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MINIMIZING MOVEMENTS FOR DISLOCATION DYNAMICS
WITH A MEAN CURVATURE TERM
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Abstract. We prove existence of minimizing movements for the dislocation dynamics evolution law
of a propagating front, in which the normal velocity of the front is the sum of a non-local term and
a mean curvature term. We prove that any such minimizing movement is a weak solution of this
evolution law, in a sense related to viscosity solutions of the corresponding level-set equation. We also
prove the consistency of this approach, by showing that any minimizing movement coincides with the
smooth evolution as long as the latter exists. In relation with this, we finally prove short time existence
and uniqueness of a smooth front evolving according to our law, provided the initial shape is smooth
enough.
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1. Introduction

In this paper, we investigate the existence of minimizing movements (see Almgren, Taylor and Wang [1],
Ambrosio [5], and the book by Ambrosio, Gigli and Savaré [6]) for a non-local geometric law governing the
movement of a family {K(t)}0≤t≤T of compact subsets of R

N :

Vx,t = Hx,t + c0(·, t) � 1K(t)(x) + c1(x, t), (1.1)

where Vx,t denotes the normal velocity at time t of a point x of ∂K(t), Hx,t the mean curvature of ∂K(t) at x
(with negative sign for convex sets), � is the convolution in space, 1K(t) is the indicator function of the set K(t)
and c0, c1 : R

N × [0, T ] → R are given functions.
The non-local dependence c0(·, t)�1K(t) in the expression of Vx,t is typical of models for dislocation dynamics

(see Alvarez et al. [4]). Moreover we think of the term c1 as a prescribed driving force. Equation (1.1) with
only these two terms (and without a mean curvature term) is currently also a center of interest: in the context
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of viscosity solutions, its level-set formulation, namely

ut(x, t) = [c0(·, t) � 1{u(·,t)≥0}(x) + c1(x, t)]|Du(x, t)|, (1.2)

was first investigated by Alvarez et al. [4], who proved short time existence and uniqueness of a viscosity solution
to (1.2), and then by Alvarez, Cardaliaguet and Monneau [2], and by Barles and Ley [9], who proved, by different
methods, long time existence and uniqueness under suitable monotonicity assumptions. In (1.2) and throughout
the paper, ut denotes the time derivative of u, Du denotes the space gradient of u, and | · | is the standard
Euclidean norm. The mean curvature term in (1.1) corresponds to an additional line tension term in the elastic
energy of the dislocation which better approximates what happens near the dislocation (see the introduction
of [18] for a discussion on the model). The level-set formulation of the geometric law (1.1),

ut(x, t) =
[
div
(

Du

|Du|
)

(x, t) + c0(·, t) � 1{u(·,t)≥0}(x) + c1(x, t)
]
|Du(x, t)|, (1.3)

was studied by the first author in [18]. He proved short time existence and uniqueness of a viscosity solution
to (1.3).

In both cases, the source of major difficulties is the non-local dependence in the expression of the velocity,
c0(·, t) � 1K(t), which prevents comparison principle to hold. Indeed, c0 is not necessarily non-negative, and
physical models show that this situation can not be avoided. The problem of existence and uniqueness of a
viscosity solution to the level-set equations (1.2) and (1.3) for general kernels c0 is therefore still open. For
example, the long time existence and uniqueness results mentioned above were obtained under the assumption
that c0(·, t)�1E +c1(x, t) ≥ 0 for any set E, which guarantees that the dislocation is expanding, and a regularity
assumption on the initial shape K(0). The short time existence and uniqueness for (1.3) was obtained in the case
where the initial shape is a graph or a Lipschitz curve, without assumption on the sign of the non-local term. It
is worth mentioning however that this equation benefits from the regularizing effect of the mean curvature term.

To overcome this difficulty, Barles et al. defined in [7] a notion of weak solution for (1.2), and proved existence
of such weak solutions under general assumptions on c0 and c1. A similar concept of solution already appears
in [28] for FitzHugh-Nagumo systems. In this work, we wish to provide such weak solutions for (1.1). We will
work with set-valued mappings E : [0, T ] → P(RN ) with uniformly bounded images which are continuous in
the L1 topology, that is to say, t �→ 1E(t) belongs to C0([0, T ], L1(RN )). We assume that c0 and c1 satisfy some
regularity assumptions which guarantee that (x, t) �→ c0(·, t) � 1E(t)(x) + c1(x, t) is smooth enough for such a
mapping E. Let us now explain what we call a weak solution of (1.1):

Definition 1.1 (weak solutions). Assume that c0 ∈ Lip
(
[0, T ], L1(RN )

)
, c1 ∈ Lip

(
[0, T ], L∞(RN )

)
, that c0

and c1 are continuous on R
N × [0, T ] and Lipschitz continuous in space. Let E : [0, T ] → P(RN) be a set-valued

mapping with uniformly bounded images such that t �→ 1E(t) belongs to C0([0, T ], L1(RN )).
Let u be the unique uniformly continuous viscosity solution of⎧⎪⎨⎪⎩ut(x, t) =

[
div
(

Du

|Du|
)

(x, t) + c0(·, t) � 1E(t)(x) + c1(x, t)
]
|Du(x, t)| for (x, t) ∈ R

N × (0, T )

u(x, 0) = u0(x) for x ∈ R
N ,

(1.4)

where u0 is a uniformly continuous function such that E0 = {u0 ≥ 0},
◦

E0= {u0 > 0}.

We say that E is a weak solution of (1.1) if we have, for all t ∈ [0, T ], and almost everywhere in R
N ,

{u(·, t) > 0} ⊂ E(t) ⊂ {u(·, t) ≥ 0}.
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The goal of this paper is to construct a weak solution to the geometric law (1.1). To do this, we wish
to adapt the approach of Almgren, Taylor and Wang [1] (also discovered independently by Luckhaus and
Sturzenhecker [22]) – initially proposed for the mean curvature motion – to the geometric law (1.1) with its
additional non-local term and driving force. The idea of minimizing movements is, for a given initial set E0, to
select a sequence of sets Eh(k) associated with time-steps of size h by minimizing a suitable functional, so that
the corresponding Euler equation is a discretization of our evolution law. A compactness result for sets of finite
perimeter guarantees the existence of a subsequence (hn) and a set-valued mapping E : [0, T ] �→ P(RN ) such
that Ehn([t/hn]) converges to E(t) in L1(RN ) for all t, where [·] denotes the integer part. Such a E is called
a minimizing movement (or generalized minimizing movement) associated to the geometric law. Moreover, we
prove a priori estimates for the discrete evolution Eh, which imply the Hölder continuity of the limit E in the
appropriate metric. This guarantees that the sets E(t) cannot vary in a wildly discontinuous way.

Let us now explain the interest of this approach in the perspective of proving existence of weak solutions.
For any sequence (hn) going to 0 and such that Ehn([·/hn]) converges to a minimizing movement E, we are
able, thanks to the Euler equation corresponding to our minimization procedure, to compute the velocity (in
the viscosity sense) of the upper and lower limit of the Ehn(k)’s as n → ∞, E∗ and E∗, in function of E. This
enables us to compare E∗ and E∗ with the 0 level set of the viscosity solution u appearing in Definition 1.1.
Since E∗ ⊂ E ⊂ E∗, we will deduce that E is a weak solution of (1.1). In case no fattening occurs for u, we
remark that u is a viscosity solution of (1.3).

Of course it is a natural request that this construction be consistent with smooth flows if they exist. To verify
this, we further show that if ∂E0 is a smooth hypersurface, then there is a unique smooth solution for small
times of the evolution law (1.1), and that any minimizing movement E coincides with this smooth evolution as
long as the latter exists. This uses the notions of lower/upper limits mentioned above and of sub/super pairs
of solutions of Cardaliaguet and Pasquignon [14].

To state our results in more details below, we first need to fix some notation and assumptions that will be
used throughout the paper.

Notation

• For k ∈ N, Bk
r (x) (resp. B

k

r (x)) denotes the open (resp. closed) ball of radius r centered at x ∈ R
k, and

Lk is the Lebesgue measure on R
k. If k is not specified, we mean that k = N . We set ωk = Lk(Bk

1 (0)). The
Hausdorff measure of dimension k on R

N is denoted by Hk.

• The notation SymN represents the set of real square symmetric matrices of size N .

• We say that a sequence (En) of subsets of R
N converges to E in L1(RN ) if 1En → 1E in L1(RN ) as n → +∞.

• Let P be the set of all bounded subsets of R
N having finite perimeter (see [15] for the definition and properties

of sets of finite perimeter). We denote by P (E) the perimeter of E ∈ P , by P (E, U) the perimeter of E in U
subset of R

N , and we endow P with the metric

δ(E, F ) = ‖1E − 1F ‖L1(RN ) = LN (EΔF ),

where EΔF is the symmetric difference of E and F , i.e., EΔF = (E ∪ F ) \ (E ∩ F ).
In particular we call equivalent two sets E and F such that δ(E, F ) = 0, and we also say that E = F almost

everywhere (a.e.). Similarly, we say that E ⊂ F almost everywhere if LN (E \ F ) = 0.
Moreover ∂∗E denotes the reduced boundary of E ∈ P . We also define a notion of boundary for E ∈ P that

is invariant in the class of E formed by the sets that are equivalent to E:

∂E = {x ∈ R
N ; 0 < LN (E ∩ Br(x)) < LN (Br(x)) for all r > 0}.
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Then ∂E is closed, and in fact ∂E = ∂∗E.

Definitions of tubes (see [12])

• For any subset E of R
N × [0, T ], we set E(t) = {x ∈ R

N ; (x, t) ∈ E}. Conversely a mapping t ∈ [0, T ] �→
E(t) ∈ P(RN ) can be seen as a subset of R

N × [0, T ] by identifying E with its graph ∪t∈[0,T ]E(t) × {t}.
• We call tube a bounded subset E of R

N × [0, T ]. We call regular tube a tube E with C1 boundary in R
N × [0, T ]

such that for any regular point (x, t) ∈ ∂E, the unit outer normal (νx, νt) to E at (x, t) satisfies νx �= 0. In this
case, the normal velocity of E at (x, t) is −νt/|νx|.
• Finally a mapping t ∈ [0, T ] �→ Er(t) is said to be a smooth evolution with C3+α boundary if Er is a compact
regular tube such that Er(t) has C3+α boundary for all t ∈ [0, T ].

Assumptions on c0 and c1

Throughout the paper, c0 and c1 are assumed to satisfy the following regularity assumption:

(A) c0 ∈ Lip
(
[0, T ], L1(RN )

)
, c1 ∈ Lip

(
[0, T ], L∞(RN )

)
.

In particular, we set K0 = Lip(c0), and K1 = Lip(c1), so that for all t, s ∈ [0, T ],

‖c0(·, t) − c0(·, s)‖1 ≤ K0|t − s| and ‖c1(·, t) − c1(·, s)‖∞ ≤ K1|t − s|.

We finally set
L0 = ‖c0‖L∞([0,T ],L1(RN )), L1 = ‖c1‖L∞([0,T ],L∞(RN )) and L = L0 + L1. (1.5)

We will sometimes need additional regularity for c0 and c1. When this happens, we will specify which
assumptions are made in each of the statements of theorems. In particular we will sometimes need to require
that c0 be symmetric, so that the gradient flow of our functional is, at least formally, a solution of (1.1):

(Symmetry of c0) We say that c0 is symmetric if c0(−(·), t) = c0(·, t) for all t ∈ [0, T ].

