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AUBRY SETS AND THE DIFFERENTIABILITY OF THE MINIMAL AVERAGE
ACTION IN CODIMENSION ONE

Ugo Bessi1

Abstract. Let L(x, u,∇u) be a Lagrangian periodic of period 1 in x1, . . . , xn, u. We shall study
the non self intersecting functions u : Rn → R minimizing L; non self intersecting means that, if
u(x0 + k) + j = u(x0) for some x0 ∈ Rn and (k, j) ∈ Zn × Z, then u(x) = u(x + k) + j ∀x. Moser
has shown that each of these functions is at finite distance from a plane u = ρ · x and thus has an
average slope ρ; moreover, Senn has proven that it is possible to define the average action of u, which is
usually called β(ρ) since it only depends on the slope of u. Aubry and Senn have noticed a connection
between β(ρ) and the theory of crystals in Rn+1, interpreting β(ρ) as the energy per area of a crystal
face normal to (−ρ, 1). The polar of β is usually called −α; Senn has shown that α is C1 and that the
dimension of the flat of α which contains c depends only on the “rational space” of α′(c). We prove
a similar result for the faces (or the faces of the faces, etc.) of the flats of α: they are C1 and their
dimension depends only on the rational space of their normals.
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Introduction

We begin recalling some results of [17]. Let L(x1, . . . , xn, u, p1, . . . , pn) be a Lagrangian such that
1) L ∈ Cl,γ(R2n+1), l ≥ 2, γ > 0.
2) L has period 1 in x1, . . . , xn, u.
3) There is δ > 0 such that

δI ≤ ∂2L
∂pi∂pj

≤ 1
δ
I

where I denotes the identity matrix on Rn.
4) There is C > 0 such that ∣∣∣∣ ∂2L

∂p∂x

∣∣∣∣+ ∣∣∣∣ ∂2L
∂p∂u

∣∣∣∣ ≤ C(1 + |p|)∣∣∣∣ ∂2L
∂x∂x

∣∣∣∣+ ∣∣∣∣ ∂2L
∂u∂x

∣∣∣∣+ ∣∣∣∣ ∂2L
∂u∂u

∣∣∣∣ ≤ C(1 + |p|2).
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We say that u ∈ W 1,2
loc (Rn) is a minimizer for L if∫
Rn

[L(x, u + φ,∇(u + φ)) − L(x, u,∇u)]dx ≥ 0 ∀φ ∈ C∞
0 (Rn). (1)

Since L is periodic, if u is a minimizer and (k, j) ∈ Zn ×Z, then u(x+ k) + j is a minimizer too; we say that u
is non self intersecting if

∀(k, j) ∈ Zn × Z, either u(x+ k) + j > u(x) ∀x
or u(x+ k) + j < u(x) ∀x or u(x+ k) + j = u(x) ∀x. (2)

It is proven in [17] that, if u satisfies (1) and (2), then u is at finite distance from a plane; more precisely, there
is ρ ∈ Rn such that, for 1 ≤ k ≤ l,

‖u(x) − u(0) − ρ · x‖Ck,γ(Rn) ≤Mk(‖ρ‖) (3)

where ρ ·x denotes the scalar product and γ is the same as in 1). The vector ρ, which is clearly unique, is called
the slope, or rotation vector, of u. Since l ≥ 2, u ∈ C2(Rn) and u is a classical solution of the Euler-Lagrange
equation of (1):

div
∂L(x, u,∇u)

∂p
=
∂L(x, u,∇u)

∂u
· (4)

Let Mρ denote the set of all minimal, non self intersecting u of slope ρ; in [17] it is proven that Mρ is never
empty.

In [20] it is proven that, if u ∈Mρ, then the following limit exists:

lim
R→+∞

1
|B(0, R)|

∫
B(0,R)

L(x, u,∇u)dx. (5)

Moreover, the limit above does not depend on the particular u ∈ Mρ we choose, and we can call it β(ρ). The
function β is strictly convex and superlinear, thus its polar, usually called −α, is of class C1. We shall study
the differentiability of β. This problem is motivated by an observation of Gibbs’, recalled in [2] and [22], which
says that 1√

1+|ρ|2β(ρ) can be interpreted as the energy per unit of area of the face of a (n + 1)-dimensional

crystal which is orthogonal to (−ρ, 1). This energy is called a Wulff functional by crystalline people (see for
instance [23]); we want to study what kind of corners are possible for Wulff functionals which arise from a
microscopic theory like that of Gibbs’.

Following [13], instead of studying the corners of β, we shall study the flats of its polar which is tradition-
ally [15] called −α. We recall that, if ρ ∈ Rn, then we can always find a unimodular matrix A, 0 ≤ s ≤ n,
(ρ1, . . . , ρs) ∈ Qs and (ρs+1, . . . , ρn) rationally independent, such that

Aρ = (ρ1, . . . , ρs, ρs+1, . . . , ρn).

We set A−1(Rs × {0}) = rat(ρ), the rational space of ρ. We recall a theorem of [21]: let −α′(c) = ρ, and let
Dρ be the flat of α containing c. Then either Dρ is reduced to a point, or it generates rat(ρ). The first case
happens iff Mρ is an ordered set.

The theorem we prove in this paper, Theorem 2.1 below, deals with the faces and subfaces of Dρ; we state
it now in a rather vague form because we haven’t defined yet many of the objects involved. Let us suppose
that Dρ does not reduce to a point; we restrict ourselves to the smallest affine subspace containing Dρ and we
denote by ∂Dρ the boundary of Dρ relative to this space. We shall show that every point of ∂Dρ admits a
unique normal; in particular, since Dρ is convex, ∂Dρ is of class C1. Moreover, if c ∈ ∂Dρ and v1 is the normal
to ∂Dρ at c, then the dimension of the face of Dρ containing c is either zero, or an integer depending only on ρ
and v1; it is zero iff a certain subset M(ρ,v1) of Mρ is ordered. Similar results on dimension and C1 regularity
hold for the faces of the faces of Dρ, down to the 0-dimensional faces.
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We conclude with a brief history of this problem. Aubry in [2] was the first to study the function β when
n = 1; he conjectured that β is differentiable at ρ if ρ is an irrational number. This conjecture has been proven
in [14] and [5]; the theorem has been extended in [21] to all n. The paper [3] considers the corners of the stable
norm, i.e. the same problem as [21], but for the area functional. The papers [7,12,13,18] consider the case of
1-dimensional currents on compact manifolds. Our method is a linear combination of [13] and [21].

1. Preliminaries

In the following, it will be convenient to consider the current induced by u ∈Mρ; in this section, following [6,8],
we show how the mean action of u coincides with the action of the current it induces.

Let T be a n-current of finite mass on Tn+1 = Rn+1

Zn+1 ; we suppose that T is closed, i.e. that T (η) = 0 whenever
η is exact. In particular, if η is a closed form, T (η) depends only on its cohomology class [η], and we can define
a linear mapping

ρT : Hn(Tn+1) → R

ρT : [η] → T (η).
Since Hn(Tn+1) is the dual of Hn(Tn+1), we can identify the rotation number ρT with an element ofHn(Tn+1).

On Hn(Tn+1) we have the basis d̂xi = (−1)n−idx1 ∧ . . .∧ dxi−1 ∧ dxi+1 ∧ . . .∧ dxn+1 for i ∈ (1, . . . , n), and
̂dxn+1 = dx1 ∧ . . .∧ dxn; on Hn(Tn+1) we have the basis {ei}n+1

i=1 dual to {d̂xi}n+1
i=1 . For u ∈Mρ, we define the

current Tu by

Tu(η) = lim
R→∞

1
|B(0, R)|

∫
B(0,R)

η(x, u(x)) · ∇u(x)dx (1.1)

where we have denoted by η(x, u(x)) · ∇u(x) the n-form η applied the n-vector⎛⎜⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1
∂1u ∂2u . . . ∂nu

⎞⎟⎟⎟⎟⎠ . (1.2)

To show that the limit in (1.1) exists, we borrow some facts from the beginning of Section 2. If ρ ∈ Qn, then
Mρ contains periodic elements u, which means that u(x+ k) + j = u(x) if (k, j) ∈ (Zn ×Z)∩ (ρ, 1)⊥. For these
elements, the limit of (1.1) exists trivially. If u ∈Mρ but u is not periodic, then there are u1, u2 ∈Mρ periodic
and v ∈ Rn such that

lim
t→−∞ ‖u− u1‖C1(〈x,v〉<t) = 0 = lim

t→+∞ ‖u− u2‖C1(t<〈x,v〉).

Thus u is asymptotic to u1 and u2, for which the limit in (1.1) exists; for M ≥ 0 we write

1
|B(0, R)|

∫
B(0,R)

η(x, u(x)) · ∇u(x)dx =
1

|B(0, R)|
∫

B(0,R)∩{〈x,v〉≤−M}
η(x, u(x)) · ∇u(x)dx

+
1

|B(0, R)|
∫

B(0,R)∩{〈x,v〉≥M}
η(x, u(x)) · ∇u(x)dx +

1
|B(0, R)|

∫
B(0,R)∩{−M≤〈x,v〉≤M}

η(x, u(x)) · ∇u(x)dx.

