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GROUND STATES IN COMPLEX BODIES
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Abstract. A unified framework for analyzing the existence of ground states in wide classes of elastic
complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev
mappings and Cartesian currents. Weak diffeomorphisms are used to represent macroscopic deforma-
tions. Sobolev maps and Cartesian currents describe the inner substructure of the material elements.
Balance equations for irregular minimizers are derived. A contribution to the debate about the role of
the balance of configurational actions follows. After describing a list of possible applications of the gen-
eral results collected here, a concrete discussion of the existence of ground states in thermodynamically
stable quasicrystals is presented at the end.
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1. Introduction

A prominent influence of the material texture (substructure at different low scales) on the macroscopic
mechanical behavior of bodies is often registered in common experiments of condensed matter physics. Such an
influence is exerted through inner actions conjugated with substructural changes and bodies displaying it are
called complex.

In the standard format of continuum mechanics, each material element is assigned to a place in space and
no direct geometrical information about its inner substructure is given a priori (see the treatise [52]). When
active material complexity occurs, active in the sense that peculiar actions arise, such a scheme does not
permits a direct representation of these actions: they are power-conjugated with morphological changes inside
the material elements. For this reason one finds reasonable to consider each material element as a system and
to describe its inner geometry at least at coarse grained level. Descriptors of the substructural morphology are
selected here as elements of a finite-dimensional differentiable manifold, the manifold of substructural shapes,
by following this way the general model-building framework of the mechanics of complex bodies in [7,38,42] (see
also [5,6,12,33,41,51]).

Here the basic aim is to present a general framework for analyzing the existence of ground states in wide
classes of complex bodies, the ones covered by the multifield modeling sketched above.
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The attention is focused on bodies admitting energies of the type

E (u, ν) :=
∫
B0

e (x, u (x) , F (x) , ν (x) , N (x)) dx (1.1)

where u represents the gross deformation, F its spatial derivative, ν the morphological descriptor of the inner
substructure, N its spatial derivative, B0 the reference gross shape of the body. The approach is characterized
by the use of classical semicontinuity results, Sobolev mappings and Cartesian currents. In particular, the
macroscopic transplacement field (the gross deformation) is considered as a weak diffeomorphism while the
morphological descriptor map as a Sobolev map or a Cartesian current. It is shown that in the case in which
there are energetic interactions involving minors of both F and N , then u and ν should be considered as a
unique map in the setting of Cartesian currents.

The results extend to complex bodies theorems for simple elastic bodies in [1,11,27,29,45] (see also the critical
remarks in [2]).

The structure of the paper is sketched below.
In Section 2, the representation of gross deformation and substructural morphology in complex bodies is

briefly discussed. The variational principle governing ground states of non-linear elastic complex bodies is stated
in Section 3. The general path leading to existence results is presented in Section 4. The possible occurrence of a
Lavrentiev gap phenomenon and the consequences of considering the morphological descriptor maps as Cartesian
currents are also discussed. In Section 5, balance equations associated with irregular minimizers are derived:
the natural representation of actions associated with horizontal variations is used in absence of tangential
derivatives of transplacement fields and morphological descriptor maps. A list of possible applications of the
general framework is presented in Section 6. Section 7 includes details about the special case of quasicrystals:
the physics suggests the appropriate functional environment in which ground states may be found.

2. Morphology and deformation of complex bodies

In its primary, abstract sense, a body is a collection B of material elements, each one considered as a patch of
matter made of entangled molecules or the characteristic piece of some atomic lattice. In other words it is the
smallest piece of matter characterizing the nature of the material constituting a body. The first problem one
tackles in thinking of bodies is the representation of their morphology, that is the representation of the set B.
In standard continuum mechanics such a representation is minimalist: Each material element is considered as
a structureless box, a monad in Leibnitz’s words, described only by the place in space of its center of mass so
that one has a bijective map ϕ : B → E3 from B into the three-dimensional Euclidean space E3 and calls ϕ (B)
a placement of the body. ϕ (B) is indicated by B and is assumed to be a bounded domain with boundary ∂B of
finite two-dimensional measure, a boundary where the outward unit normal is defined to within a finite number
of corners and edges. In this way one is ‘collapsing’ the material element at a point and neglects any information
about its internal structure. Of course E3 can be identified with R

3 once an origin is chosen. A reference place
B0 := ϕ0 (B), generic points of which are labeled by x, is accepted by R

3. For technical purposes it is convenient
to distinguish between the space containing B0 and the one in which all other placements of the body are. To this
aim an isomorphic copy of R

3, indicated by R̂
3, is selected: it contains each new place B := ϕ (B). The generic B

is achieved from B0 by means of a transplacement field (the standard deformation) defined by u := ϕ ◦ ϕ−1
0 ,

with
B0 � x �→ u (x) ∈ B.

A basic assumption is that u is one-to-one and orientation preserving, the last requirement meaning that at
each x the spatial derivative Du (the standard gradient of deformation) has positive determinant:
detDu (x) > 0. Commonly the notation F := Du (x) ∈ Hom

(
TxB0, Tu(x)B

) � R
3 ⊗ R̂

3 = M3×3 is adopted,
with M3×3 the linear space of 3 × 3 matrices.

The standard picture of the morphology of a continuum body does not contain any direct information
about the morphology of the material texture. However, in complex bodies, the prototype element is a rather



GROUND STATES IN COMPLEX BODIES 379

complicated ensemble of entangled molecules, or, more generally, substructures. The direct description of the
substructural morphology is necessary when alterations of the substructures generate peculiar inner actions
within the body, actions influencing prominently the gross behavior. The representation of these actions follows
from the representation of the substructural morphology. To account for the inner shape of the material elements,
one may consider a map κ : B → M assigning morphological descriptors selected within a finite-dimensional
differentiable manifold M, called manifold of substructural shapes. Elements of M furnish, in fact, a rough
description of the essential features of the geometry of the substructure. Unless required by the theorems below,
at a first glance M is considered here as abstract as possible so that the results are valid for a wide class of
complex bodies, a family possibly restricted only by the peculiar assumptions required by specific analyses.

Geometrical structures over the manifold of substructural shapes have often a precise physical meaning so
that they have to be attributed to M carefully, according to the specific case analyzed. For example, one
may consider M endowed with boundary to model effects such as volumetric transitions. Moreover, when
the substructure displays its own peculiar inertia, the related kinetic energy can be represented in its first
approximation by means of a quadratic form. In this way, the (quadratic) substructural kinetic energy induces
a Riemannian structure on M, the metric being assigned by the coefficients of the quadratic form. In general
the substructural kinetic energy may naturally induce only a Finsler structure over M or some gauge structure
(see [10,39,41]).

A morphological descriptor map ν = κ ◦ ϕ−1
0 ,

B0 � x �−→ ν (x) ∈ M,

is defined over B0. It is the Lagrangian representation of the morphological descriptor field and is assumed to
be differentiable. Its spatial derivative Dν is indicated by N := Dν (x) ∈ Hom

(
TxB0, Tν(x)M

) � R
3 ⊗ TνM �

MdimM×3.
The Eulerian (actual) counterpart of the map ν, indicated by νa, is given by νa := κ ◦ ϕ−1 = κ ◦ ϕ−1

0 ◦ u−1.
Its actual derivative Daνa is an element of Hom

(
TyB, Tνa(x)M

)
at each y ∈ B.

The morphological descriptor ν and its derivative N may or may not affect the measures of deformation,
depending only on the specific circumstances engaged. Examples clarify the issue. In fact, in the cases in
which ν represents a microdisplacement, a microscopic independent rotation of the substructure or it measures
a microdeformation, N enters the measures of gross deformation depending on the special case envisaged (see
examples in [7,42]). Contrary, when ν represents substructural events not related with changes in length or
microdisplacements, the standard measures of deformation are sufficient.

3. Energy and the variational principle

Hyper-elastic complex bodies are considered here. A sufficiently smooth density e := e (x, u, F, ν, N) describes
the states of equilibrium locally. Each material element is then considered as a system closed with respect to the
exchange of mass and in energetic contact with the neighboring fellows (the last circumstance being evidenced
by the presence of the gradients F and N in the list of entries of e).

Given u and ν, the global energy E (u, ν) of B0 is then simply

E (u, ν) :=
∫
B0

e (x, u (x) , F (x) , ν (x) , N (x)) dx. (3.1)

Ground states are minimizers of E (u, ν), i.e. fields u and ν, selected in appropriate functional classes, that
satisfy the variational principle

min
u,ν

E (u, ν) .
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In common cases E (u, ν) splits naturally in the sum

E (u, ν) =
∫
B0

ei (x, F (x) , ν (x) , N (x)) dx +
∫
B0

(ee
1 (u (x)) + ee

2 (ν (x))) dx, (3.2)

where ei (x, F, ν, N) is the internal ‘stored’ energy, ee
1 (y) the potential of standard bulk (gravitational) forces and

ee
2 (ν) the potential of direct bulk actions over the substructure such as electric fields in the case of polarizable

substructures.
The requirement of objectivity, that is the invariance with respect to the action of SO (3) (here on both the

ambient space R̂
3 and M), implies that in the range of large deformations the energy density e (x, y, F, ν, N)

cannot be convex with respect to F , see pertinent comments in [52]), once one fixes the other arguments, while
it may be a convex function of N (see [42]).

