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1. Introduction

Over the last decade, multiple approaches have emerged for constructing (discontinuous, in general) state
feedback stabilizers for asymptotically controllable nonlinear systems. In [3], a feedback was constructed using
locally Lipschitz control Lyapunov functions and nonsmooth calculus. The paper [1] introduced the notion of
a patchy feedback, a state feedback that is constant on patches of the state space and gives the closed-loop
vector field certain “inward pointing” properties on the boundary of a patch. Furthermore [1], showed that
every asymptotically controllable nonlinear system admits a stabilizing patchy feedback. In both [3] and [1], the
authors showed that the resulting feedbacks are robust to small additive disturbances. In [2], it was shown that
the patchy feedbacks of [1] are robust, in the semiglobal practical sense, to measurement noise of small variation.
However, robustness to general measurement noise could not be expected in general without modifications of
the feedbacks of [3] and [1].

In [11] and [4], the feedback ideas in [3] were implemented, to guarantee some robustness to measurement
noise, with sample and hold. Such implementation, where the control is held constant using a timer variable
that is reset at each sampling instant, makes the resulting feedback hybrid. An alternative hybrid feedback
idea is found in the notion of hysteresis switching. In the context of robust stabilization of nonlinear control
systems, this approach was pursued initially in [7,8], using the patchy feedbacks of [1] as the supporting idea.
In particular, robust stabilization of any asymptotically controllable nonlinear system was achieved in [8]. As
general results on the robustness of asymptotic stability for hybrid systems were not available at the time, the
robustness had to be established directly.
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In [5], various regularity properties of general hybrid systems were established and robustness of stability was
tied to some basic properties of the system’s data. The work in [9] adapted such results to nonlinear systems
in closed loop with hybrid patchy feedbacks, and in particular, showed that any hybrid patchy feedback that is
strongly regular (in the terminology of the current paper, see Def. 2.1 below) is robust with respect to external
disturbances, actuator error, and measurement noise. Also in [9], a stabilizing and strongly regular hybrid
patchy feedback was constructed from a stabilizing (not hybrid) patchy feedback, which exists for asymptotically
controllable nonlinear systems according to [1]. Examples of hybrid patchy feedbacks, including those that
robustly stabilize nonlinear systems that do not admit robustly stabilizing nonhybrid feedbacks (say, Artstein’s
circles, Brockett’s integrator) can be found in [6,9].

In this note, we consider general asymptotically controllable nonlinear systems and give a direct construction
of a stabilizing hybrid patchy feedback that is strongly regular. To an extent, we rely on the ideas of [1] and [9],
but avoid the intermediate construction of a patchy vector field. As a result, we avoid the analysis needed in [1]
to show the robustness of the patchy vector field to external disturbance – such robustness comes “for free”,
along with robustness to measurement noise, from the structure of the hybrid feedback and results of [9]. Since
hybrid feedback is our goal, weaker properties are required from the objects corresponding to patches of [1] –
here, the vector fields need not be “inward-pointing” – and as a result, the construction is somewhat simpler.

2. Preliminaries

For an open set Õ ⊂ R
n and a compact set A ⊂ Õ, consider a set of feasible controls U ⊂ R

m, a function
f : Õ × U → R

n and a nonlinear control system

ẋ(t) = f(x(t), u(t)), u(t) ∈ U, for all t ≥ 0. (2.1)

In what follows, we write O for Õ \ A.

Definition 2.1. A hybrid patchy feedback consists of
• a set Q
• for each q ∈ Q,

– sets Cq ⊂ O and Dq ⊂ O;
– a function kq : Cq → U ;
– a set-valued mapping Gq : Dq →→ Q.

