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EXPONENTIAL STABILITY OF DISTRIBUTED PARAMETER SYSTEMS
GOVERNED BY SYMMETRIC HYPERBOLIC PARTIAL DIFFERENTIAL

EQUATIONS USING LYAPUNOV’S SECOND METHOD ∗
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Abstract. In this paper we study asymptotic behaviour of distributed parameter systems governed
by partial differential equations (abbreviated to PDE). We first review some recently developed results
on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov
functionals we prove next an asymptotic exponential stability result for a class of symmetric hyper-
bolic PDE systems. Then we apply the result to establish exponential stability of various chemical
engineering processes and, in particular, exponential stability of heat exchangers. Through concrete
examples we show how Lyapunov’s second method may be extended to stability analysis of nonlin-
ear hyperbolic PDE. Meanwhile we explain how the method is adapted to the framework of Banach
spaces Lp, 1 < p ≤ ∞.
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1. Introduction

Lyapunov’s second method, called also Lyapunov’s direct method, is one of efficient and classical methods
for studying asymptotic behavior and stability of the dynamical systems governed by ordinary differential
equations. It dates back to Lyapunov’s thesis published at the beginning of the twentieth century [22]. The
applications of the method and its theoretical development have been marked by the works of LaSalle and
Lefschetz in the past [19,35] and numerous successful achievements later in the control of mechanical, robotic
and aerospace systems (cf. [3,11,15,24,25,38]). Since three decades the Lyapunov direct method has found
extensions in the studies of feedback stabilization and feedback stabilizability of distributed parameter systems
governed by partial differential equations (PDE) (see [1–4,8,10,13,17,18,32]). Up to today numerous interesting
results have been obtained using the elaborated techniques adapted to the classical PDEs such as the wave
equation, the beam equation and the Petrovsky system. On the same time we have seen appear a class of
novel distributed parameter systems from the chemical engineering and described by nonlinear PDE which are
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different from the classical PDE (cf. [23,29]). To obtain final products of high quality it becomes necessary
to supervise and control the evolution of the corresponding dynamical processes based on more sophisticated
models, established by the population balance or the conservation law (see [14,28]). The typical examples of
these chemical engineering processes are crystallization processes and polymerization processes. They are all
described by hyperbolic PDEs and nonlinear ordinary differential equations which are coupled via boundary
conditions or/and through the dynamical equations. However the dynamical behavior of these models is not as
well studied as that of the classical PDE in mathematical physics. The objective of our paper is to investigate
these mathematical models in terms of stability using Lyapunov’s direct approach.

Our studies begin by linear symmetric hyperbolic systems with two independent variables: time and space.
The achieved results and the developed method are generalizable to nonlinear hyperbolic PDEs with more spatial
variables. Precisely we elaborate suitable Lyapunov functionals to prove exponential stability of distributed
parameter systems governed by hyperbolic PDEs for the demand from chemical engineering. As the same as in
the case of finite dimensional dynamical systems, the constructed Lyapunov functionals are not only useful and
efficient in the proof of stability but also deserve being considered for doing its control design or stabilization
later (cf. [9,34]). Adapted Lyapunov functionals are though simple to understand but difficult to find, since we
do not have at our disposal a systematic way to its construction. The reader will realize how it is not immediate
to prove an energy like functional to be a Lyapunov functional in the case of classical mathematical physics
equations [1,2,17,18]. Motivated by automatic control of high-performance chemical engineering processes, our
objective is to extend the Lyapunov direct method to deal with stability of more symmetric hyperbolic PDE
systems and to fill in the lack of results in this domain.

Prior to introduction of our results we present a review on some remarkable progresses recently gained in this
direction. Our concern is not to provide a survey on the studies of stability but to group together the materials
somehow near and understandable to our present and future investigations. By this review we try to indicate
how our results should be improved along these progresses.

In [18] the authors have applied with success Lyapunov’s direct method to investigate the boundary stabi-
lizability of the wave equation. Actually they have considered the wave equation ytt − Δy = 0 on a bounded
domain Ω with smooth boundary ∂Ω, subject to mixed boundary condition: the Dirichlet y = 0 on Γ1 and the
Neumann ∂y

∂n = u on Γ0, where (Γ0,Γ1) is a partition of ∂Ω such that each of them has non empty interior.
Is the dissipative boundary feedback law u = −b(x) yt, with b(x) ≥ 0 in Γ0, sufficient to guarantee a global
asymptotic stability: every solution (corresponding to initial data of finite energy) decays exponentially to zero
in the energy space as t→ ∞? They have proved that exponential stabilization of the system is achieved if the
spatial dimension is not greater than 3 and if the partition (Γ0,Γ1) is suitably chosen. The result is notably
general in the sense that there is no constraint on the domain Ω. In other words all the wave vibration is forced
to disappear by the velocity feedback control properly designed on the boundary. The mathematical proof
has been done by using the total energy as Lyapunov functional candidate. To prove exponential stability of
the closed-loop system it has been necessary to construct another functional which is equivalent to the energy
functional. By the method of multipliers, Grisvard’s inequality and a compactness-uniqueness argument they
have derived a differential inequality for these functionals which has led to precise estimates on the exponential
decay of the solutions. The approach has been generalized to the semilinear wave equation ytt −Δy+ f(y) = 0
with some nonlinear function f . The approach that we adopt in the present paper is similar to their approach.
However we do not need the method of multipliers because necessary estimates can be obtained by direct com-
putations in our cases. Though the shallow water system that we consider is a variant of the wave equation,
we can not deduce its exponential stability from the result of [18] because of the boundary conditions which
are different. Additionally, for the linear wave equation exponential stabilizability implies exact controllability
by a principle from [32]. This principle is also valid for our symmetric hyperbolic systems. However exact
controllability is true in a more general context [7].

Indirect boundary stabilization of weakly coupled wave equations has been investigated in [1] using Lyapunov’s
direct method. The vibrating or conservative system under study is constituted of two subsystems governed
by the same wave equation and coupled via a weak symmetric zero order operator. Each wave equation is
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equipped with the Dirichlet boundary condition. One of them is stabilized by means of a well-known boundary
stabilizing feedback law (see [17], p. 104, or [18]). The other is free of control. What is the effect of such a
partial stabilization on the decay of solutions for the coupled systems as the time goes to infinity? Is the partial
stabilization sufficient to stabilize the coupled systems? Mathematically exponential stability is not available
for the whole system with such a configuration of stabilization and weak coupling [2]. Nevertheless asymptotic
stability of the whole system has been proved by using the energy as Lyapunov functional [1] in the case where
the coupling is sufficiently weak. The proof has made use of some integral inequalities on the Lyapunov func-
tional. The decay rate of the energy has been estimated to be polynomial in function of time. The method has
been extendible to other vibrating systems with different weak couplings (see [1,2]). Similarly indirect internal
stabilization of weakly coupled evolution equations has been studied in a more general context [2]. The authors
have raised up the same question of stabilizability by the partially stabilizing feedback law which consists to
apply viscous damping force (proportional to the velocity) on one of the evolution equations. They have got
the same answer as in the case of the indirect boundary stabilization. In particular the stabilization result has
been established for the wave equation on a non empty star-shaped bounded open set in R

N and without any
specific constraint on the spatial dimension N ≥ 1. In these works [1,2] the considered systems are linear, the
energy plays the role of Lyapunov functionals and the method of multipliers is applied to prove the energy
inequalities. The asymptotic decay rate of solutions has been estimated in terms of Hilbert norms. However
no further indication has been given to what is concerned with nonlinearities and Banach norms. Although the
systems for N = 1 in [1,2] can be transformed into dissipative symmetric hyperbolic systems that we consider
in the present paper, they do not verify our hypothesis H1–H3 in the next section. These systems are worthy
of our further investigations.

