈ E (x)
}
.

Thus ∫
{x:E(x)⊂G0}

∣∣D2u (x)
∣∣2 dL2x ≤ cε−1

∑
i

dp
(
Dv�τi

,K
)
L2 (τi) ≤ cε−1mp

ε .

So far everything goes well simply by using (2.8), however for x ∈ Ω such that E (x) �⊂ G0 we have a problem
because the quantity we are interested in is

∣∣D2u (x)
∣∣2 and from equation (2.10), if the jump from Dv�τi

to
Dv�τl

is much greater than 1 we can not estimate
∣∣D2u

∣∣2 by any L1 control of the distance of Dv from K. Quite

simply if we have an arbitrary function v ∈ F(ς,√ε)
F and we form function u by convolving it with ψ√

ε it could

be the case that
∫
Ω d

p (Du,K) +
∣∣D2u

∣∣2 � mp
ε . In order for the estimate we want to hold true we need some

condition that bounds the square of all the jumps of order > 1 by the quantity ε−1mp
ε . The way we deal with

this problem is by circumventing it: in establishing the lower bound we showed that from a function u ∈ AF
we can create a function ũ that is piecewise affine on a (

√
ε, ς) triangulation and

∫
Ω
d (Dũ,K) ≤ cmp

ε , if we
were smarter we could show the function ũ that we created had even stronger properties. For example if u was
Lipschitz then ũ would also be Lipschitz and our problems would be over. Unfortunately we can not prove u is
Lipschitz, however what we have for free is that

∫
Ω

∣∣D2u
∣∣2 ≤ ε−1mp

ε . It turns out that for sufficiently careful
choice of triangulation this is strong enough for us to be able to construct a function ũ such that if we define
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Ni (ũ), J (ũ) by (1.3), (1.4) we have that∑
i∈J(ũ)

∑
M∈Ni(ũ)

∣∣Dũ�τi
−M

∣∣2 ≤ cε−1mp
ε . (2.11)

So we define a function space we call D(ς,h)
F to be the set of piecewise affine functions in F (ς,h)

F that satis-
fies (2.11) and we will show in the “lower bound” part of Theorem 1.1 that given u ∈ AF with Ipε (u) ≤ cmp

ε we

can construct function ũ ∈ D(ς,√ε)
F from it such that

∫
Ω
dp (Dũ,K) ≤ cmp

ε .

To prove the “upper bound” we will need to show that if v ∈ D(ς,√ε)
F then we can construct function u ∈ AF

and Ipε (u) ≤ c
∫
Ω
dp (Dv,K). It turns out that proceeding in the “naive” way and simply defining u = v ∗ ψ√

ε

inequality (2.11) is strong enough to conclude
∫
Ω

∣∣D2u
∣∣2 ≤ ε−1mp

ε , in some sense from equation (2.10) this should
come as no great surprise. Since we have already shown

∫
Ω
dp (Du,K) ≤ mp

ε the upper bound is completed.

3. Background

We will need a couple of not so well known Poincaré inequalities. Firstly a Korn type Poincaré inequality
from [21], for a form more convenient for our purposes we refer to Theorem 6.5 [1]. The lemma we state is
highly simplified version of Theorem 6.5.

Lemma 3.1. Let u ∈ W 1,1 (Ω : Rm) we have a constant c0 = c0 (n) such that for any Br (x) ⊂ Ω there exists
vectors ax,r ∈ Rm and matrix bx,r ∈Mm×n

∫
Br(x)

|u (z) − bx,r · (z − x) − ax,r| dLnz ≤ c0r

∫
Br(x)

∣∣∣∣Du (z) +DuT (z)
2

∣∣∣∣dLnz.
Secondly a version of the more standard Poincaré inequality.

Lemma 3.2. Let a0 > 0 be a fixed small constant. Let p ≥ 1. Suppose u ∈ W 1,p (B1 (0)) is such that
Ln ({x : u (x) = 0}) > a0. There exists constant c1 = c1 (a0, n)∫

B1(0)

|u (z)|p dLnz ≤ c1

∫
B1(0)

|Du (z)|p dLnz. (3.1)

Proof of Lemma 3.2. Since this lemma is essentially standard we only sketch its proof. Suppose (3.1) is false,
then we have a sequence un ∈W 1,p (B1 (0)) such that(∫

B1(0)

|un (z)|p dLnz

)(∫
B1(0)

|Dun (z)|p dLnz

)−1

→ ∞. (3.2)

Let wn (x) := un (x)
(∫

B1(0)
|un (z)|p dLnz

)−1

. So ‖wn‖Lp(B1(0)) = 1 and ‖Dwn‖Lp(B1(0))
(21)→ 0 as n → ∞. By

BV compactness theorem (see Thm. 3.22 [2]) there exists a subsequence of wn that has a limit w ∈ BV (B1 (0))
where |Dw| (B1 (0)) = 0 and

∫
B1(0)

w = 1 with L2 ({x : w (x) = 0}) ≥ a0, which is a contradiction. �
A theorem that we will use many times is the following [18].

Theorem 3.1 (Friesecke, James, Müller). Let U be a bounded Lipschitz domain in Rn, n ≥ 2. Let q > 1.
There exists a constant C (U, q) with the following property. For each v ∈W 1,q (U,Rn) there exists an associated
rotation R ∈ SO (n) such that

‖Dv −R‖Lq(U) ≤ C (U, q) ‖dist (Dv, SO (n)) ‖Lq(U). (3.3)
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4. Rough lower bounds on mp
ε

Lemma 4.1. Let p ≥ 1, define

mp
ε := inf

u∈AF

∫
Ω

dp (Du (z) ,K) + ε
∣∣D2u (z)

∣∣2 dL2z. (4.1)

We have positive constant c1 (depending only on σ, p) such that

mp
ε ≥ c1ε

1
2 for all ε > 0. (4.2)

Proof. Let

d0 :=
1
4

inf {|A−B| : A ∈ SO (2)Ai, B ∈ SO (2)Aj , i �= j} . (4.3)

By density of smooth functions in W 2,2 (Ω) we can find a smooth function u satisfying u (x) = lF (x) for x ∈ ∂Ω
with ∫

Ω

dp (Du (x) ,K) + ε
∣∣D2u (x)

∣∣2 dL2x ≤ max
{
2mp

ε , c1ε
1
2

}
. (4.4)

Now suppose (4.2) is false, so for some small positive constant c1 < d0 we have mp
ε ≤ c1ε

1
2 . By Cauchy Schwartz

inequality we have ∫
Ω

d
p
2 (Du (x) ,K)

∣∣D2u (x)
∣∣ dL2x ≤ 2c1. (4.5)

Let Ui := {x ∈ Ω : d (Du (x) , SO (2)Ai) < c1}. There must exists i0 ∈ {1, 2, . . . , N} such that L2 (Ui0) ≥
L2(Ω)−cε

1
2p

N . Let E (x) = d
p
2 (Du (x) ,K)

∣∣D2u (x)
∣∣ and ψz : R2 → [0, 2π) be defined by |x− z| eiψz(x) = x − z.

Note ψz is smooth in R2\ {(z1, z2 + λ) : λ ∈ R+} =: Uz and |Dψz (x)| ≤ 1
|x−z| for any x ∈ Uz . Let c0 :=

sup
{∫

Ω
1

|z−x|dL
2z : x ∈ Ω

}
. We know via Fubini theorem

∫
Ω

∫
Ω

E (x) |Dψz (x)| dL2xdL2z ≤
∫

Ω

E (x)
(∫

Ω

1
|z − x|dL

2z

)
dL2x

≤ c0

∫
Ω

E (x) dL2x

(4.5)

≤ 2c0c1.

So we can find a subset G ⊂ Ω such that L2 (Ω\G) ≤ 2c0c
1
3
1 and for every z ∈ G we have∫

Ω

E (x) |Dψz (x)| dL2x ≤ c
2
3
1 .

Now by the Co-area formula, for each z ∈ G we can find Ψz ⊂ [0, 2π) with L1 ([0, 2π) \Ψz) ≤ c
1
3
1 for every θ ∈ Ψz

we have
∫
(z+〈eiθ〉)∩Ω E (x) dH1x ≤ c

1
3
1 . We can assume c1 is sufficiently small so G ∩Ui0 �= ∅. Now we claim for

each z ∈ G ∩ Ui0 we have that

sup

{
d (Du (x) , SO (2)Ai0 ) : x ∈

( ⋃
θ∈Ψz

(
z + 〈eiθ〉

))
∩ Ω

}
≤ 4c

2
3(2+p)
1 . (4.6)
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Suppose (4.6) is false. So there exists z0 ∈ G ∩ Ui0 and θ0 ∈ Ψz0 with z1 ∈
(
z0 + 〈eiθ〉

)
∩ Ω such that

d (Du (z1) , SO (2)Ai0) > 4c
2

3(2+p)
1 . So as d (Du (z0) , SO (2)Ai0) < c1 we can find z2, z3 ∈ [z0, z1] with the prop-

erties
d (Du (z2) , SO (2)Ai0) = c

2
3(2+p)
1 and d (Du (z3) , SO (2)Ai0) = 4c

2
3(2+p)
1 .

In addition we have

d (Du (z) , SO (2)Ai0) ∈
[
c

2
3(2+p)
1 , 4c

2
3(2+p)
1

]
for any z ∈ [z2, z3] . (4.7)

So c
1
3
1 ≥

∫ z3
z2
E (z) dH1z ≥ c

p
3(2+p)
1

∫ z3
z2

∣∣D2u (z)
∣∣ dH1z ≥ 3c

1
3
1 which is a contradiction. So pick z0 ∈ G ∩ Ui0 and

let Λ =
(⋃

θ∈Ψz0

(
z0 + 〈eiθ〉

))
∩ Ω. Note that

L2 (Ω\Λ) ≤ L2

⎛⎝⎛⎝ ⋃
θ∈[0,2π)\Ψz0

(
z0 + 〈eiθ〉

)⎞⎠ ∩Bdiam(Ω) (0)

⎞⎠
≤ 2πdiam (Ω) c

1
3
1 . (4.8)

So as for any x ∈ Ω\Λ we have d (Du (x) , SO (2)Ai0) ≤ d (Du (x) ,K) + c thus∫
Ω

d (Du (x) , SO (2)Ai0 ) dL2x ≤
∫

Ω

d (Du (x) ,K) dL2x+ cL2 (Ω\Λ)

(4.8)

≤ 2πdiam(Ω) c
1
3
1 + cε

1
2p .

So applying Proposition 2.6 [9] we have that there exists R0 ∈ SO (2) such that∫
Ω

|Du (x) −R0Ai0 | dL2x ≤ cc
1
6
1 .

Since R0Ai0 �= F there must exist w ∈ S1 such that R0Ai0w �= Fw. We must be able to find m ∈ w⊥ ∩
B diam(Ω)

10
(0) such that

∫
Ω∩(m+〈w〉) |Du (z) −R0Ai0 | dL1z ≤ cc

1
12
1 . Let a, b denote the endpoints of Ω∩ (c+ 〈m〉).

We have

|F (a− b) −R0Ai0 (a− b)| ≤
∣∣∣∣∣
∫ b

a

(Du (z) −R0Ai0)w dL1z

∣∣∣∣∣ ≤ cc
1
12
1

which is a contradiction assuming c1 is chosen small enough. �

5. Proof of Theorem 1.1

Proposition 5.1. Let K = SO (2)A1 ∪ . . . SO (2)AN , let σ be the minimum of the absolute values of the
eigenvalues of Ai. Let p ≥ 1, suppose u ∈ W 2,2

(
B1 (0) : R

2
)

satisfies the following properties∫
B1(0)

dp (Du (z) ,K) dL2z ≤ β (5.1)

∫
B1(0)

∣∣D2u (z)
∣∣2 dL2z ≤ β (5.2)
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then in the case p > 1 there exists matrix M ∈ K such that∫
B1(0)

|Du (z) −M |p dL2z ≤ cβ. (5.3)

And for the case p = 1 there exists i0 ∈ {1, 2, . . . , N} and affine function L : B1 (0) → R2 with DL ∈ SO (2)Ai0
such that ∫

Bσ2 (0)

|u (z) − L (z)| dL2z ≤ cβ (5.4)

and ∫
B1(0)

d (Du (z) , SO (2)Ai0) dL2z ≤ cβ. (5.5)

Proof.
Step 1. Recall definition (4.3) of d0, let d1 = σ

10d0 and let

Ui := {x ∈ B1 (0) : d (Du (x) , SO (2)Ai) < d1} for i = 1, 2, . . . , N. (5.6)

We will show there exists i0 ∈ {1, 2, . . . , N} such that

L2 (B1 (0) \Ui0) ≤ cβ. (5.7)

As a consequence we will establish (5.5).
Proof of Step 1. Since for any x ∈ B1 (0) \

(⋃N
i=1 Ui

)
we have d (Du (x) ,K) > d1. So

L2

(
B1 (0) \

(
N⋃
i=1

Ui

))
≤ 1
dp1

∫
B1(0)

dp (Du (z) ,K) dL2z
(5.1)

≤ cβ (5.8)

which implies there must exists i0 ∈ {1, 2, . . . , N} such that L2 (Ui0) ≥ c
N .