A hybrid patchy feedback is regular if Q ⊂ Z
n for some n, and for each q ∈ Q, Cq and Dq are relatively closed

subsets of O, kq is continuous, Gq is outer semicontinuous and locally bounded on O1, and Gq(x) is nonempty
for all x ∈ Dq. It is strongly regular if it is regular, {Cq}q∈Q form a locally finite covering of O, Gq are locally
bounded uniformly in q, and for all q ∈ Q, Cq ∪ Dq = O.

In closed loop with the nonlinear system (2.1), a hybrid patchy feedback as in Definition 2.1 leads to a hybrid
system

ẋ = Fq(x) if x ∈ Cq,

q+ ∈ Gq(x) if x ∈ Dq,
(2.2)

on the state space O × Q, where for each q ∈ Q, Fq(x) := f(x, kq(x))2.

1For these, and other concepts related to set-valued mappings, we point the reader to [10]. Here, we only note that Gq is outer

semicontinuous on O if and only if its graph is closed, relative to O × Z
n.

2The phrase “hybrid patchy feedback” was used previously in [8]. The feedback constructed there fits the current definition of a
hybrid patchy feedback. We use the term hybrid patchy feedback, rather than just hybrid feedback, both to relate it to the patchy
feedback of [1] and because hybrid feedback with different structure can be used for purposes of robust stabilization. In particular,
the sample and hold implementation of the state feedback u = κ(x) results in a hybrid system ẋ = f(x, u), τ̇ = 1 if τ ∈ [0, T ),
u+ = κ(x), τ+ = 0 if τ = T . This represents that the state is sampled every T units of time, after each sampling the control u is
computed based on the feedback κ, and in between sampling times, the computed constant control is applied. The variable τ is
the timer.
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Following [5], we now make the concept of a solution to (2.2) precise. A subset S ⊂ R≥0 × N is a compact
hybrid time domain if S =

⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ . S is a

hybrid time domain if for all (T, J) ∈ S, S ∩ ([0, T ]× {0, 1, ..., J}) is a compact hybrid domain; equivalently, if
S is a union of a finite or infinite sequence of intervals [tj , tj+1]×{j}, with the last interval, if it exists, possibly
of the form [tj , T ) with T finite or T = +∞. We write supt(S) for the supremum of all t such that (t, j) ∈ S
for some j.

A solution to the hybrid system (2.2) consists of: a nonempty hybrid time domain S, a function x : S → O
such that x(t, j) is locally absolutely continuous in t for a fixed j and constant in j for a fixed t, where (t, j) ∈ S,
and a function q : S → Q such that q(t, j) is constant in t for a fixed j, where (t, j) ∈ S, meeting the following
conditions: x(0, 0) ∈ Cq(0,0) ∪ Dq(0,0) and

(S1) for all j ∈ N and almost all t such that (t, j) ∈ S,

ẋ(t, j) = Fq(t,j)(x(t, j)), x(t, j) ∈ Cq(t,j);

(S2) for all (t, j) ∈ S such that (t, j + 1) ∈ S,

q(t, j + 1) ∈ Gq(t,j)(x(t, j)), x(t, j) ∈ Dq(t,j).

Given a solution to (2.2), we will usually not mention the hybrid time domain explicitly, but will identify the
solution by (x, q). When needed, we will refer to the associated domain by dom(x, q).

The set A is stable for the hybrid system (2.2) if for any ε > 0 there exists δ > 0 such that any solution (x, q)
to (2.2) with distA(x(0, 0)) ≤ δ satisfies distA(x(t, j)) ≤ ε for all (t, j) ∈ dom(x, q). (Here and in what follows,
distA(x) = miny∈A |x− y|, where | · | is any chosen norm in R

n.) The set A is globally attractive for the hybrid
system (2.2) if for any (x0, q0) ∈ O × Q there exists a solution to (2.2) with x(0, 0) = x0, q(0, 0) = q0 and for
any maximal solution (x, q) to (2.2) we have distA(x(t, j)) → 0 as t → supt(dom(x, q)). Finally, A is globally
asymptotically stable for (2.2) if it is both stable and globally attractive.