The paper [12] deals with asymptotic stability of a damped string equation (or 1D wave equation): wtt +
2a(x)wt = wxx where the internal damping a(x) can change sign. Physically speaking viscous damping force
of indefinite sign is applied on the string fixed at the extreme ends. If the damping term a(x) is nonnegative
and positive on some open subset, then the damped system is exponentially stable. When the damping term
is of indefinite sign and sufficiently large, the system exhibits unstable solutions. Some sufficient condition has
been proposed in [12] to guarantee exponential stability of the damped system in the case that the damping
(i.e., ‖a‖L∞) is sufficiently small. For example, the damped system is exponentially stable if the projection
component of a(x) is greater than a fixed positive number along the square function of every D’Alembertian
eigenfunction. Each projection component represents the real part of its corresponding eigenvalue to the damped
system. In the considered case the largest real part of the eigenvalues of the damped system determines the
growth rate of its semigroup and so leads to its exponential stability (see also [30]). The result has given some
insight into the indefinite damping phenomenon. However the approach has relied essentially on a method of
spectral analysis and perturbations, and as a consequence, seems difficult to be extended for vibrating systems
of higher spatial dimension. Actually, via a D’Alembert transformation the damped system can be written as
symmetric hyperbolic PDE, with the damping term only on the internal domain. However the system does
not belong to the class of systems under our consideration, where essentially the boundary dissipation is put
forward.

The paper [4] has studied the asymptotic behaviour of global smooth solutions for general entropy dissipative
hyperbolic systems of balance law. The systems are supposed to satisfy the strictly entropy dissipative condition
and the Shizuta-Kawashima condition. It has been proved in [4] that global smooth solutions approach constant
equilibrium state in the Lp norm at a rate O

(
t−

m
2 (1− 1

p )
)
, with p ≥ 2 and m ≥ 1, as t → ∞. The result has

been established from the linearized system around a constant equilibrium state, for which the authors have
been able to estimate the large time behaviour of the corresponding Green kernel. The linearized system is
written in the conservative-dissipative form. The Shizuta-Kawashima condition implies that the dissipative
term, appearing only in the dissipative part, has effective influences on every component of the solution, i.e., as
well on the dissipative part as on the conservative part. The result is valid for entropy dissipative hyperbolic
PDEs with constant coefficients, with unbounded spatial domain R

m, m ≥ 1, and without boundary condition.
The symmetric hyperbolic PDEs that we study has for spatial domain a bounded open set in R

m and they are
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equipped with boundary conditions. The energy dissipation is effective on the boundary. Via the boundary
coupling all the solutions decay exponentially to zero in the L2 norm as t → ∞, while by applying the result
of [4] smooth solutions converge to zero with a polynomial decay rate. Different boundary conditions give rise
to different asymptotic behaviours of solutions. The boundary dissipation in our cases has the similar effect
to that of the strictly entropy dissipative part in [4] concerning asymptotic behaviour of solutions. However
we investigate not only the asymptotic behaviour of solutions but also their stability in the sense of dynamical
systems.

After this short review on the recent results of stability analysis by Lyapunov’s direct method we organize the
rest of the paper as follows. The next section is devoted to describe the structure of the symmetric hyperbolic
systems that we will study, and to present the essential result that we will prove with Lyapunov functionals. In
Section 3 we construct Lyapunov functionals to prove the essential theorem. Section 4 presents some applications
of the essential result and, through concrete examples, different generalizations to nonlinear cases and higher
spatial dimension. Section 5 shows how the Lyapunov method is applied to stability analysis in the framework
of general Banach spaces, specifically in the space of continuous functions with the uniform topology. The last
section contains our conclusions and perspectives.

2. Statement of the main result

In [31] Rauch and Taylor have studied the exponential decay of solutions of hyperbolic partial differential
equations in bounded domains. In particular they have proved that a dynamical system described by dissipative
symmetric hyperbolic PDE with two independent variables is exponentially stable if there is some real dissipation
of the energy on the boundary. The proof has been established using the method of characteristics [31]. This
class of systems have been considered by [32] in studying the problem of exact controllability. There the
exponential stability of these systems has been obtained from the exact controllability result. In both [31,32]
the proofs are long and indirect in the sense that some observability inequality needs to be proved. Here we
propose a new proof of the stability result for this class of systems using a Lyapunov functional. Our proof
is direct and simple. It is an advantage of the Lyapunov direct method. Another advantage of the Lyapunov
direct method is that it is not limited to the domain of single space variable as reviewed in the Introduction.
Moreover the Lyapunov direct method is adapted to deal with nonlinearities (cf. [32]). The reader is referred
to [8,13,15,26,40] for other applications of the Lyapunov approach.

In our previous paper [40], using a Lyapunov functional we have proved the stability result of Rauch and
Taylor by supposing that some matrix b(x) in the system is symmetric. Here we propose another Lyapunov
functional for the proof without any restriction on b(x). Hence the proof in this paper is a generalization of the
previous one.

The symmetric hyperbolic system studied in this paper is governed by the following PDE:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂R(x, t)
∂t

= a(x)
∂R(x, t)
∂x

+ b(x)R(x, t),

R−(0, t) = D0R
+(0, t),

R+(1, t) = D1R
−(1, t),

R(x, 0) = R0(x),

(2.1)

where (x, t) ∈ (0, 1) × R
+. The evolution of the system (2.1) is determined by its boundary condition and its

initial condition R0. Note that R(x, t) is a vector function of x and t that we partition as

R(x, t) =
(
R−(x, t)
R+(x, t)

)
such that R−(x, t) ∈ R

p, R+(x, t) ∈ R
q and p + q = n. The matrix functions a(x) and b(x) have their values

in R
n×n. The matrices D0 ∈ R

p×q and D1 ∈ R
q×p are constant matrices. We suppose that a(x) is diagonal
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and partitioned correspondingly as follows:

a(x) =
(
a−(x) 0

0 a+(x)

)
where

a−(x) = diag(λ1(x), λ2(x), . . . , λp(x)),
a+(x) = diag(λp+1(x), λp+2(x), . . . , λp+q(x)).

Each λi(x), i = 1, . . . , n, is a real function of x. We assume further the following conditions satisfied for the
system (2.1):

H1. The matrices a(x), b(x) are infinitely differentiable functions of x on [0, 1] with values in R
n×n or a,

b ∈ C∞([0, 1]; Rn×n).
H2. The first p functions in a(x) are negative, i.e., λi(x) < 0, ∀ i = 1, . . . , p, ∀x ∈ [0, 1], and the last

q functions are positive: λp+i(x) > 0, ∀ i = 1, . . . , q, ∀x ∈ [0, 1].
H3. The dissipation is true both on the equation and on the boundary: for all ω− ∈ R

p, ω+ ∈ R
q and

x ∈ [0, 1],

τ

(
ω−

ω+

)[
b(x) + τ b(x) − ∂

∂x
a(x)

]( ω−

ω+

)
≤ 0, (2.2)

τω−
[
a−(1) + τD1a

+(1)D1

]
ω− ≤ −r1‖ω−‖2

Rp , (2.3)

τω+
[
a+(0) + τD0a

−(0)D0

]
ω+ ≥ r2‖ω+‖2

Rq , (2.4)

where the constants r1 ≥ 0 and r2 ≥ 0 are not both zero, i.e., (r1, r2) 	= 0 and τω is the transposition of ω.
Generally speaking, the condition H1 guarantees a good regularity of the solution corresponding to a regular

initial data. H2 means that the system is strictly hyperbolic. As illustrated in [40], H2 is not absolutely essential
in applications. H3 says that the system is strictly dissipative on the boundary.

Let C∞
0 (0, 1) denote the space of infinitely differentiable functions of compact support in (0,1). The theorem

in [31] can be restated as follows.

Theorem 2.1. For each initial data R0 ∈ (C∞
0 (0, 1))n, there is a unique continuously differentiable function

R(x, t) which satisfies the four equations in (2.1). Moreover, there exist some positive constants K and ω such
that, for all R0 ∈ (C∞

0 (0, 1))n, ∫ 1

0

‖R(x, t)‖2
Rn dx ≤ Ke−ωt

∫ 1

0

‖R0(x)‖2
Rn dx. (2.5)

Remark 2.1. Since the system (2.1) is linear, for each t ≥ 0 the mapping T(t), which associates to the initial
data R0 ∈ (C∞

0 (0, 1))n its corresponding solution R(·, t), is linear and bounded from H = (L2(0, 1))n to H .
This family of bounded linear operators {T(t)}t≥0 on H form a semigroup which is strongly continuous from
[0,∞) to L(H) (called C0 semigroup). The Theorem 2.1 says that, for all R0 ∈ (C∞

0 (0, 1))n,

‖T(t)R0‖2
H ≤ Ke−ωt‖R0‖2

H .