Let γ ∈
(
0, d14

)
be some very small number. We define

S (z) :=
{
z − 3γ for z > 3γ
0 for z ≤ 3γ

and T (z) =
∫
S (x)ψγ (z − x) dL1z where ψγ (z) := ψ

(
z
γ

)
γ−1 and ψ is the standard one dimensional con-

volution kernel with
∫
ψ = 1 and ψ ≡ 1 on

[
− 1

4 ,
1
4

]
. Let P0 : M2×2 → R be defined by P0 (M) =

T (d (M,SO (2)Ai0) − d1) note that P0 is smooth and Lipschitz. We define f (z) := P0 (Du (z)) it is easy
to see that f ∈ W 1,2 (B1 (0)) and we have |Df (z)| ≤ c

∣∣D2u (z)
∣∣, hence

∫
B1(0) |Df (z)|2 dL2z ≤ cβ. We also

know we have f (z) = 0 for any z ∈ Ui0 and so by Lemma 3.2 we have that
∫
B1(0)

|f (z)|2 dL2z ≤ cβ. As
f (z) ≥ d1 for any z ∈

⋃
i∈{1,2,...,N}\{i0} Ui together with (5.8) this implies (5.7).

Note (d (Du (z) ,K) + c)p ≤ dp (Du (z) ,K) + c∫
B1(0)

dp (Du (z) , SO (2)Ai0 ) dL2z

≤
∫
B1(0)

dp (Du (z) ,K) dL2z + cL2 (B1 (0) \Ui0)

(5.1),(5.7)

≤ cβ. (5.9)
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Now for p > 1 by Theorem 3.1 there exists R0 ∈ SO (2) such that
∫
B1(0) |Du (z) −R0Ai0 |

p dL2z ≤ cβ which
establishes (5.3). Obviously inequality (5.9) also gives (5.5) for p = 1.

Step 2. Let P0 be the affine function with P0 (0) = 0, DP0 = A−1
i0

. Define v : Bσ (0) → R
2 by v (z) = u (P0 (z)).

We will show there exists and affine function L1 such that∫
Bσ(0)

|v (z) − L1 (z)| dL2z ≤ cβ. (5.10)

Proof of Step 2. Firstly we apply the truncation theorem Proposition A.1. [18]. So there exists a Lipschitz
function ṽ with ‖Dṽ‖L∞(Bσ(0)) ≤ C and

L2 ({x ∈ Bσ (0) : ṽ (x) �= v (x)}) ≤ c

∫
{x∈Bσ(0):|Dv(x)|>C}

|Dv (z)| dL2z ≤ cβ (5.11)

and

‖Dv −Dṽ‖L1(Bσ(0)) ≤ c

∫
{x∈Bσ(0):|Dv(x)|>C}

|Dv (z)| dL2z ≤ cβ. (5.12)

Note ∫
Bσ(0)

d (Dṽ (z) , SO (2)) dL2z
(5.12)

≤
∫
Bσ(0)

d (Dv (z) , SO (2)) dL2z + cβ

(5.9)

≤ cβ. (5.13)

Thus by Theorem 3.1 we have that there exists R0 such that∫
Bσ(0)

|Dṽ (x) −R0|2 dL2x ≤ c

∫
Bσ(0)

d2 (Dṽ (x) , SO (2)) dL2x

(5.13)

≤ cβ. (5.14)

Let lR0 be an affine function with DlR0 = R0 and lR0 (0) = 0, we define w (x) = ṽ (lR0 (x)). So from (5.14) we
have ∫

Bσ(0)

|Dw (x) − Id|2 dL2x ≤ cβ. (5.15)

Now linearising d (·, SO (2)) near the identity we have

d (G,SO (2)) =
∣∣∣∣12 (G+GT

)
− Id

∣∣∣∣+O
(
|G− Id|2

)
= |sym (G− Id)| +O

(
|G− Id|2

)
.

So we have ∫
Bσ(0)

|sym(Dw (x) − Id)| dL2x ≤ c

∫
Bσ(0)

|Dw (x) − Id|2 dL2x

+ c

∫
Bσ(0)

d (Dw (x) , SO (2)) dL2x

(5.15),(5.13)

≤ cβ.
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Now by Lemma 3.1 we have that there exists an affine function L0 : Bσ (0) → R2 such that∫
Bσ(0)

|w (x) − x− L0 (x)| dL2x ≤ cβ (5.16)

which gives us an affine function L1 : Bσ (0) → R2 with the property that∫
Bσ(0)

|ṽ (x) − L1 (x)| dL2x ≤ cβ. (5.17)

Now note by Lemma 3.2 we know that∫
Bσ(0)

|ṽ (x) − v (x)| dL2x ≤
∫
Bσ(0)

|Dṽ (x) −Dv (x)| dL2x
(5.12)

≤ cβ. (5.18)

Thus ∫
Bσ(0)

|v (x) − L1 (x)| dL2x
(5.17),(5.18)

≤ cβ.

Step 3. We will show there exists R0 ∈ SO (2) such that

|DL1 −R0| ≤ cβ. (5.19)

Proof of Step 3. It is immediate from (5.2) that
∫
Bσ(0)

∣∣D2v (x)
∣∣2 dL2x ≤ cβ. And so by Holder∫

Bσ(0)

∣∣D2v (x)
∣∣dL2x ≤ c

√
β. We also know that

∫
Bσ(0)

d (Dv (x) , SO (2)) dL2x
(5.9)

≤ cβ. (5.20)

Let C3 be some large positive number we decide on later

H0 := {x ∈ Bσ (0) : |L1 (z) − v (z)| ≤ C3β} . (5.21)

Assuming constant C3 is large enough we have from (5.10) that

L2 (Bσ (0) \H0) ≤
σ2

1000
· (5.22)

Let w ∈ S1. We define

G1
w :=

{
y ∈ Pw⊥

(
Bσ

2
(0)
)

:
∫
P−1

w⊥ (y)∩Bσ
2

(0)

d (Dv (z) , SO (2)) dH1z ≤ C3β

}

and

G2
w :=

{
y ∈ Pw⊥

(
Bσ

2
(0)
)

:
∫
P−1

w⊥ (y)∩Bσ
2

(0)

∣∣D2v (z)
∣∣2 dH1z ≤ C3β

}
.

Assuming C3 was chosen large enough we have that

L1
(
Pw⊥

(
Bσ

2
(0)
)
\G1

w

)
≤ σ2

1000
and L1

(
Pw⊥

(
Bσ

2
(0)
)
\G2

w

)
≤ σ2

1000
·
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Now by (5.22) we can pick y ∈ G1
w ∩G2

w such that

L1
(
P−1
w⊥ (y) ∩Bσ

2
(0) ∩H0

)
>

σ

100
·

So we can pick a, b ∈ P−1
w⊥ (y) ∩Bσ

2
(0) ∩H0 such that |a− b| > σ

100 . We have that∫
[a,b]

d (Dv (z) , SO (2)) dH1z ≤ cβ (5.23)

and ∫
[a,b]

∣∣D2v (z)
∣∣ dH1z ≤ c

√
β. (5.24)

For each z ∈ [a, b] let R (z) ∈ SO (2) be such that d (Dv (z) , SO (2)) = |Dv (z) −R (z)|. From (5.23)
and (5.24) we have that there exists R0 ∈ SO (2) such that

sup {|Dv (z) −R0| : z ∈ [a, b]} ≤ c
√
β. (5.25)

Now note

(v (a) − v (b)) · R0v1 =

(∫
[a,b]

Dv (z) v1dH1z

)
·R0v1

(5.23)

≥
∫

[a,b]

R (z) e1 ·R0e1dH1z − cβ. (5.26)

By definition of R (z), we have that |Dv (z) −R (z)| ≤ |Dv (z) −R0|
(5.25)

≤ c
√
β. So

|R (z) −R0| ≤ |Dv (z) −R0| + |Dv (z) −R (z)|
(5.25)

≤ c
√
β.

Let ψ ∈ [0, 2π) be such that R0 =
( sinψ cosψ
− cosψ sinψ

)
and ψ (z) ∈ [0, 2π) be such that

R (z) =
( sinψ (z) cosψ (z)
− cosψ (z) sinψ (z)

)
. We know sup {|ψ − ψ (z)| : z ∈ [a, b]} ≤ c

√
β so

∫
[a,b]

R (z) e1 ·R0e1dH1z =
∫

[a,b]

cos (ψ (z) − ψ) dH1z

≥ |a− b| − cβ.

Putting this together with (5.26) we have (v (a) − v (b)) ·R0v1 ≥ |a− b| − cβ which of course implies

|v (a) − v (b)| ≥ |a− b| − cβ. (5.27)

Now

|v (a) − v (b)| ≤
∫

[a,b]

∣∣∣∣Dv (z)
a− b

|a− b|

∣∣∣∣dH1z

≤ |a− b| + cβ. (5.28)
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Since a, b ∈ H0 we have

||L1 (a− b)| − |a− b||
(5.21)

≤ ||v (a) − v (b)| − |a− b|| + cβ
(5.27),(5.28)

≤ cβ

which gives
||L1 (w)| − 1| ≤ cβ for all w ∈ S1. (5.29)

Let us take three points x1, x2, x3 that form the corners of an equilateral triangle, i.e. |xi − xj | = 1 for
i, j ∈ {1, 2, 3}. So L1 (x1), L1 (x2), L1 (x3) form the corners of a triangle which we denote by T1.

Let θi denote the angle of the triangle T1 at the corner L1 (xi). Let A1 = |L1 (x2) − L1 (x3)|, A2 =
|L1 (x1) − L1 (x3)|, A3 = |L1 (x1) − L1 (x2)|. Now by the law of sins sin θ1

A1
= sin θ2

A2
= sin θ3

A3
. Let i, j ∈ {1, 2, 3},

sin θi

Ai
= sin θj

Aj
= sin θj

Ai
+ sin θj

(
1
Aj

− 1
Ai

)
. So sin θi−sin θj

Ai
= sin θj

(
Ai−Aj

AjAi

)
. Note A1 = |L1 (x1 − x3)|

(5.29)
∈

(1 − cβ, 1 + cβ). In the same way 1 − cβ ≤ Ai ≤ 1 + cβ for i = 2, 3 so

|sin θi − sin θj | ≤ c |Ai −Aj | < cβ. (5.30)

Now assuming β is small enough we must have θi ∈
(
0, 999π

2000

)
for i = 1, 2, 3 since otherwise

max {|L1 (xi) − L1 (xj)| : i, j ∈ {1, 2, 3} , i �= j} >
√

2 − 1
50 which contradicts (5.29). So

|θi − θj | ≤ c |sin θi − sin θj |
(5.29)

≤ cβ.

Since θ1 + θ2 + θ3 = π this gives
∣∣θi − π

3

∣∣ ≤ cβ for i = 1, 2, 3 which implies there exists rotation R0 ∈ SO (2)
such that |DL1 −R0| ≤ cβ which completes the proof of Step 3.
Proof of Proposition 5.1 completed. Let L0 be the affine function with L0 (0) = L1 (0) and DL0 = R0 where
R0 ∈ SO (2) satisfies (5.19) of Step 3. So from (5.10) we know∫

Bσ(0)

|v (x) − L0 (x)| dL2x ≤ cβ. (5.31)

As u (z) = v
(
P−1

0 (z)
)

we have that∫
Bσ2 (0)

∣∣u (z) − L0

(
P−1

0 (z)
)∣∣ dL2z =

∫
Bσ2 (0)

∣∣v (P−1
0 (z)

)
− L0

(
P−1

0 (z)
)∣∣ dL2z

(5.31)

≤ cβ.