A prominent special case of (3.1) is the one of partially decomposed energies. They are characterized by two
sufficiently smooth functions eE and eM such that

E (u, ν) =
∫
B0

(eE (x, u (x) , F (x) , ν (x)) + eM (x, ν (x) , N (x))) dx. (3.3)

Special expressions of the decomposed energy density describe ferroelectrics, spin glasses, liquid crystals, affine
bodies, etc. More specifically, the density in (3.3) is a generalized form of the Ginzburg-Landau energy

eE (x, ν) +
1
2
� |N |2 ,

with eE (x, ν) a non-homogeneous two-well energy and � an appropriate material constant.
From a physical point of view a constitutive choice of the type (3.3) is like to imagine that the substructural

action due to the relative change of the substructural shapes between neighboring material elements (an action
called microstress) is not influenced directly by the macroscopic deformation, the interplay being only indirect.

For example, take into account a body in which ν (x) is a second rank symmetric tensor with components ναβ ,
a tensor measuring a micro-deformation of each material element, a deformation independent of the macroscopic
one, as it occurs in soft bodies with families of polymeric chains scattered in a melt (see e.g. [44]). The manifold
of substructural shapes M then coincides with the linear space of second rank symmetric tensors over R

3. For
the sake of simplicity, one may also make use here of the displacement vector u = i−1 (u (x)) − x, with i the
isomorphism between R

3 and R̂
3. The elastic energy depends on (Du)ij , ναβ and Nαβi. Take note that in this

example there is no distinction between covariant and contravariant components for the sake of simplicity. Latin
indices indicate coordinates in the ambient space while Greek indices label coordinates over M. In infinitesimal
deformation and linear elastic setting, the elastic energy density takes the form

ei (Du, ν, N) =
1
2
Cijhk (Du)ij (Du)hk

+ A1
ijαβ (Du)ij ναβ + A2

ijαβk (Du)ij Nαβk

+
1
2
A3

αβγδναβνγδ + A4
αβγδkναβNαβk +

1
2
A5

αβiγδjNαβiNγδj,

with the constitutive tensors C and Ak, k = 1, . . . , 5, endowed at least with ‘major’ symmetries. If the material
texture is centrosymmetric, a property that can be assumed commonly for each material element, by standard
group calculations one may verify that all odd constitutive tensors vanish, namely A2

ijαβk = 0, A4
αβγδk = 0,
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so that the energy reduces to a very special case of (3.3), precisely

ei (Du, ν, Dν) =
1
2
Cijhk (Du)ij (Du)hk + A1

ijαβ (Du)ij ναβ

+
1
2
A3

αβγδναβνγδ +
1
2
A5

αβiγδjNαβiNγδj.

Such a reduction does not occur when, for example, the morphological descriptor is a vector with generic
component να, a vector belonging to some copy of R

3. In infinitesimal deformation and linear elastic setting,
the elastic energy density takes in this case the form

ei (Du, ν, Dν) =
1
2
Cijhk (Du)ij (Du)hk + A1

ijα (Du)ij να + A2
ijαk (Du)ij Nαk

+
1
2
A3

αγνανγ + A4
αγkναNγk +

1
2
A5

αiγjNαiNγj ,

with the constitutive tensors C and Ak, k = 1, . . . , 5, endowed with ‘major’ symmetries. If the material is
centrosymmetric, then the expression of the energy reduces to

ei (Du, ν, Dν) =
1
2
Cijhk (Du)ij (Du)hk + A2

ijαk (Du)ij Nαk

+
1
2
A3

αγνανγ +
1
2
A5

αiγjNαiNγj.

This energy density appears in the mechanics of microcracked bodies (see [42]) and in the one of quasi-periodic
alloys (see [40]) in infinitesimal deformation regime and is not a special case of (3.1). A special expression of
the energy above is adequate for the mechanics of quasicrystals.

4. Ground states: existence theorems

Two steps are in general necessary for determining existence of minimizers of functionals by the direct methods
of calculus of variations: (i) the extension of the functional class of competitors to some topological space in
such a way that energy bounded sets are compact, and (ii) the appropriate extension of the energy functional
over this enlarged class as a lower semicontinuous function. The first requirement forces one to introduce a class
of competitors which includes non-smooth functions. Once the class of competitors is selected, the extended
energy under scrutiny is defined as the relaxed energy. However, even in the setting of finite elasticity of simple
bodies, the relaxed energy is not known actually, so that only heuristic choices for (i) and (ii) can be made.

In the more general context of complex bodies considered here, a similar procedure is followed.
The results do not exclude a priori a Lavrentiev gap phenomenon. Moreover, with respect to the non-linear

elasticity of simple bodies, the situation tackled is even more intricate for the presence of the interplay between
gross and substructural changes.

Take note that the choice of the topology and of the functional extensions mentioned above requires additional
assumptions on the structure of the energy and the functional class of competitors. Such assumptions have often
a non-trivial physical meaning (a meaning that has to be clarified at least in special cases of prominent physical
interest) and, in this sense, they have constitutive nature. The effect of such assumptions becomes prominent
when they imply the existence of singular minimizers and/or phenomena of localization of energy.

4.1. Preliminaries

Let I (k, n) be the space of multi-indices of length k. Denote also by 0 the empty multi-index of length 0.
For any α, the complementary multi-index to α in (1, 2, ..., n) is denoted by ᾱ and the sign of the permutation
from (1, 2, ..., n) into (α1, ..., αk, ᾱ1, ..., ᾱn−k) is indicated by σ (α, ᾱ).
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For (e1, ..., en) and ( ε1, ..., εN) bases in R
n and R

N respectively, Λr

(
R

n × R
N
)

indicates the vector space of
skew-symmetric tensors over R

n × R
N of the form

ξ =
∑

|α|+|β|=r

ξαβeα ∧ εβ =
min(r,N)∑

max(0,r−n)

ξ(k),

where
ξ(k) =

∑
|α|+|β|=r

|β|=k

ξαβeα ∧ εβ.

The decomposition ξ =
∑

k ξ(k) does not depend on the choice of the bases.
For any linear map G : R

n → R
N , the notation M (G) is used for the simple n-vector in Λn

(
R

n × R
N
)

tangent to the graph of G and defined by

M (G) : = Λn (id × G) (e1 ∧ ... ∧ en)
= (e1, G (e1)) ∧ ... ∧ (en, G (en)) .

In coordinates one gets

M (G) =
min(n,N)∑

k=0

M(k) (G) ,

where
M(k) (G) =

∑
|α|+|β|=n

|β|=k

σ (α, ᾱ)Mβ
ᾱ (G) eα ∧ εβ.

G indicates the matrix associated with G. Moreover, Mβ
ᾱ (G) is the determinant of the submatrix of G made

of the rows and the columns indexed by β and ᾱ respectively. It is also convenient to put M0
0 (G) := 1. In the

special case in which n = N = 3, the components of M (G) are the entries of G, adjG and det G.
For M a smooth manifold, Λr (M) can be also defined as Λr (M) := ∪ν∈MΛr (TνM). The definition is

natural, because TνM a linear space. Related definitions can be then adapted. The natural vector algebra over
the fiber Λr (TνM) is extended over the fiber bundle Λr (TM).

Consider the two orthogonal subspaces R
3 and R

N of the Euclidean space R
3 × R

N , select B0 as a smooth
open domain of R

3 and take u : B0 → R
N .

For u ∈ W 1,1
(B0, R

N
)
, let B̃0 be the subset of B0 of Lebesgue points for both u and Du. Let also ũ be a

Lusin representative of u, and ũ (x) and Dũ (x) the Lebesgue values of u and Du at x ∈ B̃0. The Lusin-type
theorem for W 1,1 functions implies that the graph of u, namely

Gu :=
{
(x, y) ∈ B0 × R

N | x ∈ B̃0, y = ũ (x)
}

,

is a 3-rectifiable subset of B0×R
N with approximate tangent vector space at (x, u (x)) generated by the vectors

(e1, Du (x) e1) , ..., (e3, Du (x) e3).
For any u ∈ W 1,1

(B0, R
N
)

with |M (Du (x))| ∈ L1 (B0), the 3-current integration over the graph of u is the
linear functional on smooth 3-forms with compact support in B0 × R

N defined by

Gu : =
∫
B0

(id × u)# (ω) =
∫
B0

〈
(id × u)# (ω) , e1 ∧ e2 ∧ e3

〉
dx

=
∫
B0

〈ω (x, u (x)) , M (Du (x))〉 dx,
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where # indicates pull-back of forms ω. By the area formula

Gu =
∫
Gu

〈ω, ξ〉 dH3�Gu, (4.1)

where ξ (x) := M(Du(x))
|M(Du(x))| and x ∈ B0. ξ is the unit 3-vector that orients the approximate tangent plane to Gu

at x; moreover, Gu has finite mass M (Gu) := sup‖ω‖∞≤1 Gu (ω) since

M (Gu) =
∫
B0

|M (Du (x))| dx = H3 (Gu) .

In particular, Gu is a vector valued measure on B0 × R
N . It is common usage to say that Gu is an integer

rectifiable 3-current with integer multiplicity 1 on B0 × R
N .

For a generic function u ∈ W 1,1
(B0, R

N
)

with |M (Du (x))| ∈ L1 (B0), in general the boundary current ∂Gu,
defined by

∂Gu (ω) := Gu (dω) , ω ∈ D2
(B0 × R

N
)
,

does not vanish, although ∂Gu (ω) = 0 for all ω ∈ D2
(B0 × R

N
)

if u is smooth. A typical example is the map
u (x) := x

|x| that belongs to W 1,2
(
B3 (0, 1) , R3

)
. One computes that ∂Gu = −δ0 × S2 on D2

(
B3 (0, 1)× R

3
)
,

where δ0 is Dirac delta. However, by approximating a map u in the Sobolev norm by means of C2 maps, it is
easy to prove that ∂Gu = 0 on D2

(B0 × R
N
)

if u ∈ W 1,3
(B0, R

N
)
.