The subspace C∞
0 (0, 1) being dense in L2(0, 1), it follows that the system is exponentially stable, i.e.,

‖T(t)‖L(H) ≤
√
Ke−ωt/2

or, the C0 semigroup is exponentially stable.
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Remark 2.2. Numerous hyperbolic PDE systems can be transformed into the form (2.1) (see [4,32,36]). In
particular the linearized models of the crystallization processes or the ploymerization processes have the form
given in (2.1), see [14,28]. The constructed Lyapunov functionals, apart from the proof for the essential result,
are potentially utilizable for proving stability of nonlinear systems as well as for future control design. A gen-
eralization of the essential theorem to nonlinear cases will be exploited in the next section with nonlinearities
occurring in the zero order term.

3. Proof of Theorem 2.1 using Lyapunov’s direct method

We assume that r2 > 0. The case r1 > 0 can be dealt with similarly, see the Remark 3.1 below.
The state space for the system (2.1) is the Hilbert space H = (L2(0, 1))n equipped with the usual inner

product: ‖f‖2
H =

∑n
k=1

∫ 1

0
|fk(x)|2dx. Let H1(0, 1) be the Sobolev space of f ∈ L2(0, 1) such that f ′ ∈ L2(0, 1),

where f ′ denotes the generalized derivative of f with respect to x. Define the unbounded linear operator A by

D(A) =
{
f =

(
f−

f+

)
∈ (H1(0, 1))p+q

∣∣∣∣ f−(0) = D0f
+(0) , f+(1) = D1f

−(1)
}
,

∀ f ∈ D(A), Af(x) = a(x)f ′(x) + b(x)f(x).

Proposition 3.1. For each R0 ∈ (C∞
0 (0, 1))n, there is a unique R(x, t) ∈ (C1([0, 1]× [0,∞)))n which satisfies

the four equations in (2.1).

Proof of Proposition 3.1. The unbounded operator A defined above is the generator of a C0 semigroup of
contractions on H (cf. [39]). Note that (C∞

0 (0, 1))n ⊂ D(Ak), ∀ k ∈ N. Hence R ∈ (C∞([0, 1] × [0,∞)))n

(cf. Th. X.8, p. 214, [5]). �
We set

W (x) =
(
δ−(x)Ip 0

0 δ+(x)Iq

)
, (3.1)

where

δ−(x) = 1 + e−θ(1+x), δ+(x) = 1 − e−θ(1+x), (3.2)

with θ > 0. The derivative of W (x) with respect to x is

W ′(x) = θe−θ(1+x)

( −Ip 0
0 Iq

)
. (3.3)

We consider the Lyapunov functional Vθ : H → R
+ such that

Vθ(f) =
∫ 1

0

τf(x)W (x)f(x) dx. (3.4)

Lemma 3.1. Let R(x, t) be the solution of (2.1) to the initial data R0 ∈ (C∞
0 (0, 1))n. Then there exist some

positive constants c1 > 0, c2 > 0 and θ1 > 0 such that, for all θ ≥ θ1,

dVθ(R(·, t))
dt

≤ −(c1θ − c2)e−2θ Vθ(R(·, t)), ∀ t ≥ 0.
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Proof of Lemma 3.1. We denote by ḟ the derivative of f with respect to the time and by f ′ the derivative of f
with respect to x. We compute V̇θ(R(·, t)) along the trajectory:

V̇θ(R(·, t)) = 2
∫ 1

0

τR(x, t)W (x)Ṙ(x, t) dx

= 2
∫ 1

0

τR(x, t)W (x)
[
a(x)R′(x, t) + b(x)R(x, t)

]
dx = τR(x, t)W (x)a(x)R(x, t)

∣∣x=1

x=0

+
∫ 1

0

τR(x, t)
[
W (x)b(x) + τb(x)W (x) − (W (x)a(x))′

]
R(x, t) dx. (3.5)

It is sufficient to show that when θ > 0 is big, the following holds:

τR(x, t)W (x)a(x)R(x, t)
∣∣x=1

x=0
≤ 0, (3.6)

τR(x, t)
[
W (x)b(x) + τ b(x)W (x) − (W (x)a(x)

)′]
R(x, t)

≤ −(c1θ − c2)e−θ(1+x) τR(x, t)W (x)R(x, t). (3.7)
Indeed, substituting (3.6)–(3.7) into (3.5) gives us the required inequality

V̇θ(R(·, t)) ≤ −(c1θ − c2)
∫ 1

0

e−θ(1+x) τR(x, t)W (x)R(x, t)dx

≤ −(c1θ − c2)e−2θVθ(R(·, t)).
We first prove (3.6). By direct computation and by using the boundary conditions in (2.1), it is not difficult

to obtain the following identities:

τR(x, t)W (x)a(x)R(x, t)
∣∣x=1

x=0
= τR(1, t)W (1)a(1)R(1, t)− τR(0, t)W (0)a(0)R(0, t)

= τR−(1, t)
[
a−(1) + τD1a

+(1)D1

]
R−(1, t)

+ e−2θ
[

τR−(1, t)a−(1)R−(1, t) − τR+(1, t)a+(1)R+(1, t)
]

− τR+(0, t)
[
a+(0) + τD0a

−(0)D0

]
R+(0, t)

− e−θ τR+(0, t)
[

τD0a
−(0)D0 − a+(0)

]
R+(0, t).

In the last identity, the first term is negative by H3, the second term is negative by H2, the third term is negative
by H3 and the fourth term is positive. However, by H3 there is some constant c̃1 > 0 such that

−τR+(0, t)
[
a+(0) + τD0a

−(0)D0

]
R+(0, t) − e−θ τR+(0, t)

[
τD0a

−(0)D0 − a+(0)
]
R+(0, t)

≤ −
[
r2 − c̃1e−θ

]
‖R+(0, t)‖2

Rq .

Hence, there exist some θ1 > 0 such that (3.6) is true for all θ ≥ θ1.
Now we prove (3.7). Indeed, we write

W (x)b(x) + τ b(x)W (x) − (W (x)a(x)
)′ =

W (x)
(
b(x) + τ b(x) − a′(x)

) −W ′(x)a(x) + τ b(x)W (x) −W (x) τb(x). (3.8)
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Set D(x) = b(x) + τb(x)− a′(x). We have W (x)D(x) = D(x) +
(
W (x)− I

)
D(x). Let ω ∈ R

n. Using H3 we get

τωW (x)D(x)ω = τωD(x)ω + τω
(
W (x) − I

)
D(x)ω

≤ e−(1+x)θ‖D(x)‖L(Rn)‖ω‖2
Rn.

It is easy to see that

τωW (x)D(x)ω ≤
[
‖D(x)‖L(Rn)e−(1+x)θ

1 − e−θ1

]
τωW (x)ω. (3.9)

Using (3.3) we find some constant c̃2 > 0 such that, for all θ ≥ θ1,

τωW ′(x)a(x)ω ≥ c̃2θe−(1+x)θ τωW (x)ω. (3.10)

On the other hand, using (3.9) we find some constants c̃3 > 0 and c̃4 > 0 such that, for all θ ≥ θ1,

τωW (x)D(x)ω ≤ c̃3e−(1+x)θ τωW (x)ω, (3.11)
τω
[

τb(x) W (x) −W (x) τ b(x)
]
ω ≤ c̃4e−(1+x)θ τωW (x)ω. (3.12)

Substituting (3.10)–(3.12) into (3.8) proves directly (3.7). Hence the proof of the Lemma 3.1 is complete. �
Remark 3.1. For r1 > 0, we just use W (x) in (3.1) with

δ−(x) = 1 − e−2θeθx, δ+(x) = 1 + e−2θeθx.

The same argument allows to establish the Lemma 3.1.