Define L := L0 · P−1
0 , so DL = DL0 · DP−1

0 = R0A0 ∈ K so L satisfies (5.4) which completes the proof of
Proposition 5.1. �
Proposition 5.2. Let w1 ∈ S1 be such that for some w2 ∈ w⊥

1 we have that w1, w2,
w1−w2
|w1−w2| are not in the set

of rank-1 directions connecting SO (2)Ai to SO (2)Aj for any i �= j. Let p ≥ 1, we will show that for some
enough ς = ς (σ) we can find ũ ∈ Dς,

√
ε

F (w1) such that∫
Ω

dp (Dũ (z) ,K) dL2z ≤ cmp
ε . (5.32)

Proof. The main idea for the proof is to take a function u ∈ AF with Ipε (u) ≤ 2mp
ε and to find a regular

triangulation {τi} ∈ �ς√
ε
(w1) (recall notation from Sect. 1.1) such that when we define ũ to be the piecewise

affine interpolation of u on {τi} then we have
∫
Ω
dp (Dũ,K) dL2z ≤ cmp

ε and ũ ∈ Dς,
√
ε

F . In order for ũ
to satisfy these properties we will need Du to have controlled surface and bulk energies on the set

⋃
i ∂τi.
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However as
(
Ω\Nς−1√ε (∂Ω)

)
∩
⋃
i ∂τi is the intersection of three sets of evenly spaced parallel lines that are

of order O (
√
ε) apart, by applying the Co-area formula to all possible shifted copies of these sets of lines we

can find a triangulation with the properties we want. The rest of the proof is just a matter of harvesting the
inequalities we need.

Let C0 = C0 (σ, ς) be some small number we decide on later. We claim we can assume

mp
ε ≤ C0. (5.33)

Suppose (5.33) is false, then we define ũ = lF , clearly lF ∈ Dς,
√
ε

F and
∫
Ω
dp (DlF ,K) dL2z ≤ c, so inequal-

ity (5.32) is satisfied. So we can assume (5.33) or there is nothing to show.

Let u ∈ AF be such that Ipε (u) ≤ cmp
ε . So we

∫
Ω

∣∣D2u (z)
∣∣2 dL2z ≤ cε−1mp

ε . Define v (z) :=
u(√εz)√

ε
. Recall

Ω
ε−

1
2

= ε−
1
2 Ω. Note ∫

Ω
ε
− 1

2

dp (Dv (z) ,K) dL2z ≤ cε−1mp
ε (5.34)

and ∫
Ω

ε
− 1

2

∣∣D2v (z)
∣∣2 dL2z ≤ cε−1mp

ε . (5.35)

Let T 1
t := {kw2 + 〈w1〉 : k ∈ Z} + tw2 and T 2

t := {kw1 + 〈w2〉 : k ∈ Z} + tw1. Define L1 : Ω
ε−

1
2
→ [0, 1] to

be such that L
−1
1 (s) = T 1

s ∩Ω
ε−

1
2

and L2 : Ω
ε−

1
2
→ [0, 1] to be such that L

−1
1 (s) = T 1

s ∩Ω
ε−

1
2
. It is easy to see

|DL1| ≤ 1, |DL2| ≤ 1.
Now Dv = F in the sense of trace on ∂Ω

ε−
1
2
. By Theorem 2, Section 5.3 [17], this implies

lim
r→0

−
∫
Br(x)∩Ω

ε
− 1

2

|Dv (z) − F (z)| dL2z = 0 for H1a.e. x ∈ ∂Ω
ε−

1
2
. (5.36)

Let S1, . . . ,Sp0 denote the sides of ∂Ω
ε−

1
2
. For simplicity we make the assumption that none of the sides

S1, S2, . . . ,Sp0 are parallel to w1, w2. Let i ∈ {1, . . . , p0}, there exists S̃i ⊂ Si with L1
(
Si\S̃i

)
= 0 such that

for any x ∈ S̃i we can find rx ∈ (0, ε) with the property that for any r ∈ (0, rx] we have
∫
Br(x)∩Ω

ε
− 1

2

|Dv (z)−

F (z)| dL2z ≤ εr2.
So there exists δ ∈ (0, 1) such that for each i we can find subset Si ⊂ S̃i with L1

(
S̃i\Si

)
≤ ε and for

each x ∈ Si, rx ≥ δ.
Let q ∈ {1, 2}, i ∈ {1, . . . , p0}. The set of intervals

{
Pw⊥

q
(Bδ (x)) : x ∈ Si

}
forms a cover of Pw⊥

q
(Si) and so

by the 5r Covering Theorem, Theorem 2.1 [25] we can extract a subset {x1, x2, . . . , xJ0} ⊂ Si such that{
Pw⊥

q

(
B δ

5
(xn)

)
: n ∈ {1, 2, . . . , J0}

}
are disjoint (5.37)

and

Pw⊥
q

(Si) ⊂
J0⋃
n=1

Pw⊥
q

(Bδ (xn)) . (5.38)

Let Cin :=
{
z ∈ Bδ (xn) ∩ Ω

ε−
1
2

: |Dv (z) − F | ≤ 1
}

so L2
(
Bδ (xn) \Cin

)
≤ εδ2. This implies

L1
(
Pw⊥

q
(Bδ (xn)) \Pw⊥

q

(
Cin
))

≤ cεδ. (5.39)
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Let Σi =
⋃J0
n=1 Cin. We have

L1
(
Pw⊥

q
(Si ∩H (0, wq)) \Pw⊥

q
(Σi ∩H (0, wq))

)
= L1

(
Pw⊥

q
(Si ∩H (0, wq)) \

(
J0⋃
n=1

Pw⊥
q

(
Cin ∩H (0, wq)

)))
(5.38),(5.39)

≤ cJ0εδ

(5.37)

≤ cε. (5.40)

By exactly the same argument

L1
(
Pw⊥

q
(Si ∩H (0,−wq)) \Pw⊥

q
(Σi ∩H (0,−wq))

)
≤ cε. (5.41)

Define

A0 :=
p0⋃
i=1

Σi and note that A0 ⊂ N1

(
∂Ω

ε−
1
2

)
. (5.42)

Let q ∈ {1, 2} and let l be such that {l} = {1, 2} \ {q}. As shown on Figure 3, let

Qq1 = inf
{
k ∈ Z : (kwl + 〈wq〉) ∩ Ω

ε−
1
2
�= ∅
}

and let
Qq2 = sup

{
k ∈ Z : (kwl + 〈wq〉) ∩ Ω

ε−
1
2
�= ∅
}
.

Step 1. For q ∈ {1, 2} and l be such that {l} = {1, 2} \ {q} define

P+
q := {t ∈ [0, 1] : (wqR+ + (t+ k)wl) ∩ A0 �= ∅ for every k ∈ {Qq1, Q

q
1 + 1, . . . , Qq2 − 1}} (5.43)

and
P−
q := {t ∈ [0, 1] : (wqR− + (t+ k)wl) ∩ A0 �= ∅ for every k ∈ {Qq1, Q

q
1 + 1, . . . , Qq2 − 1}} (5.44)

we will show L1
(
[0, 1] \P+

q

)
≤ c

√
ε and L1

(
[0, 1] \P−

q

)
≤ c

√
ε.

Proof of Step 1. We argue only for the set P+
1 . For each t ∈ [0, 1]\P+

1 let

Nt :=
{
k : (w1R+ + (t+ k)w2) ∩ A0 = ∅, k ∈

{
Q1

1, Q
1
1 + 1, . . . , Q1

2 − 1
}}

(5.45)

and let6 n (t) := minNt.
So [0, 1] \P+

1 =
⋃
k∈{Q1

1,Q
1
1+1,...,Q1

2−1} n
−1 (k) and thus there must exist k0 such that

L1
(
n−1 (k0)

)
≥

L1
(
[0, 1] \P+

1

)
|Q1

1| + |Q1
2|

≥
√
ε

5
L1
(
[0, 1] \P+

1

)
. (5.46)

However by definition since for every t ∈ n−1 (k0), k0 = n (t) ∈ Nt and by (5.45) we have

(w1R+ + (t+ k0)w2) ∩ A0 = ∅ for any t ∈ n−1 (k0) (5.47)

6We define n (t) to be the minimum only to produce a well defined function, we could just as well take the maximum.
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Figure 3. Constructing the triangulation for a typical polygonal region.

hence ((t+ k0)w2) ∩ Pw⊥
1

(A0 ∩H (0, w1)) = ∅ for any t ∈ n−1 (k0), i.e.

((
n−1 (k0) + k0

)
w2

)
∩ Pw⊥

1
(A0 ∩H (0, w1)) = ∅. (5.48)

Since k0 ∈
{
Q1

1, Q
1
1 + 1, . . . , Q1

2 − 1
}

we have
(
n−1 (k0) + k0

)
w2 ⊂ Pw⊥

1

(
Ω
ε−

1
2

)
= Pw⊥

1

(
∂Ω

ε−
1
2

)
and by con-

vexity of Ω this implies
(
n−1 (k0) + k0

)
w2 ⊂ Pw⊥

1

(
∂Ω

ε−
1
2
∩H (0, w1)

)
so for some a ∈ {1, 2, . . . , p0} we must

have

L1
(
Pw⊥

1
(Sa ∩H (0, w1)) ∩

((
n−1 (k0) + k0

)
w2

))
≥
L1
(
n−1 (k0)

)
p0

(5.49)

and by (5.48) (and recalling definition (5.42)) we have

Pw⊥
1

(Sa ∩H (0, w1)) ∩
((
n−1 (k0) + k0

)
w2

)
⊂ Pw⊥

1
(Sa ∩H (0, w1)) \Pw⊥

1
(Σa ∩H (0, w1))

and thus from (5.40), (5.49) we have cε ≥ L1
(
n−1 (k0)

)
by (5.46) c

√
ε ≥ L1

(
[0, 1] \P+

1

)
, this completes the

proof of Step 1.

Step 2. Let {ci : i = 1, 2, . . . , N0} be an ordering of the set of points{
k1w1 + k2w2 : k1, k2 ∈ Z, k1w1 + k2w2 ∈ Ω

ε−
1
2
\N32σ−2

(
∂Ω

ε−
1
2

)}
.
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Let C1 be some small positive number we decide on later. Let

B1 :=

{
i ∈ {1, 2, . . . , N0} :

∫
B32σ−2 (ci)

∣∣D2v (z)
∣∣2 dL2z > C1

}
(5.50)

and

B2 :=

{
i ∈ {1, 2, . . . , N0} :

∫
B32σ−2 (ci)

dp (Dv (z) ,K) dL2z > C1

}
. (5.51)

Note

Card (B1) + Card (B2)
(5.34),(5.35)

≤ cε−1mp
ε . (5.52)

Define G0 = {1, 2, . . . , N0} \ (B1 ∪B2). For the case p = 1, for each i ∈ G0 by Proposition 5.1 we have the
existence of q (i) ∈ {1, 2, . . . , N} and an affine function Li : B32 (ci) → R

2 with DLi ∈ SO (2)Aq(i) and∫
B32(ci)

|v (z) − Li (z)| dL2z ≤
∫
B32σ−2 (ci)

d (Dv (z) ,K) +
∣∣D2v (z)

∣∣2 dL2z (5.53)

and ∫
B32(ci)

d
(
Dv (z) , SO (2)Aq(i)

)
dL2z ≤

∫
B32σ−2 (ci)

d (Dv (z) ,K) +
∣∣D2v (z)

∣∣2 dL2z. (5.54)

For p > 1 for each i ∈ G0 by Proposition 5.1 we have a matrix Mi ∈ K such that∫
B32σ−2 (ci)

|Dv (z) −Mi|p dL2z ≤
∫
B32σ−2 (ci)

dp (Dv (z) ,K) +
∣∣D2v (z)

∣∣2 dL2z. (5.55)

Define

P (z) =

{∑
i∈G0

χB32(ci)

(
|v (z) − Li (z)| + d

(
Dv (z) , SO (2)Aq(i)

))
, if p = 1

0, if p ∈ (1, 2]
(5.56)

and define

Q (z) =

{∑
i∈G0

χB32(ci) |Dv (z) −Mi|p , if p ∈ (1, 2]
0, if p = 1.