Since u is asymptotic to u1 and u2 we can fix M large enough to have

lim sup
R→∞

1
|B(0, R)|

∫
B(0,R)∩{〈x,v〉≤−M}

|η(x, u(x)) · ∇u(x) − η(x, u1(x)) · ∇u1(x)|dx ≤ ε

lim sup
R→∞

1
|B(0, R)|

∫
B(0,R)∩{〈x,v〉≥M}

|η(x, u(x)) · ∇u(x) − η(x, u2(x)) · ∇u2(x)|dx ≤ ε.
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Since |η(x, u(x)) · ∇u(x)| is bounded by (3), we have that, for M fixed as above and R large enough,

1
|B(0, R)|

∫
B(0,R)∩{−M≤〈x,v〉≤M}

|η(x, u(x)) · ∇u(x)|dx ≤ ε.

Since the limit in (1.1) exists for u1 and u2, we get from the last four formulas that it exists also for u.
If ρ �∈ Qn, then the recurrent elements of Mρ can be parameterized by y ∈ R in the following way: u(x, y) =

U(x, ρ · x+ y), where U(x, xn+1)− xn+1 is bounded and periodic of period 1 in x1, . . . , xn, xn+1. In particular,
u(x+ k, y) = u(x, y + ρ · k). Now we note that

lim
R→∞

1
|B(0, R)|

∫
B(0,R)

η(x, u(x, y)) · ∇xu(x, y)dx =

lim
R→∞

1
#{k ∈ Zn : |k| ≤ R}

∑
|k|≤R

∫
[0,1]n

η(x+ k, u(x+ k, y))∇xu(x+ k, y)dx

= lim
R→∞

1
#{k ∈ Zn : |k| ≤ R}

∑
|k|≤R

∫
[0,1]n

η(x, u(x, y + ρ · k))∇xu(x, y + ρ · k)dx.

The limit of the last quantity exists by the ergodic theorem for Zn actions of [25]; we apply it to the Zn-action
on T1 Φk : y → y + ρ · k, which leaves invariant the Lebesgue measure, and to the integrable function on T1

f(y) =
∫

[0,1]n
η(x, u(x, y)) · ∇xu(x, y)dx

getting

lim
R→∞

1
#{k ∈ Zn : |k| ≤ R}

∑
|k|≤R

∫
[0,1]n

η(x, u(x, y + ρ · k))∇xu(x, y + ρ · k)dx =
∫
T1
f(y)dy

=
∫
Tn+1

η(x, u(x, y)) · ∇xu(x, y)dx dy

which implies the existence of the limit in (1.1).
If u ∈ Mρ is not recurrent, then u is heteroclinic between the two recurrent elements u1 and u2, and the

same argument as in the rational case applies.
With our choice of the basis, if u ∈ Mρ, then ρTu = (ρ, 1). To show this, let η be a closed n-form on Tn+1;

we can write

η =
n+1∑
i=1

cid̂xi + dψ

where ci ∈ R. For the limit of the exact form dψ, we use Stokes:

lim
R→∞

1
|B(0, R)|

∣∣∣∣∣
∫

B(0,R)

dψ(x, u(x)) · ∇u(x)dx

∣∣∣∣∣ = lim
R→∞

1
|B(0, R)|

∣∣∣∣∣
∫

graph(u)|B(0,R)

dψ

∣∣∣∣∣
= lim

R→∞
1

|B(0, R)|

∣∣∣∣∣
∫

graph(u)|∂B(0,R)

ψ

∣∣∣∣∣ ≤ lim
R→∞

C
Rn−1

Rn
= 0 (1.3)
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where the inequality comes from the fact that ψ, being a periodic (n− 1)-form on Rn+1, is bounded. As a side
result, we have that Tu is closed. For the limit of the constant form c, we set w(x) = ρ · x; we have that

lim
R→∞

1
|B(0, R)|

∣∣∣∣∣
∫

B(0,R)

(
n+1∑
i=1

cid̂xi

)
· (∇u(x) −∇w(x))

∣∣∣∣∣ = lim
R→∞

1
|B(0, R)|

∣∣∣∣∣
n+1∑
i=1

ci

∫
B(0,R)

∂i (u(x) − w(x)) dx

∣∣∣∣∣
= lim

R→∞
1

|B(0, R)|
∣∣∣ n∑

i=1

ci

∫
B′(0,R)

dx1 . . .dxi−1dxi+1 . . .dxn[(u− w)(x1, . . . , xi−1,
√
R2 − |x′|2, xi+1, . . . , xn)

− (u− w)(x1, . . . , xi−1,−
√
R2 − |x′|2, xi+1, . . . , xn)]

∣∣∣ ≤ lim
R→∞

C
Rn−1

Rn
= 0 (1.4)

where B′(0, R) denotes the ball of radius R in Rn−1 and x′ = (x1, . . . , xi−1, xi+1, . . . , xn); the second equality
of the formula above is Fubini, the inequality follows from (3) in the introduction. An easy calculation shows
that

lim
R→∞

1
|B(0, R)|

∫
B(0,R)

(
n+1∑
i=1

cid̂xi

)
· ∇w(x)dx =

n∑
i=1

ciρi + cn+1. (1.5)

By (1.3), (1.4) and (1.5) we get that, if η is as above, then

Tu(η) =
n∑

i=1

ciρi + cn+1

or ρTu = (ρ, 1), which is what we wanted to prove.

A mean action for currents

Let Λn(Rn+1) denote the set of n-vectors of Rn+1. Since the forms {d̂xi}n+1
i=1 are a base of Λn(Rn+1), the

dual space of Λn(Rn+1), they induce a dual base {ei}n+1
i=1 on Λn(Rn+1); the Lagrangian L of the introduction

induces immediately a Lagrangian L̃ on Rn+1 × Λn(Rn+1) by

L̃(x, u, p1e1 + . . .+ pnen + pn+1en+1) =
{ L(x, u, p1, . . . , pn) if pn+1 = 1

+∞ if pn+1 �= 1.

For the standard duality coupling between Λn(Rn+1) and Λn(Rn+1) we can define the Legendre transform of L̃:

H̃ : Tn+1 × Λn(Rn+1) → R

H̃(x, u, ω) = sup
p
{〈p, ω〉 − L̃(x, u, p)}.

Since L̃ = +∞ outside the affine plane pn+1 = 1, we have that

H̃(x, xn+1,

n+1∑
i=1

cid̂xi) = H(x, xn+1,

n∑
i=1

cid̂xi) + cn+1.

Let now T be a n-current of finite mass; it is well-known that

T = X ∧ μ

where μ is a measure on Tn+1 and
X : Tn+1 → Λn(Rn+1)
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is a Borel vector field. This parameterization is not unique: for instance, if f, 1
f ∈ L∞(Tn+1, μ), then we also

have

T = (Xf) ∧
(

1
f
μ

)
.

To a current T we associate its component along Tn+1, which is the measure μT on Tn+1 defined by∫
Tn+1

f(x, xn+1)dμT (x, xn+1) = T (f ̂dxn+1) ∀f ∈ C(Tn+1). (1.6)

Choosing f ≡ 1, we see that μT (Tn+1) is the (n+ 1)-th component of ρT .
Let Ω0

k denote the space of continuous k-forms on Tn+1; if ω ∈ Ω0
n, let ωx denote the projection of ω on the

space generated by d̂x1, . . . , d̂xn, and let ωu denote the component of ω along ̂dxn+1. The following proposition
is taken from [6].

Proposition 1.1. Let T be a closed n-current on Tn+1, and let us suppose that the measure μT defined by (1.6)
is a probability measure. Then all the Ai(T ) defined below are equal:

A1(T ) = sup
ω∈Ω0

n

{
T (ωx) −

∫
Tn+1

H(x, xn+1, ω
x)dμT (x, xn+1)

}
A2(T ) = sup

ω∈Ω0
n

{
T (ω) −

∫
Tn+1

[H(x, xn+1, ω
x) + ωu]dμT (x, xn+1)

}

A3(T ) = sup
ω∈Ω0

n

{
T (ω)− sup

(x,xn+1)∈Tn+1
[H(x, xn+1, ω

x) + ωu]

}
A4(T ) = sup

{
T (ω) : ω ∈ Ω0

n, ωu +H(x, xn+1, ω
x) ≤ 0

}
A5(T ) = sup

{
T (ω) : ω ∈ Ω0

n, ωu +H(x, xn+1, ω
x) = 0

}
.

Proof. By (1.6) we have that

T (ωu
̂dxn+1) −

∫
Tn+1

ωudμT = 0. (1.7)

Thus
A1(T ) = A2(T ).

Since μT is a probability measure, we get that

A3(T ) ≤ A2(T ).