Proof of Theorem 2.1. The proof is a direct application of the Proposition 3.1 and the Lemma 3.1. �

The proof of Theorem 2.1 can be generalized to non-linear systems of the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂R
∂t

= a(x)∂R
∂x

+ b(x,R)

R−(0, t) = D0R
+(0, t)

R+(1, t) = D1R
−(1, t)

R(x, 0) = R0(x)

(3.13)

where b is a smooth non-linear function from (0, 1) × R
n to R

n satisfying a non-linear dissipation condition

2 τω b(x, ω) − τω a′(x)ω ≤ 0, ∀ (x, ω) ∈ (0, 1) × R
n, (3.14)

and a technical condition like

b(x, 0) = 0, sup
x ∈ (0, 1)
ω ∈ R

n

∥∥∥∥∫ 1

0

∂b(x, τω)
∂R

dτ
∥∥∥∥
L(Rn)

<∞. (3.15)

Using the Theorem 1.5 (p. 13, [27]) or [13], the above proofs and the identity

b(x, ω) =
(∫ 1

0

∂b(x, τω)
∂R

dτ
)
ω,

we prove the following generalization of Theorem 2.1.
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Corollary 3.1. Suppose that all the hypothesis H1–H3 are satisfied for (3.13) except that the corresponding
conditions in H3 and H1 are replaced by (3.14) and (3.15), respectively. Then, for every R0 ∈ C1[0, 1] satisfying
the compatibility condition, the non-linear system (3.13) has a unique solution R ∈ C([0,∞), H) and there are
some positive constants K and α independent of R0 such that:

∫ 1

0

‖R(x, t)‖2
Rndx ≤ Ke−αt

∫ 1

0

‖R0(x)‖2
Rndx.

We will give more comments on Corollary 3.1 with the heat exchanger example in the next section. Notice
just that (3.15) is a global Lipschitz condition on the non-linear term which could be improved further, see
[4,21,42] and the references therein.

4. Examples and applications

In this section we work out several examples. One of them is the model of the heat exchanger and another
one is a dynamical system described by PDEs defined on the unit disk. We apply directly the Theorem 2.1
to prove the exponential stability of the heat exchanger. For the second example we construct a Lyapunov
functional to prove its exponential stability. We show how the Lyapunov direct method is extended to PDE
systems of higher spatial dimension (see also [37,40]). Through these examples we explain how our results are
related to the reviewed literature.

Example 1. Consider the contra-current heat exchanger process which is an important apparatus in chemical
engineering. The dynamic of the temperatures T1 and T2 in the contra-current fluids are described by the
following PDE: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂T1
∂t

= −m1
∂T1
∂x

−m3(T1 − T2),

∂T2
∂t

= m2
∂T2
∂x

+m4(T1 − T2),

T1(0, t) = T10, T2(1, t) = T20,
T1(x, 0) = φ1(x), T2(x, 0) = φ2(x),

(4.1)

where mi, i = 1, 2, 3, 4, are positive constants and T10 and T20 being positive constants represent the inlet
temperatures to the heat exchanger. In (4.1), usually m3 is different from m4. First, this is because the contra-
current fluids may have different physical properties. Second the sectional surfaces may be different for the two
fluids even when they have the same physical properties.

It is easy to show that the system (4.1) has a unique stationary solution for each pair (T10, T20). Using the
Theorem 2.1 we prove that for all the initial values φ1 and φ2 of the temperatures, they tend to the stationary
ones when the time goes to the infinity.

Let us consider the variations of the temperatures around the stationary ones. The dynamic of the variations
is described by the following PDE:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂
∂t

(
R1

R2

)
=
( −m1 0

0 m2

)
∂
∂x

(
R1

R2

)
+
( −m3 m3

m4 −m4

)(
R1

R2

)
,

R1(0, t) = 0, R2(1, t) = 0,
R1(x, 0) = φ̃1(x), R2(x, 0) = φ̃2(x).

(4.2)
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With the linear transformation R1 =
√
m3R̃1 and R2 =

√
m4R̃2, it is not difficult to see that the PDE of

(R̃1, R̃2) takes the form (2.1) and satisfies all the hypothesis H1–H3 with

a(x) = diag(−m1,m2),

b(x) =
( −m3

√
m3m4√

m3m4 −m4

)
,

D0 = 0, D1 = 0.

Hence (R1(x, t), R2(x, t)) tends to zero when t→ ∞. Here the proof of the exponential stability is much simpler
than that via its transfer function (see [41]).

Let us consider a non-linear case of (4.1) to show the usefulness of Lyapunov’s method in dealing with
nonlinearities. The non-linear heat exchanger that we consider is governed by the following PDE⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂T1
∂t

= −m1
∂T1
∂x

−m3φ(T1 − T2),

∂T2
∂t

= m2
∂T2
∂x

+m4φ(T1 − T2),

T1(0, t) = 0, T2(1, t) = 0,
T1(x, 0) = ϕ1(x), T2(x, 0) = ϕ2(x),

(4.3)

where φ is a smooth increasing function such that φ(0) = 0 and supξ∈R
|φ′(ξ)| ≤M1 for some constant M1 > 0.

We claim that for every smooth initial condition (ϕ1, ϕ2), the solution (T1(·, t), T2(·, t)) converges exponentially
to zero in (L2(0, 1))2 as the time goes to the infinity. Indeed, as in the linear case we use the transformation
R1 = T1/

√
m3 and R2 = T2/

√
m4 to rewrite (4.3) as follows⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂R1
∂t

= −m1
∂R1
∂x

−√
m3φ(

√
m3R1 −√

m4R2),

∂R2
∂t

= m2
∂R2
∂x

+
√
m4φ(

√
m3R1 −√

m4R2),

R1(0, t) = 0, R2(1, t) = 0,
R1(x, 0) = ϕ1(x)/

√
m3, R2(x, 0) = ϕ2(x)/

√
m4.

(4.4)

All the conditions of Corollary 3.1 are satisfied on the system (4.4). By applying Corollary 3.1 we prove
exponential stability of the non-linear heat exchanger. By direct computation with the Lyapunov functional
defined in (3.4) and applied on (4.4), we can find some positive constants k1 and k2 such that for every smooth
solution R(x, t),

dVθ(R(·, t))
dt

≤ −(θk1 − k2)e−2θVθ(R(·, t)).
This also implies exponential stability of (4.3).

Remark 4.1. The matrix B =
[ −m3 m3

m4 −m4

]
in the system (4.2) has for eigenvalues λ1 = 0 and λ2 =

−(m3 +m4). Through a transformation the system is written in the conservative-dissipative form

Rt =
1

m3 +m4

[
m3m2 −m4m1 m3m4(m1 +m2)

m1 +m2 m2m4 −m1m3

]
Rx +

[
0 0
0 −(m3 +m4)

]
R. (4.5)

(We denote, sometimes by Rt, R’s partial derivative of t.) It is easy to verify that the system is strictly
entropy dissipative (w.r.t. the entropy E(R) = τRR) and satisfies the Shizuta-Kawashima condition. From [4],
Theorem 4.2, for any initial condition R0 ∈ L1 ∩ L2(R,R2) the solution of (4.5) decays to zero in the L2 norm
with the rate O(t−

1
4 ) as t→ ∞. Notice that (x, t) ∈ R × R

+ in (4.5).
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Example 2. Let Ω be the open unit disk in the plane: Ω = {(x, y) ∈ R
2 | x2 + y2 < 1}. We consider the

following PDE

∂t

[
u1

u2

]
=
[
∂xu2 + ∂yu1

∂xu1 − ∂yu2 − 2u2

]
, (x, y) ∈ Ω, t ∈ (0,∞), (4.6)

satisfying the boundary conditions: {
(y + 1)u1 + xu2 = 0,
x u1 + (1 − y)u2 = 0, (x, y) ∈ ∂Ω (4.7)

and the initial condition
u(x, y, 0) = u0(x, y). (4.8)

Let the state space for the system (4.6)–(4.7) be the Hilbert space X = (L2(Ω))2 equipped with the norm:
‖u‖2

X =
∫
Ω[|u1(x, y)|2 + |u2(x, y)|2]dxdy. Define the unbounded linear operator A by

D(A) =
{
u =

[
u1

u2

]
∈ (C1(Ω) ∩ C(Ω)

)2 ∣∣∣∣ (y + 1)u1 + xu2 = 0,
x u1 + (1 − y)u2 = 0, (x, y) ∈ ∂Ω

}
(4.9)

Au =
[
∂xu2 + ∂yu1

∂xu1 − ∂yu2 − 2u2

]
, ∀u ∈ D(A). (4.10)

Lemma 4.1. The linear operator A is closable, i.e., it has a closed extension, noted by Ã and called closure
of A.