(5.57)

Note ∫
Ω

ε
− 1

2

Q (z) + P (z) dL2z ≤ cε−1mp
ε . (5.58)

By the Co-area formula we can find σ1 ∈ P+
1 ∩ P−

1 and σ2 ∈ P+
2 ∩ P−

2 such that∫
L
−1
i (σi)

dp (Dv (z) ,K) +
∣∣D2v (z)

∣∣2 dH1z ≤ cε−1mp
ε for i = 1, 2 (5.59)

and ∫
L
−1
i (σi)

P (z) +Q (z) dH1z ≤ cε−1mp
ε for i = 1, 2. (5.60)

Now set
A := Ω

ε−
1
2
\
(
L
−1
1 (σ1) ∪ L

−1
2 (σ2)

)
. (5.61)

Let R1,R2, . . . ,RN1 denote those among them that form complete squares. Let {τ1, τ2, . . . , τ2N1} be a collection
of right angle triangles with τi ∪ τi+N1 = Ri for each i = 1, 2, . . . , N1.
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Let
G1 :=

{
i ∈ {1, 2, . . . , N1} : Ri ∩ {ci : i ∈ G0} �= ∅

}
. (5.62)

Note that from (5.52) we have
Card (G1) ≥ N1 − cε−1mp

ε . (5.63)

For each i ∈ {1, 2, . . . , N1} let li denote the affine function we obtain from interpolation of v on the corners
of τi. We will show ∑

i∈G1

dp (Dli,K) + dp (Dli+N1 ,K) ≤ cε−1mp
ε . (5.64)

Proof of Step 2. Case p > 1. Firstly we will deal with the simpler case.
For any i ∈ G1, τi has two sides parallel to w1, w2. Let {a, b, e} denote the corners of τi where we have order

them so that a−b
|a−b| = w1 and e−b

|e−b| = w2.

|Dliw1 −Miw1| = |a− b|−1

∣∣∣∣∣
∫

[a,b]

(Dv (z) −Mi)w1dH1z

∣∣∣∣∣
(5.57)

≤ c

(∫
[a,b]

Q (z) dH1z

) 1
p

.

So |Dliw1 −Miw1|p ≤ c
∫
[a,b]

Q (z) dH1z, in the same way |Dliw2 −Miw2|p ≤ c
∫
[b,e]

Q (z) dH1z.
Assume without loss of generality |Dliw1 −Miw1| ≤ |Dliw2 −Miw2| so

|Dli −Mi|p ≤ c

∫
∂Ri

Q (z) dH1z.

So dp (Dli,K) ≤ c
∫
∂Ri

Q (z) dH1z in exactly the same we have dp (Dli+N1 ,K) ≤ c
∫
∂Ri

Q (z) dH1z. Thus

∑
i∈G1

dp (Dli,K) + dp (Dli+N1 ,K) ≤ c

∫
L−1(σ1)∪L−1(σ2)

Q (z) dH1z ≤ cε−1mp
ε .

Case p = 1. Now we tackle the more difficult case. Let i ∈ G1. So there exists p (i) ∈ G0 such that cp(i)∩Ri �= ∅.
Let

αi =
∫
∂Ri

P (z) + |Dv (z)|2 dH1z +
∫
B32σ−2(cp(i))

d (Dv (z) ,K) + P (z) +
∣∣D2v (z)

∣∣2 dL2z. (5.65)

So there exists Rp(i) ∈ SO (2) such that DLp(i) = Rp(i)As(i) for some s (i) ∈ {1, 2, . . . , N} (note that s (i) =
q (p (i)), see (5.54)). Let {a, b, d, e} denote that corners of Ri where a−b

|a−b| = w1, e−b
|e−b| = w2.

By definition of αi there exists x1, x2 ∈ [a, b], |x1 − x2| > c, P (x1) ≤ cαi and P (x2) ≤ cαi. So∣∣v (x1) − Lp(i) (x1)
∣∣ ≤ cαi,

∣∣v (x2) − Lp(i) (x2)
∣∣ ≤ cαi

thus ∣∣v (x1) − v (x2) −Rp(i)As(i) (x1 − x2)
∣∣ ≤ cαi. (5.66)

Since
∫
[a,b]

∣∣D2v (z)
∣∣ dH1z ≤ c

√
αi there exists R0 such that

sup
{∣∣Dv (z) −R0As(i)

∣∣ : z ∈ [a, b]
}
≤ c

√
αi. (5.67)
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So

∣∣v (x1) − v (x2) −R0As(i) (x1 − x2)
∣∣ =

∣∣∣∣∣
∫

[x1,x2]

(
Dv (z) −R0As(i)

) x1 − x2

|x1 − x2|
dH1z

∣∣∣∣∣
(5.67)

≤ c
√
αi.

Putting this together with (5.66) gives ∣∣R0 −Rp(i)
∣∣ ≤ c

√
αi. (5.68)

For z ∈ [a, b] define R (z) ∈ SO (2) be such that d
(
Dv (z) , SO (2)As(i)

)
=
∣∣Dv (z) −R (z)As(i)

∣∣. So note that∫
[a,b]

d (R (z) , SO (2)) dH1z ≤ cαi. Note also that from (5.67) and (5.68) we have

sup
{∣∣R (z) −Rp(i)

∣∣ : z ∈ [a, b]
}
≤ c

√
αi. (5.69)

Arguing as in Step 3, Proposition 5.1. Let θ, θ (z) ∈ [0, 2π) so that R (z) =
(

sin θ (z) − cos θ (z)
cos θ (z) sin θ (z)

)
and

R =
(

sin θ − cos θ
cos θ sin θ

)
. We have

R (z) e1 ·Re1 = cos (θ (z) − θ)
(5.69)

≥ 1 − cαi for any z ∈ [a, b] . (5.70)

We can pick point ã ∈ [a, b] with |b− ã| > c and ẽ ∈ [b, e] with |ẽ− b| > c where∣∣v (ẽ) − Lp(i) (ẽ)
∣∣ ≤ cαi and

∣∣v (ã) − Lp(i) (ã)
∣∣ ≤ cαi. (5.71)

Let γ1 = |ã− b|
∣∣As(i)w1

∣∣ and γ2 = |ẽ− b|
∣∣As(i)w2

∣∣. We claim

v (b) ∈ Ncαi (∂Bγ1 (v (ã))) (5.72)

and
v (b) ∈ Ncαi (∂Bγ2 (v (ẽ))) . (5.73)

To see this note that

∣∣(v (ã) − v (b)) · Rp(i)As(i) (−w1)
∣∣ ≥

∣∣As(i)w1

∣∣2 ∣∣∣∣∣
∫

[ã,b]

R (z) e1 ·Rp(i)e1dH1z

∣∣∣∣∣− cαi

(5.70)

≥
∣∣As(i)w1

∣∣2 |ã− b| (1 − cαi)

which implies |v (ã) − v (b)| ≥
∣∣As(i)w1

∣∣ |ã− b| (1 − cαi) = γ1 − cαi. Now

|v (ã) − v (b)| ≤
∣∣∣∣∣
∫

[ã,b]

−R (z)Ai0w1dH1z

∣∣∣∣∣+ cαi

≤ γ1 + cαi

which establishes (5.72). Inclusion (5.73) can be shown in exactly the same way. So putting (5.71) together
with (5.72), (5.73) we have established that

v (b) ∈ Ncαi

(
∂Bγ1

(
Lp(i) (ã)

))
∩Ncαi

(
∂Bγ2

(
Lp(i) (ẽ)

))
.
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v(b)

L

γ2

γ1

C

1C
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p(i)
~(a)

Lp(i)(e)~

Figure 4. Controlling the function of the corners of a triangle.

Now the set Ncαi

(
∂Bγ1

(
Lp(i) (ã)

))
∩ Ncαi

(
∂Bγ2

(
Lp(i) (ẽ)

))
consists of two disjoint connected components

which we denote C1 and C2, see Figure 4. It is quite straightforward to see that diam (Ci) ≤ cαi for i = 1, 2.
Let C1 be the component that contains Lp(i) (b). We will show v (b) ∈ C1. We argue by contradiction,

suppose v (b) ∈ C2. By Proposition 5.1, inequality (5.5) (recall s (i) = q (p (i))) we know

∫
B32(cp(i))

d
(
Dv (z) , SO (2)As(i)

)
dL2z

(5.34),(5.35)

≤ cαi.

So by Proposition 2.6 [9] we have that there exists R0 ∈ SO (2) such that∫
B32(cp(i))

∣∣Dv (z) −R0As(i)
∣∣ dL2z ≤ c log

(
α−1
i

)
αi. (5.74)

Now by Sobolev embedding theorem there exists matrix Mi such that

(∫
B32(cp(i))

|Dv (z) −Mi|3 dL2z

) 1
3

≤ c

(∫
B32(cp(i))

∣∣D2v (z)
∣∣2 dL2z

) 1
2

≤ c
√
αi. (5.75)

So

∣∣Mi −R0As(i)
∣∣ (5.74),(5.75)

≤ c
√
αi. (5.76)



ON THE REGULARISATION OF THE N-WELL PROBLEM 347

Let Λi : B32

(
cp(i)

)
→ R2 be such that DΛi = R0As(i) and Λi (0) = 0. Define wi (z) = Λi (z) +

−
∫
B32(cp(i)) v (x) − Λi (x) dL2x so

−
∫
B32(cp(i))

v (z) − wi (z) dL2z = 0 (5.77)

and

(∫
B32(cp(i))

|Dv (z) −Dwi|3 dL2z

) 1
3

≤
(∫

B32(cp(i))
|Dv (z) −Mi|3 dL2z

) 1
3

+ c
∣∣Mi −R0As(i)

∣∣
(5.76),(5.75)

≤ c
√
αi.

So by Morrey’s inequality Theorem 3, Section 4.5.3 [17], together with (5.77) this implies

‖v − wi‖L∞(B32(cp(i))) ≤ c
√
αi. (5.78)

Since (5.53), (5.65) ‖v − Lp(i)‖L1(B32(cp(i))) ≤ cαi we have ‖wi − Lp(i)‖L1(B32(cp(i))) ≤ c
√
αi. And since wi and

Lp(i) are both affine this implies
∣∣Dwi −DLp(i)

∣∣ ≤ c
√
αi and thus ‖wi − Lp(i)‖L∞(B32(cp(i))) ≤ c

√
αi. Putting

this together with (5.78) we have that

‖v − Lp(i)‖L∞(B32(cp(i))) ≤ c
√
αi. (5.79)

Recall we are arguing by contradiction, as we supposed v (b) ∈ C2, from (5.79) this implies that Lp(i) (b) ∈
Nc

√
α (C2) however as we also know Lp(i) (b) ∈ C1 and d (C1, C2) > c this is a contradiction.

Thus we have that

v (b) ∈ C1 ⊂ Bcαi

(
Lp(i) (b)

)
. (5.80)

Arguing in exactly the same way we can establish the same thing for the other corners of Ri, i.e. we can
show

v (a) ∈ Bcαi

(
Lp(i) (a)

)
, v (d) ∈ Bcαi

(
Lp(i) (d)

)
, v (e) ∈ Bcαi

(
Lp(i) (e)

)
. (5.81)

Recall li and li+N1 are the affine maps we obtained from interpolating v on the corners of triangle τi and
τi+N1 where τi ∪ τi+N1 = Ri. Recall also that DLp(i) = Rp(i)As(i) where Rp(i) ∈ SO (2), s (i) ∈ {1, 2, . . . , N}.
From (5.80) and (5.81) we have

∣∣Dliw1 −Rp(i)As(i)w1

∣∣ =
∣∣∣∣(v (a) − v (b)

|a− b|

)
−
(
Lp(i) (a− b)

|a− b|

)∣∣∣∣
≤ cαi.

In the same way we can show
∣∣Dliw2 −Rp(i)As(i)w2

∣∣ ≤ cαi which gives
∣∣Dli −Rp(i)As(i)

∣∣ ≤ cαi and hence
d (Dli,K) ≤ cαi. In exactly the same way we can show d (Dli+N ,K) ≤ cαi.
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Thus using (5.34), (5.35), (5.58), (5.59) and (5.60) for the last inequality

∑
i∈G1

d (Dli,K) + d (Dli+N1 ,K)
(5.65)

≤ c
∑
i∈G1

∫
∂Ri

P (z) +
∣∣D2v (z)

∣∣2 dH1z

+ c

∫
B32σ−2 (cp(i))

d (Dv (z) ,K) + P (z) +
∣∣D2v (z)

∣∣2 dL2z

≤ c

∫
L
−1
1 (σ1)∪L

−1
2 (σ2)

P (z) +
∣∣D2v (z)

∣∣2 dH1z

+ c
∑
i∈G0

∫
B32σ−2 (ci)

d (Dv (z) ,K) + P (z) +
∣∣D2v (z)

∣∣2 dL2z

≤ cε−1m1
ε .

Thus we have shown (5.64) in the case p = 1. This completes the proof of Step 2.