By an admissible perturbation radius we will understand any continuous function ρ : O → R>0 such that
x + ρ(x)B ⊂ O for all x ∈ O. (Here and in what follows, B is the closed unit ball in R

n.) We will say that A is
robustly globally asymptotically stable for (2.2) if there exists an admissible perturbation radius ρ such that, for
the hybrid system

ẋ ∈ F ρ
q (x) if x ∈ Cρ

q ,

q+ ∈ Gρ
q(x) if x ∈ Dρ

q ,
(2.3)

with the data

F ρ
q (x) := conFq((x + ρ(x)B) ∩ Cq) + ρ(x)B

Gρ
q(x) := Gq((x + ρ(x)B) ∩ Dq),

Cρ
q := {x ∈ O | (x + ρ(x)B) ∩ Cq 
= ∅},

Dρ
q := {x ∈ O | (x + ρ(x)B) ∩ Dq 
= ∅},

(2.4)

the set A is globally asymptotically stable. (Above, conFq stands for the pointwise closed convex hull of Fq.)
Such robustness can be understood as robustness to autonomous perturbations. When nonautonomous per-
turbations are considered, the very issue of the existence of solutions to the perturbed hybrid system is more
delicate; see [9], Example 5.8. However, given a hybrid patchy feedback that leads to A being robustly globally
asymptotically stable in the sense described above, a minor modification of the feedback guarantees existence
of solutions under nonautonomous perturbations; see [9], Section V.C.
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3. Main result

We call a control u : [0, T ] → U piecewise constant if for some 0 = t0 < t1 < t2 < . . . < tP = T , u(t) is
constant for t ∈ (ti−1, ti), i = 1, 2, . . . , P .

Theorem 3.1. Suppose that the function x �→ f(x, u) is continuous and solutions to ẋ(t) = f(x(t), u) are unique
for each u ∈ U and each initial condition in O. Suppose furthermore that the nonlinear control system (2.1) is
such that

(a) for each ξ ∈ O and γ > 0 there exists Tξ > 0 and a piecewise constant uξ : [0, Tξ] → U such that the
trajectory xξ to (2.1) with xξ(0) = ξ and u replaced by uξ exists on [0, Tξ] and distA(xξ(Tξ)) < γ;

(b) for any ε > 0 there exists δ > 0 such that for any ξ ∈ O with distA(ξ) < δ and any γ > 0 one can find
uξ as in (a) and an associated Tξ > 0 so that the resulting trajectory xξ is such that distA(xξ(t)) < ε
for all t ∈ [0, Tξ].

Then, there exists a strongly regular hybrid patchy feedback on O with kq constant for each q ∈ Q that renders
A asymptotically stable on O for the system (2.1).

We prove this result in Section 4. Here, we first note that assumptions (a) and (b) of Theorem 3.1 are
met if (2.1) is asymptotically controllable to A; that is, for each ξ ∈ O, there exists a measurable and locally
bounded uξ : [0,∞) → U such that the resulting trajectory to (2.1) satisfies distA(xξ(t)) → 0 as t → ∞, and
if for any ε > 0 there exists δ > 0 such that for ξ ∈ O with distA(ξ) < δ, the said control uξ can be found so
that distA(xξ(t)) < ε for all t ≥ 0, and when f is sufficiently regular to guarantee that the solutions to (2.1)
are unique if measurable and locally bounded controls are applied. We add that the assumptions (a) and (b)
are stated exactly in the form that will be used in the construction of the stabilizing feedback.