Main results

For h > 0 (the time step), k ∈ N such that kh ≤ T , E and F in P , we define, following the original idea of
Almgren, Taylor and Wang [1], the functional

F(h, k, E, F ) = P (E) +
1
h

∫
EΔF

d∂F (x) dx −
∫

E

(
1
2
c0(·, kh) � 1E(x) + c1(x, kh)

)
dx, (1.6)

where dC is the distance function to a closed set C.

Let us now define a minimizing movement:

Definition 1.2 (minimizing movement [1]). Let T > 0 and E0 ∈ P . We say that E : [0, T ] → P is a minimizing
movement associated to F with initial condition E0 if there exist a sequence (hn), hn → 0+, and sets Ehn(k) ∈ P
for all k ∈ N verifying khn ≤ T , such that:

(1) Ehn(0) = E0.
(2) For any k, n ∈ N with (k + 1)hn ≤ T ,

Ehn(k + 1) minimizes the functional E → F(hn, k + 1, E, Ehn(k)) (1.7)

among all E′s in P .
(3) For any t ∈ [0, T ], Ehn([t/hn]) → E(t) in L1(RN ) as n → +∞, where [·] denotes the integer part.
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The first result of the paper is the existence of minimizing movements associated to our functional F :

Theorem 1.3 (existence of minimizing movements). Assume that c0 and c1 satisfy (A). Let E0 ∈ P with
LN (∂E0) = 0. Then, there exists a minimizing movement E associated to F with initial condition E0 such that
for all t, s verifying t ≤ T and 0 ≤ s ≤ t < s + 1, we have

δ(E(t), E(s)) ≤ γ (t − s)
1

N+1 , (1.8)

where γ = γ(N, T, E0, K0, K1, L0, L1) is a constant.

We then prove that any such minimizing movement is a weak solution of (1.1):

Theorem 1.4 (minimizing movements are weak solutions). Assume that c0 is symmetric, that c0 and c1

satisfy (A), are continuous on R
N × [0, T ] and Lipschitz continuous in space. Let E0 ∈ P with LN (∂E0) = 0.

Let E be any minimizing movement associated to F with initial condition E0.

Then E is a weak solution of (1.1) in the sense of Definition 1.1. In particular if no fattening occurs, i.e.
if the corresponding solution u of (1.4) is such that {u(·, t) = 0} has zero LN measure, then u is a viscosity
solution of (1.3) with initial datum u0.

Let us already point out that even in the absence of fattening (a favorable situation which is not known to
be generic), uniqueness for (1.3) is, to our knowledge, an open problem. The approach we use here provides
one particular solution.

Our third result states that any minimizing movement E coincides with the smooth evolution Er as long as
the latter exists:

Theorem 1.5 (agreement with the smooth flow). Assume that c0 is symmetric, that c0 and c1 satisfy (A), are
continuous on R

N × [0, T ] and Lipschitz continuous in space. Let E0 be a compact subset of R
N with uniformly

C3+α boundary. Let Er be a smooth evolution with C3+α boundary defined on [0, T ], starting from E0, with
normal velocity given by

Vx,t = Hx,t + c0(·, t) � 1Er(t)(x) + c1(x, t), (1.9)

where Hx,t is the mean curvature of ∂Er(t) at x.

Then any minimizing movement E associated to F with initial condition E0 verifies E(t) = Er(t) almost
everywhere, for all t ∈ [0, T ].

In relation with this, we finally prove short time existence and uniqueness of a smooth solution Er to (1.1),
when E0 is sufficiently smooth. The regularity assumptions on c0 and c1 are the following ones:

c0 ∈ L∞([0, T ], W 2,∞(RN )) ∩ W 1,∞([0, T ], L∞(RN )) (1.10)

and
c1 ∈ W 2,1;∞(RN × [0, T ]), (1.11)

where f ∈ W 1,∞([0, T ], L∞(RN )) means that f is Lipschitz continuous with respect to t ∈ [0, T ], uniformly
with respect to x ∈ R

N , and for n ∈ N
∗,

Wn,1;∞(RN × (0, T )) =

{
f ∈ L∞(RN × (0, T ))

∣∣∣∣∣ ft,
∂αf
∂xα ∈ L∞(RN × (0, T ))

for α ∈ N
N s.t.

∑N
i=0 αi ≤ n

}
.

Theorem 1.6 (existence and uniqueness of a smooth solution). Assume the regularity (1.10)–(1.11). Let E0

be a compact subset of R
N with uniformly C3+α boundary. Then there exists a small time t0 > 0 and a unique

smooth evolution Er with C3+α boundary defined on [0, t0], starting from E0, with normal velocity given by (1.9).
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Let us now explain how this paper is organized. First, in Section 2, we prove the existence of minimizing
movements and the Hölder estimate Theorem 1.3. Section 3 is devoted to proving a regularity result for
F -minimizers that we use in Section 4 to prepare the proofs of Theorems 1.4 and 1.5, respectively given in
Sections 5 and 6. Finally, in Section 7, we prove Theorem 1.6.

2. Existence of minimizing movements

This section is concerned with the existence of minimizing movements associated to F (Th. 1.3). Let us start
with existence and basic properties of F -minimizers.

2.1. F-minimizers

The first point to check is the existence of F -minimizers:

Proposition 2.1 (existence of F -minimizers). For all h > 0, k ∈ N with kh ≤ T , and F ∈ P, there exists a
minimizer of E �→ F(h, k, E, F ) on P. Moreover, if L is defined by (1.5), then

F ⊂ BR(0) a.e. ⇒ E ⊂ BR+Lh(0) a.e.

whenever E is a minimizer.

Proof. Let us fix F ∈ P with F ⊂ BR(0) a.e., and set B = BR+Lh(0). Let (En) be a minimizing sequence for
F(h, k, ·, F ). We want to prove that for all n ∈ N,

F(h, k, En ∩ B, F ) ≤ F(h, k, En, F ). (2.1)

First, since B is open and convex, we know that

P (En ∩ B) ≤ P (En). (2.2)

Let us compare
∫

En
c0(·, kh) � 1En(x) dx and

∫
En∩B c0(·, kh) � 1En∩B(x) dx: for all x ∈ R

N ,

c0(·, kh) � 1En(x) =
∫

En

c0(x − y, kh) dy

= c0(·, kh) � 1En∩B(x) +
∫

En\B

c0(x − y, kh) dy.

Therefore∫
En

c0(·, kh) � 1En(x) dx =
∫

En∩B

c0(·, kh) � 1En∩B(x) dx

+
∫

En\B

c0(·, kh) � 1En∩B(x) dx +
∫

En

∫
En\B

c0(x − y, kh) dy dx.

Since ‖c0(·, kh) � 1A‖L∞(RN ) ≤ L0 for any measurable set A, it follows that

∫
En

(
1
2
c0(·, kh) � 1En(x) + c1(x, kh)

)
dx ≥∫

En∩B

(
1
2
c0(·, kh) � 1En∩B(x) + c1(x, kh)

)
dx − LLN(En \ B) (2.3)
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thanks to the definition of L (see (1.5)). Moreover F ⊂ B, so that

EnΔF = (En ∩ B)ΔF ∪ (En \ B),

whence
1
h

∫
EnΔF

d∂F (x) dx =
1
h

∫
(En∩B)ΔF

d∂F (x) dx +
1
h

∫
En\B

d∂F (x) dx

≥ 1
h

∫
(En∩B)ΔF

d∂F (x) dx + LLN(En \ B),
(2.4)

since d∂F (x) ≥ Lh for all x ∈ En \ B by definition of B. Putting (2.2), (2.3) and (2.4) together proves (2.1).
Therefore we can replace (En) by (En ∩ B) as a minimizing sequence, and in particular we can assume that
En ⊂ B for all n. Then

F(h, k, En, F ) ≥ −
∫

En

(
1
2
c0(·, kh) � 1En(x) + c1(x, kh)

)
dx

≥ −
(

1
2
L0 + L1

)
LN (B),

so that inf
E∈P

F(h, k, E, F ) > −∞. Besides, for n large enough,

F(h, k, En, F ) ≤ inf
E∈P

F(h, k, E, F ) + 1.

This implies that

P (En) ≤ inf
E∈P

F(h, k, E, F ) + 1 +
(

1
2
L0 + L1

)
LN (B),

and gives a uniform bound on the perimeter of the En’s. Since they are also uniformly bounded by B, it follows
from the compactness theorem for sets of finite perimeter [15], Section 5.2.3, that we can extract a converging
subsequence (Enk

) of (En) in the sense that there exists E∞ ∈ P , E∞ ⊂ B, such that Enk
→ E∞ in L1(RN ).

Therefore
F(h, k, E∞, F ) ≤ lim inf

k→∞
F(h, k, Enk

, F ) = inf
E∈P

F(h, k, E, F ),

because all terms in the expression of F are at least lower semi-continuous in the E variable for the L1 topology.
Thus E∞ is a minimizer of E �→ F(h, k, E, F ) on P . Finally, if E is any other minimizer, then the previous
comparisons show that P (E ∩ B) = P (E), whence E ⊂ B almost everywhere (see the comparison theorem [5],
p. 216). �

Remark 2.2. This proposition shows that the Eh(k)’s are uniformly bounded for all h and k, if E0 ∈ P : more
precisely, if E0 ⊂ BR(0) a.e., then since kh ≤ T , we can choose Eh(k) ⊂ BR+LT (0) independently of h, k.
Therefore we can choose Ω = BR+LT+1(0) so that Eh(k) � Ω for all k, h. We will always do so in the sequel,
and set D = R + LT + 1.

Remark 2.2 gives a uniform bound Ω for Eh(k), independently of h, k, provided that E0 is bounded. In order
to have compactness in P , so as to construct our minimizing movement, we also want a uniform bound on the
perimeter of Eh(k).

Proposition 2.3 (uniform bound on the perimeter). Let E0 ∈ P with E0 ⊂ BR(0). Then, there exists a constant
c = c(T, E0, D, K0, K1, L0, L1) > 0 independent of h and k such that if Eh is defined by the procedure (1.7), we
have

P (Eh(k)) ≤ c ∀h, k such that kh ≤ T.
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Proof. By definition of Eh, we have for all j such that jh ≤ T ,

F(h, j, Eh(j), Eh(j − 1)) ≤ F(h, j, Eh(j − 1), Eh(j − 1)),

and in particular,

P (Eh(j)) −
∫

Eh(j)

(
1
2
c0(·, jh) � 1Eh(j)(x) + c1(x, jh)

)
dx ≤

P (Eh(j − 1)) −
∫

Eh(j−1)

(
1
2
c0(·, jh) � 1Eh(j−1)(x) + c1(x, jh)

)
dx.

Adding these inequalities for j = 1, . . . , k with kh ≤ T , we find:

P (Eh(k)) − P (E0) ≤
k∑

j=1

Jh(j, j) − Jh(j − 1, j)

=
k∑

j=1

∫
Ω

c1(·, jh)1Eh(j) − c1(·, jh)1Eh(j−1)

+
1
2

k∑
j=1

∫
Ω

(c0(·, jh) � 1Eh(j))1Eh(j) − (c0(·, jh) � 1Eh(j−1))1Eh(j−1) (2.5)

where we have set

Jh(i, j) =
∫

Eh(i)

(
1
2
c0(·, jh) � 1Eh(i)(x) + c1(x, jh)

)
dx. (2.6)

Doing an Abel transformation on the first sum of the last member of (2.5) yields

k∑
j=1

∫
Ω

c1(·, jh)1Eh(j) − c1(·, jh)1Eh(j−1) =
∫

Ω

c1(·, kh)1Eh(k) −
∫

Ω

c1(·, h)1E0

+
k−1∑
j=1

∫
Ω

[c1(·, jh) − c1(·, (j + 1)h)]1Eh(j)

≤ 2L1 LN (Ω) + (k − 1)K1 hLN (Ω)

≤ (2L1 + K1 T )LN(Ω).