Step 3. We will show ∑
i∈{1,2,...,N1}

dp (Dli,K) + dp (Dli+N ,K) ≤ cε−1mp
ε . (5.82)

Proof of Step 3. Let i ∈ {1, 2, . . . , N1} \G1 and let {ai, bi, ci} denote the corners of τi where we have ordered
them so that ai−bi

|ai−bi| = w1 and ci−bi

|ci−bi| = w2. Let Dli denote the affine map we obtain from interpolation of v on
the corners of τi. Note

|Dliw1|p =
∣∣∣∣v (ai) − v (bi)

|ai − bi|

∣∣∣∣p ≤ c

∫ bi

ai

|Dv (z)|p dH1z ≤ c

∫
∂Ri

dp (Dv (z) ,K) dH1z + c.

In exactly the same way we have |Dliw2|p ≤ c
∫
∂Ri

dp (Dv (z) ,K) dH1z + c which gives

|Dli|p ≤ c

∫
∂Ri

dp (Dv (z) ,K) dH1z + c

in exactly the same way |Dli+N |p ≤ c
∫
∂Ri

dp (Dv (z) ,K) dH1z + c. As dp (Dli,K) ≤ c |Dli|p + c and
dp (Dli+N ,K) ≤ c |Dli+N |p + c thus∑

i∈{1,2,...,N1}\G1

dp (Dli,K) + dp (Dli+N ,K) ≤
∑

i∈{1,2,...,N1}\G1

c |Dli|p + c |Dli+N |p

+ cCard ({1, 2, . . . , N1} \G1)
(5.59),(5.63)

≤ cε−1mp
ε . (5.83)

Putting (5.83) together with (5.64) gives (5.82).

Step 4. Recall {R1,R2, . . . ,RN1} denote the connected components of A (see (5.61)) that form complete
squares, and {τ1, τ2, . . . , τ2N1} are triangles where τi ∪ τi+N1 = Ri. Let

V0 (i) :=
{
j ∈ {1, 2, . . . , 2N1} : H1 (τi ∩ τj) > ς

}
. (5.84)

For any j ∈ {1, 2, . . . , 2N1} let lj denote the affine map we get by interpolating v on the corners of τj . Define

Υ0 :=
{
i ∈ {1, 2, . . . , 2N1} : There exists j ∈ V0 (i) such that |Dli −Dlj | > ς−1

}
. (5.85)
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We will show ∑
i∈Υ0

∑
j∈V0(i)

|Dli −Dlj |2 ≤ cε−1mp
ε . (5.86)

Proof of Step 4. For any i ∈ {1, 2, . . . , 2N1} define

ρ (i) :=

{
i if i ∈ {1, 2, . . . , N1}
i−N1 if i ∈ {N1 + 1, . . . , 2N1} .

To start we will show that if i ∈ {1, 2, . . . , 2N1} and j ∈ V0 (i) then

|Dli −Dlj | ≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (5.87)

So see this we will argue as follows. Note Rρ(i) ∪ Rρ(j) forms a rectangle, thus τi ∪ τj must form a regular
parallelogram with two opposite sides that intersect ∂

(
Rρ(i) ∪Rρ(j)

)
, see Figure 5.

Let Ui denote the side of ∂τi that intersects ∂
(
Rρ(i) ∪Rρ(j)

)
and Uj denote the side of ∂τj that intersects

∂
(
Rρ(i) ∪Rρ(j)

)
. Let q ∈ {1, 2} be such that Ui and Uj are parallel to wq. Now by the fundamental theorem

of Calculus (and Holder’s inequality) there must exist M ∈M2×2 such that

sup
{
|Dv (z) −M | : z ∈ ∂

(
Rρ(i) ∪Rρ(j)

)}
≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (5.88)

Let
{
ωi1, ω

i
2, ω

i
3

}
denote the corners of τi and

{
ωj1, ω

j
2, ω

j
3

}
the corners of τj where we have chosen to label

these points such that ωi3 − ωi2 = ωj2 − ωj1 and ωi1 = ωj2, ω
i
2 = ωj3, see Figure 5, note

{
ωi3, ω

i
2

}
= ∂Ui and{

ωj2, ω
j
1

}
= ∂Uj , again see Figure 5. Recall we know triangles τi, τj are conjugate to each other and hence∣∣ωi3 − ωi2
∣∣ =

∣∣∣ωj2 − ωj1

∣∣∣. By definition

Dli

(
ωi3 − ωi2∣∣ωi3 − ωi2

∣∣
)

=
li
(
ωi3
)
− li

(
ωi2
)∣∣ωi3 − ωi2

∣∣ =
v
(
ωi3
)
− v

(
ωi2
)∣∣ωi3 − ωi2

∣∣ (5.89)

and in the same way

Dlj

⎛⎝ ωj2 − ωj1∣∣∣ωj2 − ωj1

∣∣∣
⎞⎠ =

v
(
ωj2

)
− v

(
ωj1

)
∣∣∣ωj2 − ωj1

∣∣∣ · (5.90)

Let lM denote an affine function with DlM = M∣∣v (ωi3)− v
(
ωi2
)
− lM

(
ωi3 − ωi2

)∣∣ ≤
∫
[ωi

3,ω
i
2]
|Dv (z) −M |dH1z

(5.88)

≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (5.91)

In the same way

∣∣∣v (ωj2)− v
(
ωj1

)
− lM

(
ωj2 − ωj1

)∣∣∣ ≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (5.92)
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i
1 2

j

Uj

ω  =ω

wq

ω3
i

Ui

ω  =ω3
j

2
i

Rρ( )i
iτ
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Figure 5. Two touching triangles.

Thus as ωj2 − ωj1 = ωi3 − ωi2 (see Fig. 5) we have from (5.91), (5.92)∣∣∣∣∣∣v
(
ωi3
)
− v

(
ωi2
)∣∣ωi3 − ωi2

∣∣ −
v
(
ωj2

)
− v

(
ωj1

)
∣∣∣ωj2 − ωj1

∣∣∣
∣∣∣∣∣∣ ≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

.

Which from (5.89) and (5.90) implies

∣∣∣∣∣Dli
(
ωi3 − ωi2∣∣ωi3 − ωi2

∣∣
)

−Dlj

(
ωi3 − ωi2∣∣ωi3 − ωi2

∣∣
)∣∣∣∣∣ ≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (5.93)

Recall again (see Fig. 5) the endpoints of τi ∩ τj are given by ωi1, ω
i
2. So

Dli
(
ωi1 − ωi2

)
= Dlj

(
ωi1 − ωi2

)
(5.94)

and as ωi
1−ωi

2

|ωi
1−ωi

2| ·
ωi

3−ωi
2

|ωi
3−ωi

2| = 0 so (5.87) follows from (5.93) and (5.94). Thus

2N1∑
i=1

∑
j∈V0(i)

|Dli −Dlj|2
(5.87)

≤
2N1∑
i=1

∑
j∈V0(i)

∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

≤ c

∫
L
−1
1 (σ1)∪L

−1
2 (σ2)

∣∣D2v (z)
∣∣2 dH1z

(5.59)

≤ cε−1mp
ε .
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Step 5. Recall R1,R2, . . . ,RN1 are the connected component of A (see (5.61)). Let D1,D2, . . . ,DN2 denote
the connected components of (

Ω
ε−

1
2
\L

−1
1 (σ1)

)
\
(
N1⋃
i=1

Ri

)
.

Note that each Di forms a polygon. As before for simplicity we will assume none of the sides of ∂Ω
ε−

1
2

is parallel
to w1. Let cΩ denote the length of the shortest side of ∂Ω, we can assume without loss of generality

√
ε < cΩ, so

we have that any Di will intersect at most two sides of ∂Ω
ε−

1
2
. Let E1 := {i ∈ {1, 2, . . . , N2} : ∂Di has 4 sides}.

So any i ∈ {1, 2, . . . , N2} \E1 is such that ∂Di has 5 or 3 sides.
Let E2 := {i ∈ {1, 2, . . . , N2} : ∂Di has 5 sides}. For any i ∈ E2 let ai, bi be the endpoints of ∂Ω

ε−
1
2
∩ Di

and let ci, di denote the corners of the polytope Di that do not intersect ∂Ω
ε−

1
2
.

Define D̃i = conv (ai, bi, ci, di) for i ∈ E2 and define D̃i = Di for i ∈ E1. Finally define Ti := Di\D̃i for
i ∈ E2, note each Ti forms a triangle.

For each i ∈ E1 ∪ E2 we can split each D̃i into two triangles τ1
i , τ2

i , each of which has a side parallel to w1

(i.e. D̃i = τ1
i ∪ τ2

i ). Let {τ2N1+1, τ2N1+2, . . . , τN3} denote the additional set of triangles that are formed by

{τqi : i ∈ E1 ∪ E2, q ∈ {1, 2}} , {Di : i ∈ {1, 2, . . . , N2} \ (E1 ∪E2)} and {Ti : i ∈ E2}

and let
Bd :=

{
i ∈ {1, 2, . . . , N3} : τi ⊂ N64σ−2

(
∂Ω

ε−
1
2

)}
. (5.95)

Firstly we will show that
N3 − 2N1 ≤ cε−

1
2 and Card (Bd) ≤ cε−

1
2 . (5.96)

Secondly let li be the affine interpolation of v on the corners of τi for i ∈ Bd we will also show∑
i∈Bd

|Dli|2 ≤ cε−1mp
ε . (5.97)

Proof of Step 5. To start with since
⋃
i∈Bd

τi ⊂ N64σ−2

(
∂Ω

ε−
1
2

)
and since L2 (τi) > c for any i ∈ Bd. So

Card (Bd) ≤ cL2
(
N64σ−2

(
∂Ω

ε−
1
2

))
≤ cε−

1
2

note also {2N1 + 1, . . . , N3} ⊂ Bd which gives (5.96).
For any i ∈ E1 ∪ E2 we will order the triangles τ1

i , τ2
i so that two of the corners of τ2

i intersects ∂Ω
ε−

1
2

and
two of the corners of τ1

i intersects
⋃
i∈{1,2,...,2N1} Ri.

So let {ai, bi, ci} denote the corners of τ1
i we can order them so that ai−bi

|ai−bi| = w1 and ci−bi

|ci−bi| = w2. So
[ai, bi] ⊂ L

−1
1 (σ1), [ci, bi] ⊂ L

−1
2 (σ2). So by definition of L

−1
1 (σ1) we have that

[ai, bi] ⊂ (R+w1 + (t+ k1)w2) ∪ (R−w1 + (t+ k1)w2)

for some k1 ∈
{
Q1

1, Q
1
1 + 1, . . . , Q1

2 − 1
}
, σ1 ∈ P+

1 ∩ P−
1 . By definition (5.43) and by (5.42) we have that

[ai, bi] ∩ A0 �= ∅. So there exists xi ∈ [ai, bi] such that d (Dv (xi) ,K) ≤ 1. Thus

sup {|Dv (z)| : z ∈ [ai, bi] ∪ [bi.ci]} ≤ c+
∫

[ai,bi]∪[bi,ci]

∣∣D2v (z)
∣∣ dH1z. (5.98)
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Let L1
i be the affine function we obtain from the interpolation of v on the corners of τ1

i . We have∣∣DL1
iw1

∣∣ ≤ c |v (ai) − v (bi)|

≤ c

∫
[ai,bi]

|Dv (z)| dH1z

(5.98)

≤ c+ c

∫
[ai,bi]∪[bi,ci]

∣∣D2v (z)
∣∣dH1z.

And in exactly the same way we have

∣∣DL1
iw2

∣∣ =
∣∣∣∣L1

i (ci) − L1
i (bi)

|ci − bi|

∣∣∣∣ ≤ +c
∫

[ai,bi]∪[bi,ci]

∣∣D2v (z)
∣∣ dH1z.

Thus ∣∣DL1
i

∣∣2 = c
(∣∣DL1

iw1

∣∣2 +
∣∣DL1

iw2

∣∣2)
≤ c+ c

(∫
[ai,bi]∪[bi,ci]

∣∣D2v (z)
∣∣dH1z

)2

≤ c+ c

∫
∂τ1

i ∩(L
−1
1 (σ1)∪L

−1
2 (σ2))

∣∣D2v (z)
∣∣2 dH1z. (5.99)

Now let us consider the triangle τ2
i . Let {ai, bi, ci} denote the corners of τ2

i where we have ordered ai, bi, ci
such that ai−bi

|ai−bi| = w1 and bi, ci ∈ ∂Ω
ε−

1
2
. Let L2

i denote the affine map we get from interpolation of v on the
corners of τ2

i . Arguing exactly as we have before we can show that

∣∣DL2
iw1

∣∣2 ≤ c+ c

∫
∂τ2

i ∩(L
−1
1 (σ1)∪(L−1

2 (σ2))

∣∣D2v (z)
∣∣2 dH1z.