Second, let us explain the significance of the properties (regularity and strong regularity) of the stabilizing
hybrid patchy feedback whose existence is claimed in Theorem 3.1. If the feedback is regular and f is continuous
(in both variables) then the resulting closed-loop hybrid system (2.2) has the properties required by [5] in
developing the robust stability theory for hybrid systems. In particular, for such hybrid systems, appropriately
understood limits of solutions are still solutions, and solutions from points near a reference point are close (again,
in appropriate sense) to some solution from the reference point. Such properties guarantee that asymptotic
stability of compact sets is always robust; see [5]. Technically, the robustness results of [5] is not applicable
here, since we are talking about stability of A×Q, which need not be compact, and f is not continuous in (x, u).
However, for such setting, if the hybrid feedback is not only regular, but strongly regular and kq is constant for
each q ∈ Q, robustness of stability again comes for “free”, thanks to [9], Theorem 4.3. Consequently:

Corollary 3.2. Under the assumptions of Theorem 3.1, there exists a strongly regular hybrid patchy feedback
on O that renders A globally robustly asymptotically stable on O for the system (2.1).

4. Stabilizing hybrid feedback

We now prove Theorem 3.1. In Section 4.1 a hybrid patchy feedback is constructed, in Section 4.2 basic
properties of the feedback and of the resulting closed-loop hybrid system are described, and in Section 4.3 they
are employed to conclude asymptotic stability of the closed loop.

A proper indicator of A with respect to O is any continuous function ω : O → (0,∞) such that ω(ξi) → 0 if
ξi → A, while ω(ξi) → ∞ if either ξi ∈ O converge to a boundary point of O not contained in A or |ξi| → ∞.
(Equivalently, ω is a restriction to O of a continuous function ω̃ : Õ → [0,∞) such that ω̃(ξ) = 0 if and only
if ξ ∈ A and ω̃(ξi) → ∞ if either ξi ∈ Õ converge to a boundary point of Õ or |ξi| → ∞.) Note that for
any 0 < r ≤ r′, the set {ξ ∈ O | r ≤ ω(ξ) ≤ r′} is compact.
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4.1. Construction

Let ω : O → (0,∞) be any proper indicator of A with respect to O. Pick any r0 > 0. Using assumption (b),
find r1 > 0 such that r1 < r0/2 and for each ξ ∈ O with ω(ξ) ≤ r1 a piecewise constant uξ : [0, Tξ] → U as
in assumption (a) can be found (with any γ > 0) so that the resulting trajectory xξ satisfies ω(x(t)) < r0 for
all t ∈ [0, Tξ].

Fix ξ ∈ R0 := {ξ ∈ O | r1 ≤ ω(ξ) ≤ r0}. Find a piecewise constant uξ : [0, Tξ] → U such that the resulting
trajectory xξ satisfies ω(x(Tξ)) < r1 while for all t ∈ [0, Tξ], ω(x(t)) > r1/2. Let uξ be given by uξ(t) = um

ξ ∈ U

when t ∈ (tm−1
ξ , tmξ ), where

0 = t0ξ < t1ξ < t2ξ < . . . < t
Mξ−1
ξ < t

Mξ

ξ = Tξ.

For a point η and a control value u ∈ U , let φ(η, u, t) be the trajectory of (2.1) with constant control u starting
at η evaluated at time t (so in particular, φ(η, u, 0) = η). For a set S, a control u ∈ U , and an interval [a, b], we
write φ(S, u, [a, b]) for

⋃
η∈S

⋃
t∈[a,b] φ(η, u, t).

Continuity of f and the uniqueness of solutions assumption imply continuous dependence of solutions on initial
conditions. In particular, for any t′ ∈ [0, Tξ] and any μ > 0 there exists μ′ > 0 (which can be chosen arbitrarily
small) so that any solution to ẋ(t) = f(x(t), uξ(t)) with x(0) ∈ xξ(t′) + μ′