Proof of Lemma 4.1. It suffices to prove the assertion that for each sequence (fn) in D(A),

(fn → 0, Afn → ξ in X) ⇒ (ξ = 0). (4.11)

Indeed, for any g ∈ (C∞
0 (Ω)

)2,
(Afn, g) =

∫
Ω

(g1 ∂xfn,2 + g1 ∂yfn,1 + g2∂xfn,1 − g2∂yfn,2 − 2g2 fn,2) dxdy

= −
∫

Ω

(fn,2 ∂xg1 + fn,1 ∂yg1 + fn,1 ∂xg2 − fn,2 ∂yg2 + 2g2 fn,2) dxdy, (4.12)

where (·, ·) denotes the inner product on X . By the hypothesis in (4.11), we see that the right member in (4.12)
converges to 0 as n goes to infinity. By the density of C∞

0 (Ω) in L2(Ω) and the continuity of the inner product,
we deduce

∀ g ∈ X, (ξ, g) = (lim
n
Afn, g) = 0.

Consequently ξ = 0. This completes the proof. �
It is easy to see that the domain of the closure D(Ã) is given by

D(Ã) =
{
u =

[
u1

u2

]
∈ (H1(Ω)

)2 ∣∣∣∣ (y + 1)u1 + xu2 = 0,
x u1 + (1 − y)u2 = 0, a.e. (x, y) ∈ ∂Ω

}
. (4.13)

Proposition 4.1. For each initial data u0 ∈ (C∞
0 (Ω))2, there exists a unique solution u ∈ C1(Ω × [0,∞))

which satisfies the system (4.6)–(4.8). Moreover this solution decays exponentially to zero in X norm as time
goes to infinity.
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Proof of Proposition 4.1. We prove that the operator Ã is the generator of a C0 semigroup of contractions which
is exponentially stable on X .

We prove first that Ã is dissipative. Formally, we can write the operator A under the form:

A = L1(x, y)∂x + L2(x, y)∂y + Σ(x, y),

where

L1(x, y) =
(

0 1
1 0

)
, L2(x, y) =

(
1 0
0 −1

)
, Σ(x, y) =

(
0 0
0 −2

)
.

The boundary conditions (4.7) are equivalent to

u(x, y) ∈ S(x, y) = Ker
(
Λ(x, y)

)
, ∀ (x, y) ∈ ∂Ω

where

Λ(x, y) =
(

1 + y x
x 1 − y

)
.

Since the determinant of Λ(x, y) is zero on ∂Ω, then dim(S(x, y)) = 1 for all (x, y) ∈ ∂Ω.

Let u ∈ D(A), by the use of the divergence theorem we get

(Au, u) =
∫

Ω

(u1∂xu2 + u1∂yu1 + u2∂xu1 − u2∂yu2 − 2u2
2)dxdy

=
1
2

∫
∂Ω

(y u2
1 + 2xu1 u2 − y u2

2)dσ − 2
∫

Ω

u2
2 dxdy

=
1
2

∫
∂Ω

(u1 u2)
(
y x
x −y

)(
u1

u2

)
dσ − 2

∫
Ω

u2
2 dxdy. (4.14)

From the boundary conditions (4.7), it comes(
u1

u2

)
=
( −y −x

−x y

)(
u1

u2

)
. (4.15)

Replacing (4.15) in (4.14), we get

(Au, u) = −1
2

∫
∂Ω

(u2
1 + u2

2)dσ − 2
∫

Ω

u2
2 dxdy ≤ 0, (4.16)

so the operator A is dissipative in X . Therefore Ã is also dissipative.
Formally, the computation in (4.14)–(4.16) leads to the following non-positive matrix:

Σ(x, y) + Σ∗(x, y) − ∂x L1(x, y) − ∂y L2(x, y) ≤ 0, ∀ (x, y) ∈ Ω

hence A is formally dissipative, and

u∗ l(x, y)u ≤ 0, ∀u ∈ S(x, y), ∀ (x, y) ∈ ∂Ω. (4.17)

In (4.17), l(x, y) = n1(x, y)L1(x, y) + n2(x, y)L2(x, y) is called the boundary matrix and n(x, y) =
(
n1(x, y);

n2(x, y)
)

= (x; y) is the outer unit normal to Ω at (x, y) ∈ ∂Ω. Moreover the subspace S(x, y) of R
2 is maximal

for the property (4.17), because dim(S(x, y)) = 1 and R
2 does not verify it.
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Next we prove that I − Ã is surjective. Given g ∈ X we look for some f ∈ D(Ã) such that

(I − Ã)f = g. (4.18)

From Lax and Philipps (see [20], Prop. 3.2) we know that for each g ∈ X , there exists some strongly converging
sequence (fn) in D(A) such that (I −A)fn converges strongly to g. By definition the limit f of (fn) belongs to
D(Ã) and satisfies (4.18). Hence I − Ã is surjective. We have proven that Ã is a generator of a C0 semigroup
of contractions T (t) on X .

It remains to prove the exponential stability of Ã. For this purpose we consider the Lyapunov functional

V (u) =
∫

Ω

ey (|u1(x, y, t)|2 + |u2(x, y, t)|2)dxdy,

for u(t) = T (t)u0 a solution from the initial condition u0 ∈ D(A).
By differentiating the function V (u(t)) along the trajectory of (4.6)–(4.8) and by similar computation as

above, we get
V̇ (u) ≤ −V (u).

Consequently the semigroup is exponentially stable: there exists a constant M ≥ 1 such that

‖T (t)‖L(X) ≤M e−t.

Hence the proof is complete. �
Remark 4.2. By direct algebraic computations from (4.6), we find that both u1 and u2 satisfy the classical
D’Alembert equations as follows:

u1tt = Δu1 − 2u1t + 2u1y

u2tt = Δu2 − 2u2t + 2u2y
(4.19)

which are coupled via the boundary condition (4.7). Nevertheless it does not seem possible to deduce, from the
result of [2], that the total energy in this case decays to zero as t→ ∞. Indeed, by a transformation ũ1 = eyu1

and ũ2 = eyu2 the system (4.19) with (4.7) is written as

ũ1tt = Δũ1 − ũ1 − 2ũ1t

ũ2tt = Δũ2 − ũ2 − 2ũ2t, ∀ (x, y, t) ∈ Ω × R
+ (4.20)

which is supplemented by homogeneous boundary condition{
(y + 1)ũ1 + x ũ2 = 0
x ũ1 + (1 − y)ũ2 = 0, (x, y, t) ∈ ∂Ω × R

+.
(4.21)

Both ũ1 and ũ2 satisfy the damped wave equation (4.20) and their energies are given by E(ui) =
∫
Ω(u2

it +
‖∇ui‖2 + u2

i )dxdy, i = 1, 2. However the boundary condition (4.21) is not of the Dirichlet type. To the best of
our knowledge it is still an open question to prove the stability of the system (4.20)–(4.21) in the energy space
defined by V (ũ) = E(ũ1) + E(ũ2).

Remark 4.3. From the above proof of Proposition 4.1 the system (4.6) with the Dirichlet boundary condition
has a unique equilibrium solution u = (0, 0) which is exponentially stable in X :

u1t = u2x + u1y

u2t = u1x − u2y − 2u2, (x, y, t) ∈ Ω × R
+

u1 = u2 = 0, (x, y, t) ∈ ∂Ω × R
+

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.