We also note that
A5(T ) ≤ A4(T ) ≤ A3(T )

where the first inequality follows since we are taking the sup on a smaller set and the second one is obvious.
For ω = (ωx, ωu) ∈ Ω0

n we set ω̃u = −H(x, xn+1, ω
x) and we see that

T (ωx + ωu
̂dxn+1) −

∫
Tn+1

[H(x, xn+1, ω
x) + ωu]dμT = T (ωx + ω̃u

̂dxn+1) −
∫
Tn+1

[H(x, xn+1, ω
x) + ω̃u]dμT

≤ A5(T ). (1.8)

The equality comes from (1.7) applied to ωu and ω̃u and the inequality from the fact that H(x, xn+1, ω
x)+ ω̃u =

0. Since (1.8) holds ∀ω ∈ Ω0
n, we have that

A2(T ) ≤ A5(T )
and this ends the proof. �
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Notation. From now on we shall call A(T ) the common value of the Ai(T ), 1 ≤ i ≤ 5.

We won’t address the question whether the minimum of A on all closed currents of rotation number ρ is the
current induced by an element of Mρ; we have introduced A(T ) only to have a compact notation for the limit
in (5).

We shall need another formulation, taken from [8]. Given a probability measure σ on Tn+1 and a closed
current T , we define

A6(σ, T ) = sup
ω∈Ω0

n

{∫
Tn+1

−H̃(x, xn+1, ω(x, xn+1))dσ(x, xn+1) + T (ω)
}

or equivalently

A6(σ, T ) = sup
α,ω

{∫
Tn+1

α(x, xn+1)dσ(x, xn+1) + T (ω)
}

where the sup is taken over all the couples (α, ω) ∈ C(Tn+1) × Ω0
n satisfying

α(x, xn+1) + H̃(x, xn+1, ω(x, xn+1)) ≤ 0 ∀(x, xn+1) ∈ Tn+1.

If the measure μT defined by (1.6) is a probability measure, we obviously have

A6(μT , T ) = A2(T ) = A(T ). (1.9)

We only sketch the proof of the following two lemmas, since they are identical to [8].

Lemma 1.2. There is C ∈ R such that, for any probability measure σ and any current of finite mass T , we have
A6(σ, T ) ≥ C. If A6(σ, T ) < +∞, then there is a Borel n-vector field X ∈ L1(Tn+1, σ) such that T = X ∧ σ.
Moreover, Xn+1 = 1 σ a.e.

Proof. Our hypotheses on L imply that L ≥ C; by the definition of Legendre transform we have that

H̃(x, xn+1, 0) = sup{−L̃(x, xn+1, p) : p ∈ Λn(Rn+1)} ≤ −C. (1.10)

As a consequence, the couple α ≡ C, ω ≡ 0 is admissible for the sup in the definition of A6, and thus

A6(σ, T ) ≥ C.

Let us now assume that A6(σ, T ) < +∞. It is a standard fact (see for instance [8]) that T can be parameterized
as T = X ∧ σ̃, with σ̃ a probability measure on Tn+1, and ‖X‖Λn(Rn+1) = M(T ) σ̃ a.e., where M(T ) denotes
the mass of T . The mass norm ‖X‖Λn(Rn+1) and its dual ‖ω‖Λn(Rn+1) are defined in the standard way, as
in [24], Chapter II, p. 10. We write σ̃ = σ̃a + σ̃s, with σ̃a � σ and σ̃s ⊥ σ; we must show that σ̃s = 0.

We rewrite A6 as

A6(σ, T ) = sup
α,ω

∫
Tn+1

α(x, xn+1)dσ(x, xn+1) +
∫
Tn+1

ω(x, xn+1) ·X(x, xn+1)dσ̃(x, xn+1). (1.11)

We can find a Borel n-form ω̃ which, for σ̃ a.e. (x, xn+1), satisfies{
ω̃(x, xn+1) ·X(x, xn+1) = ‖X(x, xn+1)‖Λn(Rn+1) = M(T )

‖ω̃‖L∞(Tn+1) ≤ 1.
(1.12)

Since the unit ball of the mass norm is not strictly convex, ω̃(x, xn+1) is not unique; but, since the set of the
ω̃(x, xn+1) of mass norm 1 and satisfying the equality of (1.12) is convex, it is not hard to find a measurable
selection.
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Let us call B the set on which σ̃s is concentrated. Let us set ω(x, xn+1) = ω̃(x, xn+1) · 1B(x, xn+1). Using
Lusin’s theorem with respect to the measure σ + σ̃s on Tn+1, we can find continuous forms ωε such that⎧⎨⎩

‖ωε‖L∞(Tn+1) ≤ 1
ωε → ω σ + σ̃s a.e.
(σ + σ̃s){(x, xn+1) ∈ Tn+1 : ωε(x, xn+1) �= ω(x, xn+1)} < ε.

(1.13)

Let us define αε(x, xn+1) = −H̃(x, xn+1, ωε(x, xn+1)). Since H̃ is continuous, also αε is such and converges,
σ+ σ̃s a.e., to α(x, xn+1) = −H̃(x, xn+1, ω(x, xn+1)). Moreover, the couple (αε, ωε) is admissible for the sup in
the definition of A6. This and (1.11) implies the first inequality in the following formula:

A6(σ, T ) ≥
∫
Tn+1

αε(x, xn+1)dσ(x, xn+1) +
∫
Tn+1

ωε(x, xn+1) ·X(x, xn+1)dσ̃(x, xn+1)

=
∫
{ωε �=ω}

αεdσ −
∫
{ωε=ω}

H̃(x, xn+1, ω(x, xn+1))dσ +
∫
Tn+1

ωε ·Xdσ̃

≥ −‖αε‖∞σ{ωε �= ω} −
∫
{ωε=ω}

H̃(x, xn+1, ω(x, xn+1))dσ +
∫
Tn+1

ωε ·Xdσ̃

≥ −C1ε+ C +
∫
Tn+1

ωε ·Xdσ̃. (1.14)

The equality comes from the definition of αε, and the only inequality which need explanation is the last one.
For the estimate on ‖αε‖σ{ωε �= ω}, we have used the fact that αε = −H̃(x, xn+1, ωε), we have set

C1 = sup{|H̃(x, xn+1, p)| : ‖p‖ ≤ 1, (x, xn+1) ∈ Tn+1}

and we have used (1.13). For the estimate on the integral of H̃, which we want independent on the norm of ωε,
we have used the fact that∫
{ωε=ω}

H̃(x, xn+1, ω(x, xn+1))dσ =
∫
{ωε=ω}∩B

H̃(x, xn+1, ω(x, xn+1))dσ +
∫
{ωε=ω}\B

H̃(x, xn+1, ω(x, xn+1))dσ

=
∫
{ωε=ω}\B

H̃(x, xn+1, 0)dσ ≤ −C

because σ(B) = 0, ω|Bc = 0 and (1.10) holds. Passing to the limit as ε → 0 in (1.14), and taking into account
that

lim
ε→0

∫
Tn+1

ωε ·Xdσ̃ =
∫
Tn+1

ω ·Xdσ̃

by (1.13) and dominated convergence, we get that

A6(σ, T ) ≥ C +
∫
Tn+1

ω ·Xdσ̃ = C +
∫

B

ω̃ ·Xdσ̃ = C +M(T )σ̃s(Tn+1)

where the first equality comes from the fact that ω = 1Bω̃ and the last one from (1.12). Now it suffices to note
that, for any k ∈ N, one can repeat the argument above with kω instead of ω; since the constant C of (1.10)
does not depend on k but only on H , we get that

A6(σ, T ) ≥ C + kM(T )σ̃s(Tn+1).

Letting k → +∞, we get σ̃s = 0, i.e. T = X ∧ σ, which is what we wanted.
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To prove the last assertion of the thesis, we suppose by contradiction that there is B ⊂ Tn+1 with σ(B) > 0
such that Xn+1 > 1 + ε on B. We define the form ωλ = λ1B

̂dxn+1 and we see that

A6(σ, T ) ≥ sup
λ>0

{∫
Tn+1

−H̃(x, xn+1, ωλ)dσ + T (ωλ)
}

= sup
λ>0

{∫
Tn+1

−H(x, xn+1, ω
x
λ)dσ −

∫
Tn+1

ωu
λdσ + T (ωλ)

}
= sup

λ>0

{∫
Tn+1

−H(x, xn+1, 0)dσ −
∫
Tn+1

λ1Bdσ +
∫
Tn+1

λ1BXn+1dσ
}

≥ sup
λ>0

{∫
Tn+1

−H(x, xn+1, 0)dσ +
∫

B

λεdσ
}

= +∞.

Using Lusin to smooth ωλ, we see that
A6(σ, T ) = +∞

contrary to the hypothesis. By a similar argument, Xn+1 > 1− ε σ a.e.; thus, Xn+1 = 1 σ a.e., which ends the
proof. �

Lemma 1.3. Let T = X ∧ σ with X ∈ L1(σ) and Xn+1 = 1 σ a.e. Then

A6(σ, T ) =
∫
Tn+1

L̃(x, xn+1, X(x, xn+1))dσ(x, xn+1).