The same manipulation with the second sum gives

k∑
j=1

∫
Ω

(c0(·, jh) � 1Eh(j))1Eh(j) − (c0(·, jh) � 1Eh(j−1))1Eh(j−1) ≤ (2L0 + K0 T )LN(Ω).

This proves that for all k such that kh ≤ T ,

k∑
j=1

Jh(j, j) − Jh(j − 1, j) ≤
(

L0 + 2L1 +
1
2
K0 T + K1 T

)
LN (Ω) (2.7)

and gives the result, with c = P (E0) + (L0 + 2L1 + 1
2K0 T + K1 T )LN (Ω). �
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2.2. Minimizing movements

We are now ready to address the problem of existence of minimizing movements. Proofs in this section closely
follow the ideas of Almgren, Taylor and Wang [1], and are adaptations of Ambrosio’s simplified presentation of
these ideas (see [5]).

The main result in the perspective of the proof of existence of minimizing movements is the following theorem
on the behaviour of the solutions of procedure (1.7):

Theorem 2.4 (discrete Hölder estimate). Let E0 ∈ P with E0 ⊂ BR(0). There exists a constant γ = γ(N, D) >
0 (where D is defined in Rem. 2.2) and h0 > 0 such that for all h ∈ (0, h0), for all m, l ∈ N verifying mh ≤ T
and 0 < l < m < l + 1

h , we have:

δ(Eh(m), Eh(l)) ≤ γ c [h(m − l)]
1

N+1 , (2.8)

where c is the uniform bound on P (Eh(k)) given by Proposition 2.3.

Theorem 1.3 is a corollary of this result, as proved in [5], pp. 231–232. However the arguments of [1], The-
orem 4.4, or [5], Theorem 3.3, for the proof of Theorem 2.4 in the mean curvature motion case need a few
adaptations due to the particular form of F . This is what the rest of this section is devoted to. We begin by
giving some preliminary results which will be necessary in the proof of Theorem 2.4.

Lower density bound for F-minimizers

Theorem 2.5 (density bound for F -minimizers). There exist two positive constants α and β (depending only
on N) and h0 > 0 such that if E ∈ P is a minimizer of F(h, k, ·, F ) with F ∈ P, E ∪ F ⊂ BD−1(0), and
h ∈ (0, h0), then

∀x ∈ ∂E, ∀ρ ∈
(

0,
αh

D

)
, P (E, Bρ(x)) ≥ βρN−1. (2.9)

Proof. The proof relies on the following lemma relating the perimeter of E ∈ P and the perimeter of E replaced
by a cone in a small ball:

Lemma 2.6 ([5], Lem. 3.5).
Let E ∈ P, x ∈ R

N and f(ρ) = P (E, Bρ(x)). Set

Eρ = (E ∩ (RN \ Bρ(x))) ∪
{

y ∈ Bρ(x); x + ρ
y − x

|y − x| ∈ E

}
.

Then for almost all ρ > 0 (all ρ such that f is differentiable at ρ), we have

P (Eρ, Bρ(x)) ≤ ρ
f ′(ρ)
N − 1

·

Let us now prove Theorem 2.5. Fix x ∈ ∂∗E and ρ > 0 such that f is differentiable at ρ. By definition of E,
we know that F(h, k, E, F ) ≤ F(h, k, Eρ, F ), that is to say

P (E) ≤ P (Eρ) +
1
h

{∫
EρΔF

d∂F (y) dy −
∫

EΔF

d∂F (y) dy

}

+
∫

E

(
1
2
c0(·, kh) � 1E(y) + c1(y, kh)

)
dy −

∫
Eρ

(
1
2
c0(·, kh) � 1Eρ(y) + c1(y, kh)

)
dy.

(2.10)

But since E coincides with Eρ in R
N \ Bρ, we have

P (E, RN \ Bρ(x)) = P (Eρ, R
N \ Bρ(x)).
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Moreover f is continuous at ρ, which together with (2.10) implies that

P (E, Bρ(x)) = P (E, Bρ(x)) ≤ P (Eρ, Bρ(x)) +
2D

h
ωNρN + 2L ωNρN ,

due to the fact that d∂F (y) ≤ 2D for all y ∈ Bρ(x), provided ρ < 1. Now Lemma 2.6 implies that for almost
all ρ ∈ (0, 1),

f(ρ) ≤ ρ
f ′(ρ)
N − 1

+
(

2D

h
+ 2L

)
ωNρN . (2.11)

Therefore, the function

g : ρ �→ f(ρ)
ρN−1

+
(

2D

h
+ 2L

)
(N − 1)ωN ρ

is nondecreasing on (0, 1). In particular if x ∈ ∂∗E and ρ ∈ (0, 1),

g(ρ) ≥ lim inf
ρ→0+

g(ρ) ≥ ωN−1 (2.12)

because of [15], Corollary 1 (ii) p. 203. As a consequence, for all ρ ∈ (0, 1),

f(ρ) ≥ ωN−1ρ
N−1 −

(
2D

h
+ 2L

)
(N − 1)ωN ρN . (2.13)

Let us set α = ωN−1
8(N−1)ωN

and β = ωN−1
2 . Then, provided h < min{D

L , D
α } =: h0, we deduce from (2.13) that for

all ρ ∈ (0, αh
D ),

P (E, Bρ(x)) = f(ρ) ≥ β ρN−1.

Since ∂∗E is dense in ∂E, this also holds for all x ∈ ∂E. �

Corollary 2.7 ([5], Cor. 3.6). Let E ∈ P be a minimizer of F(h, k, ·, F ) with F ∈ P and h ∈ (0, h0). Then

HN−1(∂E \ ∂∗E) = 0.

Distance-volume comparison

We recall here a general result which makes it possible to compare LN (A \ C) and
∫

A
d∂C under conditions

of density of C similar to (2.9). Such comparison will be essential to prove Theorem 2.4.

Theorem 2.8 (distance-volume comparison, [5] p. 230). Let C be a compact subset of R
N such that there exist

β > 0, τ > 0 with
HN−1(C ∩ Bρ(x)) ≥ βρN−1 ∀x ∈ ∂C, ∀ ρ ∈ (0, τ).

Then there exists a constant Γ = Γ(N) > 0 such that for all R > τ , for all Borel set A ⊂ R
N , we have

LN (A \ C) ≤
[
2Γ
(

R

τ

)N−1

HN−1(C)

] 1
2 [∫

A

dC(x) dx

] 1
2

+
1
R

∫
A

dC(x) dx. (2.14)

We are now able to prove Theorem 2.4.

Proof of Theorem 2.4. Let us fix h ∈ (0, h0), where h0 is given by Theorem 2.5. By definition of Eh, we have
for all j such that jh ≤ T ,

F(h, j, Eh(j), Eh(j − 1)) ≤ F(h, j, Eh(j − 1), Eh(j − 1)),
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that is to say,∫
Eh(j)ΔEh(j−1)

d∂Eh(j−1)(x) dx ≤ h [P (Eh(j − 1)) − P (Eh(j))] + h [Jh(j, j) − Jh(j − 1, j)],

where Jh(i, j) is defined by (2.6). Let us set

Ih(j) = {[P (Eh(j − 1)) − P (Eh(j))] + [Jh(j, j) − Jh(j − 1, j)]} 1
2 .

We now use Theorem 2.8 with C = ∂Eh(j − 1), A = Eh(j)ΔEh(j − 1), τ = αh
D , which is justified for j ≥ 2

because of the density estimate (2.9). Thanks to Corollary 2.7, we know that LN (C) = 0, so that for all R > αh
D ,

LN (Eh(j)ΔEh(j − 1)) ≤
[
2Γ
(

R

τ

)N−1

HN−1(∂Eh(j − 1))

] 1
2 √

h Ih(j) +
1
R

h Ih(j)2. (2.15)

Recall that Proposition 2.3 gives a uniform bound c on the perimeter of F -minimizers, so that HN−1(∂Eh(j −
1)) ≤ c.

Let m, l ∈ N verify mh ≤ T and 0 < l < m < l + 1
h . We choose

R =
αh

D
[h(m − l)]

−1
N+1 >

αh

D
,

and add up inequalities (2.15) for j = l + 1, . . . , m. Recall that (2.5) and (2.7) show that

m∑
j=l+1

Ih(j)2 ≤P (Eh(l)) +
m∑

j=l+1

Jh(j, j) − Jh(j − 1, j)

≤P (E0) +
m∑

j=1

Jh(j, j) − Jh(j − 1, j) ≤ c.

Moreover, the Cauchy-Schwarz inequality shows that

m∑
j=l+1

Ih(j) ≤ √
m − l

⎧⎨⎩
m∑

j=l+1

Ih(j)2

⎫⎬⎭
1
2

≤ √
m − l

√
c.

Finally, we find that

LN (Eh(m)ΔEh(l)) ≤
[
2Γ[h(m − l)]−

N−1
N+1 c

] 1
2 √

h(m − l)
√

c +
D

αh
[h(m − l)]

1
N+1 h c

=
(√

2Γ +
D

α

)
c [h(m − l)]

1
N+1 ,

which concludes the proof. �

3. Regularity for F-minimizers

One of the main interests of the variational approach used in [1] is that it enables to use the regularity theory
for area-minimizing currents described for instance in [11,17,25,27]. This is the idea we follow in this section.
We use the notation of [1]. In particular, the notation M and S stand respectively for the mass and size of
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an integral current: if T is a k integral current associated to a k rectifiable set S ⊂ R
N and a density function θ,

then M(T ) =
∫

S
θ dHk, while S(T ) = Hk(S) (see [1], Sect. 3.1.3). Besides, if E ∈ P , [E] denotes the solid

associated to E, i.e. the canonical N -dimensional Euclidean current restricted to E. We use the notation T ��C
for the restriction of a current T to a set C.

3.1. Existence of tangent cones

A fundamental notion in regularity theory is that of tangent cones defined as follows:

Definition 3.1. Let fp,R : x �→ R(x − p), for p ∈ R
N , R > 0. A locally integral current [J ] is called a tangent

current to ∂E at p ∈ ∂E if there exists a sequence (Ri) → +∞ such that if we set E(R) = fp,R(E), then
[E(Ri)] → [J ] locally as i → +∞, in the sense that LN ((JΔE(Ri)) ∩ Br(q)) → 0 for each q ∈ R

N and r > 0.

Lemma 3.2 (existence of tangent cones). Let F ∈ P and let E be a minimizer of F(h, k, ·, F ) on P. For each
p ∈ ∂E, there exists a tangent current [J ] to ∂E at p. Each such tangent current [J ] is a cone and locally
minimizes the perimeter P . Moreover 0 ∈ ∂J .

Proof. The proof is inspired by that of [1], Theorem 3.9. We easily check that for all R > 0,

P (E(R)) = RN−1P (E),
1
h

∫
E(R)ΔF (R)

d∂F (R)(y) dy = RN+1 1
h

∫
EΔF

d∂F (y) dy,∫
E(R)

1
2
c0(·, kh) � 1E(R)(y) dy = R2N

∫
E

1
2
c0(R(·), kh) � 1E(y) dy∫

E(R)

c1(y, kh) dy = RN

∫
E

c1(R(y − p), kh) dy.