Now
∣∣∣DL2

i

(
bi−ci

|bi−ci|
)∣∣∣2 ≤ c |lF (bi) − lF (ci)|2 ≤ c. Since w1 and bi−ci

|bi−ci| are not parallel this implies

∣∣DL2
i

∣∣2 ≤ c+ c

∫
∂τ2

i ∩(L
−1
1 (σ1)∪L

−1
2 (σ2))

∣∣D2v (z)
∣∣2 dH1z. (5.100)

Now for any i ∈ {1, 2, . . . , N2} \ (E1 ∪ E2), Di forms a triangle with the corners in ∂Ω
ε−

1
2
, let Ii be the affine

map we obtain by interpolation of v on the corners of Di, then Ii has the property that

|DIi| ≤ c for any i ∈ {1, 2, . . . , N2} \ (E1 ∪E2) . (5.101)

For any i ∈ E2 let Ji be the affine function we get from interpolating v on Ti, since again the corners of τi
belong to ∂Ω

ε−
1
2

we have
|DJi| ≤ c for any i ∈ E2. (5.102)

Let li be the affine map we obtain from interpolating v on τi for i ∈ Bd. For any i ∈ Bd\ {2N1 + 1, . . . , N3}
let {ai, bi, ci} denote the corners of τi where ai−bi

|ai−bi| = w1 and ci−bi

|ci−bi| = w2. Exactly as in the case where we
considered triangle τ1

i for i ∈ E1 ∪ E2 we must have that [ai, bi] ⊂ L
−1
1 (σ1) and [ci, bi] ⊂ L

−1
2 (σ2). We will

assume ai, bi are ordered so that d
(
ai, ∂Ω

ε−
1
2

)
< d

(
bi, ∂Ω

ε−
1
2

)
. Let di ∈ ∂Ω

ε−
1
2

be such that [ai, bi] ⊂ [di, bi].
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By definition of Bd we know |di − bi| < 32σ−2. Let Γi := [di, bi] ∪ [bi, ci], by arguing exactly the same way as
we did to show (5.99) we have

|Dli|2 ≤ c+
∫

Γi

∣∣D2v (z)
∣∣2 dH1z. (5.103)

So let li be the affine map we obtain from interpolating v on τi for i ∈ Bd we have by (5.99), (5.100),
(5.101), (5.102) and (5.103)

∑
i∈Bd

|Dli|2
(5.96)

≤ cε−
1
2 + c

∫
L
−1
1 (σ1)∪L

−1
2 (σ2)

∣∣D2v (z)
∣∣2 dH1z

(4.2),(5.59)

≤ cε−1mp
ε . (5.104)

Step 6. Let w ∈ F
√
ε,ς

F be defined by w (z) = li (z) for z ∈ τi, i = 1, 2, . . . , N3. We will show that∑
i∈J(w)

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 ≤ cε−1mp
ε . (5.105)

Proof of Step 6. Let
V1 (i) =

{
j ∈ {1, 2, . . . , N3} : H1 (τi ∩ τj) > 0

}
. (5.106)

Let
I0 := {i ∈ {1, 2, . . . , N3} : τi ⊂ Ω\N32σ−2 (∂Ω)} . (5.107)

Note that for any i ∈ {1, 2, . . . , N3} \I0, V1 (i) ⊂ Bd. So

∑
J(w)\I0

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 ≤
∑

i∈J(w)\I0

⎛⎝ ∑
j∈V1(i)

|Dli −Dlj |2 + |Dli − F |2
⎞⎠

≤ c
∑
i∈Bd

|Dli|2 + cCard (Bd)

(5.96),(5.97),(4.2)

≤ cε−1mp
ε . (5.108)

Also note that if i ∈ I0 then V1 (i) ⊂ {1, 2, . . . , 2N1} and V1 (i) = V0 (i) (see definition (5.84)) in addition we
know ∂τi ∩ ∂Ω = ∅ so Ni (w) = V0 (i) and J (w) ∩ I0 = Υ0 (see (5.85)). So∑

i∈J(w)∩I0

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 =
∑
i∈Υ0

∑
j∈V0(i)

|Dli −Dlj |2

(5.86)

≤ cε−1mp
ε . (5.109)

Now ∑
i∈J(w)

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 =
∑

i∈J(w)∩I0

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2
+

∑
i∈J(w)\I0

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2
(5.108),(5.109)

≤ cε−1mp
ε .
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Step 7. We will show
N3∑
j=1

dp
(
Dw�τi

,K
)
≤ cε−1mp

ε . (5.110)

Proof of Step 7. Since for any j ∈ {2N1 + 1, . . . , N3} we have

dp
(
Dw�τj

,K
)
≤ c+

∣∣Dw�τj

∣∣p ≤ c+
∣∣Dw�τj

∣∣2 (5.111)

so using the fact {2N1 + 1, . . . , N3} ⊂ Bd for the last inequality

N3∑
j=1

dp
(
Dw�τi

,K
) (5.82),(5.111)

≤ cε−1mp
ε + c (N3 − 2N1 + 1) +

N3∑
j=2N1+1

∣∣Dw�τj

∣∣2
(4.2),(5.96),(5.97)

≤ cε−1mp
ε .

Step 8. We will show that (for small enough ς) there exists a function ũ ∈ Dς,h
F such that∫

Ω

dp (Dũ (z) ,K) dL2z ≤ cmp
ε . (5.112)

Proof of Step 8. Recall definition of d0, see (4.3). Let

Gg :=
{
i ∈ {1, 2, . . . , N3} : d

(
Dw�τi

,K
)
≤ d0

}
.

Recall V1 (i) is defined by (5.106). Let V (i) :=
⋃
k∈V1(i) V1 (k) and (recall the definition of I0, see (5.107)) let

Ggi := {i ∈ I0 : V (i) ⊂ Gg}. Note Card (V (i)) ≤ 12. Let A0 :=
⋃
i∈I0\Ggi

τi, so

L2 (A0) ≥ cCard (I0\Ggi) . (5.113)

Let Oi :=
⋃
j∈V(i) τj , to by applying the 5r Covering Theorem (see Thm. 2.1 [25]) we can find a subset

{i1, i2, . . . , iP1} ⊂ I0\Ggi such that

A0 ⊂
P1⋃
k=1

N60 (Oik) (5.114)

and
{
Oi1 ,Oi2 , . . . ,OiP1

}
are disjoint. Note (5.113), (5.114) imply P1 ≥ cCard (I0\Ggi) and since for every

k ∈ {1, 2, . . . , P1} since V (ik) �⊂ Ggi (by definition of Ggi) we can find qk ∈ {1, 2, . . . , N3} such that τqk
⊂ Oik

and d
(
Dw�τqk

,K
)
> d0. We also know that

{
τq1 , τq2 , . . . , τqP1

}
are disjoint. So

dp0P1 ≤
P1∑
k=1

dp
(
Dw�τqk

,K
) (5.110)

≤ cε−1mp
ε .

Thus Card (I0\Ggi) ≤ cε−1mp
ε

(5.33)

≤ c C0ε
−1. Now Card (I0) ≥ cε−1 so

Card (I0 ∩ Ggi) ≥ cε−1 − c C0ε
−1.

Assuming constant C0 at the start of Proposition 5.2 was chosen small enough we have

Card (I0 ∩ Ggi) ≥ cε−1. (5.115)
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Note that again by applying the 5r covering Theorem we can find subset {j1, j2, . . . , jP2} ⊂ I0 ∩ Ggi such that

⋃
i∈I0∩Ggi

τi ⊂
P2⋃
k=1

N60 (Ojk) (5.116)

and
{
Oj1 ,Oj2 , . . . ,OjP2

}
are disjoint. Inequalities (5.115) and (5.116) imply that

P2 ≥ cε−1. (5.117)

We denote the corners of τi by
{
ω1
i , ω

2
i , ω

3
i

}
for any i = 1, 2, . . . , N3. Let q ∈ {1, 2, . . . , P2} and pick cq ∈{

ω1
jq , ω

2
jq , ω

3
jq

}
. Let W (jq) ⊂ V (jq) be defined by W (jq) := {k ∈ V (jq) : τk ∩ cq �= ∅}. Note that for any k ∈

W (jq), since V (jq) ⊂ Gg we have

|w (ωak) − w (cq)| ≤ 4σ−1 for any a ∈ {1, 2, 3} . (5.118)

For each k ∈ W (jq) define the affine map l̃k : τk → R2 by

l̃k (b) =

{
w (b) for b ∈

{
ω1
k, ω

2
k, ω

3
k

}
\ {cq}

w (cq) + 30σ−1e1 for b = cq.

For simplicity we order the corners
{
ω1
k, ω

2
k, ω

3
k

}
so that ω1

k = cq. Note∣∣∣∣Dl̃k ( ω1
k − ω2

k

|ω1
k − ω2

k|

)∣∣∣∣ =
∣∣ω1
k − ω2

k

∣∣−1 ∣∣w (ω1
k

)
− w

(
ω2
k

)
+ 30σ−1e1

∣∣
(5.118)

≥ 10σ−1.

In exactly the same way we have
∣∣∣∣Dl̃k ( ω1

k−ω3
k

|ω1
k−ω3

k|

)∣∣∣∣ ≥ 10σ−1 which implies

∣∣∣Dl̃k∣∣∣ ≥ 10σ−1. (5.119)

In a very similar way we can show
∣∣∣∣Dl̃k ( ω1

k−ω2
k

|ω1
k−ω2

k|

)∣∣∣∣ ≤ 60σ−1,
∣∣∣∣Dl̃k ( ω1

k−ω3
k

|ω1
k−ω3

k|

)∣∣∣∣ ≤ 60σ−1 and thus

∣∣∣Dl̃k∣∣∣ ≤ 60σ−1. (5.120)

From (5.119) we know ∑
k∈W(jq)

dp
(
Dl̃k,K

)
L2 (τk) ≥ dp

(
Dl̃jq ,K

)
L2
(
τjq
)

(5.119)

≥ 9σ−pL2
(
τjq
)

(5.121)

and ∑
k∈W(jq)

dp
(
Dl̃k,K

)
L2 (τk)

(5.120)

≤ 1202σ−2 × 100ς−2. (5.122)
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Note recall from (5.117) P2 ≥ cε−1
(5.33)
>

mp
ε

ε so we can define piecewise affine function ṽ : Ω
ε−

1
2
→ R2 by

ṽ (z) =

⎧⎪⎪⎨⎪⎪⎩
w (z) for z ∈ τi, i ∈ {1, 2, . . . , N3} \

(⋃[ε−1mp
ε ]

q=1 W (jq)
)

l̃i (z) for z ∈ τi, i ∈
(⋃[ε−1mp

ε ]
q=1 W (jq)

)
.