Proof. We recall that
L̃(x, xn+1, p) + H̃(x, xn+1, ω) ≥ ω · p (1.15)

with equality only when ω is the Legendre transform of p. Thus, for any couple (α, ω) such that

α(x, xn+1) + H̃(x, xn+1, ω(x, xn+1)) ≤ 0

we get that∫
Tn+1

[α(x, xn+1) + ω(x, xn+1) ·X(x, xn+1)]dσ(x, xn+1) ≤
∫
Tn+1

L̃(x, xn+1, X(x, xn+1))dσ(x, xn+1).

Passing to the sup, this implies

A6(σ, T ) ≤
∫
Tn+1

L̃(x, xn+1, X(x, xn+1))dσ(x, xn+1). (1.16)

Now we consider ω(x, xn+1), the Legendre transform of X(x, xn+1). We know from the hypotheses that
Xn+1 = 1; in particular, this implies that the Legendre transform of X is not unique, because if ω yields equal-
ity in (1.15), then also ω + λ̂dxn+1 yields equality. We choose the ω with ωn+1 = 0; equivalently, ω = (ωx, 0)
with ωx the Legendre transform of (X1, . . . , Xn) by

: (X1, . . . , Xn) → L(x, xn+1, X1, . . . , Xn, 1).

Let now ωk be ω truncated to 0 when ‖ω‖ > k. Since X is Borel, by the continuity of the Legendre transform
we have that ω too is Borel; in particular, ωk ∈ L∞(σ). Moreover, defining

Ak = {(x, xn+1) : |ω(x, xn+1)| ≤ k}
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we have that 1Ak
→ 1 σ a.e.; this is because X ∈ L1(σ) is finite σ a.e. and ω, being the Legendre transform

of X , has the same property. Now we take

(ωk, αk = −H̃(x, xn+1, ωk))

as an admissible couple in the sup defining A6 and we get

A6(σ, T ) ≥
∫
Tn+1

[−H̃(x, xn+1, ωk(x, xn+1)) + ωk ·X ]dσ

=
∫

Ak

[−H̃(x, xn+1, ωk(x, xn+1)) + ωk ·X ]dσ

+
∫

Ac
k

−H̃(x, xn+1, 0)dσ(x, xn+1)

=
∫
Tn+1

L̃(x, xn+1, X(x, xn+1))1Ak
(x, xn+1)dσ(x, xn+1)

−
∫
Tn+1

H̃(x, xn+1, 0)[1 − 1Ak
(x, xn+1)]dσ(x, xn+1)

where the last equality comes from the fact that ω is the Legendre transform of X . We let now k → +∞; we
apply Fatou’s lemma to the first term on the right and note that, since 1Ak

→ 1 and H̃(x, xn+1, 0) is bounded,
dominated convergence applies to the second term. Thus

A6(σ, T ) ≥
∫
Tn+1

L̃(x, xn+1, X)dσ

which, together with (1.16), yields the thesis. �
Now, if T = X ∧ σ and ν is the probability measure on Tn+1 × Λn(Rn+1) which is the push-forward of σ

by X , Lemma 1.3 implies that

A6(σ, T ) =
∫
Tn+1×Λ(Rn+1)

L(x, xn+1, p)dν(x, xn+1, p). (1.17)

Let now u ∈Mρ, and let νR be the measure on Tn+1 × Λn(Rn+1) defined by

μR(φ) =
1

|B(0, R)|
∫

B(0,R)

φ(x, u,∇u)dx

for any continuous φ compactly supported in Tn+1 × Λn(Rn+1). It is easy to see that νR is positive and that
νR(Tn+1 × Λn(Rn+1)) = 1 (i.e. νR is a probability measure); moreover, (3) implies that the support of all the
νR is contained in the bounded set Tn+1 × B(0,M1(ρ)). In particular, we can find Rk → +∞ such that νRk

converges, up to a subsequence, to a compactly supported ν. Thus we have that∫
Tn+1×Λn(Rn+1)

f(x, u, p)dν(x, u, p) = lim
k→+∞

1
|B(0, Rk)|

∫
B(0,Rk)

f(x, u,∇u)dx (1.18)

for all continuous functions vanishing at infinity; actually, since ν and νRk
are supported on the same compact

set, it holds for all continuous functions.
Now ν induces a current T by

T (ω) =
∫
Tn+1×Λn(Rn+1)

ω(x, u) · p dν(x, u, p)
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for any n-form ω. We have that T = Tu, because by definition

Tu(ψ) = lim
R→+∞

1
|B(0, R)|

∫
B(0,R)

ψ(x, u) · ∇u dx

for continuous n-forms ψ, i.e. on a subspace of C(Tn+1 ×Λn(Rn+1)). For u as above, we can define by (1.2) a
field of n-vectors X on the graph of u; since by [17] this field is Lipschitz, we can extend it to the closure of the
graph of u in Tn+1. It is easy to check that Tu = X ∧ μTu for the measure μTu defined in (1.5), and that μTu

is the Lebesgue measure. Moreover, ν is the push-forward of μTu by X ; thus, by (1.17) and (1.18) with f = L
we get

A6(σ, Tu) =
∫
Tn+1×Λn(Rn+1)

L(x, xn+1, p)dν(x, xn+1, p)

= lim
R→+∞

1
|B(0, R)|

∫
B(0,R)

L(x, u,∇u)dx = β(ρ)

where β has been defined in (5) of the introduction. We shall extend β to all Hn(Tn+1) by

β̃(ρ, ρn+1) =
{
β(ρ) if ρn+1 = 1
+∞ if ρn+1 �= 1.

We shall call −α̃ the polar of β̃; it is clear that α̃(c, cn+1) = α(c) − cn+1 with c ∈ H , where H is defined by

H = Hn(Tn+1) ∩ {cn+1 = 0}.

The same calculation as in [15] now yields

α(c) = min{A(T ) − T (ηc)} (1.19)

where ηc is a n-form representing c, and the minimum is over all currents induced by elements of Mρ, with (ρ, 1)
varying in Hn(Tn+1). We recall that the minimum above is attained by the currents induced by the elements
of M−α′(c).

2. Laminations in Mρ and the differentiability of β

Let L, H , β and α be as in the previous section; we want to study the differentiability of β or, equivalently,
the flats of α. Before giving a precise statement, we recall some notions from [17] and [4]. First of all, we define
the recurrent elements of Mρ.

If ρ ∈ Qn, we say that u ∈Mρ is recurrent if it is periodic:

u(x+ k) + j = u(x) if (k, j) ∈ Zn × Z ∩ (ρ, 1)⊥.

If ρ �∈ Qn, the recurrent elements of Mρ are, by definition, those in the one-parameter family uρ(x, λ), where
uρ is built in the following way. There is a function Uρ : Rn+1 → R such that Uρ(x, xn+1) − xn+1 has period 1
in x1, . . . , xn+1, the map : xn+1 → Uρ(x, xn+1) is strictly monotone increasing and continuous from above, and

uρ(x, λ) = Uρ(x, ρ · x+ λ)

belongs to Mρ for every value of λ. In other words, the self-map of Tn+1 given by

: (x, xn+1) → (x, Uρ(x, xn+1))
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brings the foliation xn+1 = ρ · x + λ into the recurrent elements of Mρ. Moreover, the function Uρ is unique
in the following sense: if U : Rn+1 → R is another function with the properties above, then U(x, xn+1) =
Uρ(x, xn+1 + β) for some β ∈ R.

It is proven in [17] that, for all ρ ∈ Rn, Mρ contains recurrent elements.

Definition. We shall call M rec
ρ the set of all recurrent elements of Mρ.

If ρ ∈ Rn \ Qn, it follows from the monotonicity of Uρ that

λ < λ′ iff uρ(x, λ) < uρ(x, λ′) ∀x ∈ Rn

i.e. M rec
ρ is an ordered set. This is also true if ρ ∈ Qn:

if u, v ∈M rec
ρ , then either u < v or u ≡ v or u > v.

An ordered subset of Mρ is called a lamination, and in general there are laminations of Mρ strictly contain-
ing M rec

ρ . We now recall the way they are classified in [4].
Let u ∈Mρ and let us consider the set

Φ0(u) = {(k, j) ∈ Zn × Z : u(x+ k) + j ≥ u(x)}.

Clearly, Φ0(u) contains all the information on the directions in which u increases; it is also clear that it is a
semigroup. We want to explain the method used in [4] to characterize this semigroup by a sequence of mutually
orthogonal vectors. We begin to note that, since (0, j) �∈ Φ0(u) if j < 0,
(i) Φ0(u) �= Zn × Z.
Moreover, by formula (2) of the introduction,
(ii) Φ0(u) ∪ −Φ0(u) = Zn × Z.
A semigroup with these two properties determines uniquely an open half-space V0 of Rn+1 by

V0 ∩ (Zn × Z) ⊂ Φ0(u) ⊂ V̄0 ∩ (Zn × Z).

In our case it is easy to see that

V0 = {(x, xn+1) ∈ Rn × R : 〈(x, xn+1), (ρ, 1)〉 > 0}.