4.2. Functional characterization of the gross deformation

The transplacement field is considered here as a weak diffeomorphism.

Definition 4.1. Let u ∈ W 1,1(B0, R̂
3). u is said a weak diffeomorphism (one writes u ∈ dif1,1

(B0, R
3
)
) if

(1) |M (Du (x))| ∈ L1 (B0) ;
(2) ∂Gu = 0 on D2(B0, R̂

3);
(3) detDu (x) > 0 a.e. x ∈ B0;
(4) for any f ∈ C∞

c

(B0 × R
3
)

∫
B0

f (x,u (x)) detDu (x) dx ≤
∫

R3
sup
x∈B0

f (x, y) dy. (4.2)

The requirement 3 above is the standard condition assuring that the map ũ be orientation preserving.
Condition 4 is a global one-to-one condition, while items 1 and 2 provide the necessary uniformity. For instance,
the norm of the minors of Du, namely |M (Du)|, is simply the standard square norm.

Condition 4 has been introduced in the form∫
B0

(detDu (x)) dx ≤ vol (u (B0)) (4.3)

in [11] where the discussion is limited to the macroscopic deformation of (simple) bodies in the setting of
W 1,3(B0, R̂

3) maps. It allows frictionless contact of parts of the boundary of the body while still prevents the
penetration of matter. Condition (4.3) is equivalent to (4.2) with u (B0) substituted by u

(
B̃0

)
, with B̃0 the

subset of B0 of Lebesgue points of u and Du. The version (4.2) is more useful for the analysis presented here.
Essential properties of weak diffeomorphisms are collected in the theorem below, the proof of which can be

found in [27], where such a class of diffeomorphisms has been introduced.
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Theorem 4.1.
(1) (Closure) Let {uk} be a sequence with uk ∈ dif1,1(B0, R̂

3) for any k. If

uk ⇀ u and M (Duk) ⇀ v

weakly in L1, then v = M (Du) a.e. and, if detDu > 0 a.e., then u ∈ dif1,1(B0, R̂
3).

(2) (Compactness) Let {uk} be a sequence with uk ∈ W 1,r(B0, R̂
3), r > 1, and uk’s weak diffeomorphisms.

Assume that there exists a constant C > 0 and a convex function ϑ : [0, +∞) → R
+ such that ϑ (t) →

+∞ as t → 0+, and

‖M (Duk)‖Lr(B0)
≤ C,

∫
B0

ϑ (detDuk (x)) dx ≤ C.

Then, by taking subsequences {uj} with uj ⇀ u in W 1,r(B0, R̂
3), one gets uj → u in Lr (B0), M (Duj) ⇀

M (Du) in Lr and
∫
B0

ϑ (detDu (x)) dx ≤ C. In particular, u is a weak diffeomorphism.

In particular, below it is assumed that the gross deformation is an element of

difr,1(B0, R̂
3) :=

{
u ∈ dif1,1(B0, R̂

3)| |M (Du)| ∈ Lr (B0)
}

,

for some r > 1.

4.3. Functional characterization of the morphological descriptor maps

Above it has been emphasized that at each x ∈ B0 one gets N ∈ Hom
(
TxB0, Tν(x)M

) � R
3⊗TνM. When the

energy density e admits derivative with respect to N , such a derivative describes the weakly non-local (gradient-
conjugated) interactions between neighboring material elements, interactions (the so-called microstresses) due
to relative changes in the substructural shapes. When one wants to compute in covariant way N explicitly, a
connection over M is necessary. Its choice determines the representation of the microstress and, in this sense,
it has constitutive nature. Physics may suggest also that a connection on M has no physical meaning as in
the case of liquids with ‘dispersed’ bubbles. Moreover, even when M is selected to be Riemannian, in some
circumstances the gauge needed for N might not be the Levi-Civita one (see, e.g., [10]). In this case, if no
prevalent role is given to the Levi-Civita connection, the parallel transport over geodetics may be non-isometric
in general and also it can be even unbounded as a consequence of topological features of M itself. The metric gM
generating the Levi-Civita connection has also non-trivial physical meaning. In fact, as already mentioned in
Section 3, when the material substructure admits its own kinetic energy, its first approximation is quadratic
in the rates of the morphological descriptors, a quadratic form with coefficients given by gM. Conversely, if
the quadratic substructural kinetic energy is prescribed by experimental data, its coefficients determine the
metric itself. In this case, the related Levi-Civita connection brings information from substructural kinetics.
Consequently, if the covariant gradient of ν is calculated by making use of the natural Levi-Civita connection,
in dynamic setting the substructural kinetics may directly determine the representation of the microstress.

By Nash theorem, M is considered as a submanifold in R
N for some appropriate dimension. In addition it

is assumed that M is closed. The covariant derivative of the map ν is in agreement with the differential of ν as
a map from B0 into R

N .
With the premises above it is assumed that ν belongs to the Sobolev space W 1,s (B0,M), s > 1, defined by

W 1,s (B0,M) :=
{
ν ∈ W 1,s

(B0, R
N
) | ν (x) ∈ M for a.e. x ∈ B0

}
.

Remarkably, since the isometric embedding of M in R
N by Nash’s theorem is not unique, its choice (then the

choice of the appropriate space W 1,s (B0,M)) is an additional constitutive prescription.
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4.4. Boundary conditions

Boundary data have to be assigned for both the fields u and ν. As regards the macroscopic deformation u,
place, traction or mixed data can be prescribed. As regards Dirichlet data, the ones considered here, since the
deformation u is assumed to be an element of a Sobolev space, its value along the boundary ∂B0 or along an
open part ∂B0,u of it has to be assigned in the sense of traces. If Du admits summable minors, there is also
the possibility to fix the value of the current ∂Gu as a functional on D2(R3 × R̂

3), a condition called strong
anchoring. Notice that ∂Guk

⇀ ∂Gu if M (Duk) → M (Du) in L1. The assignment of ∂Gu is, in fact, stronger
than prescribing the sole trace of u and reduces to it if u ∈ W 1,r(B0, R̂

3), r ≥ 3, or u ∈ W 1,2(B0, R̂
3) and

adjDu ∈ L
3
2 .

Boundary data of Dirichlet type are naturally admissible also for ν and they should be intended in the
sense of traces. In fact, in some physical circumstances one may prescribe the shape of the substructure at the
boundary of a complex body. The prototype example is the one of liquid crystals in nematic phase. In this
case, the substructure is made of stick molecules with end-to-tail symmetry embedded in a ground liquid. For
example, in a channel the orientation of the stick molecules along the walls of the channel can be prescribed by
means of the use of surfactants spread along the walls themselves (see, e.g., [9]). However, when shrewdness of
this type are not available, a natural choice is to imagine that the material elements at the boundary do not
undergo substructural changes so that one may prescribe that ν vanishes identically if the null value is included
in M.

In special circumstances one may think of the material elements on the boundary as made of simple material
and that the complexity of the matter vanishes in a boundary layer: the relevant theory is not yet developed.

Moreover, one could consider the boundary as a sort of membrane coating the body. This point of view is
helpful when one would like to assign data in terms of substructural tractions given by the conormal derivative
∂Dνe n, with n the normal to the boundary in the points in which it is defined. In fact, devices able to assign
along the external boundary of the body contact direct actions on the substructure inside each material element
seem to be not available, so that the natural boundary condition for substructural tractions is ∂Dνe n = 0.
Such a condition makes always sense because at each x the conormal derivative ∂Dνe n is an element of the
cotangent space T ∗

ν(x)M, a linear space indeed, containing the null value. The external boundary of the body
can be also considered as a structured surface endowed with a surface energy depending on the normal (if the
boundary is anisotropic), the surface gradient of deformation, the curvature tensor, the morphological descriptor
and its surface gradient. In this case, the derivative of the surface energy with respect to the gradient of the
morphological descriptor, applied to the normal, is the boundary datum in term of substructural action [40].
Of course, the choice of an explicit expression of the surface energy is strictly of constitutive nature.

4.5. Existence results

The portions ∂B0,u and ∂B0,ν of the boundary where Dirichlet data are prescribed, may or may not coincide
with the whole ∂B0. On ∂B0\∂B0,u and ∂B0\∂B0,ν it is assumed that macroscopic and microscopic tractions
satisfy the natural homogeneous null condition.

Define the space Wr,s by

Wr,s :=
{
(u, ν) |u ∈ difr,1(B0, R̂

3), ν ∈ W 1,s (B0,M)
}

.

Imagine also that the energy functional (3.1) is extended to Wr,s as

E (u, ν) =
∫
B0

e (x, u (x) , Du (x) , ν (x) , Dν (x)) dx,

where u (x), Du (x), ν (x) and Dν (x) are the Lebesgue values of u, ν and their weak derivatives.
Constitutive assumptions about the structure of the energy density e are also necessary. They are additional

to the ones described in the previous sections concerning the functional nature of the fields involved.
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Consider the energy density e as a map

e : B0 × R̂
3 ×M× M+

3×3 × MN×3 → R̄
+

with values e (x, u, F ,ν, N). The assumptions below about e apply.
(H1): e is polyconvex in F and convex in N . More precisely, there exists a Borel function

Pe : B0 × R̂
3 ×M× Λ3(R3 × R̂

3) × MN×3 → R̄
+,

with values Pe (x, u, ν, ξ, N), which is
(a) l.s.c. in (u, ν, ξ, N) for a.e. x ∈ B0;
(b) convex in (ξ, N) for any (x, u, ν);
(c) such that Pe (x, u, ν, M (F ) , N) = e (x, u, ν, F, N) for any list of entries (x, u, ν, F, N) with

detF > 0.
In terms of Pe, the energy functional becomes

E (u, ν) =
∫
B0

Pe (x, u (x) , ν (x) , M (F ) , N) dx. (4.4)

(H2): The energy density e satisfies the growth condition

e (x, u, ν, F, N) ≥ C1 (|M (F )|r + |N |s) + ϑ (detF ) (4.5)

for any (x, u, ν, F, N) with detF > 0, r, s > 1, C1 > 0 constants and ϑ : (0, +∞) → R
+ a convex

function such that ϑ (t) → +∞ as t → 0+.
The convexity of Pe in (ξ, N) for any (x, y, ν) is in essence an assumption of stability which is more subtle than

usual. In fact, in standard elasticity the condition involves only M (F ). Here there is an interplay between the
gross deformation and the substructure: the former must contribute to the stability of the latter and vice versa.