So ∫
Ω

ε
− 1

2

dp (Dṽ (z) ,K) dL2z =
∑

i∈{1,2,...,N3}\
(⋃ [ε−1m

p
ε ]

q=1 W(jq)

) dp
(
Dw�τi

,K
)
L2 (τi)

+
∑

i∈
(⋃ [ε−1m

p
ε ]

q=1 W(jq)

) dp
(
Dl̃i,K

)
L2 (τi)

(5.110),(5.122)

≤ cε−1mp
ε + c

[
ε−1mp

ε

]
≤ cε−1mp

ε (5.123)

and

∫
Ω

ε
− 1

2

dp (Dṽ (z) ,K) dL2z ≥
[ε−1mp

ε ]∑
q=1

∫
Ojq

dp (Dṽ (z) ,K) dL2z

(5.121)

≥ c
[
ε−1mp

ε

]
. (5.124)

Let Y :=
{
i ∈ {1, 2, . . . , N3} : V1 (i) ∩

(⋃[ε−1mp
ε ]

q=1 W (jq)
)

= ∅
}

. Note

Card ({1, 2, . . . , N3} \Y) ≤ cε−1mp
ε (5.125)

and note ∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 ≤
∑

M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 + c for any i ∈ J (ṽ) \Y (5.126)

so as J (ṽ) ∩ Y = J (w) ∩ Y and Dṽ�τj
= Dw�τj

for every j ∈
⋃
i∈J(ṽ)∩Y

V1 (i) we have∑
i∈J(ṽ)

∑
Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 =
∑

i∈J(w)∩Y

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2
+

∑
i∈J(ṽ)\Y

∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2
(5.105),(5.106)

≤ cε−1mp
ε + cCard (J (ṽ) \Y)

(5.125)

≤ cε−1mp
ε . (5.127)

Thus ∫
Ω

ε
− 1

2

dp (Dṽ (z) ,K) dL2z
(5.124),(5.127)

≥ c
∑
i∈J(ṽ)

∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 . (5.128)
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Define ũ (z) = ṽ (
√
εz) ε−

1
2 . We have that∫

Ω

dp (Dũ (z) ,K) dL2z = ε

∫
Ω

ε
− 1

2

dp (Dṽ (z) ,K) dL2z (5.129)

and thus ∫
Ω

dp (Dũ (z) ,K) dL2z
(5.128)

≥ cε
∑
i∈J(ṽ)

∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 . (5.130)

Now (for small enough ς) {
√
ετi} forms a (h, ς) triangulation of Ω and it is easy to see that∑

i∈J(ũ)

∑
M∈Ni(ũ)

∣∣Dũ�√ετi
−M

∣∣2 =
∑
i∈J(ṽ)

∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 .
Thus (again assuming ς is small enough) we have from (5.130)

∑
i∈J(ũ)

∑
M∈Ni(ũ)

ε
∣∣Dũ�√ετi

−M
∣∣2 ≤ ς−1

2

∫
Ω

dp (Dũ (z) ,K) dL2z. (5.131)

Thus we have that u ∈ Dς,
√
ε

F . We also know from (5.129) and (5.123) that ũ satisfies (5.112). �

Proposition 5.3. Let w1 ∈ S1 be such that w2 ∈ w⊥
1 we have that w1, w2 and w1−w2

|w1−w2| are not in the set of
rank-1 connections between SO (2)Ai and SO (2)Aj for any i �= j. Let p ∈ [1, 2]. Let F �∈ K, given function
u ∈ Dς,

√
ε

F we define w : Ω2 → R2 by

w̃ (z) =

{
u (z) if z ∈ Ω
lF (z) if z ∈ Ω2\Ω.

(5.132)

We will show there exists a small positive constant η = η (w1, A1, . . . , AN ) such that for w̃ = w ∗ ρη√ε and

w (z) = w̃

(
z

1 + η
√
ε

)(
1 + η

√
ε
)

(5.133)

then w ∈ AF and w satisfies∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z ≤ c

∫
Ω

dp (Du (z) ,K) dL2z. (5.134)

Proof. Firstly note u is piecewise affine on a triangulation which we will label {τ1, τ2, . . . , τN3}. Given triangle τi
we define the neighbouring gradients Ni (u) by (1.3) and we define the jump triangles Ji (u) by (1.4). Now since
u ∈ Dς,

√
ε

F we have ∑
i∈J(u)

∑
M∈Ni(u)

∣∣Du�τi
−M

∣∣2 ≤ ς−1ε−1

∫
Ω

dp (Du (z) ,K) dL2z. (5.135)

Let v (z) = u (
√
εz) ε−

1
2 . Let

α0 =
∫

Ω
ε
− 1

2

dp (Dv (z) ,K) dL2z. (5.136)

Let V (j) :=
{
k : H1 (τk ∩ τj) > 0

}
. Define V0 (i) :=

⋃
j∈V (i) V (j) and V1 (i) :=

⋃
j∈V0(i) V (j).



358 A. LORENT

Let G0 :=
{
i : d

(
Dv�τi

,K
)
≤ η

}
. Let A1,A2, . . . ,AN1 denote the connected components of

⋃
i∈G0

τi. Let

Gk := {i : τi ⊂ Ak} and define Ãk :=
⋃

{i:V1(i)⊂Gk}
τi. (5.137)

Define
E (z) = {i : τi ∩Bη (z) �= ∅} for any z ∈ Q

ε−
1
2 +η

(0) . (5.138)

Note Card (E (z)) ≤ c and note

E (z) ⊂ V1 (i) for any z such that B 3η
2

(z) ∩ τi �= ∅. (5.139)

Step 1. Given k ∈ {1, 2, . . . , N1} we will show there exists k0 ∈ {1, 2, . . . , N} such that

d
(
Dv�τi

, SO (2)Ak0
)

= d
(
Dv�τi

,K
)

for every i ∈ Gk. (5.140)

Proof of Step 1. Suppose this is not true. So we can find k0 ∈ {1, 2, . . . , N1} and some N0 ∈ {2, 3, . . . , N} for
which we have disjoint subsets Ω1,Ω2, . . . ,ΩN0 ⊂ Gk0 with

⋃N0
i=1 Ωi = Gk0 and for each k ∈ {1, 2, . . . , N0} there

exists pk ∈ {1, 2, . . . , N} such that

d
(
Dv�τi

, SO (2)Apk

)
= d

(
Dv�τi

,K
)

for all i ∈ Ωk for k = 1, 2, . . . , N0.

Since
⋃
i∈Gk0

τi = Ak0 and Ak0 is connected we must be able to find i1 ∈ Ω1 and i2 ∈ Ω2 such that

H1 (∂τi1 ∩ ∂τi2) ≥ ς. Let a, b be the endpoints of ∂τi1∩∂τi2 , since (by definition of G0) d
(
Dv�τi1

, SO (2)Ap1
)
≤

η, d
(
Dv�τi2

, SO (2)Ap2
)
≤ η and Dv�τi1

(a− b) = Dv�τi2
(a− b) we must have that for some R1, R2 ∈ SO (2),

|R1Ap1 (a− b) −R2Ap2 (a− b)| ≤ 3η (5.141)

since u ∈ Dς,
√
ε

F the edges of the triangles are parallel to w1, w2 and w1−w2
|w1−w2| . Thus (assuming a, b are or-

dered correctly) a−b
|a−b| ∈

{
w1, w2,

w1−w2
|w1−w2|

}
. Recall we chose w1, w2 so that

{
w1, w2,

w1−w2
|w1−w2|

}
are not in the set

of rank-1 connections between SO (2)Ap1 and SO (2)Ap2 . So
∣∣∣Ap1 ( a−b

|a−b|
)∣∣∣ �= ∣∣∣Ap2 ( a−b

|a−b|
)∣∣∣, we can assume

without loss of generality there is a constant c4 = c4 (w1, w2) > 1 such that
∣∣∣Ap1 ( a−b

|a−b|
)∣∣∣ > c4

∣∣∣Ap2 ( a−b
|a−b|

)∣∣∣.
Assuming we chose η small enough this contradicts (5.141) this completes the proof of Step 1.

Step 2. Given k0 ∈ {1, 2, . . . , N1} and x ∈ Ãk0 we will show that

max
{∣∣Dv�τi

−Dv�τl

∣∣ : i, l ∈ E (x)
}
≤ cmax

{
d
(
Dv�τj

,K
)

: j ∈ E (x)
}
. (5.142)

Proof Step 2. Firstly by change of variables we can assume k0 is such that Dv�τi
∈ Nη (SO (2)) for any i ∈ G0.

We introduce some notation, let j ∈ {1, 2, . . . , N3} for any p ∈ V (j) define

a (j, p) := max
{
d
(
Dv�τj

, SO (2)
)
, d
(
Dv�τp

, SO (2)
)}

so there exists Rj ∈ SO (2), Rp ∈ SO (2) such that∣∣Dv�τp
−Rp

∣∣ ≤ 2a (j, p) ,
∣∣Dv�τj

−Rj
∣∣ ≤ 2a (j, p) . (5.143)



ON THE REGULARISATION OF THE N-WELL PROBLEM 359

τ i

τ l

x0

η

Figure 6. A typical ball in the triangulation.

Since H1 (τp ∩ τj) ≥ ς, let a, b denote the endpoints of τp ∩ τj , so as Dv�τp
(a− b) = Dv�τj

(a− b) we have
|Rp (a− b) −Rj (a− b)| ≤ 4a (j, p) which implies |Rp −Rj | ≤ 4ς−1a (j, p). Putting this together with (5.143)
gives ∣∣Dv�τp

−Dv�τj

∣∣ ≤ ca (j, p) . (5.144)

Pick i, l ∈ E (x), now (see Fig. 6) we must be able to find7 i1, i2, . . . , iM1 ∈ E (x0) with the following properties

(1) i0 = i, iM1 = l;
(2) ir+1 ∈ V (ir) for r = 0, 1, . . . ,M1 − 1;
(3) ir1 �= ir2 for r1 �= r2;
(4) E (x0) ⊂

⋃M1
r=0 V (ir).

We have

∣∣∣Dv�τi0
−Dv�τiM1

∣∣∣ (5.144)

≤
M1−1∑
r=0

ca (ir, ir+1)

≤ cM1 max
{
d
(
Dv�τr

, SO (2)
)

: r ∈ E (x)
}
.

Since from property (3) we know M1 ≤ cCard (E (x0)) ≤ c this gives (5.142).

Step 3. Let ṽ := v ∗ ρη we will show

N1∑
k=1

∫
Ãk

dp (Dṽ (z) ,K) dL2z ≤ cα0. (5.145)

7Since Bη (x) is open and τi ∩ Bη (x) �= ∅, τl ∩ Bη (x) �= ∅ we have H1 (∂Bη (x) ∩ τi) > 0 and H1 (∂Bη (x) ∩ τl) > 0. Pick
point s0 ∈ τi ∩ ∂Bη (x) and a point sM1 ∈ τl ∩ ∂Bη (x), since all but finitely many points on ∂Bη (x) are contained in

⋃
j τj we

can go clockwise from s1 to sM1 , the first triangle τj we encounter after τi with H1 (τj ∩ ∂Bη (x)) > 0 will have the property that
τj ∩ Bη (x) �= ∅ (and hence j ∈ E (x0)) and j ∈ V1 (i) so define i1 = j. We can then define i2 to be the first τl we encounter going

clockwise on ∂Bη (x) after τi1 ∩ ∂Bη (x), continuing in this way gives us the sequence i1, i2, . . . , iM1 with the properties we want.
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Proof of Step 3. Let D := {i : ∂τi ∩ ∂Ω �= ∅}. We define p : Q
ε−

1
2 +η

(0) → {1, 2, . . . , N3} by

p (z) :=

{
min {i : z ∈ τi} for z ∈ Ω

ε−
1
2

min
{
i ∈ D : B 3η

2
(z) ∩ τi �= ∅

}
for z ∈ Ω

ε−
1
2 +η

\Ω
ε−

1
2
.

(5.146)

Fix k0 ∈ {1, 2, . . . , N1}, assume Ãk0 �= ∅. Let y ∈ Ãk0 . Pick i0 ∈ E (y) and let R0 ∈ K be such that
d
(
Dv�τi0

,K
)

=
∣∣∣Dv�τi0

−R0

∣∣∣. Now

|Dṽ (y) −R0| =

∣∣∣∣∣∣
∑

j∈E(y)

∫
τj

(
Dv�τj

(x) −R0

)
ρη (x− y) dL2x

∣∣∣∣∣∣
≤ c

∑
j∈E(y)

∣∣∣Dv�τj
−Dv�τi0

∣∣∣+ ∣∣∣Dv�τi0
−R0

∣∣∣
(5.142)

≤ cmax
{
d
(
Dv�τj

,K
)

: j ∈ E (y)
}
. (5.147)

Define c (i) ∈ V1 (i) to be such that

d
(
Dv�τc(i)

,K
)

= max
{
d
(
Dv�τj

,K
)

: j ∈ V1 (i)
}
. (5.148)

Note for any z ∈ Q
ε−

1
2 +η

(0) from (5.139) we know (recall definition (5.138)) that E (y) ⊂ V1 (p (y)), so

dp (Dṽ (y) ,K)
(5.147),(5.148)

≤ c dp
(
Dv�τc(p(y))

,K
)
. (5.149)

Now ∫
Ãk0

dp (Dṽ (z) ,K) dL2z ≤
∑

{i:V1(i)⊂Gk0}
L2 (τi) sup {dp (Dṽ (z) ,K) : z ∈ τi}

(5.149)

≤
∑

{i:V1(i)⊂Gk0}
c dp

(
Dvτc(i) ,K

)
.

Note max
{
Card

(
c−1 (i)

)
: i ∈ Gk0

}
≤ c and so

∫
Ãk0

dp (Dṽ (z) ,K) dL2z ≤ c
∑
i∈Gk0

dp
(
Dv�τi

,K
)
. Thus sum-

ming over k0 = 1, 2, . . . , N1 gives (5.145).