(4.22)
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Further the exponential stability of the null equilibrium solution is true for the system (4.22) defined on a more
general bounded open domain Ω ⊂ R

2. It is interesting to note that, in the case of Dirichlet boundary condition,
the energy V (u) of every smooth solution of (4.22) converges exponentially to zero with time going to infinity,
by direct application of [31], Theorem 2. Indeed, in this case the transformed system is written as

ũ1tt = Δũ1 − ũ1 − 2ũ1t

ũ2tt = Δũ2 − ũ2 − 2ũ2t, (x, y, t) ∈ Ω × R
+

ũ1 = ũ2 = 0, (x, y, t) ∈ ∂Ω × R
+,

ũ(x, y, 0), ũt(x, y, 0) known for (x, y) ∈ Ω.

(4.23)

Define A = −Δ + I which is strictly positive and self-adjoint in L2(Ω). Let H be the Hilbert space
D(A1/2)

⊕
L2(Ω) with norm ‖u‖2

H = ‖A1/2u1‖2
L2 + ‖u2‖2

L2. There exist some positive constants c > 0 and
α > 0 such that ‖(ũi, ũit)‖H ≤ ce−αt‖(ũ0

i , ũ
0
it)‖H , i = 1, 2.

Remark 4.4. The exponential stability of the system (4.23) can be also deduced directly from that of (4.22).
Indeed, each function u, ut, ux or uy satisfies the same PDE in (4.22) and the Dirichlet condition: ui = uit =
uix = uiy = 0, ∀ i = 1, 2, on ∂Ω × R

+. From Remark 4.3 there are positive constants M > 0 and ω > 0 such
that ‖u‖L2 ≤Me−ωt‖u0‖L2 and ‖us‖L2 ≤Me−ωt‖u0

s‖L2, ∀ s = t, x, y. Addition of these four inequalities gives
the required inequality V (u(t)) ≤ ce−αtV (u0) for some positive constants c, α.

Example 3. We consider the following first order hyperbolic PDE system which describes in particular dynam-
ical behaviour of plug flow reactors:⎧⎨⎩

∂R(x, t)
∂t

= −∂R(x, t)
∂x

+N(R(x, t)), x ∈ (0, 1), t > 0

R(0, t) = 0, R(x, 0) = R0(x)
(4.24)

where R(x, t) ∈ R
n. We suppose that N(z) is a continuously differentiable function defined on R

n such that
N(0) = 0 and ‖N(z)‖Rn ≤ L‖z‖Rn with some Lipschitz constant L > 0. The state space is the Hilbert space
X = (L2(0, 1))n equipped with the inner product ‖f‖2

X =
∫ 1

0 ‖f(x)‖2
Rndx. Then the trivial solution R = 0 is an

exponentially stable equilibrium solution of the system (4.24).

Theorem 4.1. Suppose that N : R
n → R

n is Lipschitz continuous with Lipschitz constant L > 0. Then there
exist positive constants M and ω such that for every smooth R0(x) with R0(0) = 0,

‖R(·, t)‖X ≤Me−ωt‖R0‖X . (4.25)

Proof of Theorem 4.1. From [27], Theorem 1.5, p. 187, for each initial conditionR0 ∈ C1[0, 1] such thatR0(0) = 0
the solution R(x, t) is a classical solution of the system (4.24). Consider the Lyapunov functional candidate
V : X → R

+ such that V (f) =
∫ 1

0 e−αx‖f(x)‖2
Xdx. Differentiating the function V (R(·, t)) along the trajectory

of (4.24) we get

V̇ (R(·, t)) = 2
∫ 1

0

e−αxR�(x, t)∂tR(x, t)dx

= 2
∫ 1

0

e−αxR�(x, t) [−∂xR(x, t) +N(R(x, t))] dx

= −e−αx‖R(x, t)‖2
Rn

∣∣∣1
0
− αV (R(·, t)) + 2

∫ 1

0

e−αxR�(x, t)N(R(x, t))dx.
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Using the global Lipschitz condition on the nonlinearity and the above identity we deduce that

V̇ (R(·, t)) ≤ −e−α‖R(1, t)‖2
Rn − αV (R(·, t)) + 2

∫ 1

0

e−αxL‖R(x, t)‖2
Rndx

≤ −(α− 2L)V (R(·, t)). (4.26)

Taking α ≥ 3L in (4.26), we obtain the following inequality

V (R(·, t)) ≤ e−LtV (R0). (4.27)

Since the square root of V (f) defines an equivalent norm of X : C1‖f‖2
X ≤ V (f) ≤ C2‖f‖2

X for some positive
constants C1 and C2, the inequality (4.27) implies existence of some positive constants M and ω such that
(4.25) holds. �

5. Exponential stability for the uniform topology

The Theorem 2.1 states the exponential stability for the L2 norm. In some particular cases, we can establish
an exponential stability result for the uniform topology by extending the Lyapunov method to the Banach
spaces Lr (1 < r < +∞). We will work on a previous example and we will use the framework of one-parameter
semigroups.

5.1. Exponential stability in Banach spaces Lr, 1 < r < ∞
Consider a fixed real number 1 < r < +∞ and the Banach space Xr = (Lr(0, 1))2 equipped with the norm

‖f‖2
r =

∑2
i=1

(∫ 1

0 |fi(ξ)|rdξ
) 2

r

. Let’s consider the PDE

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂
∂t

(
R1

R2

)
=
( −m1 0

0 m2

)
∂
∂x

(
R1

R2

)
+
( −m3

√
m3m4√

m3m4 −m4

)(
R1

R2

)
,

R1(0, t) = 0, R2(1, t) = 0,
R1(x, 0) = φ̃1(x), R2(x, 0) = φ̃2(x).

(5.1)

We put this PDE in the form of abstract Cauchy problem

{
u̇(t) = Aru(t) +Bru(t)

u(0) = (φ̃1, φ̃2)
(5.2)

for the vector-valued function u : R
+ → Xr. We define the operators Ar, Br on Xr

Arf =
( −m1 0

0 m2

)
f ′, D(Ar) =

{
f ∈ (W 1,r(0, 1))2 | f1(0) = f2(1) = 0

}
(5.3)

Brf =
( −m3

√
m3m4√

m3m4 −m4

)
f, D(Br) = Xr. (5.4)
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Let ρ(Ar) and R(λ;Ar) denote the resolvent set and the resolvent operator of Ar, respectively. It is easy to see
that ρ(Ar) ⊃ (0,∞) and, for all λ ∈ (0,∞), x ∈ [0, 1] and ϕ ∈ Xr,

R(λ;Ar)ϕ (x) =

⎛⎜⎜⎜⎝
1
m1

∫ x

0

e
λ

m1
(ξ−x)

ϕ1(ξ) dξ

− 1
m2

∫ x

1

e
λ

m2
(x−ξ)

ϕ2(ξ) dξ

⎞⎟⎟⎟⎠ . (5.5)

By the well-known convolution inequality we prove that ‖R(λ;Ar)ϕ‖ ≤ ‖ϕ‖/λ for all λ > 0 and all ϕ ∈ Xr. It
follows that Ar generates a C0 semigroup (Sr(t))t≥1 of contractions on Xr. So, by the bounded perturbation
Ar +Br generates also a C0 semigroup (Tr(t))t≥1 on Xr. Moreover Tr(t) is a semigroup of contractions on Xr

because the bounded operator Br is dissipative. Indeed we prove that the semigroup Ur(t) generated by Br is
a semigroup of contractions through a Lyapunov functional.

Let φ0 ∈ Xr and φ(t) = et Brφ0. Consider the Lyapunov functional

W (φ(t)) = ‖φ‖2
r =

(∫ 1

0

|φ1(x, t)|r dx
) 2

r

+
(∫ 1

0

|φ2(x, t)|r dx
) 2

r

. (5.6)

Differentiating W (φ(t)) gives:

1
2
Ẇ (φ(t)) = − m3

(∫ 1

0

|φ1(x, t)|r dx
) 2

r

−m4

(∫ 1

0

|φ2(x, t)|r dx
) 2

r

+
√
m3m4

⎡⎣(∫ 1

0

|φ1(x, t)|r dx
) 2−r

r
∫ 1

0

|φ1(x, t)|r−1sign(φ1)φ2(x, t) dx

+
(∫ 1

0

|φ2(x, t)|r dx
) 2−r

r
∫ 1

0

|φ2(x, t)|r−1sign(φ2)φ1(x, t) dx

⎤⎦ .
By applying Hölder inequality in the two integrals in brackets, we get easily

1
2
Ẇ (φ(t)) ≤ (‖φ1‖r, ‖φ2‖r)

( −m3
√
m3m4√

m3m4 −m4

)( ‖φ1‖r

‖φ2‖r

)
≤ 0. (5.7)

This inequality implies that ‖et Brφ0‖r ≤ ‖φ0‖r. Therefore Br is dissipative and Ar +Br generates a C0 semi-
group of contractions.