By definition of E we find that E(R) minimizes

E �→ P (E) +
1

R2h

∫
EΔF (R)

d∂F (R)(y) dy − 1
RN+1

∫
E

1
2
cR
0 (·, kh) � 1E(y) dy − 1

R

∫
E

cR
1 (y, kh) dy, (3.1)

where we have set cR
0 (y, t) = c0(y/R, t), cR

1 (y, t) = c1(p + y/R, t). Let us compare E(R) and E(R) \ Br(q) for
fixed q ∈ R

N and r > 0, with respect to this last functional. It follows from manipulations similar to those in
the proof of Proposition 2.1 that for almost all r > 0,

P (E(R), Br(q)) ≤ P (Br(q)) +
1

R2h

∫
Br(q)

d∂F (R)(x) dx +
L

R
LN (Br(q)),

where L is defined by (1.5). But diamF (R) = R diamF , so that

R �→ 1
R2h

∫
Br(q)

d∂F (R)(x) dx

is bounded as a function of R, and even converges to 0 as R goes to infinity. This provides the sufficient
bound on the perimeter of E(R) in balls to infer the existence of a tangent current [J ] (using the compactness
result [26], Th. 1.1 p. 225).

Let us prove that [J ] locally minimizes the perimeter. This means that for all q ∈ R
N , all r > 0, and all (N−1)

integral current X with ∂X = 0 and having support in C = Br(q), then M(∂[J ] ��C) ≤ M(∂[J ] ��C + X).
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We first recall from [1], Section 3.1.6, that there exists an N integral current Q with compact support in C such
that ∂Q = X and

S(Q) ≤ M(Q) ≤ r

N
M(X). (3.2)

Then according to [17], Section 4.5.17, we can write Q as

Q =
+∞∑
i=0

[Qi] −
+∞∑
i=0

[Pi],

where Qi, Pi ∈ P and (Qi), (Pi) are nested families such that P1 ∪ Q1 ⊂ Supp(Q) and P1 ∩ Q1 = ∅. Let us set
K = (E(R) \ P1) ∪ Q1 and compare E(R) and K with respect to the functional defined by (3.1). We obtain
that

P (E(R)) ≤ P (K) +
1

R2h

∫
P1∪Q1

d∂F (R)(x) dx +
L

R
LN (P1 ∪ Q1)

≤ M(∂[E(R)] + ∂Q) +
1

R2h

∫
C

d∂F (R)(x) dx +
L

R
S(Q).

Since Q and ∂Q = X have compact support in C, and since P (E(R), C) = M(∂[E(R)] ��C), we deduce that

M(∂[E(R)] ��C) ≤ M(∂[E(R)] ��C + X) +
1

R2h

∫
C

d∂F (R)(x) dx +
L

R
LN (C).

Knowing this, we can adapt [27], Theorem 34.5, to show that [J ] locally minimizes the perimeter and also that
if Ri is such that [E(Ri)] → [J ] as i → +∞, then for all x ∈ R

N and almost all ρ > 0, P (E(Ri), Bρ(x)) →
P (J, Bρ(x)) as i → +∞.

Finally we check that [J ] is a cone, i.e. that J is invariant under all homothetic expansions z �→ λz for λ > 0.
To see this we recall from (2.11) and (2.12) that for all x ∈ ∂E, the function

g : ρ �→ P (E, Bρ(x))
ρN−1

+ cρ

is nondecreasing on (0, 1), where c is a constant, and that for all ρ ∈ (0, 1),

P (E, Bρ(x))
ρN−1

+ cρ ≥ ωN−1.

It follows that ∂E has a density θ(∂E, x) at x with θ(∂E, x) ≥ 1. For all ρ > 0,

P (E(R), Bρ(0))
ρN−1

=
P (E, Bρ/R(p))

(ρ/R)N−1
−→

R→+∞
θ(∂E, p)ωN−1.

Moreover for almost all ρ > 0,
P (E(Ri), Bρ(0))

ρN−1
−→

i→+∞
P (J, Bρ(0))

ρN−1
·

This shows that the ratio ρ1−NP (J, Bρ(0)) is independent of ρ, which is known to imply that J is a cone
(see [21], proof of Th. 9.3). Moreover ρ1−NP (J, Bρ(0)) = θ(∂E, p)ωN−1 > 0, so that 0 ∈ ∂J . We finally observe
that θ(∂J, 0) = θ(∂E, p). �
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3.2. The regularity results

The existence of tangent cones enables us to prove regularity results for F -minimizers, as in [1], Sections 3.5
and 3.7.

Theorem 3.3 (C1-regularity for F -minimizers). Let F ∈ P, and let E be a minimizer of F(h, k, ·, F ) on P.
Then ∂E is a C1-hypersurface, except for a set of Hausdorff dimension less than N − 8 (empty if N ≤ 7).

Proof. We verify that E is an almost minimal current in the sense of Bombieri, that is, for some δ > 0, for all
(N − 1) integral current X with ∂X = 0 and having compact support in C with diam(C) = r ≤ δ, then

M(∂[E] ��C) ≤ (1 + ω(r))M(∂[E] ��C + X) (3.3)

for some function ω such that ω(r) → 0 as r → 0+. To do so we proceed as in the previous proof, write X = ∂Q
with

Q =
+∞∑
i=0

[Qi] −
+∞∑
i=0

[Pi],

set K = (E \ P1) ∪ Q1 and compare E and K with respect to F :

P (E, C) ≤ P (K) +
1
h

∫
P1∪Q1

d∂F (y) dy + LLN (P1 ∪ Q1).

Let D > 0 be such that E ∪ F ⊂ BD−1(0). If BD−1(0) ∩ C �= ∅ (otherwise (3.3) is obvious), and δ ≤ 1, the
previous comparison yields

M(∂[E] ��C) ≤ M(∂[E] ��C + ∂Q) +
(

2D

h
+ L

)
S(Q)

≤ M(∂[E] ��C + X) +
(

2D

h
+ L

)
r

N
M(X) (using (3.2))

≤ M(∂[E] ��C + X) +
(

2D

h
+ L

)
r

N
(M(∂[E] ��C + X) + M(∂[E] ��C)).

This easily implies the result with ω(r) = 3
(

2D
h + L

)
r
N and δ = N

3

(
2D
h + L

)−1
.

In addition, at any point p of ∂E there exists a tangent cone [J ] which minimizes the perimeter (Lem. 3.2).
Such a cone must be a hyperplane for N ≤ 7 ([27], Appendix B), so that in particular θ(E, p) = θ(J, 0) = 1. We
then deduce the result from the final remark in [11]. In case N ≥ 8, we use the dimension reduction argument
of Federer ([21], Th. 11.8). �

Now, we prove that minimizers are smooth at contact points with smooth hypersurfaces:

Theorem 3.4. Let F ∈ P, and let E be a minimizer of F(h, k, ·, F ) on P. Assume that there exists K ⊂ R
N

closed such that ∂K is a C1 hypersurface and ∂E ∩ K = {p}. Then ∂E is a C1 hypersurface near p.

Proof. Let [J ] be any tangent cone to ∂E at p. The assumption that ∂E ∩ K = {p} guarantees that ∂J is
contained in the closed half-space orthogonal to the outer unit normal n to K at p and containing n. Since
0 ∈ ∂J , [21], Theorem 15.5, p. 174, implies that ∂J is regular at 0, and therefore is a hyperplane. The result
follows as in the proof of Theorem 3.3. �

Actually, we can deduce higher regularity for F -minimizers at each point where they are C1 hypersurfaces:

Theorem 3.5 (higher regularity for F -minimizers). Assume that c0 is symmetric, that c0 and c1 satisfy (A)
and are Lipschitz continuous in space. Let F ∈ P, and let E be a minimizer of F(h, k, ·, F ) on P. Set
g(p) = ±d∂F (p), where we take the − sign if p ∈ F , and the + sign otherwise.
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Let p ∈ ∂E be such that ∂E is a C1 hypersurface near p: there exist R > 0, M > 0 and a C1 function
f : BN−1

R (p) → (−M, M) such that, possibly rotating and relabelling, we have

E ∩ (BN−1
R (p) × (−M, M)) = {(x, y); x ∈ BN−1

R (p),−M < y < f(x)}.

Then f is of class C2,α in BN−1
R (p) for some 0 < α < 1 and satisfies

1
h

g((x, f(x))) = Δf(x) + c0(·, kh) � 1E((x, f(x))) + c1((x, f(x)), kh). (3.4)

Therefore the mean curvature Hp of ∂E at p verifies

1
h

g(p) = Hp + c0(·, kh) � 1E(p) + c1(p, kh). (3.5)

Proof. We begin by verifying that f satisfies (3.4) in the sense of distributions. This is simply the Euler-
Lagrange equation for F , and the proof is the same as that of Ambrosio ([5], after statement of Th. 3.3), with
the additional observation that the first variation of

K �→ 1
2

∫
K

c0(·, kh) � 1K(x) dx, K �→
∫

K

c1(x, kh) dx

in the direction of a C2 vector field Φ is respectively

K �→
∫

∂K

c0(·, kh) � 1K(x) 〈Φ(x), νx〉dHN−1(x), K �→
∫

∂K

c1(x, kh) 〈Φ(x), νx〉dHN−1(x),

where νx is the outer unit normal to K at x ∈ ∂K. The symmetry of c0 is used here, along with the continuity
of c1 and c0 � 1K in space.

Knowing this, we apply [19], Theorem 1.2, p. 219, to f and to each of the ∂f
∂xi

, to conclude that f is C2,α

in BN−1
R (p). This last assertion uses the Lipschitz continuity of c1 and c0 � 1K in space. Both conclusions

immediately follow. �

4. The upper and lower limits

In this section we are going to prepare the proofs of Theorems 1.4 and 1.5. Let E be a minimizing movement
with initial condition E0 and let (hn) be a sequence such that Ehn([t/hn]) converges to E(t) in L1(RN ) for
all t ∈ [0, T ] as n goes to infinity. We define the upper and lower limits of the sets Ehn(k) for n → ∞ and k ∈ N

as follows:

E∗(t) = {x ∈ R
N ; ∃(hn′) ⊂ (hn), kn′ → +∞ and xn′ ∈ Ehn′ (kn′ ) with kn′hn′ → t and xn′ → x},

E∗(t) = R
N \ {x ∈ R

N ; ∃(hn′) ⊂ (hn), kn′ → +∞ and xn′ /∈ Ehn′ (kn′) with kn′hn′ → t and xn′ → x}.

By construction, E∗ is closed while E∗ is open, and E∗(t) ⊂ E(t) ⊂ E∗(t) for all t ∈ [0, T ] and almost
everywhere in R

N . Indeed E∗(t) and E∗(t) were defined respectively as the sets of cluster points of sets Ehn(k)
and R

N \ Ehn(k) for all k → +∞ such that khn → t, and, up to a subsequence and a set of zero LN measure,
our minimizing movement at time t, E(t), was constructed as the pointwise limit of sets Ehn(k) for some such
k = [t/hn].

We will use the regularity result Theorem 3.5 to compute the normal velocity of the evolutions t �→ E∗(t)
and t �→ E∗(t) in function of E. Then we will prove a regularity result for E∗ and E∗, and compare the initial
sets E∗(0), E∗(0) and E0.

In order that our minimizing procedure be consistent with the evolution law (1.1) as ensured by Theorem 3.5,
we will assume in particular throughout this section that c0 is symmetric.
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4.1. Velocity of E∗ and E∗
Here we are going to prove a rigorous version of the heuristic fact that E∗ moves with velocity

Vx,t ≤ Hx,t + c0(·, t) � 1E(t)(x) + c1(x, t),

while E∗ moves with velocity
Vx,t ≥ Hx,t + c0(·, t) � 1E(t)(x) + c1(x, t),

where Hx,t respectively denotes the mean curvature of ∂E∗ and ∂E∗. Following Cardaliaguet [12], we formulate
this statement in terms of test functions: let us first define the classical mean curvature operator

h(p, X) = Trace(X)− 〈Xp, p〉
|p|2 ,

for X ∈ SymN and p ∈ R
N \ {0}, and let us define, for any subset A of R

N , Â = RN \ A, and for any subset B

of R
N × [0, T ], B̂ = (RN × [0, T ]) \ B.