B is such that x(t) ∈ xξ(t′ + t) + μB

for all t ∈ [0, Tξ − t′]. Consequently, one can pick εm
ξ > 0, δm

ξ > εm
ξ , m = 0, 1, . . . , Mξ − 1 so that the closed sets

φ
(
xξ(tmξ ) + δm

ξ B, um+1
ξ , [0, tm+1

ξ − tmξ ]
)

are bounded (hence compact) and such that

φ
(
xξ(tmξ ) + δm

ξ B, um+1
ξ , tm+1

ξ − tmξ

)
⊂ int

(
xξ(tm+1

ξ ) + εm+1
ξ B

)
,

inf ω
(
φ

(
xξ(tm−1

ξ ) + δm−1
ξ B, um

ξ , [0, tmξ − tm−1
ξ ]

))
> r1/2

for m = 0, 1, . . . , Mξ − 1, while

sup ω
(
φ

(
xξ(t

Mξ−1
ξ ) + δ

Mξ−1
ξ B, u

Mξ

ξ , t
Mξ

ξ − tM−1
ξ

))
< r1.

The procedure above can be repeated for each ξ ∈ R0. Since R0 is compact, one can find ξ1, ξ2, . . . , ξL0 ∈ R0

so that
L0⋃
l=1

ξl + ε0
ξl

intB ⊃ R0.

For l = 1, 2, . . . , L0, m = 1, 2, . . . , Mξl
, define the control values

u0,l,m = um
ξl

and sets

Θ0,l,m = φ
(
xξl

(tm−1
ξl

) + εm−1
ξl

B, um
ξl

, [0, tmξl
− tm−1

ξl
]
)

,

Θ′
0,l,m = φ

(
xξl

(tm−1
ξl

) + δm−1
ξl

B, um
ξl

, [0, tmξl
− tm−1

ξl
]
)

.

These subsets of O are compact and such that Θ0,l,m is a subset of the interior of Θ′
0,l,m. Note also that since

ξl + ε0
ξl

B ⊂ Θ0,l,1, the sets Θ0,l,m (and thus also the sets Θ′
0,l,m) form a covering of R0.
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Now proceed inductively. Given rk+2 and rk+1, k = −1,−2,−3, . . . , controls uk,l,m, and sets Θk,l,m, Θ′
k,l,m,

l = 1, 2, . . . , Lk, m = 1, 2, . . . , Mξl
, pick rk so that rk > 2rk+1 and

rk > maxω

⎛
⎝Lk+1⋃

l=1

Mξl⋃
m=1

Θ′
k+1,l,m

⎞
⎠

and define Rk := {ξ ∈ O | rk+1 ≤ ω(ξ) ≤ rk}. Repeat the construction (carried out above for R0) for Rk,
starting by finding, for each ξ ∈ Rk, a piecewise constant uξ : [0, Tξ] → U such that the resulting trajectory xξ

satisfies ω(x(Tξ)) < rk+1 while for t ∈ [0, Tξ], ω(x(t)) > rk+1/2.
Similarly, given rk and rk−1, k = 1, 2, 3, . . . , pick rk+1 so that rk+1 < rk/2 and for any ξ ∈ O with ω(ξ) ≤ rk+1

(and any γ > 0) one can find uξ : [0, Tξ] → U so that the resulting trajectory xξ is such that ω(xξ(t)) < rk for
all t ∈ [0, Tξ]. Define Rk := {ξ ∈ O | rk+1 ≤ ω(ξ) ≤ rk}. Repeat the construction (carried out above for R0)
for Rk, starting by finding, for each ξ ∈ Rk, a piecewise constant uξ : [0, Tξ] → U such that the resulting
trajectory xξ satisfies ω(x(Tξ)) < rk+1 while for t ∈ [0, Tξ], ω(x(t)) > rk+1/2.

In this fashion, one obtains numbers rk, k ∈ Z, such that rk < rk−1/2 and a family of controls uk,l,m and
sets Θk,l,m, Θ′

k,l,m, k ∈ Z, l = 1, 2, . . . , Lk, m = 1, 2, . . . , Mξl
, such that, in particular,

rk+2 < rk+1/2 < ω
(
Θ′

k,l,m

)
< rk−1 (4.1)

and thus the covering of O by sets Θ′
k,l,m (and thus also by the sets Θk,l,m) is locally finite.