To prove the exponential stability of Tr(t), we will construct a Lyapunov functional. Let us consider φ0 ∈
D(Ar), φ(t) = Tr(t)φ0 is solution of the initial value problem:{

φ̇(t) = (Ar +Br)φ(t)
φ(0) = φ0.

(5.8)

Consider the Lyapunov functional

Vθ(φ(t)) =
(∫ 1

0

eθ r x|φ1(x, t)|r dx
) 2

r

+
(∫ 1

0

eθ r x|φ2(x, t)|r dx
) 2

r

, (5.9)

where θ denotes a real number.
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To simplify the notations we set

‖|φi‖| =
(∫ 1

0

eθ r x|φi(x, t)|r dx
) 1

r

, i = 1, 2.

By direct computation we find the derivative of Vθ(φ(t)) with respect to t as follows:

1
2
V̇θ(φ(t)) =

1
r
‖|φ1‖|2−r

{
−m1eθr|φ1(1, t)|r + rθm1

∫ 1

0

eθrx|φ1(x, t)|rdx

+
∫ 1

0

reθrx|φ1(x, t)|r−1sign(φ1(x, t))[−m3φ1(x, t) +
√
m3m4φ2(x, t)]dx

}
+

1
r
‖|φ2‖|2−r

{
−m2|φ2(0, t)|r − rθm2

∫ 1

0

eθrx|φ2(x, t)|rdx

+
∫ 1

0

reθrx|φ2(x, t)|r−1sign(φ2(x, t))[
√
m3m4φ1(x, t) −m4φ2(x, t)]dx

}
.

Using the Hölder inequality we obtain the following estimate:

1
2
V̇θ(φ(t)) ≤ −(‖|φ1‖|, ‖|φ2‖|) Λθ

( ‖|φ1‖|
‖|φ2‖|

)
(5.10)

where the matrix Λθ is symmetric and defined by

Λθ =
(
m3 − θm1 −√

m3m4

−√
m3m4 m4 + θm2

)
. (5.11)

Proposition 5.1. Assume that m2m3 −m1m4 	= 0. Then the system (5.1) is exponentially stable in each state
space among the Banach spaces Xr, 1 < r < ∞, and X∞ = {f ∈ (C[0, 1])2|f1(0) = f2(1) = 0} equipped with
the uniform topology.

Proof of Proposition 5.1. Let θ = k(m2m3 −m1m4) with k > 0. It is easy to see that the matrix Λθ is positive
for each k > 0 such that

k <
1

m1m2
·

Therefore there exist a δ > 0 and a θ∗ ∈ R\{0} with |θ∗| sufficiently small such that

V̇θ∗(φ(t)) ≤ −2δ Vθ∗(φ(t)),

or, equivalently
Vθ∗(φ(t)) ≤ e−2δ t Vθ∗(φ0), t ≥ 0. (5.12)

Using the fact that e−2|θ∗|‖φ‖2
r ≤ Vθ∗(φ) ≤ e2|θ∗|‖φ‖2

r, we get easily the exponential stability in each Xr,
1 < r <∞,

‖Tr(t)φ0‖r ≤Mθ∗ e−δ t ‖φ0‖r ∀ t ≥ 0 (5.13)
where the constant Mθ∗ ≥ 1 is independent of r.

Now let the state space be X∞ = {f ∈ (C[0, 1])2 | f1(0) = f2(1) = 0} equipped with the uniform topology:
‖f‖X∞ = maxx∈[0,1]{|f1(x)|, |f2(x)|}. We define the unbounded operator Ã∞ by

D(Ã∞) = {f ∈ (C1[0, 1])2 ∩X∞ | Arf +Brf ∈ X∞}
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and for each f ∈ D(Ã∞),
Ã∞f = Arf +Brf.

We prove that Ã∞ is the generator of a C0 semigroup on X∞ satisfying

‖T∞(t)φ0‖∞ ≤Mθ∗ e−δ t‖φ0‖∞ (5.14)

for the same constants Mθ∗ and δ as in (5.13). Note that for any f ∈ X∞, ‖f‖2
∞ = limr→∞ ‖f‖2

r = ‖f1‖2
∞ +

‖f2‖2∞. As the norm ‖ ·‖∞ is equivalent to ‖ ·‖X∞ , the inequality (5.14) means the exponential stability of (5.1)
in the state space X∞ with the uniform topology.

We have only to prove (5.14). For this purpose we use the fact that the function r → ‖f‖r is continuous
from (1,∞] to [0,∞) for any fixed f ∈ X∞. It is easy to see that Ã∞ is the generator of a C0 semigroup
on X∞. Since X∞ ⊂ Xr and D(A∞) ⊂ D(Ar) for 1 < r < ∞, taking limit in (5.13) as r goes to ∞ we
prove (5.14). �

Remark 5.1. Even if m1m4 − m2m3 = 0, the conclusion of the Proposition 5.1 is still true. It is proved
by constructing another Lyapunov functional. Indeed let r ∈ ]1,∞[ and let s = r

r−1 . Since Ar + Br is the
generator of the semigroup Tr(t) in the reflexive Banach space Xr, its dual A∗

r +Br is the generator of the dual
semigroup T ∗

r (t) in the dual space X∗
r = Xs. Recall that the duality product of Xr/Xs is given by

〈f, g〉Xr ,Xs =
∫ 1

0

[f1(x)g1(x) + f2(x)g2(x)] dx, ∀ f ∈ Xr, g ∈ Xs.

The dual operator A∗
r on Xs is defined by

A∗
rg =

(
m1 0
0 −m2

)
g′, D(A∗

r) =
{
g ∈ (W 1,s(0, 1))2 | g1(1) = g2(0) = 0

}
. (5.15)

Let us consider φ0 ∈ D(A∗
r), φ(t) = T ∗

r (t)φ0 is solution of the initial value problem:{
φ̇(t) = (A∗

r +Br)φ(t)
φ(0) = φ0.

(5.16)

First apply the linear transformation to the evolution equation (5.16):⎧⎨⎩ ψ1(t) = m
1
2r − 1

2s
3 φ1

ψ2(t) = m
1
2r − 1

2s
4 φ2.

(5.17)

Then the PDE satisfied by (ψ1, ψ2) takes the form:⎧⎪⎪⎨⎪⎪⎩
∂
∂t

(
ψ1

ψ2

)
=
(
m1 0
0 −m2

)
∂
∂x

(
ψ1

ψ2

)
+

⎛⎝ −m3 m
1
r
3 m

1
s
4

m
1
s
3 m

1
r
4 −m4

⎞⎠( ψ1

ψ2

)
,

ψ1(1, t) = 0, ψ2(0, t) = 0.