Proposition 4.1. Under the assumptions of Theorem 1.4, we have:

1. For any t ∈ (0, T ), if a test function φ of class C2 has a local maximum on E∗ at some point (x, t) ∈ ∂E∗,
with Dφ(x, t) �= 0, then

φt(x, t) ≥ h(Dφ(x, t), D2φ(x, t)) − [c0(·, t) � 1E(t)(x) + c1(x, t)
] |Dφ(x, t)|.

2. For any t ∈ (0, T ), if a test function φ of class C2 has a local minimum on Ê∗ at some point (x, t) ∈ ∂Ê∗,
with Dφ(x, t) �= 0, then

φt(x, t) ≤ h(Dφ(x, t), D2φ(x, t)) − [c0(·, t) � 1E(t)(x) + c1(x, t)
] |Dφ(x, t)|.

Proof. We only prove the first point, the proof of the second being similar. Let t ∈ (0, T ) and φ of class C2 have
a local maximum on E∗ at some point (x, t) ∈ ∂E∗, with Dφ(x, t) �= 0. We can assume without loss of generality
that it is a strict maximum. By definition of E∗, there exist kn → +∞ and xn ∈ ∂Ehn(kn) with knhn → t
and xn → x, such that φ has a local maximum (that we can assume to be strict) on Ehn = ∪kEhn(k) × {khn}
at (xn, knhn), with Dφ(xn, knhn) �= 0. It follows that Γhn(kn) = {x ∈ R

N ; φ(x, knhn) = φ(xn, knhn)} is a
smooth exterior contact surface to Ehn(kn) at xn, and therefore Theorems 3.4 and 3.5 imply that ∂Ehn(kn) is a
C2,α hypersurface near xn. We now infer from the local relative position of Γ and ∂Ehn(kn) that the curvature
of ∂Ehn(kn) at xn, Hn

xn
, is less than the curvature of Γ at xn:

Hn
xn

≤ − 1
|Dφ(xn, knhn)|h(Dφ(xn, knhn), D2φ(xn, knhn)).

Now (3.5) implies, if kn ≥ 1, that

± 1
hn

d∂Ehn (kn−1)(xn) = Hn
xn

+ c0(·, knhn) � 1Ehn (kn)(xn) + c1(xn, knhn),

where we take the − sign if xn ∈ Ehn(kn − 1), and the + sign otherwise. With this convention,

± 1
hn

d∂Ehn (kn−1)(xn) ≥ ± 1
hn

dΓhn (kn−1)(xn) = − φt(xn, knhn)
|Dφ(xn, knhn)| + o(1).
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Putting together the last three equations yields

φt(xn, knhn) + o(1) ≥ h(Dφ(xn, knhn), D2φ(xn, knhn))

− [c0(·, knhn) � 1Ehn (kn)(xn) + c1(xn, knhn)
] |Dφ(xn, knhn)|. (4.1)

Thanks to the discrete Hölder estimate, Theorem 2.4, we know, since knhn → t, that Ehn(kn) → E(t) in L1(RN ).
Up to a subsequence, we can assume that Ehn(kn) → E(t) almost everywhere. As a consequence, sending n to
+∞, we get the result, namely:

φt(x, t) ≥ h(Dφ(x, t), D2φ(x, t)) − [c0(·, t) � 1E(t)(x) + c1(x, t)
] |Dφ(x, t)|. �

4.2. Regularity of E∗ and E∗
Now we are going to prove a regularity result for the tubes E∗ and E∗ which allows in particular to treat the

degenerate case Dφ(x, t) = 0 in Proposition 4.1:

Proposition 4.2. For all x in R
N , the maps t �→ dE∗(t)(x) and t �→ d

Ê∗(t)
(x) are left-continuous on (0, T ].

To prove this we first need to estimate in a finer way than what we have done in Section 2 how Eh(k) can
expand or shrink at most at each iteration. This is the equivalent of [1], Theorem 5.4. Let us first define for
simplicity of forthcoming estimates the scaled ball WR = BR/(ωN )1/N (0) = BR/ω∗(0), so that LN (WR) = RN .
Then WR minimizes the perimeter among all sets E ∈ P such that LN (E) = RN . This property will provide
the necessary estimates.

Let us also define, for any subsets A and B of R
N , A − B = R

N \ ((RN \ A) + B).

Lemma 4.3. Let F ∈ P and let E be a minimizer of F(h, k, ·, F ) on P. Let L be defined as in (1.5). Let
R(h) = 2Lω∗h + 2

√
L2ω2∗h2 + 2ω∗hP (W1). Then

F − WR(h) ⊂ E ⊂ F + WR(h) a.e.

Proof. We begin by proving the left-hand side inclusion, and we will see that the other inclusion immediately
follows. We adapt the proofs of [1], Section 5. �
Step 1. Let us first prove that if 0 < R < S, WS ⊂ F and 0 < 2LN (WR \ E) ≤ RN , then

S − R

ω∗h
R − 2LR ≤ N − 1

N
P (W1) +

21/N (N − 1)
N2

P (W1)
LN (WR \ E)

RN
·

We compare E and E ∪ WR with respect to the functional F(h, k, ·, F ):

P (E) +
1
h

∫
EΔF

d∂F (x) dx −
∫

E

(
1
2
c0(·, kh) � 1E(x) + c1(x, kh)

)
dx ≤

P (E ∪ WR) +
1
h

∫
(E∪WR)ΔF

d∂F (x) dx −
∫

E∪WR

(
1
2
c0(·, kh) � 1E∪WR(x) + c1(x, kh)

)
dx.

Since WR ⊂ F , we check that EΔF = ((E ∪ WR)ΔF ) ∪ (WR \ E). This, together with manipulations similar
to those of previous proofs, implies that

P (E ∪ WR) − P (E) ≥ 1
h

∫
WR\E

d∂F (x) dx − 2LLN (WR \ E)

≥
(

S − R

ω∗h
− 2L

)
LN (WR \ E),

(4.2)
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since the inclusion WS ⊂ F implies that d∂F (x) ≥ (S − R)/ω∗ for each x ∈ WR. But conclusion (4) of [1],
Proposition 5, implies that

P (E ∪ WR) − P (E) ≤

RN−1P (W1)

{
N − 1

N

LN (WR \ E)
RN

+
21/N (N − 1)

N2

(LN (WR \ E)
RN

)2
}

,

and the result follows from the last two inequalities.

Step 2. Now let us assume that the conclusion of the lemma does not hold, i.e. that if we set A = (F−WR(h))\E,
then LN (A) > 0. There must exist p ∈ A such that for any r > 0, LN (A∩Br(p)) > 0. We can assume, possibly
applying a translation, that p = 0. Therefore WR(h) ⊂ F and LN (WR(h)/2 \ E) > 0. Moreover we also have

2LN(WR(h)/2 \ E) ≤
(

R(h)
2

)N

,

otherwise we would obtain as in Step 1 with S = R(h) and R = R(h)/2 that

P (E ∪ WR(h)/2) − P (E) ≥
(

R(h)
2ω∗h

− 2L

)
LN (WR(h)/2 \ E) >

(
R(h)
2ω∗h

− 2L

)
1
2

(
R(h)

2

)N

,

because R(h)
2ω∗h − 2L > 0. But P (E ∪ WR(h)/2) ≤ P (E) + P (WR(h)/2), whence

(
R(h)
2ω∗h

− 2L

)
1
2

(
R(h)

2

)N

< P (WR(h)/2) =
(

R(h)
2

)N−1

P (W1),

or equivalently
1

ω∗h

(
R(h)

2

)2

− LR(h) < 2P (W1),

which is contradictory with the choice of R(h), since equality should hold instead of the last inequality. Then
we can apply Step 1 with S = R(h) and R = R(h)/2 to infer that

1
ω∗h

(
R(h)

2

)2

− LR(h) ≤ N − 1
N

P (W1) +
21/N (N − 1)

N2
P (W1)

LN (WR(h)/2 \ E)
(R(h)/2)N

,

or thanks to the choice of R(h):

2 ≤ N − 1
N

+
21/N (N − 1)

N2

1
2
,

which is false. This proves the left-hand side inclusion of Lemma 4.3.

Step 3. Let us now explain why the left-hand side inclusion is sufficient to deduce the right-hand side one.
Let B = BD(0) be a large ball. It is easy to check that if F ∈ P with F ⊂ BD−1(0), and if E ∈ P with
E ⊂ BD−1(0) is a minimizer of F(h, k, ·, F ) on P , then B \ E is a minimizer of

E �→ P (E) +
1
h

∫
EΔ(B\F )

d∂F (x) dx −
∫

E

(
1
2
c0(·, kh) � 1E(x) + c1(x, kh)

)
dx

among all sets in P and included in B, where c1(x, kh) = −c1(x, kh) + c0(·, kh) � 1B(x). Therefore, taking h
small enough so that R < 1, the arguments on E and F in the previous steps transform into the same arguments
for B \ E and B \ F , since in particular the term 2L appearing in (4.2) was taken so large (with the a priori
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useless factor 2) as to get the lower bound there also with c1 in place of c1. The conclusion F − WR ⊂ E
transforms into (B \ F ) − WR ⊂ B \ E, that is exactly E ⊂ F + WR.

The last lemma provides a bound on the growth of F -minimizers at each iteration equal to 2Lω∗h +
2
√

L2ω2∗h2 + 2ω∗hP (W1), and of the order of
√

h. This is not fine enough to conclude the left continuity,
mainly because if kh → t, then k

√
h → +∞ and the bound is lost in the limit movement. The following lemma

refines the bound to the order h.

Lemma 4.4. Let us set δ = 2N−1
N P (W1) and R(h) = 2Lω∗h + 2

√
L2ω2∗h2 + 2ω∗hP (W1).

1. Assume that p + WS ⊂ Eh(k) a.e. for some p ∈ R
N and k, h such that kh ≤ T . If h and j are small enough

so that R(h) < S
4 and jh ≤ min{ S2

4ω∗(δ+2LS) , T − kh}, then

p + WS−ω∗( δ
S +2L)jh ⊂ Eh(k + j) a.e.

2. Assume that p + WS ⊂ R
N \ Eh(k) a.e. for some p ∈ R

N and k, h such that kh ≤ T . If h and j are small
enough so that R(h) < S

4 and jh ≤ min{ S2

4ω∗(δ+2LS) , T − kh}, then

p + WS−ω∗( δ
S +2L)jh ⊂ R

N \ Eh(k + j) a.e.

Proof. Let us prove the first assertion. For simplicity we assume without loss of generality that p = 0. We
prove the result by induction on j. The result for j = 0 is the assumption. Let us assume that the result holds
for some j such that (j + 1)h ≤ min{ S2

4ω∗(δ+2LS) , T − kh}. We know thanks to Lemma 4.3 that

Eh(k + j) − WR(h) ⊂ Eh(k + j + 1) a.e. (4.3)

Since the induction assumption states that WS−ω∗( δ
S +2L)jh ⊂ Eh(k + j), and since the assumptions on j and h

imply that

R(h) <
S

2
− ω∗

(
δ

S
+ 2L

)
jh,

we deduce from (4.3) that WS/2 ⊂ Eh(k + j + 1) almost everywhere. Let us set

rmax = sup{r; Wr ⊂ Eh(k + j + 1) a.e.} ≥ S

2
·

Step 1 of Lemma 4.3 shows, by sending R to r+
max, that

1
ω∗h

({
S − ω∗

(
δ

S
+ 2L

)
jh

}
− rmax

)
rmax − 2Lrmax ≤ N − 1

N
P (W1) =

δ

2
,

from which we infer that{
S − ω∗

(
δ

S
+ 2L

)
jh

}
− rmax ≤

(
δ

2rmax
+ 2L

)
ω∗h ≤ ω∗

(
δ

S
+ 2L

)
h,

and the result for Eh(k + j + 1) follows, so that the proof by induction is complete. The proof of the second
point is entirely identical, according to the remark in Step 3 of the proof of Lemma 4.3. �

We are now ready to prove Proposition 4.2. This proof is inspired by the proof of [13], Lemma 4.7.