We want to describe the elements of ∂V0 ∩ Φ0(u); thus, let rat(ρ, 1) denote the subspace of Rn × R generated
by (Zn × Z) ∩ (ρ, 1)⊥, and let us define

Φ1(u) = Φ0(u) ∩ (ρ, 1)⊥ = Φ0(u) ∩ rat(ρ, 1)

where the second equality comes from the fact that Φ0(u) ⊂ (Zn × Z). Again by (2) we have that

Φ1(u) ∪ −Φ1(u) = (Zn × Z) ∩ rat(ρ, 1).

If Φ1(u) �= (Zn × Z) ∩ rat(ρ, 1), we can find as before a vector v1(u) ∈ rat(ρ, 1) such that

Φ1(u) ⊂ rat(ρ, 1) ∩ {(k, j) : 〈(k, j), v1(u)〉 ≥ 0}.

In the terminology of [19], u is a heteroclinic between two different elements of M rec
ρ , and v1(u) is the asymptotic

direction of u. In general, if Φi(u) = Φi−1(u) ∩ rat vi−1(u) is strictly contained in

(Zn × Z) ∩ rat(ρ, 1) ∩ rat v1(u) ∩ . . . ∩ rat vi−1(u)
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we can find vi(u) in the intersection above such that

Φi(u) ⊂ rat(ρ, 1) ∩ rat v1(u) ∩ . . . ∩ rat vi−1(u) ∩ {(k, j) : 〈(k, j), vi(u)〉 ≥ 0}.

We can iterate until we come to a stop when

Φl(u) = (Zn × Z) ∩ rat(ρ, 1) ∩ rat v1(u) ∩ . . . ∩ rat vl−1(u).

We recall that rat vi−1(u) is the space generated by vi−1(u)⊥ ∩ (Zn × Z); since vi(u) ∈ rat vi−1(u), the vec-
tors vi(u) are mutually orthogonal. In particular, at each step the dimension of the intersection in the formula
above decreases at least by 1, and eventually a stop is reached, say after l = l(u) steps. In this way, we get the
l + 1 vectors

(ρ, 1), v1(u) ∈ rat(ρ, 1), v2(u) ∈ rat(ρ, 1) ∩ rat v1(u), . . . ,

vl(u) ∈ rat(ρ, 1) ∩ rat v1(u) ∩ . . . ∩ rat vl−1(u). (2.1)
By definition, these vectors satisfy

{(k, j) : u(x+ k) + j ≥ u(x), (k, j) ∈ rat(ρ, 1) ∩ . . . ∩ rat vs(u)} ⊂

{(k, j) ∈ rat(ρ, 1) ∩ . . . ∩ rat vs(u) : 〈(k, j), vs+1(u)〉 ≥ 0}
for 0 ≤ s ≤ l − 1.

In [4] the vectors (ρ, 1), v1(u), . . . , vl(u) are called the invariants of u; clearly vi(u) is determined up to
multiplication by a positive constant, and in the following we shall feel free to multiply this vector by any
positive scalar.

Let us make some examples. If u ∈M rec
ρ , with ρ rational or irrational, it is easy to see that

Φ0(u) = {(k, j) : 〈(k, j), (ρ, 1)〉 ≥ 0}.

If ρ is irrational, this comes from the fact that : xn+1 → Uρ(x, xn+1) is strictly monotone and Uρ(x, xn+1)−xn+1

is periodic; if ρ is rational, the formula above comes from a simple verification. Thus, if u ∈ M rec
ρ , Φ1(u) =

(Zn ×Z)∩ rat(ρ, 1) and l(u) = 0. The converse does not hold, if ρ is irrational: as we shall see below, there can
be u ∈Mρ with l(u) = 0 and not recurrent. Let now n = 1 and u ∈M rec

0 , i.e. u(x+ 1) = u(x); as we just said

Φ0(u) = {(k, j) ∈ Z × Z : j ≥ 0}

and l(u) = 0. In the same setting, let u1 < u2 be two elements of M rec
0 and let u ∈M0 satisfy

lim
x→−∞ |u(x) − u1(x)| = 0 = lim

x→+∞ |u(x) − u2(x)|.

Then
Φ0(u) = {(k, j) : j > 0} ∪ {(k, j) : j = 0, k ≥ 0}.

In this case, l(u) = 1 and v1(u) = (1, 0).
Let now n ≥ 2, let ρ = (ρ1, . . . , ρs, ρs+1, . . . , ρn) with (ρ1, . . . , ρs) ∈ Qs and (ρs+1, . . . , ρn) rationally inde-

pendent. If u ∈M rec
ρ , i.e. if u(x) = uρ(x, λ) = Uρ(x, ρ · x+ λ), we said before that

Φ0(u) = {(k, j) : ρ · k + j ≥ 0}.

Thus Φ1(u) = rat(ρ, 1)∩ (Zn ×Z) and l(u) = 0. But if λ is a point of discontinuity of : λ→ uρ(x, λ), if u ∈Mρ

satisfies
uρ(x, λ−) < u(x) < uρ(x, λ+)
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and u is periodic in the first s coordinates, then l = 0, but u is not recurrent. More precisely, the graph
of uρ(x, μ), when projected on Tn+1 and closed, forms a Cantor set; this Cantor set does not depend on the
parameter μ and u lives in its gaps. There are examples of such solutions in [2,4]. Always if λ is a point of
discontinuity of : λ→ uρ(x, λ), if u ∈Mρ satisfies

lim
t→−∞ |u(x+ tw1) − uρ(x+ tw1, λ−)| = 0 = lim

t→+∞ |u(x+ tw1) − uρ(x+ tw1, λ+)|

uniformly for some (w1,−ρ · w1) ∈ rat(ρ, 1), then l(u) ≥ 1 and v1(u) = (w1,−ρ · w1). If (ρ1, . . . , ρs) = 0, if
u satisfies the formula above with v1(u) = e1 = (1, 0, . . . , 0) and is periodic in the directions x2, . . . , xs, then
l(u) = 1. Let us suppose that there are two heteroclinics ũ1 and ũ2 satisfying the formula above with v1 = e1;
if ū ∈Mρ is heteroclinic in the direction e1 from uρ(·, λ−) to uρ(·, λ+), and in the direction e2 = (0, 1, 0, . . . , 0)
from ũ1 to ũ2, then l(u) ≥ 2, v1(u) = e1 and v2(u) = e2.

Definition. We say that (ρ, 1), v1, . . . , vl are admissible if (2.1) holds. Since the vi are defined up to multiplica-
tion by a positive constant, we shall identify (ρ, 1), v1, . . . , vl with (ρ, 1), w1, . . . , wl if vi = λiwi for some λi > 0.

A theorem of [4] says the following: if (ρ, 1), v1, . . . , vl are admissible, then the set of all u ∈ Mρ such that
l(u) ≤ l and vi(u) = vi for i ≤ l(u), is ordered.

Definition. We define M(ρ,v1,...,vs) as the set of all u ∈Mρ which satisfy vi(u) = vi for i ≤ min(l(u), s).
We remark that this set in general is not ordered: for instance, if l = 0 then it reduces to Mρ which in general

is not ordered.
After these two definitions, it is natural to ask whether, given (ρ, 1), v1, . . . , vl admissible, there is u ∈ Mρ

with l(u) = l and vi(u) = vi for i ∈ (1, . . . , l). In [4] it is proven that there is u ∈ Mρ with l(u) = 1 and
v1(u) = v1 iff the lamination of the u ∈ Mρ with l(u) = 0 has gaps; there is u ∈ Mρ with l(u) = 2 and
v1(u) = v1, v2(u) = v2 iff the lamination of all the u ∈ Mρ with either l(u) = 0 or l(u) = 1 and v1(u) = v1 has
gaps, and so on.

We want to understand the behaviour of Φ0(un) when un → u in C0
loc. We list a few facts, easy to verify.

1) Let A ⊂ B ⊂ Zn × Z be two semigroups such that A ∪ −A = B ∪ −B = Zn × Z; if (ρ, 1), v1, . . . , vl are the
invariants of A, one checks easily that the invariants of B are (ρ, 1), v1, . . . , vl′ with l′ ≤ l.
2) Φ0(u) ⊃ lim inf Φ0(un), i.e. Φ0(u) contains those vectors which stay in Φ0(un) from a certain n onwards.
3) Possibly passing to a subsequence, we can suppose that l(un) and vi(un) converge; the invariants of the
semigroup lim inf Φ0(un) are the limits of the vi(un).

From the three properties above we get that l(u) ≤ lim l(un) and vi(u) = lim vi(un) for 0 ≤ i ≤ l(u).
A consequence of this is the following: let un → u and let un(·+ kn) + jn → w in C0

loc(R
n); then the set of the

invariants of u is contained in the set of the limits of the invariants of {un}, and the set of the invariants of w
is contained in the set of the limits of the invariants of {un(·+ kn) + jn}. But the invariants of un are the same
of {un(·+ kn) + jn}; thus the two sets of invariants of u and w respectively, are both contained in the same set;
thus, either l(u) ≤ l(w) or l(w) ≤ l(u); in both cases, vi(u) = vi(w) for 0 ≤ i ≤ min(l(u), l(w)).