Step 4. We will show that ∫
Q

ε
− 1

2 +η
(0)

dp (Dṽ (z) ,K) dL2z ≤ cα0 + cηε−
1
2 . (5.150)

Proof of Step 4. Let D := {i : ∂τi ∩ ∂Ω �= ∅}. Note (recalling definition (5.146), (5.138))

p (z) ∈ E (z) for any z ∈ Ω
ε−

1
2

(5.151)
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so

|Dṽ (z)| =

∣∣∣∣∣∣F
∫
Bη(z)\Ω

ε
− 1

2

ρη (a− z) dL2a+
∑
i∈E(z)

Dv�τi

∫
τi

ρη (a− z) dL2a

∣∣∣∣∣∣
(5.139)

≤ c+ c
∑

i∈V1(p(z))

d
(
Dv�τi

,K
)
. (5.152)

Thus

dp (Dṽ (z) ,K)
(5.152)

≤

⎛⎝c+ c
∑

i∈V1(p(z))

d
(
Dv�τi

,K
)⎞⎠p

+ c

≤ c+ c
∑

i∈V1(p(z))

dp
(
Dv�τi

,K
)
. (5.153)

Let B := {i : V1 (i) �⊂ G0}. Note that if i is such that V1 (i) ⊂ G0 then V1 (i) ⊂ Gk for some k ∈ {1, 2, . . . , N1}
(and recall definition (5.137)) and hence τi ⊂ Ãk, thus

⋃
i∈B

τi = Ω
ε−

1
2
\
(
N1⋃
k=1

Ãk

)
. (5.154)

So

∫
⋃

i∈B
τi

dp (Dṽ (z) ,K) dL2z
(5.153)

≤
∑
i∈B

L2 (τi)

⎛⎝c+ c
∑

j∈V1(i)

dp
(
Dv�τj

,K
)⎞⎠

(5.136)

≤ cα0 + cCard (B) . (5.155)

By an easy application of the 5r Covering Theorem (Thm. 2.1. [25]) we know

Card (B) ≤ c ({1, 2, . . . , N3} \G0) ≤ cα0. (5.156)

Now

τp(z) ⊂ Ω
ε−

1
2
\Ω

ε−
1
2 −10ς−1

for any z ∈ Ω
ε−

1
2 +η

\Ω
ε−

1
2
. (5.157)

Let {l1, l2, . . . , lX1} be an ordering of the set
{
p (z) : z ∈ Ω

ε−
1
2 +η

\Ω
ε−

1
2

}
we have that X1 ≤ cε−

1
2 . And thus

∫
Ω

ε
− 1

2 +η
\Ω

ε
− 1

2

dp (Dṽ (z) ,K) dL2z
(5.153)

≤ c

X1∑
k=1

L2
(
p−1 (lk) \Ω

ε−
1
2

)
+

X1∑
k=1

∑
i∈V1(lk)

c dp
(
Dv�τi

,K
)

(5.136)

≤ cηε−
1
2 + cα0. (5.158)
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So putting things together, by (5.145), (5.154), (5.155), (5.156) and (5.158) we have∫
Ω

ε
− 1

2 +η

dp (Dṽ (z) ,K) dL2z =
∫
⋃

i∈B
τi

dp (Dṽ (z) ,K) dL2z (5.159)

+
∫
⋃N1

k Ãk

dp (Dṽ (z) ,K) dL2z

+
∫

Ω
ε
− 1

2 +η
(0)\Ω

ε
− 1

2

dp (Dṽ (z) ,K) dL2z

≤ cα0 + cηε−
1
2 ,

which completes the proof of (5.150).

Step 5. We will show
N1∑
k=1

∫
Ãk

∣∣D2ṽ (y)
∣∣2 dL2y ≤ cα0. (5.160)

Proof of Step 5. Let y ∈
⋃N1
k=1 Ãk, for each j ∈ E (y) define Aj :=

∫
τj
Dρη (x− y) dL2x, note

∑
j∈E(y)Aj = 0.

So D2ṽ (y) =
∑
j∈E(y)

∫
τj
−Dv�τj

⊗ Dρη (x− y) dL2x =
∑

j∈E(y) −Dv�τj
⊗ Aj . So we have D2ṽ (y) =∑

j∈E(y) −
(
Dv�τj

−Dv�τp(y)

)
⊗Aj and so

∣∣D2ṽ (y)
∣∣2 ≤ c

∑
j∈E(y)

∣∣∣Dv�τj
−Dv�τp(y)

∣∣∣2
(5.142),(5.151)

≤ c
(
max

{
d
(
Dv�τl

,K
)

: l ∈ E (y)
})2

. (5.161)

Thus (recall the definition c (i), (5.148)) we have∫
Ãk

∣∣D2ṽ (y)
∣∣2 dL2y

(5.139),(5.161)

≤
∑

{i:V1(i)⊂Gk}
c
(
max

{
d
(
Dv�τl

,K
)

: l ∈ V1 (i)
})2

=
∑

{i:V1(i)⊂Gk}
c d2

(
Dv�τc(i)

,K
)

≤ c
∑
i∈Gk

dp
(
Dv�τi

,K
)
.

Thus summing over k = 1, 2, . . . , N1 gives (5.160).

Step 6. We will show ∫
Ω

ε
− 1

2 +η
\
(⋃N1

k=1 Ãk

) ∣∣D2ṽ (z)
∣∣2 dL2z ≤ cα0 + cηε−

1
2 . (5.162)

Proof of Step 6. Now let y ∈ Ω
ε−

1
2 +η

. Note that ifBη (y) �⊂ Ω
ε−

1
2

then define Ay :=
∫
Bη(y)\Ω

ε
− 1

2

Dρη (x− y) dL2x

otherwise define Ay = 0.
As in Step 5 for each j ∈ E (y) define Aj =

∫
τj
Dρη (x− y) dL2x. So we have

∑
j∈E(y)Aj +Ay = 0. So as in

Step 5 −D2ṽ (y) = F ⊗Ay +
∑
j∈E(y)Dv�τj

⊗Aj =
(
F −Dv�τp(y)

)
⊗Ay +

∑
j∈E(y)

(
Dv�τj

−Dv�τp(y)

)
⊗Aj .
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Thus for any y ∈ Q
ε−

1
2 +η

(0)

∣∣D2ṽ (y)
∣∣2 ≤ c

∣∣∣F −Dv�τp(y)

∣∣∣2 |Ay |2 + c
∑

j∈E(y)

∣∣∣Dv�τj
−Dv�τp(y)

∣∣∣2
(5.139)

≤ c
∣∣∣F −Dv�τp(y)

∣∣∣2 |Ay |2 + c
∑

j∈V1(p(y))

∣∣∣Dv�τj
−Dv�τp(y)

∣∣∣2 . (5.163)

Now as in Step 1 for any i, j ∈ V1 (p (y)) we can find a finite sequence l1, l2, . . . , lNj ∈ V1 (p (y)) such that
l1 = i, la+1 ∈ V (la) for a = 1, 2, . . . , Nj − 1 and lNj = j so

∣∣Dv�τi
−Dv�τj

∣∣2 ≤ c

Nj−1∑
a=1

∣∣∣Dv�τla+1
−Dv�τla

∣∣∣2
≤ c

∑
l∈{l1,l2,...,lNj−1}

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2
≤ c

∑
l∈V1(p(y))

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 .
So from (5.163) for any y ∈ Q

ε−
1
2 +η

(0) we have

∣∣D2ṽ (y)
∣∣2 ≤ c

∣∣∣F −Dv�τp(y)

∣∣∣2 |Ay|2 + c
∑

l∈V1(p(y))

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2
≤ c

∣∣∣F −Dv�τp(y)

∣∣∣2 |Ay|2 + c
∑

l∈V1(p(y))∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 + c. (5.164)

Recall D =
{
i : ∂τi ∩ ∂Ω

ε−
1
2
�= ∅
}
. Note if y ∈

⋃
i�∈D

τi then Bη (y) ⊂ Ω
ε−

1
2

and so Ay = 0. For i ∈ B let

yi ∈ τi be such that
∣∣D2ṽ (yi)

∣∣ = sup
{∣∣D2ṽ (y)

∣∣ : y ∈ τi
}
, thus∫

Ω
ε
− 1

2
\
(⋃N1

k=1 Ãk

) ∣∣D2ṽ (y)
∣∣2 dL2y

(5.154)

≤
∑
i∈B

L2 (τi)
∣∣D2ṽ (yi)

∣∣2
(5.164)

≤ c
∑
i∈B\D

∑
l∈V1(i)∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2
+ c

∑
i∈B∩D

⎛⎝∣∣F−Dv�τi

∣∣2 |Ayi |
2+

∑
l∈V1(i)∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2⎞⎠+cCard (B)

≤ c
∑
i∈B

∑
l∈V1(i)∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 + c
∑
i∈B∩D

∣∣F −Dv�τi

∣∣2 + cCard (B)

≤ c
∑
l∈J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 + c
∑
i∈D

∣∣F −Dv�τi

∣∣2 + cCard (B)

(5.156)

≤ c
∑
l∈J(v)

∑
M∈N(l)

∣∣Dv�τl
−M

∣∣2 + cα0

(5.135),(5.136)

≤ cα0. (5.165)
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Now to estimate
∫
Ω

ε
− 1

2 +η
\Ω

ε
− 1

2

∣∣D2ṽ (z)
∣∣2 dL2z we argue as in Step 3, let {l1, l2, . . . , lX1} be an ordering

of the set
{
p (z) : z ∈ Ω

ε−
1
2 +η

\Ω
ε−

1
2

}
, recall we have X1 ≤ cε−

1
2 . And of course, from (5.146) we have

{l1, l2, . . . , lX1} ⊂ D. So

∫
Ω

ε
− 1

2 +η
(0)\Ω

ε
− 1

2

∣∣D2ṽ (z)
∣∣2 dL2z

(5.164)

≤
X1∑
a=1

c
∣∣F −Dv�τla

∣∣2 + c
∑

l∈V1(la)∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2
+ c

X1∑
b=1

cL2
(
p−1 (lb)

)
≤ c

N3∑
l=1

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 + c
∑
i∈D

∣∣F −Dv�τi

∣∣2 + cηε−
1
2

(5.135)

≤ c

∫
Ω

dp (Dv (z) ,K) dL2z + cηε−
1
2

≤ cα0 + cηε−
1
2 .

Putting this together with (5.165) gives (5.162).

Proof of Proposition 5.2. Let w (z) :=
ṽ
((
ε−

1
2 +η

)
z
)

ε−
1
2 +η

, it is clear w can also be defined by equation (5.133). So

from (5.162) and (5.160) we have ∫
Ω

∣∣D2w (z)
∣∣2 dL2z ≤ cα0 + cηε−

1
2 (5.166)

and ∫
Ω

dp (Dw (z) ,K) dL2z =
∫

Ω
ε
− 1

2 +η

dp (Dṽ (y) ,K)
(
ε−

1
2 + η

)−2

dL2y

(5.150)

≤ cεα0 + cηε
1
2 . (5.167)

Putting this together with (5.166) gives

∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z ≤ cεα0 + cηε
1
2 . (5.168)

Now by (4.2) we have that there exists some small constant c1 = c1 (σ) such that

c1ε
1
2 ≤

∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z

so assuming we have chosen η small enough we have that∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z − cηε
1
2 ≥ 1

2

∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z



ON THE REGULARISATION OF THE N-WELL PROBLEM 365

hence from (5.168) we have∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z ≤ cεα0

(5.136)
= c

∫
Ω

dp (Dw (z) ,K) dL2z

which completes the proof of (5.134). �

5.1. The proof of Theorem 1.1 completed

By Proposition 5.2 for any ε > 0 we can find u ∈ Dς,
√
ε

F such that
∫
Ω d

p (Du (z) ,K) dL2z ≤ cmp
ε which

obviously implies there must exist constant C1 < 1 such that C1α (
√
ε) ≤ mp

ε .
Let u ∈ Dς,

√
ε

F be such that
∫
Ω d

p (Du (z) ,K) dL2z ≤ cαp (
√
ε). By Proposition 5.3 function w defined

by (5.132) and (5.133) has the property that

Iε (w) ≤ c

∫
Ω

dp (Du (z) ,K) dL2z ≤ cαp
(√
ε
)

which implies there exists a constant C2 > 1 such that mp
ε ≤ C2αp (

√
ε). �
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