Proof of Proposition 4.2. Let us start with E∗. Assume on the contrary of our claim that there exist x ∈ R
N

and t ∈ (0, T ] such that s �→ dE∗(s)(x) is not left continuous at t. Since this map is lower semi-continuous
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thanks to the closeness of E∗, we deduce that there exist ε > 0 and a sequence (tp) converging to t− such that
for all p ∈ N,

dE∗(tp)(x) > dE∗(t)(x) + ε.

Let S = εω∗, so that WS is the closed ball of radius ε centered at 0. By considering a projection of x on E∗(t),
we can assume that x ∈ E∗(t) and for all p ∈ N,

dE∗(tp)(x) > ε.

Set for a fixed p, kn = [tp/hn], so that knhn → t−p as n → +∞. By definition of E∗(tp), there exists n0 large
enough depending on p so that for all n ≥ n0, dEhn (kn)(x) > ε. Let us set

M =
(

δ

S
+ 2L

)
.

Then we can apply assertion 2 of Lemma 4.4 to deduce that for all n ≥ n0 such that R(hn) < S
4 and for all j

such that jhn ≤ min{ S2

4ω∗(δ+2LS) , T − knhn}

dEhn (kn+j)(x) ≥ ε − Mjhn. (4.4)

Indeed we have WS−ω∗( δ
S +2L)jhn

(x) ⊂ R
N \ Ehn(kn + j). Let us set

τ = min
{

ε

2M
,

S2

4ω∗(δ + 2LS)

}
and fix s ∈ (0, τ) with s ≤ T − tp. We set jn = [s/hn] so that jnhn → s− as n → +∞. Then jnhn ≤
min{ S2

4ω∗(δ+2LS) , T−knhn} for n large enough, so that sending n to +∞ in (4.4) yields, by definition of E∗(tp+s),

dE∗(tp+s)(x) ≥ ε − Ms ≥ ε

2
·

Taking s = t − tp for p big enough so that 0 < s < τ , we get dE∗(t)(x) ≥ ε
2 , which contradicts the fact that

x ∈ E∗(t).
The proof for d

Ê∗
is obtained in the same way by using assertion 1 of Lemma 4.4. �

4.3. Comparison at initial time

We finish by giving a consequence of previous growth results on the comparison of the initial sets E∗(0) and
E∗(0) with E0. This result will be essential for comparison at later times:

Proposition 4.5. We have
◦

E0⊂ E∗(0) ⊂ E∗(0) ⊂ E0.

Proof. We only prove that E∗(0) ⊂ E0, the left-hand side inclusion is obtained by similar arguments. Suppose
on the contrary that there exists x ∈ E∗(0) \E0. Then we can find some ε > 0 such that Bε(x) ⊂ R

N \E0. By
definition of E∗(0), there exist sequences kn → +∞ and xn → x with knhn → 0 and xn ∈ Ehn(kn). Thanks to
Lemma 4.4 and the facts that Ehn(0) = E0 and knhn → 0, we know that there exists M > 0 depending only
on ε, L and N such that if n is large enough, then

Bε−Mknhn(x) ⊂ R
N \ Ehn(kn).

But xn → x and ε − Mknhn → ε, so that xn ∈ Bε−Mknhn(x) for n large enough. This is a contradiction since
xn ∈ Ehn(kn), and this proves the proposition. �
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5. Minimizing movements and weak solutions

With the tools of Section 4, we are now ready to prove Theorem 1.4. Since E∗(t) ⊂ E(t) ⊂ E∗(t) a.e. for
all t ∈ [0, T ], it suffices to prove that for all t ∈ [0, T ],

{u(·, t) > 0} ⊂ E∗(t) and E∗(t) ⊂ {u(·, t) ≥ 0}.
To this end, we will use a comparison principle for discontinuous viscosity solutions. We therefore start by

giving equations satisfied by 1E∗ and 1E∗ in the viscosity sense, in relation with Theorem 4.1:

Theorem 5.1. Under the assumptions of Theorem 1.4, we have:

1. For any (x, t) ∈ R
N × (0, T ), if a test function φ of class C2 is such that 1E∗ − φ has a local maximum

at (x, t), then:

• if Dφ(x, t) �= 0, we have

φt(x, t) ≤ h(Dφ(x, t), D2φ(x, t)) +
[
c0(·, t) � 1E(t)(x) + c1(x, t)

] |Dφ(x, t)|;

• if Dφ(x, t) = 0 and D2φ(x, t) = 0, we have

φt(x, t) ≤ 0.

2. For any (x, t) ∈ R
N × (0, T ), if a test function φ of class C2 is such that 1E∗ − φ has a local minimum

at (x, t), then:

• if Dφ(x, t) �= 0, we have

φt(x, t) ≥ h(Dφ(x, t), D2φ(x, t)) +
[
c0(·, t) � 1E(t)(x) + c1(x, t)

] |Dφ(x, t)|;

• if Dφ(x, t) = 0 and D2φ(x, t) = 0, we have

φt(x, t) ≥ 0.

Proof. We only prove the first point, since the second point uses the same arguments. We only need to consider
the case where (x, t) ∈ ∂E∗, since otherwise all derivatives of φ at (x, t) vanish and the equation is obviously
satisfied.

First case. Dφ(x, t) �= 0. In this case it is straightforward to check that −φ has a local maximum on E∗

at (x, t). Therefore, the first point of Proposition 4.1 gives the result.

Second case. Dφ(x, t) = 0 and D2φ(x, t) = 0. We can always assume that our maximum is equal to 0,
i.e. φ(x, t) = 1E∗(x, t) = 1. Let us also assume that φt(x, t) > 0. Then a Taylor expansion of φ at (x, t) shows
that there exist δ > 0 and k > 0 such that for all (y, s) verifying s ∈ (t − δ, t) and |y − x| < 2k(t − s)1/3,
1E∗(y, s) ≤ φ(y, s) < φ(x, t) = 1, whence y /∈ E∗(s). As a consequence for all s ∈ (t − δ, t),

dE∗(s)(x) > k(t − s)1/3.

Now we can proceed as in the proof of Proposition 4.2, using the growth control given by Lemma 4.4, to prove
that there are positive constants k1 and k2 such that for all s < t close enough to t,

dE∗(t)(x) > k(t − s)1/3 −
(

k1

(t − s)1/3
+ k2

)
(t − s) > 0,

which contradicts the fact that x ∈ E∗(t). Therefore φt(x, t) ≤ 0. �
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Proof of Theorem 1.4. The previous theorem shows that 1E∗ is a subsolution of the level-set equation (1.4),
while 1E∗ is a supersolution. Indeed, an argument of Barles and Georgelin [8], Proposition 1 shows that under
the conclusions of Theorem 5.1 there is no property to check when the test function satisfies Dφ(x, t) = 0 and
D2φ(x, t) �= 0. To conclude we use a method initiated by Barles, Soner and Souganidis [10], Theorem 2.1:
let (Φn) be a sequence of smooth functions such that Φn ≡ 1 on [0, +∞), Φ′

n ≥ 0 in R, Φn(R) ⊂ [0, 1] and
infn Φn = 0 on (−∞, 0). Thanks to Lemma 4.5, we know that 1E∗(0) ≤ Φn(u0) in R

N . Since (1.4) is a geometric
equation, Φn(u) is a uniformly continuous solution of this equation. The comparison principle [10], Theorem 1.3,
implies that for all t ∈ [0, T ),

1E∗(t) ≤ Φn(u(·, t)).
If x ∈ {u(·, t) < 0}, we therefore have

1E∗(t)(x) ≤ inf
n

Φn(u(x, t)) = 0,

which means that x /∈ E∗(t). As a consequence E∗(t) ⊂ {u(·, t) ≥ 0} for all t ∈ [0, T ), which also holds for
t = T by continuity of u and thanks to Proposition 4.2. The argument to prove that {u(·, t) > 0} ⊂ E∗(t) is
similar.

In case there is no fattening, we deduce that for all t ∈ [0, T ], E(t) = {u(·, t) ≥ 0} almost everywhere, and
we can replace {u(·, t) ≥ 0} by E(t) in (1.4) to deduce that u is a viscosity solution of (1.4). This concludes the
proof of Theorem 1.4. �

6. Comparison with the smooth flow

Now we are going to show that our construction is consistent with smooth flows if they exist: we turn to the
proof of Theorem 1.5. Following Cardaliaguet and Pasquignon [14], we define a sub/super pair of solutions for
our non-local motion. Roughly speaking, it is a pair (K1,K2) of tubes, where K1 moves with velocity

Vx,t ≤ Hx,t + inf
K1(t)⊂K⊂K2(t)

{c0(·, t) � 1K(x)} + c1(x, t),

while K2 moves with velocity

Vx,t ≥ Hx,t + sup
K1(t)⊂K⊂K2(t)

{c0(·, t) � 1K(x)} + c1(x, t).

As we did at the beginning of Section 4.1, we formulate this in terms of test functions:

Definition 6.1 ([14], Def. 2.5). Let K1 and K2 be compact subsets of R
N such that K1 ⊂

◦
K2. A sub/super

pair of solutions with initial data (K1, K2) is a pair (K1,K2) of tubes such that
1. K1 ⊂ K2.
2. K1(0) = K1 and K̂2(0) ⊂ K̂2.
3. For any t ∈ (0, T ), if a test function φ of class C2 has a local maximum on K1 at some point (x, t) ∈ ∂K1,
then

φt(x, t) ≥ h(Dφ(x, t), D2φ(x, t)) −
[

inf
K1(t)⊂K⊂K2(t)

{c0(·, t) � 1K(x)} + c1(x, t)
]
|Dφ(x, t)|.

4. For any t ∈ (0, T ), if a test function φ of class C2 has a local minimum on K̂2 at some point (x, t) ∈ ∂K̂2,
then

φt(x, t) ≤ h(Dφ(x, t), D2φ(x, t)) −
[

sup
K1(t)⊂K⊂K2(t)

{c0(·, t) � 1K(x)} + c1(x, t)

]
|Dφ(x, t)|.
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Such sub/super pairs of solutions exist and we can define, following Cardaliaguet and Pasquignon, extremal
sub/super pairs of solutions (Kε

1,Kε
2) with initial data (E0 − εB1(0), E0 + εB1(0)). The extremality holds with

respect to the inclusion. Moreover, if E0 is compact with uniformly C3+α boundary, and if Er is a smooth
evolution with C3+α boundary, starting from E0 with normal velocity given by (1.9), then Kε

1 ⊂ Er ⊂ Kε
2 and

both Kε
1 and Kε

2 converge to Er in the Hausdorff distance as ε → 0, as proved by Cardaliaguet [12]. This implies
in particular that a smooth evolution with C3+α boundary is necessarily unique.

Now, owing to the respective velocities of Kε
1, E∗, E∗ and Kε

2, we want to compare these sets. Going through
the corresponding proofs in [14] and [12], we check that the estimation on the velocities of E∗ and E∗ (Prop. 4.1),
their regularity property (Prop. 4.2) and their initial position relatively to E0 (Prop. 4.5) give the following
result:

Theorem 6.2 ([14], Th. 2.11). Under the assumptions of Theorem 1.5, let (Kε
1,Kε

2) be an extremal sub/super
pair of solutions with initial data (E0−εB1(0), E0+εB1(0)). If Kε

1(t) and Kε
2(t) are non-empty for all t ∈ [0, T ],

then
Kε

1(t) ⊂ E∗(t) ⊂ E∗(t) ⊂ Kε
2(t) ∀t ∈ [0, T ).