Let Q′ be the (countable) family of triples k, l, m, k ∈ Z, l = 1, 2, . . . , Lk, m = 1, 2, . . . , Mξl
, ordered as

follows: if q = (k, l, m) and q′ = (k′, l′, m′), then

q � q′ if k > k′ or k = k′, l > l′ or k = k′, l = l′, m > m′. (4.2)

Let Q ⊂ Q′ be the set of those q for which Θ′
q \

⋃
q′�q Θq′ 
= ∅.

Define the hybrid feedback as follows: for each q ∈ Q, let

Cq = Θ′
q \

⋃
q′�q

Θq′ , Dq =

⎛
⎝ ⋃

q′�q

Θq′

⎞
⎠ ∪ O \ Θ′

q ,

kq(ξ) = uq,

Gq(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{q′ ∈ Q | ξ ∈ Θq′} ξ ∈ O \ Θ′
q

{q′ ∈ Q | ξ ∈ Θq′ , q′ � q} ξ ∈
⎛
⎝ ⋃

q′�q

Θq′

⎞
⎠ \ O \ Θ′

q.

(4.3)

Here and in what follows, the closure operation is taken relative to the open set O. (This in particular ensures
that O \ Θ′

q ⊂ O, and so Dq ⊂ O.) In closed loop with (2.1), this feedback leads to a hybrid system given by
Cq, Dq, Gq as above and Fq given by Fq(ξ) = f(ξ, uq).

4.2. Properties of the hybrid system and of the solutions

We now make several observations about the structure of the constructed hybrid feedback (4.3) and the
resulting closed-loop hybrid system (2.2).

By construction, given q = (k, l, m) ∈ Q′, we have Θ′
k,l,m ⊂ Rk−1∪Rk∪Rk+1. Since for each k there is finitely

many q = (k, l, m) ∈ Q′, only finitely many sets Θ′
q intersect each Rk, which in turn implies that each compact

subset of O intersects finitely many Θ′
q. The same conclusion holds for Θq’s, as Θq ⊂ Θ′

q. By construction,
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for each ξ ∈ O there exists some Θq such that ξ ∈ Θq. (In fact, if ξ ∈ Rk, for some l such that (k, l, 1) ∈ Q′

we have ξ ∈ Θ(k,l,1).) So, {Θq}q∈Q and also {Θ′
q}q∈Q form locally finite coverings of O. Consequently, for

each ξ ∈ O there exists “the largest” index q such that ξ ∈ Θq; we will write

q∗(ξ) := max{q ∈ Q | ξ ∈ Θq}.

Thus for any ξ ∈ O,

ξ ∈ Θq∗(ξ) \
⋃

q�q∗(ξ)

Θq ⊂ Θ′
q∗(ξ) \

⋃
q�q∗(ξ)

Θq ⊂ Cq∗(ξ).

This means that {Cq}q∈Q covers O. That it is a locally finite covering follows from the fact that Cq ⊂ Θ′
q, and

the covering by Θ′
q’s is locally finite.

Lemma 4.1. The hybrid feedback (4.3) is strongly regular.

Proof. By construction, Q ⊂ Z
3, and Q is totally ordered by (4.2). For each q ∈ Q, Θq and Θ′

q are closed (not
just relatively closed) subsets of O. Thus, Cq is a closed (not just relatively closed) subset of O, while local
finiteness of the family {Θq}q∈Q leads to Dq being a relatively closed subset of O. Mappings kq are constant
by definition. Mappings Gq map to {q′ ∈ Q | ξ ∈ Θq′}, and thus are locally bounded uniformly in q, since the
covering of O by Θq′ ’s is locally finite. That Θq′ ’s actually cover O implies that Gq(ξ) is nonempty when ξ ∈ Dq.
To see that each Gq is outer semicontinuous on O, take a convergent sequence ξi ∈ Dq and a convergent (and
hence eventually constant) sequence qi ∈ Gq(ξi). Let the corresponding limits be, respectively, ξ and q′. Then
for all large enough i, ξi ∈ Θq′ , and since Θq′ is closed, ξ ∈ Θq′ . This implies that q′ ∈ Gq(ξ) if ξ ∈ O \ Θ′