The growth condition imposes that the set of admissible energies has a lower bound which is a decomposed
energy of Ginzburg-Landau type that generates only interactions between neighboring material elements. Such
actions are of gradient type, and generate the so-called microstress. In other words, the assumption (4.5) means
that, in a conservative setting, substructural events within the generic material element, events that generate
self-actions, may only increase the energy.

If there is a pair (u0, ν0) ∈ Wr,s such that E (u0, ν0) < +∞, from the closure theorem for weak diffeomorphisms
above and Ioffe’s classical semicontinuity result, the following theorem holds:

Theorem 4.2. Under the hypotheses (H1) and (H2) the functional E achieves the minimum value in the classes

Wd
r,s := {(u, ν) ∈ Wr,s|u = u0 on ∂B0,u, ν = ν0 on ∂B0,ν}

and
Wc

r,s :=
{
(u, ν) ∈ Wr,s | ∂Gu = ∂Gu0 on D2(R3 × R̂

3), ν = ν0 on ∂B0,ν

}
.

This theorem extends traditional existence results for simple elastic bodies and also the results for the
minimizers of material substructures existing in special cases when gross deformations are neglected. Moreover,
it indicates a path to characterize ground states in classes of bodies that have been not investigated so far.

Several variants are possible.
(H3): Assume that the energy density satisfies the growth condition

e (x, u, ν, F, N) ≥ C2(|F |2 + |Adj F |3/2 + |N |s) + ϑ (detF ) (4.6)

for any (x, u, ν, F, N) with detF > 0, C2 > 0 a constant and ϑ : (0, +∞) → R
+ as above.
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The growth condition (4.6) has the same physical meaning of (4.5), differences relying only in the explicit
dependence of the lower bound on the macroscopic deformation.

Define now the class W2, 3
2 ,s as

W2, 3
2 ,s : =

{
(u, ν) |u ∈ W 1,2(B0, R̂

3), Adj(Du) ∈ L3/2,

(4) in Definition 4.11 holds, ν ∈ W 1,s
(B0,M )} .

If the energy functional E is defined now on the class W2, 3
2 ,s, and there is a pair (u0, ν0) ∈ W2, 3

2 ,s such that
E (u0, ν0) < +∞, on account of the L log L estimate in [45], the new existence result below follows.

Theorem 4.3. Under assumptions (H1) and (H3), the functional E achieves its minimum value in the class

Wd
2, 32 ,s :=

{
(u, ν) ∈ W2, 3

2 ,s | u = u0 on ∂B0,u, ν = ν0 on ∂B0,ν

}
.

The special case of partially decomposed free energies (3.3) falls, of course, within the theorems above. More-
over, in the setting justifying Theorem 2, the additive decomposition of the energy density e in its macroscopic
and microscopic parts eE and eM allows one to separate the growth condition (4.5) in two parts, namely

eE (x, u, ν, F ) ≥ C1 |M (F )|r + ϑ (detF ) , (4.7)

eM (x, u, ν, N) ≥ C1 |N |s . (4.8)

By fixing ν in (4.7), one recovers a growth condition rather standard in finite elasticity of simple bodies
where it is imposed only that eE (x, u, F ) ≥ C1 |M (F )|r + ϑ (detF ) (see, e.g., [52]). This last requirement is
tantamount to affirm that one is able to find ground states for bodies with a content of energy greater or equal
to the one of a ‘fictitious’ elastic simple body with energy given by C1 |M (F )|r + ϑ (detF ). In using (4.7),
however, one is saying something more because of the presence of the morphological descriptor ν. With (4.7)
it is prescribed that the standard lower bound for simple bodies be also valid for the macroscopic part of the
energy of complex bodies admitting partially decomposed structure. The presumption is that substructural
events accruing within each material element do not alter the lower bound, roughly speaking, substructural
changes within the material element may only increase the global energy in conservative setting, at least with
respect to C1 |M (F )|r + ϑ (detF ). No matter about weakly non-local substructural interactions measured by
the microstress, namely by the derivative of the energy with respect to Dν. The energetics of such interactions
is described by eM . The condition (4.8) indicates that the energy accounting for both substructural changes and
weakly non-local interactions of gradient type admits as lower bound the energy of a ‘fictitious’ rigid complex
material for which the energy stored within each material element is negligible with respect to the one associated
with weakly non-local interactions. Specifically, the energy of such a ‘fictitious’ complex material is an extension
of the Dirichlet energy and reduces to it when s = 2. In conservative case, the requirement (4.8) is quite natural
because substructural activity within the material element may only increase the energy density, being the
energy density of all events non-negative.

Analogous physical interpretations hold in the setting justifying Theorem 3 where (4.7) and (4.8) become
respectively

e (x, u, ν, F ) ≥ C2(|F |2 + |Adj F |2) + ϑ (detF ) ,

eM (x, u, ν, N) ≥ C2 |N |2 ,

being eM in this case a Dirichlet energy when C2 = 1
2 .
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4.6. Remarks about the possible presence of a Lavrentiev gap phenomenon

There is no evidence that the energy functional

E (u, ν) =
∫
B0

Pe (x, u (x) , ν (x) , M (F ) , N) dx

defined over the class Wr,s is the relaxed version of the same functional defined on regular pairs (u, ν), namely
there is no evidence that

E (u, ν) := inf
{

lim inf
j→∞

E (uj , νj) | (uj , νj) ⇀ (u, ν) in L1, (uj, νj) ∈ C1

}

for any (u, ν) ∈ Wr,s. In other words, a Lavrentiev gap phenomenon, namely

E (u, ν) < inf
{

lim inf
j→∞

E (uj , νj) | (uj , νj) ⇀ (u, ν) in L1, (uj, νj) ∈ C1

}
,

is not excluded a priori. Examples of special cases of the one treated here are known from the scientific
literature. For instance, in two-dimensional ambient space there are examples of non-linear elastic simple
materials admitting a gap between the infimum of the energy over admissible continuous deformations belonging
to a Sobolev space W 1,r and the analogous infimum over admissible continuous deformations belonging to a
Sobolev space W 1,s with s < r [20].

A gap phenomenon driven this time by the topology of the substructural manifold M can also arise. When
the manifold of substructural shapes M has a non trivial homology, then defects may arise.

In particular, for example, a gap phenomenon appears for the Dirichlet integral

D (ν) :=
1
2

∫
B0

|Dν (x)|2 dx (4.9)

involving maps ν : B0 → S2, with S2 the unit sphere, and for Dirichlet boundary data (see results in [23,25,26]).
Take note that the exponent 2 and the circumstance that the manifold of substructural shapes is S2 is crucial
for the remarks in what follows. The energy above, in absence of gross deformations, describes cases of spin
glasses, magnetostrictive materials in conditions of magnetic saturation and soft composites reinforced with a
dense family of microfibers not endowed with end-to-tail symmetry.

The gap phenomenon appears when the degree of the boundary datum is different from zero (because regular
maps satisfying it are absent) and even for some boundary data with zero degree [32]. However, it is possible
to find an explicit form for the relaxed version of (4.9) on W 1,2 which gives rise to a non-local functional [4].

A further difference between the maps in W 1,2 and the regular ones relies in the behavior of the current

Dν (η) :=
∫
B0

η ∧ ν#ωS2 , η ∈ D1 (B0) ,

with ωS2 the volume form over S2, a current which can be considered as integration along the field D (x) defined
by duality by Dν (x) := ∗ωS2, with ∗ the Hodge star operator. Take note that, whereas Dν (x) �= 0, Dν (x)
generates kerDν (x) at x. Since the outward flux across the boundary ∂B (x0, r) of a ball B (x0, r), centered
at x0 and with radius r, is the degree of the map ν

∣∣
∂B(x0,r) , it follows that Div Dν = 0 for any ν ∈ C1 (B0).

In contrast, and for the same reason, for the map ν (x) := x
|x| ∈ W 1,2

(B0, S
2
)

one gets Div Dν = 4πδ0 in
distributional sense.

By following results in [24,30,31], a way to link the loss of energy in the Dirichlet integral and the ‘bad’
behavior of some functions in W 1,2 in pulling-back 2-forms, is to associate with each map ν ∈ W 1,2

(B0, S
2
)
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the current integration over its graph

Gν (ω) =
∫
B0

ω (x, ν (x) , M (Dν (x))) dx.

In particular, it is proved that if {νj} is a sequence of S2-valued maps with equibounded Dirichlet energies
and T is a current such that Gνj ⇀ T , then T has finite mass and there exists a map νT ∈ W 1,2

(B0, S
2
)

and a
one-dimensional integer rectifiable current LT , both map and current individuated uniquely by T , such that

T = GνT + LT × S2 on D3
(B0 × S2

)
.