We are finally ready to prove Theorem 1.5.

Proof of Theorem 1.5. Since Kε
1 and Kε

2 converge to the smooth evolution Er starting from E0 in the Hausdorff
distance if the latter exists, we deduce that for all t ∈ [0, T ), E∗(t) = E∗(t) = Er(t). This also holds for t = T
thanks to Proposition 4.2. Moreover we know that for all t ∈ [0, T ], E∗(t) ⊂ E(t) ⊂ E∗(t) a.e., so the result
follows. �

7. Existence and uniqueness of a smooth solution

To conclude this work, it is natural to verify that such a smooth evolution exists (we already know that it
must be unique). This is the claim of Theorem 1.6, that we prove now, using a fixed point method. We therefore
begin by constructing a smooth solution for the local problem (i.e. with prescribed velocity).

7.1. Existence of smooth solutions for the local problem

Theorem 7.1 (existence of a smooth solution for the local problem). Assume that E0 is a compact subset
of R

N with uniformly C3+α boundary and that c ∈ W 2,1;∞(RN × [0, T ]). Then there exist a small time t0 > 0
depending only on E0 and on an upper bound on ‖c‖W 2,1;∞(RN×[0,T ]), and a smooth evolution Er with C3+α

boundary defined on [0, t0], starting from E0, with normal velocity

Vx,t = Hx,t + c(x, t), (7.1)

where Hx,t is the mean curvature of Γ(t) = ∂Er(t) at x.

The proof is an adaptation of the one proposed by Evans and Spruck [16] for the classical mean curvature
motion (see also Giga and Goto [20] and Maekawa [24] for more general equations). For the reader’s convenience,
we give the steps of the proof to explain how to treat the dependence in the space variable of the velocity c.

Assume we are given the smooth hypersurface Γ0 = ∂E0, a time t0 > 0 and a smooth evolution t �→ Γ(t) =
∂E(t) of surfaces developing from Γ0 on [0, t0] with normal velocity Vx,t. Heuristically, one can show (see [16])
that the signed distance function d to Γ(t) defined by

d(x, t) =
{ −dist(x, Γ(t)) x ∈ R

N \ E(t)
dist(x, Γ(t)) x ∈ E(t)

is a solution of
vt = F (D2v, v) + c(x − v(x, t)Dv(x, t), t) (7.2)
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with

F (R, z) = f(λ1(R), ..., λn(R), z) =
N∑

i=1

λi(R)
1 − λi(R)z

, (7.3)

where λ1(R) ≤ λ2(R) ≤ ... ≤ λN (R) are the eigenvalues of R. F is a priori defined and smooth for |R| and |z|
small enough, but we extend it to be smooth on all of SymN ×R with |F |, |DF | and |D2F | bounded as in [16].

The idea is to study directly the PDE (7.2). To this aim, we set Γ0 = ∂E0 and let

g(x) =
{ −dist(x, Γ0) x ∈ R

N\E0

dist(x, Γ0) x ∈ E0
(7.4)

be the signed distance function to Γ0. We fix δ0 so small that g is of class C3+α within

V = {x ∈ R
N , −δ0 < g(x) < δ0}

and we set, for t0 > 0 to be determined,

Q = V × (0, t0), Σ = ∂V × [0, t0].

The plan is to consider a solution to the PDE⎧⎨⎩ vt = F (D2v, v) + c(x − vDv, t) in Q
|Dv|2 = 1 on Σ
v = g on V × {t = 0}

(7.5)

and prove that the zero level sets of v(·, t) are smooth hypersurfaces evolving with normal velocity given by (7.1).
First, we have the following existence result for this non-linear PDE (see Lunardi [23], Th. 8.5.4 and

Prop. 8.5.6):

Theorem 7.2 (existence for the non-linear PDE). There exist δ0 depending only on E0 and t0 > 0 depend-
ing only on E0 and on an upper bound on ‖c‖W 2,1;∞(RN×[0,T ]) such that there exists a unique solution v ∈
C2+α, 2+α

2 (Q) of the PDE (7.5). Moreover the first order space derivatives vxk
, for 1 ≤ k ≤ N , belong to

C2+α, 2+α
2 (V × [0, t0]).

Evolution of the zero level set of v

The rest of the proof is devoted to proving that, possibly reducing t0, the mapping

t ∈ [0, t0] �→ Er(t) = (E0 \ V ) ∪ {x ∈ V, v(x, t) ≥ 0}

is a smooth evolution with C3+α boundary, with normal velocity given by (7.1).

Proposition 7.3 (distance property of v). Let v be the solution of (7.5) given by Theorem 7.2. Then we have

|Dv|2 = 1 in Q. (7.6)

Proof. We adapt the proof of Evans and Spruck [16], Theorem 3.1.

Step 1. Let w = |Dv|2 − 1. Then w ∈ C2+α, 2+α
2 (V × [0, t0]). Moreover, using the PDE (7.5) and the definition

of g given by (7.4), we get that
w = 0 on Σ ∪ (V × {t = 0}).
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Step 2. Differentiating (7.5), we compute (with implicit summations over i, j, k)

vtxk
=

∂F

∂rij
(D2v, v)vxixjxk

+
∂F

∂z
(D2v, v)vxk

+
∂

∂xk
c(x − vDv, t).

Therefore

wt = 2vxk
vxkt

= 2
∂F

∂rij
(D2v, v)vxk

vxkxixj + 2
∂F

∂z
(D2v, v)|Dv|2 + 2

∂

∂xk
(c(x − vDv, t))vxk

=
∂F

∂rij
(D2v, v)wxixj − 2

∂F

∂rij
(D2v, v)vxkxivxkxj + 2

∂F

∂z
(D2v, v)|Dv|2 + 2

∂

∂xk
(c(x − vDv, t))vxk

. (7.7)

Now

2
∂

∂xk
(c(x − vDv, t))vxk

= 2
N∑

i,k=1

∂c

∂xi
(x − vDv, t)(δik − vxk

vxi − vvxkxi) vxk

= − 2(|Dv|2 − 1)
N∑

i=1

∂c

∂xi
(x − vDv, t) vxi −

N∑
i=1

∂c

∂xi
(x − vDv, t) v wxi

= − w l1(x, t) − wxi l2,i(x, t),

where

l1(t, x) = 2
N∑

i=1

∂c

∂xi
(x − vDv, t) vxi

and
l2,i(x, t) =

∂c

∂xi
(x − vDv) v.

Moreover as recalled in [16],

∂F

∂rij
(D2v)vxkxivxkxj =

∂F

∂z
(D2v, v).

As a consequence (7.7) becomes

wt =
∂F

∂rij
(D2v, v)wxixj +

(
2
∂F

∂z
(D2v, v) − l1(x, t)

)
w − l2,i(x, t)wxi .

In view of the uniform ellipticity of F (see [16], Lem. 2.1), we get that this is a uniformly parabolic equation.
Using the fact that w = 0 on the parabolic boundary of Q, we deduce that w = 0 in Q. This ends the proof of
the proposition. �

Now, using (7.6), we get that
Γ = {(x, t) ∈ Q, v = 0}

is a C1 hypersurface in Q and each slice Γ(t) = {x ∈ V, v(x, t) = 0} is a C3+α hypersurface in V . Moreover we
have the following equivalent of [16], Theorem 3.2:

Theorem 7.4 (existence of a classical evolution). The surfaces {Γ(t)}0≤t≤t0 comprise a classical motion starting
from Γ0 with normal velocity

Vx,t = Hx,t + c(x, t).
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Given that Γ(t) = ∂Er(t) for all t ∈ [0, t0], provided t0 is small enough depending only on an upper bound
on ‖c‖W 2,1;∞(RN×[0,T ]), this concludes the proof of Theorem 7.1.

7.2. Existence of smooth solution for the non-local problem

With the results of the previous section, we are now ready to carry out the fixed point argument. We use the
same notation as in the previous section, in particular F , Q, Σ and V , with the same δ0 fixed, but for some t0
to be determined. Using the same method as in Section 7.1, our goal is to construct a solution to the PDE⎧⎨⎩ vt = F (D2v, v) + (c0(·, t) �V 1{v(·,t)≥0})(x − vDv, t) + c̃(x − vDv, t) in Q

|Dv|2 = 1 on Σ
v = g on V × {t = 0}

(7.8)

where �V denotes the convolution restricted to V , i.e.

c0(·, t) �V 1{v(·,t)≥0}(x) =
∫

V

c0(x − y, t)1{v(·,t)≥0}(y) dy

and

c̃(x, t) =
∫

E0\V

c0(x − y, t)dy + c1(x, t).

We define the set

E =

⎧⎪⎪⎨⎪⎪⎩v ∈ C2+α, 2+α
2 (Q)

∣∣∣∣∣∣∣∣
||v − g||

C2+α,
2+α

2 (Q)
≤ R0

|Dv|2 = 1 in Q
v = g on V × {t = 0}
vt = h0 on V × {t = 0}

⎫⎪⎪⎬⎪⎪⎭ ,

where g is defined by (7.4), R0 is a small constant which will be precised later and

h0 = F (D2g, g) + c0 � 1E0(x − gDg, 0) + c1(x − gDg, 0).

For w ∈ E, we set

cw(x, t) = c0(·, t) �V 1{w(·,t)≥0}(x) + c̃(x, t).

Under the assumptions on c0 and c1 it is easy to check that cw ∈ W 2,1;∞(RN × [0, T ]) (see the definition of
W 2,1;∞(RN × [0, T ]) after (1.11)). Indeed, the only difficulty is to check that cw is Lipschitz in time. To do
this, let us state the following lemma:

Lemma 7.5 (estimate on characteristic functions). There exists a constant C which does not depend on t0,
such that if u1, u2 ∈ C1(V ) satisfy Dui · Dg ≥ 1

2 in V for i = 1, 2, then

‖1{u1≥0} − 1{u2≥0}‖L1(V ) ≤ C‖u1 − u2‖L∞(V ).

The proof is an easy adaptation of [3], Lemma 42 (using local cards and a partition of unity), so we skip it.

For any u ∈ E, Du satisfies Du(·, 0) = Dg and is Hölder in time. As a consequence, for t0 small enough
depending only on an upper bound on

‖u‖
C2+α,

2+α
2 (Q)

≤ R0 + ‖g‖C2+α(V ),
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we have Du(·, t) · Dg ≥ 1/2 in V for any u ∈ E and t ∈ [0, t0]. Therefore, using the previous lemma, we can
compute

|cw(x, t) − cw(x, s)| = |c0(·, t) �V 1{w(·,t)≥0}(x) − c0(·, s) �V 1{w(·,s)≥0}(x) + c̃(x, t) − c̃(x, s)|
≤ |c0(·, t) �V 1{w(·,t)≥0}(x) − c0(·, t) �V 1{w(·,s)≥0}(x)|

+ |c0(·, t) �V 1{w(·,s)≥0}(x) − c0(·, s) �V 1{w(·,s)≥0}(x)| + |c̃(x, t) − c̃(x, s)|
≤ Cw|t − s|,

where

Cw = C‖c0‖L∞(RN×[0,T ])‖w‖
C2+α,

2+α
2 (Q)

+ 2‖c0‖W 1,∞([0,T ];L∞(RN ))LN (E0) + ‖c1‖W 2,1;∞(RN×(0,T )).