q. If
ξ 
∈ O \ Θ′

q, then ξi 
∈ O \ Θ′
q for all large enough i, and thus q′ � q. This now yields that q′ ∈ Gq(ξ). In the

paragraph above the lemma, we have already argued that Cq’s form a locally finite covering of O. Finally, it is
straightforward to verify that Cq ∪ Dq = O. �

Since for each q ∈ Q, Cq ∪Dq = O, nontrivial solutions to (2.2) exist for any initial point, and each maximal
solution (x, q) (that is, a solution that cannot be extended) is either complete (that is, has unbounded domain),
“blows up” in finite hybrid time, or approaches the boundary of O×Q in finite hybrid time (which means that
it is either complete, or for (a finite) (T, J) = sup dom(x, q), |x(t, J)| diverges to ∞ or x(t, J) approaches the
boundary of O as t → T ). See [5]. Since the covering of O by Cq’s is locally finite, the finite time “blow up” or
approaching the boundary of O implies that (x, q) jumps infinitely many times, and thus is complete anyway.
Consequently, each maximal solution (x, q) is complete. (This does not mean that x exists on [0,∞), in fact, it
may happen that x reaches A in finite time.)

Note that each maximal solution jumps at least once (and thus infinitely many times). Indeed, otherwise there
exists a complete solution (i.e. x is defined on [0,∞)) to ẋ(t) = f(x(t), uq), x(t) ∈ Cq, for some q ∈ Q. However,
by construction, each solution to ẋ(t) = f(x(t), uq) starting in Cq (and so in Θ′

k,l,m for some triple k, l, m) in
finite time reaches a point, say ξ, in the interior of either Θk,l,m+1 or of some Θk+1,l′,0. Either way, q∗(ξ) � q,
and such a solution enters the interior of Θq′ for some q′ � q, and thus leaves Cq. This is a contradiction.

Finally, note that the set ⋃
q∈Q

Θq \
⋃

q′�q

Θq′ × {q} (4.4)

is forward invariant, and that each solution to (2.2) enters that set after its first jump. Indeed, a solution x to
ẋ(t) = (f(x(t), uq), x(t) ∈ Cq starting in Θq remains in Θq (since this set was defined as a reachable set) until it
reaches

⋃
q′�q Θq′ . Also, for any q ∈ Q and ξ ∈ Dq, (ξ, Gq(ξ)) is a subset of the set (4.4), by the definition of Gq.

A particular consequence of the invariance is that, after the first jump, the discrete variable of any solution is
increasing at each jump. Thus, by the local finiteness of the covering by Θq’s, there are no instantaneous Zeno
solutions (solutions with domains given by 0 × N).
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4.3. Asymptotic stability

The properties of the solutions to the hybrid system (2.2), described in Section 4.2, are now employed to
deduce that A is asymptotically stable for (2.2).

Stability. Let (x, q) be a solution with ω(x(0, 0)) ≤ ri for some i ∈ Z. Suppose (0, 1) ∈ dom(x, q) and let
q(0, 1) = (k, l, m). Then x(0, 0) ∈ Θk,l,m and so k ≥ i − 1 by (4.1). Since q is nondecreasing “after the first
jump”, as argued following (4.4), q(t, j) = (k′, l′, m′) satisfies k′ ≥ i−1 for all (t, j) ∈ dom(x, q), j ≥ 1. As for all
such (t, j), x(t, j) ∈ Θq(t,j), inequality (4.1) implies that ω(x(t, j)) ≤ ri−2. Now suppose that (t, 0) ∈ dom(x, q)
for some t > 0. Then ω(x(t, 0)) ≤ ri−1 for all t such that (t, 0) ∈ dom(x, q), by the construction of ri−1.
Arguments given above, for the case of (0, 1) ∈ dom(x, q) can be now applied “after the first jump”. Then
ω(x(t, j)) ≤ ri−3 for all (t, j) ∈ dom(x, q).