Moreover, LT = 0 if M (Dνj) weakly converges in L1(B0, Λ3(R3, R̂3)).
The meaning of the concentration line LT is clear from the point of view of weak convergence. In fact, if

Gνj ⇀ T = GνT + LT ×M, then on two-dimensional sections orthogonal to the support of LT in a thin tube
wrapped around the support itself, for j sufficiently large, νj assumes as value the entire sphere, point by point.
LT is then a line (a line defect) in which there is ‘fusion’ of the substructure, fusion in the sense of complete
disorder so that the concept of prevailing direction loses its meaning. Moreover, the currents Dνj , associated
with the elements of the sequence {νj}, converge (in the sense of currents) to the current DT = DνT + 4πLT ;
in particular ∂DT = 0 on B0 × S2. If LT = 0, the graph of νT has no boundary and Div DνT = 0. In this case,
if νT would have point singularities, all singularities would have zero degree.

It could be possible to extend the previous discussion by substituting S2 with a generic two dimensional
compact manifold M, but LT = 0 if M is not homologically a sphere.

4.7. Cartesian currents and the special case of spin substructures

Dirichlet energies involving S2-valued maps describe essential aspects of the mechanical behavior of bodies
with spin structure that does not suffer deformation. Basic results have been obtained in the current literature.
Essential aspects are reviewed here first, then it is shown how they can be extended to energies more general
that the Dirichlet one, that is to the description of the mechanical behavior or deformable bodies with spin
substructure. Basically the analysis is essentially the same, the physics of the phenomena covered is enlarged
drastically.

A current T ∈ D3(B0 × R̂
3) is in cart2,1

(B0 × S2
)

if there exist a map νT ∈ W 1,2
(B0, S

2
)

and an integer
rectifiable current LT on D1 (B0) such that T = GνT + LT × S2 over D3(B0 × R̂

3). If T ∈ cart2,1
(B0 × S2

)
,

then νT and LT are uniquely defined by T (see [24,30,31]).
The extension of the Dirichlet energy associated with S2-valued morphological descriptor maps to

cart2,1
(B0 × S2

)
can be obtained by defining the energy on the space cart2,1

(B0 × S2
)

as

D (T ) :=
∫
B0

F (n,
→
T ) d ‖T ‖ ,

where F (n, ξ) is the polyconvex extension of the integrand

f (n, N) :=

{
1
2 |N |2 if N∗n = 0

+∞ otherwise

to the space of 3-vectors in Λ3

(
R

3 × S2
)
, while

→
T := dT

d‖T‖ is the Radon-Nykodim derivative of T with respect
to its total variation. Precisely, F (n, ξ) is defined by

F (n, ξ) : = sup
{
φ (ξ) | φ : Λ3

(
R

3 × S2
)→ R,

φ linear, φ (M (N)) ≤ f (n, N) , ∀ (n, N)} .
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One shows (see [24,31]) that
(i):

D (T ) :=
1
2

∫
B0

|DνT |2 dx + 4πM (LT ) (4.10)

if T = GνT + LT × S2 ∈ cart2,1
(B0 × S2

)
;

(ii): D (T ) is lower semicontinuous due to the convergence of currents with equibounded Dirichlet energies
and

(iii): D (T ) is the relaxed counterpart of the Dirichlet integral for the convergence above.
(iii): (Closure) The class cart2,1

(B0 × S2
)

is closed with respect to the convergence of currents with
equibounded masses and norms ‖νTj‖W 1,2 .

Existence of minimizers for (4.10) in cart2,1
(B0 × S2

)
under Dirichlet boundary conditions and absence of

gap then follows. Such minimizers describe ground states of bodies with spin structure in which the gross
deformation is neglected.

The results described above extend to an existence theorem of minimizers for an elastic body with spin
structure admitting a decomposed energy of the type

E (u, νT ) =
∫
B0

eE (x, u, νT , Du) dx +
1
2

∫
B0

|DνT |2 dx + 4πM (LT ) . (4.11)

Theorem 4.4. If eE satisfies (H1) and either (H2) or (H3), then the functional (4.11) admits minimizers in
W r,s(B0, R̂

3) × cart2,1(B0 × S2) under Dirichlet conditions.

The theorem above is the main result of the present section, the details of the proof are not specified here
because they are implied directly. The presence of the term 4πM(LT ) in (4.11) is a constitutive choice. It takes
into account the energetic contribution of the overall behavior of the regions of the body in which the disorder
is so high that the identification of a local orientation becomes meaningless, regions that are here described by
the one dimensional current LT .

4.8. The general case

Here, previous remarks are generalized. The aim is to obtain existence results allowing (i) the interactions
between the substructural changes and gross deformation even at level of first gradients (taking also into
account the minors involving elements of both F and N) and, contemporarily, (ii) the possible localization of
substructural activity along lines, with a possible generation of local substructural disorder.

Note that the energy density e does not depend (at least as far as one may imagine in common cases) on the
product u (x) Dν (x). In fact, the derivative of e with respect to u is the representative of standard external
body forces and it is not natural to presume that the standard body forces depend on the relative changes in
material substructure from place to place.

Below it is convenient to consider the pair deformation-morphological descriptor as a unique map (u, ν) :
B0 → R̂

3 ×M.
All minors of the matrix (

F
N

)

are collected in M
((

F
N

))
. Define the set

I :=
{

(α, β) |α ∈ I (k, 3) , β ∈ I (k, 3 + N) , 0 ≤ k ≤ 3 s.t.

∣∣∣∣Mα
β

(
F
N

)∣∣∣∣ ≤ e (x, u, F, ν, N) , ∀ (x, u, F, ν, N)
}
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and let J ⊂ I be defined by

J :=
{

(α, β) |α ∈ I (k, 3) , β ∈ I (k, 3 + N) , 0 ≤ k ≤ 3 s.t. ∃ r > 1 s.t.

∣∣∣∣Mα
β

(
F
N

)∣∣∣∣
r

≤ e (x, u, F, ν, N) , ∀ (x, u, F, ν, N)
}

.

As an additional constitutive assumption on the energy, it is assumed here that the energy density e is such
that

(α, β) ∈ I =⇒ (α′, β′) ∈ J , ∀ (α′, β′) , α′ < α, β′ < β.

If (uj, νj) is a sequence of pairs deformation-morphological descriptor which are equibounded in energy, then
for any α and β the sequence {

Mα
β

(
Duj

Dνj

)}
is equibounded in L1 (B0) if (α, β) ∈ I and equibounded in some Lr (B0), r > 1, if (α′, β′) ∈ J . Consequently,
by taking subsequences, (uj , νj) → (u, ν) in L1 and there exist measures μα

β in B0 × R̂
3 ×R

N such that for any
φ ∈ C0(B0 × R̂

3 × R
N ) one gets∫

B0

φ (x, uj (x) , νj (x))Mα
β

(
Duj

Dνj

)
dx→

∫
B0×R̂3×RN

φ (x, u (x) , ν (x)) dμα
β (x, y, ν)

for any (α, β) ∈ I. Moreover, if (α, β) ∈ J , one also gets∫
B0×R̂3×RN

φ (x, u (x) , ν (x)) dμα
β (x, y, ν) ==

∫
B0

φ (x,u (x) , ν (x))Mα
β

(
Du
Dν

)
dx.

For each j, the previous measures can be collected in a vector-valued measure, or, better, in the semi-currents

G(uj ,νj) :=
∫
B0

〈
ω (x, uj (x) , νj (x)) , M

(
Duj

Dνj

)〉
dx,

and

G(u,ν) :=
∫
B0

〈
ω (x, u (x) , ν (x)) , M

(
Du
Dν

)〉
dx,

defined over the space

D3,I :=

⎧⎪⎪⎨
⎪⎪⎩ω =

∑
β:=(β1,β2)
(α,β)∈I

ωα,β1,β2 (x, u, ν) dxα ∧ duβ1 ∧ dzβ2

⎫⎪⎪⎬
⎪⎪⎭ ,

of 3-forms on B0 × R̂
3 × R

N . It follows that
(i): the G(uj ,νj)’s have equibounded masses;
(ii): G(uj ,νj) → T := G(u,ν) + S, over D3,I ;
(iii): the component Sαβ (φ) := S

(
φ (x, u, ν) dxα ∧ duβ1 ∧ dzβ2

)
is identically zero if (α, β) ∈ J .

As appropriate extension of the energy e = e (x, y, ν, F, N), one considers its polyconvex form

Pe (x, u, ν, ξ) = sup
{

φ (ξ) |φ ∈ Hom(Λ3(R3 × R̂
3 × R

N ), R), s.t.

φ

(
M

(
F
N

))
≤ e (x, u, F, ν, N) , ∀ (x, u, F, ν, N)

}
.
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Note that, differently from the existence results in previous sections, here the polyconvexification of the energy

accounts for all minors of the matrix
(

F
N

)
.

It is rather simple to show that Pe is (i) l.s.c. in ξ for any fixed (x, u, ν), (ii) positively homogeneous of
degree 1 in ξ and (iii) Pe (x, u, ν, ξ) ≥ ‖ξ‖. Then it is possible to extend the energy functional to vector-valued
measures T =

{
T α

β

}
(α,β)∈I

in the direct product R
3 × R̂

3 × R
N by putting

F (T ) :=
∫

Pe(x, u, ν,
→
T ) d ‖T ‖ .

A classical semicontinuity result of Reshetnyak [47–49] states that F is semicontinuous with respect to the weak
convergence of measures under the further assumption

Pe (x, u, ν, ξ) is l.s.c. in (x, u, ν, ξ) .

Then, existence of minimizers in a class of semi-currents closed under the weak convergence of measures follows
trivially.

Such a general program has to be completed by analyzing the current S in the item (ii) above, by computing
explicitly the integral functional and then discussing the possible absence of gap phenomenon. This program
as been developed in [24,31] in the special case of the Dirichlet energy 1

2

∫
B0

|Dν|2 dx, with ν : B0 → M, where
M is a compact, oriented, Riemannian manifold M of dimension ≥ 2. The general case is still open.