We need to define the flats of α. We recall that α is of class C1 since β is strictly convex and superlinear
by [20]. Given (ρ, 1) ∈ Hn(Tn+1), the flat of slope ρ is

Dρ = {(c, α(c)) : − α′(c) = ρ}.

Clearly, Dρ ⊂ H × R and it is a face of the hypograph of α with exterior normal (ρ, 1). Given a convex
set D, we denote by D◦ and by ∂D the interior and the boundary of D relative to the smallest affine subspace
containing D; a face of D is a flat of ∂D. By this definition, if D is a point, then D◦ = D and ∂D = ∅. We
define FD as the vector space generated by the differences (c1, α(c1))− (c2, α(c2)), with (ci, α(ci)) ∈ D. We also
recall that, if D is convex and v is a vector, then v is an exterior normal to a unique face of D, namely the one
on which

sup
x∈D

〈x, v〉
is attained.
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Theorem 2.1. Let L ∈ Cl,γ with l ≥ 3, and let Dρ be a flat of α of slope ρ; then the following holds.
(a) FDρ ⊂ rat(ρ, 1); the dimension of FDρ is either the dimension of rat(ρ, 1) or zero; the latter happens iff Mρ

is an ordered set.
(b) Let us suppose that Dρ is not zero-dimensional. Since Dρ is a convex set contained in rat(ρ, 1), each unit
vector v1 ∈ rat(ρ, 1) is the exterior normal to a unique face of Dρ, which we call D(ρ,v1). We assert that the
dimension of D(ρ,v1) is either the dimension of rat(ρ, 1) ∩ rat(v1) or zero; the latter happens iff M(ρ,v1) is a
lamination. Moreover, the correspondence face-normal is bijective.
(c) Let (ρ, v1, . . . , vs−1, vs) be admissible; for i ≤ s we define iteratively D(ρ,v1,...,vi) as the face of D(ρ,v1,...,vi−1)

with exterior normal vi when D(ρ,v1,...,vi−1) is not reduced to a point; otherwise, we define it as the empty set.
Then, if D(ρ,v1,...,vi−1) is not reduced to a point, the correspondence between vi and the faces of D(ρ,v1,...,vi−1) is
bijective and

FD(ρ,v1 ,...,vi)
⊂ rat(ρ, 1) ∩ rat(v1) ∩ . . . ∩ rat(vi−1) ∩ rat(vi).

Moreover, the dimension of D(ρ,v1,...,vi) is either the dimension of rat(ρ, 1) ∩ rat(v1) ∩ . . . ∩ rat(vi−1) ∩ rat(vi)
or zero, and the latter happens iff M(ρ,v1,...,vi) is a lamination.
(d) ∂D(ρ,v1,...,vs) is a C1 surface in rat(ρ, 1) ∩ rat(v1) ∩ . . . ∩ rat(vs).

The directions of differentiability of a convex function are orthogonal to the corresponding flat of its polar;
recalling this, point 1) of Theorem 2.1 has already been proven in [21].

Theorem 2.2 [21]. Let (ρ, 1) ∈ Hn(Tn+1) and let S be the projection of rat(ρ, 1)⊥ on the first n coordinates.
Then β restricted to ρ+ S is differentiable at ρ. Moreover, β is differentiable at ρ iff Mρ is a lamination.

To prove Theorem 2.1 we shall follow [13] and we shall study the relation between the flat of α of slope α′(c)
and the Aubry set at c.

2.1. The Aubry sets and the flats of α

We recall from [16] the notion of the Aubry set in the 1-dimensional case. Let us suppose that, for any ε > 0,
there is uε, periodic of integer period Nε (i.e. uε(Nε) − uε(0) = aε ∈ Z), such that

0 ≤
∫ Nε

0

[L(t, uε, u̇ε) − ηc · u̇ε − α(c)]dt ≤ ε (2.2)

where ηc is a 1-form representing (c, 0) ∈ H1(T2). It is proven in [16] that uε converges, up to subsequences
in C1

loc(R), to some u ∈M−α′(c). The set of these limits is the Aubry set at c. From (2.2) we get that, if Tε is
a minimal current of rotation number (ρ(uε), 1), then

0 ≤ A(Tε) − Tε(ηc) − α(c) ≤ ε

Nε

where the inequality on the left comes from (1.19). We know that ρ(uε) = aε

Nε
∈ Q; if −α′(c) = p

q is rational
too, and ρ(uε) �= −α′(c), then it is easy to see that

1
qNε

≤ |ρ(Tε) + α′(c)|

and thus

0 ≤ A(Tε) − Tε(ηc) − α(c) ≤ qε|ρ(Tε) − α′(c)|.
The formula above also holds when ρ(uε) = −α′(c), because in this case A(Tε) − Tε(ηc) − α(c) = 0 by (1.19).
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Also in the case when −α′(c) is irrational, one can prove that, if uε is as in (2.2) and Tε is the current induced
by a minimal u with ρ(u) = ρ(uε), then

0 ≤ A(Tε) − Tε(ηc) − α(c) ≤ Cε|ρ(Tε) − α′(c)|

for some positive C. This is the property of the Aubry set we shall need in the following.

Definition. Let −α′(c), v1, . . . , vs be admissible. We say that B ⊂M−α′(c) is a (−α′(c), v1, . . . , vs)-lamination
at c if B satisfies the following three conditions:
1) If u ∈ B, then l(u) ≤ s and vi(u) = vi for i ≤ l(u). In particular, by [4], B is an ordered set, a lamination.
2) B contains u with invariants (−α′(c), v1, . . . , vs).
3) Let u has invariants −α′(c), v1, . . . , vs′ with s′ ≤ s. Then u ∈ B iff there is {di} ⊂ H and ui ∈M rec

−α′(di)
such

that
ui → u in C1

loc(R
n) (2.3)

and for any δ > 0 we eventually have

|A(Ti) − Ti(ηc) − α(c)| = |α(di) + 〈α′(di), c− di〉 − α(c)|
≤ δ‖πs′−1(α′(di) − α′(c))‖. (2.4)

In the formula above, ηc is a closed n-form representing c ∈ H , Ti the current induced by ui and 〈·, ·〉 the duality
coupling between Hn(Tn+1) and Hn(Tn+1); we recall that, since −α is the polar of β, ρ(Ti) = −α′(di) and
thus Ti(ηc) = 〈−α′(di), c〉. To define the operators πs, we consider Hn(Tn+1) ≈ Rn+1, with the base defined in
Section 1. We let V−1 = Rn × {0} and we define π−1 as the orthogonal projection on V−1; we set

Vs = π−1[rat(−α′(c), 1) ∩ rat v1 ∩ . . . ∩ rat vs]

and we let πs be the orthogonal projection on Vs.
We define Ac, the Aubry set at c, as the union of all the (−α′(c), v1, . . . , vs)-laminations at c.
We note that our definition is a little at variance with that of [16], where the Aubry set is the set of orbits

approximated by some sequence uε satisfying (2.2); we ask, in addition, that these orbits are minimal and
recurrent. In Lemma 2.12 we shall see that, when n = 1, our definition coincides with that of [16].

The next lemma gives another interpretation of the Aubry set.

Lemma 2.3. Let u ∈ M−α′(c) have invariants −α′(c), v1, . . . , vs, and let Vs ⊂ H be defined as above. Let us
suppose that

di → c, di − c ∈ Vs−1 (2.5)

or
di → c, α′(di) − α′(c) ∈ Vs−1. (2.6)

Let ui ∈M rec
−α′(di)

and let ui → u in C1
loc(R

n). Then u belongs to a (−α′(c), v1, . . . , vs)-lamination at c.

Proof. Let us suppose that (2.5) holds; since (2.3) holds by hypothesis, the lemma follows if we prove (2.4). We
begin to note that, by (2.5),

| 〈α′(di) − α′(c), c− di〉 | = | 〈πs−1(α′(di) − α′(c)), c− di〉 | ≤ δ

2
‖πs−1(α′(di) − α′(c))‖

for i large; thus it suffices to prove that

|α(di) + 〈α′(c), c− di〉 − α(c)| ≤ δ

2
‖πs−1(α′(di) − α′(c))‖ (2.7)
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for i large. If we introduce the function

g : Vs−1 → R, g(h) = α(c+ h) − 〈α′(c), h〉 − α(c)

then (2.7) follows from

|g(h)| ≤ δ

2
‖g′(h)‖ if ||h|| ≤ ε(δ). (2.8)

To prove this, we consider the concave function of one variable f(t) = g(th). We note that t = 0 is a point
of maximum of f , simply because h = 0 is a point of maximum of g. The tangent to f at the point (t, f(t))
intersects the ordinates at y = f(t) − tf ′(t); since f stays below its tangents and f(0) = 0, we have y ≥ 0 or
equivalently f(t) ≥ tf ′(t). Since t = 0 is a point of maximum of f , we have that f(t) ≤ 0 and that f ′(t) ≤ 0 if
t ≥ 0, while f ′(t) ≥ 0 if t ≤ 0. This and the last formula yields |f(t)| ≤ |t| · |f ′(t)| for t ∈ R. Going back to g,
and setting th = k, we get that

|g(k)| ≤ | 〈g′(k), k〉 |
which implies (2.8) for ε(δ) = δ

2 .
We now prove the lemma when (2.6) holds; first we note that, also in this case, the lemma follows if we

prove (2.7). By the very same argument which yielded (2.8) we get that

|α(di) + 〈α′(c), c− di〉 − α(c)| ≤ δ

2
‖α′(di) − α′(c)‖

which implies (2.7) by (2.6). �
The following proposition gives the relation between the Aubry set Ac and the flat of α containing c; essen-

tially, the flat is normal to the invariants of the elements of Ac.