The factor 2 appears if we assume that LN (V \ E0) ≤ LN (E0), which is always possible. We remark that
this constant Cw can be chosen independently of w since we have ‖w‖

C2+α, 2+α
2 (Q)

≤ R0 + ‖g‖C2+α(V ). This,

together with similar estimates on space derivatives, implies that for any w ∈ E,

‖cw‖W 2,1;∞(Q) ≤ C(1 + R0),

where the constant C does not depend on t0, R0.

As a consequence of Theorem 7.2, for t0 small enough (depending only on R0), we can therefore define for
any w ∈ E, v = Φ(w) as the unique solution of⎧⎨⎩ vt = F (D2v, v) + cw(x − vDv, t) in Q

|Dv|2 = 1 on Σ
v = g on V × {t = 0}.

Moreover the proof of Theorem 7.2 shows that provided t0 is small enough (depending only on R0), then v ∈ E
for any w ∈ E. Let us now prove that Φ is a contraction, for a good choice of parameters R0 and t0.

Let w1, w2 ∈ E, v1 = Φ(w1), v2 = Φ(w2) and v = v2 − v1. Then v is a solution of⎧⎪⎨⎪⎩
vt − aijvxixj + fivxi + ev = δ + A(D2v, Dv, v, x, t) in Q
∂v

∂ν
= a(Dv, x, t) on Σ

v = 0 on V × {t = 0},

where

aij =
∂F

∂rij
(D2v1, v1)vij , fi =

∂c

∂xi
v1, e = Dcw1 · Dv1 − ∂F

∂z
(D2v1, v1),

δ = cw2(x − v2Dv2, t) − cw1(x − v2Dv2, t),

A(R, p, z, x, t) = F (D2v1 + R, v1 + z) − F (D2v1, v1) − ∂F

∂z
(D2v1, v1)z − ∂F

∂rij
(D2v1, v1)rij

+ cw1(x − (v1 + z)(Dv1 + p), t) − cw1(x − v1Dv1, t)

+ (Dcw1(x − v1Dv1, t) · Dv1)z +
∂cw1(x − v1Dv1, t)

∂xi
v1pi
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and

a(p, x, t) =

⎧⎪⎨⎪⎩
−1

2
(
2p · (Dv1(x, t) − Dg(x)) + |p|2) on {g = δ0}

1
2
(
2p · (Dv1(x, t) − Dg(x)) + |p|2) on {g = −δ0},

where we have used the fact that Dg is a unit normal to ∂V . Using the same arguments as those of Evans and
Spruck [16], Lemma 5.3 (i.e. a Taylor expansion) and the fact that ||v||

C2+α, 2+α
2 (Q)

≤ 2R0, we get that

||A||
Cα, α

2 (Q)
, ||a||

C1+α, 1+α
2 (Σ)

≤ C0R0||v||
C2+α, 2+α

2 (Q)
, (7.9)

where C0 does not depend on t0, R0. Using [16], Lemma 2.2, we then deduce that:

‖v1 − v2‖
C2+α, 2+α

2 (Q)
= ||v||

C2+α, 2+α
2 (Q)

≤ C1

(
‖δ‖

Cα, α
2 (Q)

+ ‖A‖
Cα, α

2 (Q)
+ ‖a‖

C1+α,1+α
2 (Σ)

)
,

where C1 does not depend on t0 and R0, which together with (7.9) implies that

‖v‖
C2+α,

2+α
2 (Q)

≤ 2C1‖δ‖Cα, α
2 (Q)

(7.10)

as soon as R0 ≤ (4C0C1)−1. Let us fix from now on such a R0.

We now use the following lemma, the proof of which is postponed:

Lemma 7.6 (estimate on the velocities). With the previous notation, there exists C independent of t0 such
that if w = w1 − w2, we have for t0 small enough

||δ||W 1,1;∞(Q) ≤ C||w||W 1,1;∞(Q).

This implies in particular, also using the Hölder regularity of w and the fact that wt(·, 0) = 0 = Dw(·, 0),
that

‖δ‖
Cα, α

2 (Q)
≤ ||δ||W 1,1;∞(Q) ≤ C||w1 − w2||W 1,1;∞(Q) ≤ Ct

α
2
0 ‖w1 − w2‖

C2+α, 2+α
2 (Q)

.

Using (7.10), we deduce that for t0 small enough,

‖v1 − v2‖
C2+α,

2+α
2 (Q)

≤ 1
2
‖w1 − w2‖

C2+α,
2+α

2 (Q)
.

This implies that Φ is a contraction whence, using the Banach fixed point theorem, we deduce that there exists
a unique solution v of (7.8).

Using Theorem 7.4, we finally obtain that, possibly reducing t0,

t ∈ [0, t0] �→ Er(t) = (E0 \ V ) ∪ {x ∈ V, v(x, t) ≥ 0}

defines a smooth evolution with C3+α boundary starting from E0 with normal velocity

Vx,t = Hx,t + c0(·, t) � 1Er(t)(x) + c1(x, t).

This concludes the proof of Theorem 1.6.
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We end with the proof of Lemma 7.6:

Proof of Lemma 7.6. We begin by estimating the derivative of δ in time. Writing out the expression of ∂δ
∂t , we

see that thanks to the regularity of c0 and the fact that

‖v2‖
C2+α, 2+α

2 (Q)
≤ R0 + ‖g‖C2+α(V ),

the only difficult term to treat is ∂
∂t (cw2 − cw1). However we have, using Hadamard’s formula:

∂(cw2 − cw1)
∂t

(x, t) =
∫

V

(c0)t(x − y, t)(1{w1(·,t)≥0} − 1{w2(·,t)≥0})(y) dy (7.11)

−
∫
{w1(·,t)=0}

(w1)t(y, t)c0(x − y, t)dHN−1(y) +
∫
{w2(·,t)=0}

(w2)t(y, t)c0(x − y, t)dHN−1(y).

First, using Lemma 7.5, we have that∣∣∣∣∫
V

(c0)t(x − y, t)(1{w1(·,t)≥0} − 1{w2(·,t)≥0})(y)dy

∣∣∣∣ ≤ C‖c0‖W 1,∞([0,T ];L∞(RN ))‖w‖L∞(Q). (7.12)

For the second term, we write∫
{w2(·,t)=0}

(w2)t(y, t)c0(x − y, t)dHN−1(y) −
∫
{w1(·,t)=0}

(w1)t(y, t)c0(x − y, t)dHN−1(y) = I1 + I2,

where

I1 =
∫
{w2(·,t)=0}

(w2)t(y, t)c0(x − y, t)dHN−1(y) −
∫
{w2(·,t)=0}

(w1)t(y, t)c0(x − y, t)dHN−1(y)

and

I2 =
∫
{w2(·,t)=0}

(w1)t(y, t)c0(x − y, t)dHN−1(y) −
∫
{w1(·,t)=0}

(w1)t(y, t)c0(x − y, t)dHN−1(y).

We remark that
|I1| ≤ C‖c0‖L∞(Q)‖wt‖L∞(Q), (7.13)

where the constant C is a bound on the perimeter of {u(·, t) = 0}, uniform for u ∈ E and t ∈ [0, t0].

We now treat I2, and to this aim we use a local parameterization. We choose local coordinates and r small
enough such that if Br = BN−1

r (0), then

∂g

∂xN
≥ 3

4
in Br × [−r, r].

Now, for t0 small enough (depending only on R0 and g), recalling that

wi(·, 0) = g and ‖wi‖
C2+α, 2+α

2 (Q)
≤ R0 + ‖g‖C2+α(V ),

we get that
∂wi

∂xN
≥ 1

2
in Br × [−r, r]. (7.14)
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We fix t ≤ t0 and we assume that {wi(·, t) = 0} = {(x′, fi(x′)), x′ ∈ Br}. Using a partition of unity, we will
then recover the complete estimate. We define ε(x′) = f2(x′) − f1(x′). For t0 small enough (depending only
on R0 and g) we can assume that

|ε(x′)| ≤ 1
2(R0 + ‖g‖C2+α(V ))

· (7.15)

We then have

|I2| ≤ C

∫
y′∈Br

∣∣∣√1 + |Df1|2 c0(x′ − y′, xN − f1(y′), t)

−
√

1 + |Df1 + Dε|2 c0(x′ − y′, xN − f1(y′) − ε(y′), t)
∣∣∣ dy′

≤ C‖ε‖W 1,∞(Br),

where we have used the fact that c0 ∈ L∞([0, T ], W 1,∞(RN )) and where the constant C depends only on R0, g
and c0.

Our goal now is just to estimate ‖ε‖W 1,∞(Br) with respect to ‖w‖L∞([0,t0],W 1,∞(V )). For simplicity of notation,
we forget the dependence in time of w, w1 and w2. We recall that

w1(x′, f1(x′)) = 0 =w2(x′, f1(x′) + ε(x′)) (7.16)

=w1(x′, f1(x′) + ε(x′)) − w(x′, f1(x′) + ε(x′)).

Using a Taylor expansion, we get that

w1(x′, f1(x′) + ε(x′)) = w1(x′, f(x′)) +
∂w1

∂xN
(x′, f(x′)) · ε(x′) + o(ε), (7.17)

where

‖o(ε)‖L∞ ≤ 1
2

∣∣∣∣∂2w1

∂x2
N

∣∣∣∣ ‖ε‖2
L∞ ≤ 1

4
‖ε‖L∞,

thanks to (7.15) and the fact that
∣∣∣∣∂2w1

∂x2
N

∣∣∣∣ ≤ R0 + ‖g‖C2+α(V ). We then deduce from (7.16), (7.17) and (7.14)

that
‖ε‖L∞ ≤ 4‖w‖L∞(Q). (7.18)

Differentiating (7.16) with respect to xi and using a Taylor expansion, we get as above

‖εxi‖L∞ ≤ C
‖w‖L∞([0,t0],W 1,∞(V ))

| ∂w2
∂xN

| ≤ C‖w‖L∞([0,t0],W 1,∞(V )).

Combining the last inequality with (7.18), we have

|I2| ≤ C‖w‖L∞([0,t0],W 1,∞(V )). (7.19)

Using (7.12), (7.13) and (7.19), we finally obtain

‖∂δ

∂t
‖L∞(Q) ≤ C‖w‖W 1,1,∞(Q).

The estimates on ‖δ‖L∞(Q) and ‖Dδ‖L∞(Q) are easier (they use the regularity of c0), so we skip their proofs.
This ends the proof of the lemma. �



244 N. FORCADEL AND A. MONTEILLET

Acknowledgements. The authors would like to thank P. Cardaliaguet and R. Monneau for fruitful discussions during
the preparation of this paper, as well as Y. Giga for sending us some references. The first author was supported by
the contract JC 1025 called “ACI jeunes chercheuses et jeunes chercheurs” of the French Ministry of Research (2003–
2005). This work was partially supported by the ANR (Agence Nationale de la Recherche) through MICA project
(ANR-06-BLAN-0082).

References

[1] F. Almgren, J.E. Taylor and L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31 (1993) 387–
438.

[2] O. Alvarez, P. Cardaliaguet and R. Monneau, Existence and uniqueness for dislocation dynamics with nonnegative velocity.
Interfaces Free Boundaries 7 (2005) 415–434.

[3] O. Alvarez, E. Carlini, R. Monneau and E. Rouy, A convergent scheme for a nonlocal Hamilton-Jacobi equation, modeling
dislocation dynamics. Num. Math. 104 (2006) 413–572.

[4] O. Alvarez, P. Hoch, Y. Le Bouar and R. Monneau, Dislocation dynamics: short time existence and uniqueness of the solution.
Arch. Rational Mech. Anal. 85 (2006) 371–414.

[5] L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191–246.
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