5. Balance of standard and substructural actions

The deduction of Euler-Lagrange equations for (3.1) points out the nature of the interactions involved in the
mechanical behavior of complex bodies and also the nature of their integral versions (see discussions in [12,38,
40,41]). Here the meaning of Euler-Lagrange equations associated with irregular minimizers of the energy of
complex bodies and the conditions under which they exist are discussed.

5.1. Euler-Lagrange equation: C1-minimizers

The condition
δE (u, ν) = 0, (5.1)

where δ indicates first variation, characterizes the equilibrium.
For evaluating the first variation of E (u, ν) it is not necessary to embed the manifold of substructural shapes

in some linear space. M is then considered abstract as in the original format of the mechanics of complex
bodies.

Assume first that E admits minimizers of class C1. To define variations over M, it is useful to make use
of fields of the type υ : B0 → TM, with υ (x) ∈ Tν(x)M, belonging to the class C1

c (B0, TM). For any
x ∈ B0, here υ is taken such that υ = d

dενε |ε=0 := υ (x) in any local chart, being νε a generic smooth curve
(−1, 1) � ε �→ νε ∈ M crossing ν when ε = 0.

Define
C1

ū(B0, R̂
3) :=

{
u ∈ C1

ū(B0, R̂
3)|u = ū on ∂B0

}
,

C1
ν̄ (B0,M) :=

{
ν ∈ C1

ν̄ (B0,M) |ν = ν̄ on ∂B0

}
,

where ū and ν̄ are the boundary data in the Dirichlet problem considered here.
If the energy E (u, ν) attains a minimum at the pair (u, ν) ∈ C1

ū(B0, R̂
3) × C1

ν̄ (B0,M), for ε ∈ (−1, 1) and
each h ∈ C1

c (B0, R̂
3), the function ε �→ E (u + εh, νε) attains a minimum at ε = 0.
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The first variation δh,υE of E from the ground state along the direction (h, υ) is then defined naturally by

δh,υE (u, ν) :=
d
dε

E (u + εh, νε) |ε=0 .

At (u, ν) the first variation of the energy then vanishes along any direction (h, υ). Euler-Lagrange equations
then follows from the calculation of the first variation:

Theorem 5.1. Let the pair (u, ν) be a minimizer for E. Then, (i) for any h ∈ C1
c

(B0, R
3
)

and for any
υ ∈ C1

c (B0, TM), with υ (x) ∈ Tν(x)M, the map ε �→ E (u + εh, νε) is differentiable and the pair (u, ν) satisfies
the weak form of Euler-Lagrange equations∫

B0

(−b · h + P · Dh + ζ · υ + S · Dυ) dx = 0; (5.2)

(ii) if (u, ν) ∈ C2
(B0, R

3
)× C2 (B0,M), then (5.2) is equivalent to the strong form

DivP + b = 0, (5.3)

DivS − ζ = 0 in T ∗
ν M. (5.4)

In the equations above, P (x) := ∂F e ∈ Hom(T ∗
xB0, T

∗
u(x)B) � R

3 ⊗ R̂
3 is the first Piola-Kirchhoff stress,

b (x) := −∂ue ∈ T ∗
xB � R

3 the vector of standard body forces, S (x) := ∂Dνe ∈ Hom(T ∗
x B0, T

∗
ν(x)M) �

R
3 ⊗ T ∗

ν(x)M the microstress measuring constant interactions between neighboring material elements due to
substructural changes, ζ (x) := ∂νe ∈ T ∗

ν(x)M. In particular, by considering e decomposed additively in internal
ei (x, Du, ν, Dν) and external ee (u, ν) components, ζ splits in the sum ζ = z −β, where z (x) := ∂νei ∈ T ∗

ν(x)M
is the self-action within the generic material element due to substructural changes inside it while β (x) :=
−∂νee ∈ T ∗

ν(x)M represents external direct body actions on the substructure (a paradigmatic example is the
one of electric fields acting on the polarization structure in ferroelectrics). Take note that the term ∂Dνe · Dυ
can be considered as the derivative d

dεe (x, u + εh, F + εDh, νε, N + εDυ) |ε=0 since N := Dν (x) belongs to a
linear space. The same meaning cannot be attributed to the term ∂νe · υ because M is not a linear space. The
dot denotes the natural pairing between dual spaces.

5.2. Direct representation of standard and substructural actions: invariance and balance

Really the balance of actions involved in the mechanics of complex bodies has the same structure of (5.3),
(5.4), independently of constitutive issues introduced in specifying the functional dependence of the energy on
the state variables in the variational setting considered here. Equation (5.3) is Cauchy balance of standard forces
while (5.4) is Capriz balance of substructural actions. A special case of (5.4) is Ginzburg-Landau equation.

To obtain balance equations from the sole direct representation of standard and substructural actions two
tools are necessary: (i) a class P of subsets b of B0 with non-vanishing volume and the same geometrical
regularity of B0 itself, subsets called parts, and (ii) vector fields h ∈ C(B0, R̂

3) and υ ∈ C (B0, TM). Only the
power of actions is defined here, without paying attention to constitutive issues.

Given the pair τ := (u, ν), any power along (u, ν) is such a map P : P (B0) × TG → R
+ that P (·, τ, τ̇ ) is

additive over disjoint parts and P (b, τ, ·) is linear.
The basic point is the explicit representation of P , that is the representation of actions over the generic b.

The usual assumption is that the actions be of volume and contact nature, the latter represented by means of
appropriate stresses that are in this case the first Piola-Kirchhoff stress P and the microstress S, no matter
about their possible constitutive structure. External bulk actions are represented by the standard covector b
of body forces and, at each x, by an element of the cotangent space T ∗

ν(x)M, indicated by β. In this way,
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the power Pext
b (h,υ) exchanged by the generic b with the rest of the body and the external environment, a

power measured over (h,υ) along (u, ν), is represented by

Pext
b (h,υ) :=

∫
b

(b · h + β · υ) dx +
∫

∂b

(Pn · h + Sn · υ) dH2, (5.5)

where dH2 is the two-dimensional Hausdorff measure on ∂b, n the normal to ∂b in all places in which it is
defined, that is everywhere except a closed subset of ∂b with vanishing H2 measure. Here b, β, P and S are
not defined a priori as the derivatives of the energy as energy does not come into play. Once u and ν are given,
one says only that, at each x, fields taking values b (x) ∈ T ∗

u(x)B � R̂
3, β (x) ∈ T ∗

ν(x)M (bulk actions) and

P (x) ∈ Hom(T ∗
xB0, T

∗
u(x)B) � R

3 ⊗ R̂
3, S (x) ∈ Hom(T ∗

xB0, T
∗
ν(x)M) � R

3 ⊗ T ∗
ν(x)M (contact interactions) are

defined.
Observers are representations of the geometrical environments necessary to describe the morphology of a body

and its subsequent changes of morphology (see [41] for a series of questions related with this definition).
Attention is focused here on semi-classical changes in observers, the ones leaving invariant B0 and changing

isometrically both R̂
3 and M. The attribute ‘semi’ refers to the circumstance that M is taken into account in

addition to the ambient space. By considering the infinitesimal generators of the action of R̂
3

� SO (3) over R̂
3

and of the same copy of SO (3) over M, one defines h∗ := h+ c+ q× (u−u0), with c ∈ R̂
3 and q× ∈ SO (3) u0

an arbitrary point in space, and υ∗ := υ +Aq, where A (ν) ∈ Hom(R̂3, TνM) so that A∗ (ν) ∈ Hom(T ∗
ν M, R̂3).

Here h and υ play the role of virtual rates.
Axiom. At equilibrium the power of external actions is invariant under semi-classical changes in observers,
that is Pext

b (h, υ) = Pext
b (h∗, υ∗) for any choice of b, c and q.

The following theorem is immediate (see [38,40] for further remarks):

Theorem 5.2. (i) If for any b the vector fields x �→ Pn and x �→ A∗Sn are defined over ∂b and are integrable
there, the integral balances of actions on b hold:∫

b

b dx +
∫

∂b

Pn dH2 = 0,

∫
b

((u − u0) × b + A∗β) dx +
∫

∂b

((u − u0) × Pn + A∗Sn) dH2 = 0.

(ii) Moreover, if the tensor fields x �→ P and x �→ S are of class C1 (B0) ∩ C0
( B̄0

)
then

DivP + b = 0

and there exist a covector field x �→ z ∈ Tν(x)M such that

skw (PF ∗) =
1
2
e (A∗z + (DA∗)S)

and
DivS − z + β = 0,

with z = z1 + z2, z2 ∈ KerA∗.

Above e is Ricci’s tensor.
The integral balances in the theorem above are associated with the Killing fields of the standard metric in

the ambient space R̂
3. In general, a pure integral balance of substructural actions does not make sense because

it would involve integrands taking values on T ∗M which is not a linear space.
Substructural interactions appear in the integral balance of moments which is not standard. Their appear-

ances do not imply that they are couples (specifically micro-couples) due to the presence of the operator A∗.
In fact, only the products A∗β and A∗Sn are properly couples while S and Sn do not.
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5.3. Irregular minimizers: horizontal variations

Consider local minimizers in Wd
r,s of E (u, ν) (see Th. 2). For the sake of simplicity, the lower bound

Pe (x, u, ν, M (F ) , N) ≥ c1

(
|M (F )|r +

|M (F )|r̄
(detF )r̄−1 + |N |s

)

for some r, r̄, s > 1 and c1 > 0, is assumed to be satisfied by the energy density. Consequently, the energy
functional

E (u, ν) :=
∫
B0

Pe (x, u, ν, M (F ) ,N) dx,

is coercive over difr,r̄(B0, R̂
3) × W 1,s (B0,M), where

difr,r̄(B0, R̂
3) :=

{
u ∈ difr,1(B0, R̂

3) | M (Dû) ∈ Lr̄ (ũ (B0))
}

.