Proposition 2.4. Let Dρ be a flat of α of slope ρ, and let D denote a face of Dρ, or a face of a face of Dρ,
etc... Then the following holds:
1) If (c1, α(c1)) ∈ D◦, (c2, α(c2)) ∈ D, then Ac1 ⊂ Ac2 . In particular, if (c1, α(c1)), (c2, α(c2)) ∈ D◦, then
Ac1 = Ac2 . Conversely, if (c1, α(c1)) ∈ D◦ and Ac1 ⊂ Ac2 , then (c2, α(c2)) ∈ D.
2) If c ∈ D◦

(ρ,v1,...,vs), then Ac is a (ρ, v1, . . . , vs)-lamination.
3) We have that

FD(ρ,v1 ,...,vs) ⊂ rat(ρ, 1) ∩ rat v1 ∩ . . . ∩ rat vs.

Moreover, the dimension of FD(ρ,v1 ,...,vs) is either the dimension of rat(ρ, 1) ∩ rat v1 ∩ . . . ∩ rat vi or zero, and
the latter happens iff M(ρ,v1,...,vs) is a lamination.

Proof of Theorem 2.1. Point (a) follows from point 3) of Proposition 2.4; we shall not prove point (b) since it is
a particular case of point (c). Point 3) of Proposition 2.4 implies almost all of point (c), except the assertion on
the unique correspondence between vs and the faces of D(ρ,v1,...,vs−1). To prove this, we begin to note that, if D1

and D2 are two different faces of D(ρ,v1,...,vs−1), then they have different normals since D(ρ,v1,...,vs−1) is convex.
We want to prove the converse, i.e. that different normals correspond to different faces, or that ∂D(ρ,v1,...,vs−1)

has no corners. Let c ∈ ∂D(ρ,v1,...,vs−1); we have that c ∈ D◦ with D a face or subface of D(ρ,v1,...,vs−1); we can
write D = D(ρ,v1,...,vs−1,vs,...,vj). By point 2) of Proposition 2.4, Ac is a (ρ, v1, . . . , vs−1, vs, . . . , vj)-lamination.
Since −α′(c), v1, v2, . . . , vs−1, vs is admissible, we have that vs is orthogonal to (−α′(c), 1), v1, v2, . . . , vs−1; by
the formula of point 3), we get that vs is orthogonal to ∂D(ρ,v1,...,vs−1) at c. Let us suppose by contradiction
that ∂D(ρ,v1,...,vs−1) has another normal at c, say ṽs; by convexity, the face of D(ρ,v1,...,vs−1) normal to ṽs

is unique and contains c; by definition, this face is D(ρ,v1,...,vs−1,ṽs). Thus c belongs to the interior both
of D(ρ,v1,...,vs−1,vs,...,vj) and of D(ρ,v1,...,vs−1,ṽs,...,ṽk); but this contradicts point 2) of Proposition 2.4, because Ac

should be contemporarily a (ρ, v1, . . . , vs−1, vs, . . . , vj) and a (ρ, v1, . . . , vs−1, ṽs, . . . , ṽk)-lamination.
We have proven in the last paragraph that every point of ∂D(ρ,v1,...,vs−1) has a unique normal; since

D(ρ,v1,...,vs−1) is convex, this implies that ∂D(ρ,v1,...,vs−1) is of class C1, i.e. point (d) of Theorem 2.1. �
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We shall prove Proposition 2.4 in the following subsections.

2.2. The Aubry set is constant in the interior of a face

Lemma 2.5. Let Dρ be a flat of α of slope ρ, and let D be a face of Dρ, or a face of a face of Dρ, etc. Then,
if (c0, α(c0)) ∈ D◦ and (c1, α(c1)) ∈ D, we have that Ac0 ⊂ Ac1 . In particular, if also (c1, α(c1)) ∈ D◦, then
Ac0 = Ac1 .

Proof. If (c0, α(c0)) ∈ D◦, (c1, α(c1)) ∈ D and (c0, α(c0)) �= (c1, α(c1)), then we can find (c2, α(c2)) ∈ D and
λ ∈ (0, 1) such that

(c0, α(c0)) = λ(c1, α(c1)) + (1 − λ)(c2, α(c2)). (2.9)

We have used the fact that α is affine on D. Let now u belong to a (−α′(c), v1, . . . , vs)-lamination at c0; in other
words, u has invariants −α′(c), v1, . . . , vs′ with s′ ≤ s and there are {di} ⊂ H and ui ∈M rec

−α′(di)
satisfying (2.3)

and (2.4) at c0. We want to prove that u belongs to a (−α′(c), v1, . . . , vs)-lamination at c1, i.e. that (2.4) holds
at c1 too. Let Ti and T be the currents induced by ui and u respectively, and let ηc be a n-form representing
c ∈ H . We have that

0 ≤ A(Ti) − Ti(ηc0) − α(c0) ≤ δ‖πs′−1(α′(di) − α′(c0))‖
where the first inequality comes (1.19) and the second one is (2.4) at c0. We get by (2.9) that

A(Ti) − Ti(ηc0) − α(c0) = λ[A(Ti) − Ti(ηc1) − α(c1)] + (1 − λ)[A(Ti) − Ti(ηc2) − α(c2)].

The equality above follows because (c0, α(c0)) and (c1, α(c1)) are on the same flat. Since both summands on
the right are non-negative by (1.19), the last two formulas imply

0 ≤ A(Ti) − Ti(ηc1) − α(c1) ≤ δ

λ
‖πs′−1(α′(di) − α′(c0))‖ =

δ

λ
‖πs′−1(α′(di) − α′(c1))‖

which proves (2.4) at c1. �

2.3. The flat is contained in the rational space of the Aubry set

Let Dρ be a flat of α of slope ρ, and let D be a face of Dρ, or a face of a face of Dρ, etc. Let FD be the
space generated by D. Our aim in this subsection is to prove that, if c ∈ D◦ and there is a (−α′(c), v1, . . . , vs)-
lamination at c, then

FD ⊂ rat(−α′(c), 1) ∩ rat v1 ∩ . . . ∩ rat vs.

We shall do this in the following lemmas about the extension of closed n-forms; using ideas of [13], we shall
prove that FD is contained in the space of closed forms which vanish on the (−α′(c), v1, . . . , vs)-lamination;
once we have this, the formula above follows easily. The heart of the matter Lemma 2.8 below on the extension
of closed n-forms.

Let c ∈ H ; we choose a n-form representing c; for simplicity, we choose the one with constant coefficients,
which we still call c; we define

fc(x, xn+1, p) = L(x, xn+1, p) − c · p− α(c).

We denote by Ac the mean action of the Lagrangian fc, and by βc and αc the two conjugate functions. By the
definitions of α and αc, it follows immediately that αc(0) = 0 and that αc(0) is attained on the same currents
on which α(c) is attained; moreover, α′(c) = α′

c(0) and thus M−α′(c) = M−α′
c(0)

. In the following, we shall often
switch from L to fc, since many proofs are simpler if we suppose that c = 0 and α(c) = 0.
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Lemma 2.6. Let c ∈ H, and let fc be as above. Let −α′(c) ∈ Qn and let B = M rec
−α′(c). Then there is a closed

n-form ηB,c on Rn+1 which is periodic in all its variables (i.e. it quotients on Tn+1) and such that, ∀u ∈ B and
∀x ∈ Rn, {

ηx
B,c(x, u(x)) = ∂pfc(x, u(x),∇u(x))
ηu
B,c(x, u(x)) = fc(x, u(x),∇u(x)) − 〈∂pfc(x, u(x),∇u(x)),∇u(x)〉 . (2.10)

In the formula above, ηB,c is expressed in the coordinates d̂xi of Section 1. The form ηB,c satisfies

‖ηB,c(x, xn+1) − ηB,c(z, zn+1)‖ ≤ C‖(x, xn+1) − (z, zn+1)‖ (2.11)

where the constant C depends only on ‖α′(c)‖. Moreover, if B is a foliation, ηB,c is exact and the flat of α at c
is reduced to a point.

Remark. We shall see in Lemma 2.8 below that, also if B is not a foliation, ηB,c can be modified outside B to
an exact form.

Proof. The reference is obviously the part of [1] on foliations and calibrations; we shall proceed a little differently
since we are not dealing with foliations, but with laminations; the problem is how to extend the form to the
gaps of the lamination in such a way that (2.11) holds.