Attractivity. Any maximal solution (x, q) jumps infinitely many times, as argued above (4.4), and after the
first jump, q increases at each jump. This, the finiteness of the covering of O by Θq’s, and stability shown
above, implies that x(t, j) → A as (t, j) → sup dom(x, q).

This concludes the proof of Theorem 3.1.

5. Relation to patchy feedback

In [1], under stronger assumptions, it was shown that the nonlinear system (2.1) can be stabilized with a
patchy feedback. (Technically, [1] deals with the case of Õ = R

n and A = {0}; an extension to the more general
case of any open Õ and compact A ⊂ Õ is straightforward, as noted in [9].) A patchy feedback is a mapping
Φ : O → U that can be written as

Φ(ξ) = uα if ξ ∈ Ωα \
⋃

β�α

Ωβ,

where indices α (and β) are in some totally ordered index set, uα ∈ U , sets Ωα form a locally finite covering
of O, and each of these sets is a patch (which entails Ωα being open, and that solutions to ẋ = f(x, uα) from
the boundary of Ωα immediately flow into Ωα). Solutions to the resulting closed-loop system ẋ = f(x, Φ(x))
are understood in the Caratheodory sense (and the system is a continuous-time differential equation with
discontinuous right-hand side, not a hybrid system). Patchy feedbacks of [1] are robust to external disturbances,
and in a semiglobal practical sense, to measurement error of bounded variation, as shown in [2]. They can be
made hybrid to achieve robustness to general measurement error; this was done in [9].

Here, as a byproduct of the construction of a hybrid feedback, we can also construct a “patchy-like” feedback,
leading to a continuous-time closed-loop system with a discontinuous right-hand side. However, that “patchy-
like” feedback does not enjoy the good properties of the patchy feedback of [1]. More specifically, given the
(closed) sets Θq, q ∈ Q, as constructed in Section 4.1, consider Ψ : O → U given by

Ψ(ξ) = uq, if ξ ∈ Θq \
⋃

q′�q

Θq′ .

Arguments very similar to those in Sections 4.2 and 4.3 can be used to show that Ψ renders A asymptotically
stable. Several desired properties present for the patchy feedback Φ are not enjoyed by Ψ. For example, pointwise
limits of solutions to ẋ = f(x, Φ(x)) need not be solutions to that system: one can envision a situation where
a sequence of solutions in a set Θq converge to an arc in Θq′ , and the limiting arc fails to be a solution (this
is caused by Θq’s being closed, in contrast to open patches Ωα). Similarly, uniform limits of Euler solutions
generated with decreasing initial measurement noise and external disturbances need not yield solutions to the
system. Finally, arbitrarily small external disturbances can destroy the asymptotic stability: for example, small
disturbances can cause solutions to flow out of Θq before they reach

⋃
q′�q Θq′ .

In summary, the hybrid patchy feedback constructed in this paper has better robustness properties than
the patchy feedback of [1]. These properties are achieved not via a different construction, but by passing to
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a hybrid framework – it does not appear that similar robustness levels are reachable in a non-hybrid discontinuous
feedback setting. While a hybrid patchy feedback can be obtained by making the patchy feedback of [1] hybrid,
as was done in [9], we construct it here directly, without the intermediate step of obtaining a patchy feedback
first. The direct construction does lead, as a byproduct, to a “patchy-like” discontinuous feedback, but that
feedback does not have any robustness properties.
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