Take note that |M(F )|r̄
(detF )r̄−1 is equal to |M (Dû)|r where û := u−1 in the sense of Lusin representatives.

Basically, the lower bound above means that the energy of the complex body under examination is greater
than the one of a fictious body in which self-actions are absent so that substructural actions are only of contact
type (microstress).

Let φ ∈ C1
0

(B0, R
3
)

and consider for ε sufficiently small, the diffeomorphism Φε (x) := x + εφ (x) from B0

into itself, diffeomorphisms that leave unchanged ∂B0. Consequently, for |ε| < ε0, with ε0 fixed, one gets

uε (x) := u
(
Φ−1

ε (x)
) ∈ difr,r̄(B0, R̂

3),

νε (x) := ν
(
Φ−1

ε (x)
) ∈ W 1,s (B0,M) .

The map Φε implies also the transformations

F → Fε = Fε (x) := FDΦ−1
ε and N → Nε = Nε (x) := NDΦ−1

ε .

In this way, one constructs a map

ε → E (uε, νε) :=
∫
B0

Pe (x, uε, νε, M (Fε) , Nε) dx. (5.6)

For the sake of simplicity, assume that Pe is differentiable and

|Pe| , |∂xPe| ≤ c

(
|M (F )|r +

|M (F )|r̄
(det F )r̄−1 + |N |s

)
, (5.7)

∣∣∂M(F )Pe
∣∣ ≤ c

(
|M (F )|r−1 +

|M (F )|r̄−1

(detF )r̄−1 + |N |(1− 1
r̄ )s

)
, (5.8)

|∂NPe| ≤ c

⎛
⎝|M (F )|(1− 1

s )r +

(
|M (F )|r̄

(detF )r̄−1

)(1− 1
s )

+ |N |s−1

⎞
⎠ . (5.9)

Then, by Lebesgue’s differentiation theorem, the map ε → E (uε, νε) is differentiable at zero with derivatives
bounded in L1. As a consequence, the theorem below follows.
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Theorem 5.3. If Pe (x, u, ν, M (F ) , N) satisfies (5.7)–(5.9) above, for a local minimizer (u, ν) of E (u, ν) in
Wd

r,s one gets

F ∗∂F e (x, u, ν, F, N) ∈ L1 (B0) ,

N∗∂Ne (x, u, ν, F, N) ∈ L1 (B0) ,∫
B0

P · Dφ dx +
∫
B0

∂xe · φ dx = 0 ∀φ ∈ C1
0

(B0, R
3
)
, (5.10)

where P (x) ∈ Aut
(
R

3
)

is the extended Hamilton-Eshelby tensor defined by

P := eI − F ∗P − N∗S, (5.11)

that is
Div P−∂xe = 0,

in distributional sense.

In fact, by using Binet formula and Young inequality (namely ab ≤ ar

r + br̄

r̄ , 1
r + 1

r̄ = 1), it is easy to prove
that

sup
|ε|<ε0

d
dε

(Pe (φ (x) , uε, νε, M (Fε) , Nε) detDΦε) ∈ L1 (B0) .

Precisely, Binet formula

Mβ
α (Fε) =

∑
|γ|=|β|

Mβ
γ (Fε)Mγ

α

(
DΦ−1

ε

)
yields

|M (Fε)| ,
∣∣∣∣ d
dε

M (Fε)
∣∣∣∣ ≤ c |M (F )| .

Moreover, one has

|Nε| ,
∣∣∣∣ d
dε

Nε

∣∣∣∣ ≤ c |N | ,
so that ∣∣∣∣ d

dε
(Pe (φ (x) , uε, νε, M (Fε) , Nε) detDΦε)

∣∣∣∣ ≤
c

{
|∂xPe| +

∣∣∣∣∂M(F )Pe · d
dε

M (Fε)
∣∣∣∣+
∣∣∣∣∂NPe · d

dε
Nε

∣∣∣∣
}

≤ c(|M (F )|r +
|M (F )|r̄

(detF )r̄−1 + |N |s)

+ c(|M (F )|r−1 +
|M (F )|r̄−1

(detF )r̄−1 + |N |(1− 1
r̄ )s) |M (F )|

+ c(|M (F )|(1− 1
s )r +

(
|M (F )|r̄

(det F )r̄−1

)(1− 1
s )

+ |N |s−1) |N |

≤ c

(
|M (F )|r +

|M (F )|r̄
(detF )r̄−1 + |N |s

)

for all ε, |ε| ≤ ε0.
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Then, it follows that

0 =
d
dε

E (uε, νε) =
∫
B0

d
dε

(Pe (φ (x) , uε, νε, M (Fε) , Nε) detDΦε) |ε=0 dx

=
∫
B0

d
dε

(e (φ (x) , uε, νε, Fε, Nε) detDΦε) |ε=0 dx. (5.12)

The derivative at ε = 0 under the integral sign remains to be computed. Since

Φε (x) = x + εφ (x) ,

DΦ−1
ε (Φε (x)) = I − εDφ (x) + o

(
ε2
)

as ε → 0,

detDΦε (x) = 1 + εDivΦε (x) + o
(
ε2
)

as ε → 0,

uniformly with respect to x (I indicates the unit second rank tensor), the derivative in (5.12) implies (5.10).
Theorem 7 extends to complex bodies a companion result for simple elastic bodies in [31]. The extended

Hamilton-Eshelby tensor P has been introduced in [38] (see also [12]) with reference to smooth minimizers. Here
the configurational balance involving P is extended to irregular minimizers.

Actually, as pointed out by [2] for non-linear elasticity of simple bodies, the differentiability of the map
ε �−→ E (uε, νε) in (5.6) holds actually under the weaker energetic estimate

|∂xe| + |F ∗∂F e| + |N∗∂Ne| ≤ c1e + c2,

where e and its derivatives are calculated in (x, u, ν, F ). Such an estimate has been used in [21] for a delicate
analysis of evolution problems in rate-independent models of non-conservative processes in classes of bodies.

In the case of bodies with spin structure described by ν : B0 → S2 and admitting a partially decomposed
energy with concentration on a line, precisely an energy of the form

E (u, νT ) =
∫
B0

eE (x, u, νT , F ) dx +
1
2

∫
B0

|DνT |2 dx + 4πM (LT ) ,

with LT a one-dimensional integer rectifiable current on D1 (B0), by using the technique adopted in the proof
of the theorem above, a special version of (5.10) follows. It accounts for the contribution of the concentration
of energy on the line LT =

−→
T ∧ ‖LT ‖, namely

∫
B0

P · Dφ dx +
∫
B0

∂xe · φ dx = 4π

∫ →
T ⊗

→
T · Dφ d ‖LT ‖ (5.13)

for any φ ∈ C1
0

(B0, R
3
)
. The integral balance (5.13) is unusual. In the case of homogeneous bodies, (5.13)

implies the the internal ‘power’ of the extended Hamilton-Eshelby stress is determined only by the interactions
along the line of concentration of energy. Equation (5.13) extends also a theorem in [26] to the case in which
macroscopic deformations occur.

Consider maps φ̄ ∈ C1
c (R̂3, R̂3) with φ̄ = 0 in a neighborhood of u (∂B0). For |ε| < ε0, with ε0 fixed, the map

Φε (y) = y + εφ̄ (y) is then a diffeomorphism from R̂
3 into R̂

3, so the map uε (x) := u (x) + εφ̄ (u (x)) is a weak
diffeomorphism in difr,r̄(B0, R̂

3). Since φ̄ = 0 in a neighborhood of ũ (∂B0), all the uε agree on ∂B0; moreover
by chain rule it follows that Fε = Fε (x) = F (x) + εDu(x)φ̄ (u (x))F (x).

Define the Cauchy stress tensor as usual by

σ (y) := ((detF )−1 ∂F e (x, u, ν, F, N)F ∗) (y) ∈ Hom(T ∗
y B, R̂3∗) � R̂

3 ⊗ R̂
3.
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Assume also that the energy density satisfies the inequality

|∂uPe| ≤ c(|M (F )|r +
|M (F )|r̄

(det F )r̄−1 + |N |s). (5.14)

Under this additional assumption and (5.7), (5.8), the map

ε → E (uε, ν) :=
∫
B0

Pe (x, uε, ν, M (Fε) , N) dx

is differentiable at ε = 0.

Theorem 5.4. Under conditions (5.7), (5.8) and (5.14) above, for (u, ν) a minimizer in W d
r,s of E (u, ν),

σ ∈ L1
loc(ũ (B0) , R̂3 ⊗ R̂

3)

and ∫
ũ(B0)

σ (y) · Dφ̄ (y) dy +
∫

ũ(B0)

b (y) · φ̄ (y) dy = 0,

for every φ̄ ∈ C1
0 (R̂3, R̂3) with φ̄ = 0 in a neighborhood of ũ (∂B0), with ũ the Lusin representative of u.

The proof follows by direct calculation.
Finally, consider smooth curves ε → ϕ̄ε ∈ Aut (M), ϕ̄ ∈ C1 (M), and define

νε := ϕ̄ε (ν) , ν ∈ M.

Call also ξ the derivative

ξ :=
d
dε

νε |ε=0 .