(5.18)

Consider the Lyapunov functional

Wθ(ψ) =
∫ 1

0

[
pθ(x)|ψ1(x, t)|s + qθ(x)|ψ2(x, t)|s

]
dx, θ > 0 (5.19)
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with pθ(x) = 2 − e−θx and qθ(x) = 2 + e−θx. By simple computations we find the time derivative of Wθ(ψ)
along each trajectory of (5.18) as follows:

Ẇθ(ψ) = − m1|ψ1(0, t)|s −m1θ

∫ 1

0

e−θx|ψ1|s dx− sm3

∫ 1

0

pθ(x)|ψ1|s dx

+ sm
1
r
3 m

1
s
4

∫ 1

0

pθ(x)|ψ1|s−1sign(ψ1)ψ2 dx

− m2qθ(1)|ψ2(1, t)|s −m2θ

∫ 1

0

e−θx|ψ2|s dx− sm4

∫ 1

0

qθ(x)|ψ2|s dx

+ sm
1
s
3 m

1
r
4

∫ 1

0

qθ(x)|ψ2|s−1sign(ψ2)ψ1 dx. (5.20)

The following Young’s inequality [16], p. 61, will be made use of in the upcoming estimates: for every a > 0,
b > 0, p > 0 and q > 0 such that 1

p + 1
q = 1,

ab ≤ ap

p
+
aq

q
· (5.21)

Let p = s, q = r, a = m
1/s
3

[∫ 1

0
|φ1|sdx

]1/s

and b = m
1/r
4

[∫ 1

0
|φ2|sdx

]1/r

and let us apply (5.21). We exchange
s and r and apply again (5.21) to prove the following inequality

m3

∫ 1

0

|φ1|sdx+m4

∫ 1

0

|φ2|sdx =
m3

s

∫ 1

0

|φ1|sdx+
m4

r

∫ 1

0

|φ2|sdx+
m3

r

∫ 1

0

|φ1|sdx+
m4

s

∫ 1

0

|φ2|sdx ≥

m
1/s
3 m

1/r
4

[∫ 1

0

|φ1|sdx
]1/s [∫ 1

0

|φ2|sdx
]1/r

+m
1/r
3 m

1/s
4

[∫ 1

0

|φ1|sdx
]1/r [∫ 1

0

|φ2|sdx
]1/s

. (5.22)

By s = r
r − 1 and the classical Hölder inequality we have

∫ 1

0

|φ1|s−1 |φ2|dx ≤
[∫ 1

0

|φ2|sdx
]1/s [∫ 1

0

|φ1|sdx
]1/r

. (5.23)

Using the inequalities (5.22) and (5.23) in (5.20), we obtain the estimate:

Ẇθ(ψ) ≤ −(m1θ − 2m3s)
∫ 1

0

e−θx|ψ1|s dx−m2 θ

∫ 1

0

e−θx|ψ2|s dx. (5.24)

Therefore, choosing θ = θ∗ = 1/m2 + (1 + 2m3s)/m1 we get

Ẇθ∗(ψ) ≤ −
∫ 1

0

e−θ∗x|ψ1|s dx−
∫ 1

0

e−θ∗x|ψ2|s dx.

By simple majorations and by (5.19) we obtain

Ẇθ∗(ψ) ≤ −1
3
e−θ∗

Wθ∗(ψ),

which implies, by integration, the estimate

Wθ∗(ψ) ≤ e−λtWθ∗(ψ(0))
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for λ = 1
3e−θ∗

> 0. Since ‖Tr(t)‖L(Xr) = ‖T ∗
r (t)‖L(Xs), the exponential stability is proved in each Xr,

1 < r <∞:
‖Tr(t)φ0‖r ≤Me−λ(1−1/r)t‖φ0‖r ∀ t ≥ 0, φ0 ∈ D(Ar), (5.25)

where the constant M ≥ 1 is independent of r and the exponent has a non-zero finite limit when r goes to ∞.

Remark 5.2. The above method can be generalized to prove the exponential stability in Xr, 1 < r ≤ ∞, for
systems of type (2.1) where the matrices a(x) and b(x) are constants with b(x) symmetric, D0 = 0, and D1 = 0.

5.2. Numerical simulations

Let us consider the contra-flow heat exchanger system described by the following PDE:

∂

∂t

(
R1

R2

)
=
(−m1 0

0 m2

)
∂

∂x

(
R1

R2

)
+
(−m3 m3

m4 −m4

)(
R1

R2

)
R1(0, t) = 0, R2(1, t) = 0

R1(x, 0) = φ1(x), R2(x, 0) = φ2(x).

(5.26)

From the theoretical point of view, (R1(x, t), R2(x, t)) tends exponentially to zero in the uniform norm as t → ∞.
Moreover we can check it by simulation. Indeed we take m1 = m2 = m3 = 1, m4 = 4, T10 = 20 and T20 = 80,
and the initial condition as follows

φ1(x) = T10(k1x
2 + 1)e−x2 − (4e3 − e3x)T10 + (e3x − 1)T20

4e3 − 1

φ2(x) = T20e
− (1−x)2

t1 − 4(e3 − e3x)T10 + (4e3x − 1)T20

4e3 − 1
where k1 = T20

T10
e1−1 and t1 = −1

log
T10
T20

. The initial condition is chosen to satisfy the compatibility condition. The

system (5.26) is solved by the finite difference method applied on the derivative with respect to x. The partial
differential equation is approximated by ordinary differential equations (ODE) with respect to the time t.
The ODE system is solved by Matlab R12. Figures 1 and 2 represent the evolution of the profiles of the
temperatures R1 and R2 along the exchanger. We observe that the system under consideration is stable,
since the solution of (5.26) converges to zero in some finite time, which is in conformity with the theoretical
result. Figure 3 shows the dynamical evolution of the uniform norm of the state variables R(x, t). The system
is apparently dissipative with the respect to the uniform norm and its solution converges monotonically to zero
in the uniform norm.

6. Conclusions

In this paper we have presented a brief and concise review on the applications of Lyapunov’s direct method
and its development in the studies of asymptotic behaviour of dynamical systems, in particular, of distributed
parameter systems governed by hyperbolic PDEs. To meet the growing demand from chemical engineering we
have investigated a specific class of symmetric hyperbolic systems in terms of stability. We have presented
a new proof of some stability result in [31] by constructing Lyapunov functionals. The presented proof is a
generalization of a previous one [40] in the sense that no symmetry condition is asked for the matrix b(x).
Compared with the method of characteristics used in [31] the Lyapunov method is direct, simple and admits
extension to cases of nonlinearities, multiple spatial variables and more general Banach spaces. To show potential
applications of the proved theorem we have worked out a heat transfer process – counter current heat exchangers.
Based on the example we have shown how nonlinearities can be taken into account easily by the constructed
Lyapunov functionals. We have also applied the Lyapunov’s method to prove exponential stability of some
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Figure 1. Dynamical evolution of R1(x, t).
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Figure 2. Dynamical evolution of R2(x, t).

hyperbolic PDEs with two space variables which are related to the classical D’Alembert equation. Our stability
results have been compared and contrasted with existing results in the literature.

Through examples we have endeavoured to give an insight into effective applications of the Lyapunov method
in the framework of Banach spaces: Lp spaces and the space of continuous functions. The Lyapunov func-
tionals that we have elaborated would be potentially utilizable for investigating stability of nonlinear sys-
tems in a more general framework of operators (cf. [4]) as well as for doing robust feedback control [8,9,34].
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Figure 3. Dynamical evolution of
(
‖R1(., t)‖2

∞ + ‖R2(., t)‖2
∞

)1/2

.

However, in the framework of operators the stability problem is more complex even for the class of symmetric
hyperbolic systems (2.1). In that framework the asymptotic decay of solutions will be exponential or polyno-
mial according to the case. The present setting is far from proposing a necessary and sufficient condition of
asymptotic stability for the studied systems. In this aspect more sophisticated notions based on the micro-local
behaviour analysis would be necessary to be made use of for a complete theory of stability (cf. [6,33] and the
related references there).
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Bernard - Lyon 1, France (2004).

[37] A. Tchousso and C.Z. Xu, Exponential stability of symmetric hyperbolic systems using Lyapunov functionals, in Proceedings
of the 10th IEEE International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland (2004)
361–364.

[38] A.J. van der Schaft, Stabilization of Hamiltonian systems. Nonlinear Anal. Methods Appl. 10 (1986) 1021–1035.

[39] C.Z. Xu and G. Sallet, Exponential stability and transfer functions of a heat exchanger network. Rapport de Recherche de
l’INRIA 3823 (1999) 1–21.

[40] C.Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems.
ESAIM: COCV 7 (2002) 421–442.

[41] C.Z. Xu, J.P. Gauthier and I. Kupka, Exponential stability of the heat exchanger equation, in Proceedings of the European
Control Conference, Groningen, The Netherlands (1993) 303–307.

[42] E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non
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