Assume that the energy density satisfies the inequality

|∂νPe| ≤ c

(
|M (F )|r +

|M (F )|r̄
(detF )r̄−1 + |N |s

)
. (5.15)

Under the assumptions (5.7), (5.9) and (5.15) the map

ε → E (u, νε) :=
∫
B0

Pe (x, u, νε, M (F ) , Nε) dx

is differentiable at ε = 0.

Theorem 5.5. Under conditions (5.7), (5.9) and (5.15) above, for u and ν minimizers in W d
r,s of E (u, ν),

S ∈ L1
(B0, R

3∗ ⊗ T ∗M)
and ∫

B0

S (x) · Dξ (x) dx +
∫
B0

(β − z) (x) · ξ (x) dx = 0,

for every ξ ∈ C0 (TM), with (β − z)(x) ∈ T ∗
ν(x)M.
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6. Taxonomy of special cases

Without having the presumption to be a theory of everything, the framework discussed above unifies, in fact,
a very large class of models of condensed matter physics. A list of special examples is presented below. It is not
exhaustive, of course, but an idea of the potentialities of thinking of complex bodies in terms of maps between
manifolds is given.

• Liquid crystals in nematic phase: In liquid crystals stick molecules are dispersed in a ground
fluid. They may arrange themselves in various manners that characterize different phases. In nematic
phase, the stick molecules are ordered along prevailing directions but they do not have distinct head
and tail so that M is identified with the unit sphere in R

3, with the projective plane P 2. The generic
material element can be interpreted here as a patch of matter including a family of stick molecules.
The morphological descriptor ν is then an indicator of the ‘prevailing’ direction of the molecules. This
point of view has been introduced in [16,17] (see also [13,36]). Oseen-Frank potential, recalled above, is
the energy appropriate when one forgets the gross motion. A second-rank tensor ζ

(
n ⊗ n − 1

3I
)
, with

n ∈ S2, and ζ ∈ [− 1
2 , 1
]
, can be also used to account for details of the distribution of the stick molecules.

The scalar ζ indicates the degree of orientation (as defined in [18]). In this case, then, M = S2×[− 1
2 , 1
]
.

Optical biaxiality can emerge so that the symmetry of the molecules becomes that of a rectangular box
and two other scalar morphological descriptors are necessary: the degree of prolation and the degree of
triaxiality (see [9]). Alternatively, one may select M coincident with the quotient between the special
unitary group SU (2) and the group of quaternions.

• Liquid crystals in smectic phase: In the smectic-A phase a layered structure appears and the stick
molecules tend to be aligned orthogonally to the layer interface unless tilt occurs. Natural ingredients
for describing the smectic-A phase are the unit vector n representing at each point the local orientational
order and a scalar function � parameterizing the layers through its level sets. When tilt is absent and
single layers are compressible but at the gross scale there is incompressibility, the energy density can be
written as

e (�, grad �) =
1
2
k1 (|grad �| − 1)2 +

1
2
k2 (div n)2 ,

with k1 and k2 material constants. The operators grad and div imply derivatives with respect to u. The
term (|grad �| − 1)2 accounts for the compression of layers while (div n)2 describes the nematic phase
and is the first addendum of (three constant) Frank’s potential (see [8]).

• Liquid crystals in cholesteric phase: In cholesteric phase, liquid crystals loose in a sense reflection
symmetry (the one under the action of O (3) \SO (3)) and maintain SO (3)-symmetry. An appropriate
form of the energy density can be found in [18].

• Cosserat materials: In the Cosserat’s scheme each material element is considered as a (small) rigid
body which can rotate independently of the neighboring fellows. The manifold of substructural shapes
can be then identified with the unit sphere S2 or the special orthogonal group SO (3). Local contact
couples exchanged between adjacent parts of the body are power conjugated with local rotations and
are described by a couple stress tensor. The scheme of Cosserat materials is a special case of multifield
theories often used for direct models of structural elements like beams, plates or shells [19] or for
composites reinforced with diffused small rigid fibers.

• Superfluid liquid helium: The analysis of ground states of 3He falls within the setting discussed
above. The energy density is of Ginzburg-Landau type. For 3He in the dipole locked phase, M coincides
simply with SO (3) (thus with S2) and Cosserat’s scheme applies.

• Ferroelectrics: To describe the local polarization of crystalline cells in ferroelectrics, a vector is com-
monly selected within a ball Bp in R

3, the radius of which is the maximum polarization available in the
material [50]. In presence of an external electric field acting over the body, the relevant polarization
energy has to be added to a Ginzburg-Landau-type decomposed energy density for matter fields.

• Bodies with polymeric chains: Various types of materials are made of polymeric linear chains
scattered in a melt (see, e.g., [37]). A simple natural descriptor of each single chain is an end-to-end
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stretchable vector r. To preserve a natural symmetry under the transformation r → −r, the dyad r⊗ r
is used as morphological descriptor. Then, the manifold of substructural shapes M coincides with
the (linear) space of symmetric tensors with positive determinant Sym+

(
R

3, R3
)
. In this sense the

representation falls within the class of affine bodies mentioned below. The energy may be selected
in various manners; in particular, if the linear chains are ‘dilute’, the energy does not depend on Dν
while, when their are ‘dense’ up to interacting through van der Walls forces and/or entanglements, the
dependence on Dν appears.

• Polyelectrolyte polymers and polymer stars: Polyelectrolyte polymers are characterized by the
possible polarization of chains. In this case, by adopting the notation above, the manifold of substruc-
tural shapes can be selected as M = Sym+

(
R

3, R3
) × Bp. Moreover the chains may link with each

other up to form a star. In this case we may imagine to have M = Sym+
(
R

3, R3
)×Bpm × (0, c), with

c > 0. Numbers in (0, c) describe the radius of gyration of the star.
• Bodies with affine structure: In the special case in which the manifold of substructural shape

coincides with the linear space of second-rank tensors, the substructure is called affine [44,53]. The
scheme is suitable to cover various cases such as the one of bodies with dense polymeric linear chains
discussed above or fullerene-reinforced composites. A basic interest to mention this special model is
that when there is an internal constraint of the type ν = f (F ), so that the substructure becomes latent
in the sense of Capriz [6]. In this case the energy density reduces to the one of a second-grade Cauchy
body, namely e = e (x, F,∇F ).

• Porous and multi-phase bodies: When pores are finely scattered throughout a body, we may
imagine that the generic material element is a patch of matter with spherical voids and we can select
the morphological descriptor as a scalar indicating the void volume fraction. In this case M reduces to
the interval of the real axis [0, 1] (see [46]). The scheme of porous materials is useful when multiple phases
(for example m phases) coexist within a body and phase transitions occur [22]. The description can be
refined to account for deeper details in the rearrangement of phases. The combined use of scalar and
second-order tensor valued morphological descriptor fields allows one to account for the re-orientation
of martensitic variants, as proposed in [3].

• Quasi-periodic alloys: Quasi-periodic atomic arrangements exist in nature and characterize some
specific classes of metallic alloys. For example, in the prominent case of quasicrystals, the formation
and annihilation of atomic rearrangements is necessary to assure quasi-periodicity, so that internal
degrees of freedom appear within the crystalline cells and describe the local atomic rearrangements
(a process called phason activity). In all cases, the appropriate morphological descriptor of the degrees
of freedom inside ‘atomic cells’ is a vector so that M coincides with R

3 (see [34,40]).

7. Ground states of thermodynamically stable quasicrystals

A special class of quasi-periodic alloys is the one of quasicrystals in which atomic clusters display symmetries
incompatible with periodic tilings in space, symmetries such as the icosahedral one in three-dimensions and
the pentagonal one in the plane (see, e.g., [34]). Atomic rearrangements assure quasiperiodicity in space by
creating and annihilating (randomly) the so-called worms, that are clusters of atoms with symmetry different
from the prevailing one. The local degrees of freedom associated with these atomic changes are described by a
vector ν ∈ R

3 in the three-dimensional case. ν belongs to R
3 for two-dimensional quasicrystals. Experiments

show that the elastic energy of quasicrystals does not depend on ν while it depends only on its spatial gradient N
besides the gradient of macroscopic deformation. Moreover, quasicrystals are characterized by a self-action of
dissipative nature, that is by dissipation inside each material element, a dissipation strictly associated with
substructural events (see [40]). Although this type of tendence to material metastability, it has been shown
experimentally that quasicrystals may admit in some cases ground states (see [54] and references therein).
Moreover, the occurrence of ground states have been also analyzed in the generic material element by looking
directly to the lattice behavior (see [15,43]). Additionally, it has been shown also that frustration between
neighboring ground states may occur in special conditions [14].
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Here, the framework presented above is applied to analyze the existence of ground states in quasicrystalline
bodies from a macroscopic point of view. The energy to be accounted for is then∫

B0

e (Du, Dν) dx

and one tries to find minimizers for it in some functional space. The appropriate constitutive choice of the
functional environment seem to be the space

Wr,2 :=
{

(u, ν) |u ∈ difr,1(B0, R̂
3), ν ∈ W 1,2

(B0, R
3
)}

.

In this case the growth condition for the energy becomes

e (F ,N) ≥ C1

(
|M (F )|r + |N |2

)
+ ϑ (detF ) .

It means that the energy grows faster than the one of an ideal quasicrystal behaving isotropically and having
an unlocked phase. Precisely, one says that the atomic rearrangements occurring in quasicrystals are in a
unlocked phase when the energy has a quadratic dependence on N . Such a phase is the only one existing in
two-dimensional setting (see [35]) so that the growth condition above has physical meaning in one, two and
three-dimensional ambient space.

As a consequence, once e (F ,N) is substituted by its polyconvex extension, existence of minimizers in Wr,2

follows as a consequence of Theorem 2.
Analogous analyses can be developed for other prominent cases of complex bodies.
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