Let
Γ = {k ∈ Zn : − α′

c(0) · k ∈ Z}.
Since −α′

c(0) ∈ Qn, we have that Γ is n-dimensional and we can find a bounded fundamental domain AΓ for
the action of Γ on Rn.

We recall that M rec
−α′(c) is an ordered set; let

u0 < u1 < . . . < uk = u0 + 1 (2.12)

be elements of M rec
−α′(c). We define the strip

M̃i = {(x, xn+1) ∈ Rn × R : ui(x) < xn+1 < ui+1(x)}

and call Mi its projection on Tn+1. We shall need in the following that

{(x, xn+1) ∈ AΓ × R : ui(x) < xn+1 < ui+1(x)}

projects injectively on Tn+1; by Lemma A1 of the Appendix, one sees that this is the case if

ui+1(x) ≤ ui(x + k̄) + j̄

where
−α′(c) · k̄ + j̄ = min{−α′(c) · k + j > 0 : (k, j) ∈ Zn × Z}.

In the following, we shall always suppose that the ui satisfy the condition above. In particular, if ui+1 < ui + 1
then ∂Mi has two components: the projection on Tn+1 of {xn+1 = uj(x), x ∈ AΓ} for j = i, i+ 1.

Step 1. We consider the vector field η, defined on ∂Mi by (2.10); before extending it to a divergence-free vector
field on Mi, we check that its flow across the boundary of Mi is zero. Let Ti be the current induced by ui. We
know that

0 = αc(0) = min{Ac(T ) : T is induced by u ∈Mρ, ρ ∈ Rn} = Ac(Ti)
where the third equality comes from the remarks at the end of Section 1. Since

Ac(Ti) =
1

|AΓ|
∫

AΓ

fc(x, ui,∇ui)dx
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we have that ∫
AΓ

fc(x, ui,∇ui)dx = 0. (2.13)

Since η|∂Mi is defined by (2.10), we get that

fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui) =

fc(x, ui,∇ui) − 〈∂pfc(x, ui,∇ui),∇ui〉 − fc(x, ui,∇ui) + 〈∂pfc(x, ui,∇ui),∇ui〉 = 0

which implies ∫
AΓ

[fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]dx = 0.

From the last formula and (2.13) we get that∫
AΓ

[ηx(x, ui) · ∇ui + ηu(x, ui)]dx = 0

or equivalently ∫
Graph(ui|AΓ)

η = 0. (2.14)

Step 2. By (2.14), the flow of η across both sides of Mi is zero; we want to extend η to a divergence-free vector
field (or closed n-form) ηi on Mi. Moreover, we want

‖ηi(x, xn+1) − ηi(z, zn+1)‖ ≤ C‖(x, xn+1) − (z, zn+1)‖. (2.15)

We want the constant C to depend only on ‖α′(c)‖, but not on the choice of the {ui}.
We do this in the following way. We consider the strip

S̃i = {(x, xn+1) : ui(x) ≤ xn+1 ≤ ui(x) + 2}

which sits above the graph of ui and contains M̃i. On S̃i we define a family of hypersurfaces, the graphs of

ut(x) = ui(x) + t

where t ∈ [0, 2]. If we set

g(x, ut(x)) = div∂pfc(x, ut(x),∇ut(x)) − ∂ufc(x, ut(x),∇ut(x))

we have that ut solves the elliptic problem

div∂pfc(x, ut(x),∇ut(x)) = ∂ufc(x, ut(x),∇ut(x)) + g(x, ut(x)).

We define

G(x, s) =
∫ s

ui(x)

g(x, τ)dτ

and we set f̃c(x, u, p) = fc(x, u, p) +G(x, u). We have that ut satisfies

div∂pf̃c(x, ut(x),∇ut(x)) = ∂uf̃c(x, ut(x),∇ut(x)).
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Now the Lagrangian f̃c admits a foliation of solutions ut; by the same calculations as in [1], this implies that
the form ηi which on (x, ut(x)) ∈ S̃i takes value{

ηx
i (x, ut(x)) = ∂pf̃c(x, ut(x),∇ut(x))
ηu

i (x, ut(x)) = f̃c(x, ut(x),∇ut(x)) −
〈
∂pf̃c(x, ut(x),∇ut(x)),∇ut(x)

〉
is closed. Since G = 0 on the graph of ui, we have that ηi satisfies (2.10) on the graph of ui. The problem is
that we don’t have G = 0 on the graph of ui+1, and thus ηi does not satisfy (2.10) on this set. To solve this,
we let

S̃i+1 = {(x, xn+1) : ui+1(x) − 2 ≤ xn+1 ≤ ui+1(x)}.
On S̃i+1 we define a n-form ηi+1 as before; this form satisfies (2.10) on the graph of ui+1. We note that, since

ui+1 − 2 < ui < ui−1 + 2

S̃i and S̃i+1 contain M̃i.
We now want to find a closed form η̄i on M̃i which coincides with ηi+1 on the graph of ui+1, and with ηi on

the graph of ui; moreover, we want η̄i periodic and satisfying (2.15). To do this, we define in M̃i two primitives
of ηi and ηi+1 by the Poincaré lemma ([10], Chap. 4). The two primitives are

γj(x, xn+1)(v1, . . . , vn−1) =
∫ 1

0

βj(x, xn+1, t)(dit(v1), . . . ,dit(vn−1))dt j = i, i+ 1

where
it : (x, xn+1) → (x, xn+1, t)

and the βj are defined through the following homotopy

H(x, xn+1, t) = (x, ui+1(x) + t(xn+1 − ui+1(x))).

Denoting by H∗ the pull-back by H , we set

H∗ηj = α+ dt ∧ βj , j = i, i+ 1 (2.16)

where α does not contain terms in dt. We have to derive a few estimates on βj and ηj .
Since the ut in S̃i are all translates of the same function, we have that

∇ut −∇ut′ = 0 (2.17)

and the same holds for the ut in S̃i+1 We now assert that

‖∇ui+1 −∇ui‖C0(B(x0,r)) ≤ C1|ui+1(x0) − ui(x0)| (2.18)

with C1 independent on x0 and r ≤ 1. To prove this, we recall from [17] that the map

Φ:
⋃

u∈Mrec
−α′(c)

Graph(u) → Rn, Φ: (x, u(x)) → ∇u(x)

is Lipschitz; thus, (2.18) follows if we prove the Harnack-like inequality

‖ui+1 − ui‖C0(B(x0,r)) ≤ C2|ui+1(x0) − ui(x0)|. (2.19)
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In other words, we have to show that

|ui+1(x) − ui(x)| ≤ C2|ui+1(x0) − ui(x0)|
for ‖x− x0‖ ≤ r. But this is a consequence of the Gronwall lemma, since

d
dt

[ui+1(tx+ (1 − t)x0) − ui(tx+ (1 − t)x0)] = 〈∇ui+1(tx+ (1 − t)x0) −∇ui(tx+ (1 − t)x0), x− x0〉
≤ C3r[ui+1(tx+ (1 − t)x0) − ui(tx+ (1 − t)x0)]

where C3 is the Lipschitz constant of Φ.
By the definition of ηi, (2.18) and (2.19) imply that, if r ≤ 1

‖ηi+1|(x,ui+1(x)) − ηi|(x,ui(x))‖C0(B(x0,r)) ≤ C4|ui+1(x0) − ui(x0)|.
For r ≤ min(ui+1(x0) − ui(x0), 1), we define

Vx0 = {(x, xn+1) : x ∈ B(x0, r), ui(x) ≤ xn+1 ≤ ui+1(x)}.
Since L ∈ Cl,γ with l ≥ 3, we can apply (3) with l = 3; thus the first and second derivatives of ∇uj , j = i, i+1,
are bounded; by the definition of ηj and (2.17), the first and second derivatives of ηj are bounded; by the last
formula and (2.19), this implies that{ ‖ηi+1 − ηi‖C0(Vx0) ≤ C5|ui+1(x0) − ui(x0)|

‖ηi+1‖C2(Vx0) + ‖ηi‖C2(Vx0) ≤ C5
(2.20)

with C5 independent on x0. By the last formula and (2.16), we get{ ‖βi+1 − βi‖C0(Vx0×[0,1]) ≤ C6|ui+1(x0) − ui(x0)|
‖βi+1‖C2(Vx0×[0,1]) + ‖βi‖C2(Vx0×[0,1]) ≤ C6.

If we choose r ≤ min(ui+1(x0)−ui(x0), 1), we have that the diameter of Vx0 is bounded by
√
n|ui+1(x0)−ui(x0)|;

using this fact and integrating, the last formula yields⎧⎨⎩
‖γi+1 − γi‖C0(Vx0) ≤ C7|ui+1(x0) − ui(x0)|2
‖γi+1 − γi‖C1(Vx0) ≤ C7|ui+1(x0) − ui(x0)|
‖γi+1 − γi‖C2(Vx0) ≤ C7

(2.21)

with C7 independent on x0. We give a proof of the second one:

|∂xs [(γi+1 − γi)(v1, . . . , vn−1)]| ≤
∫ 1

0

|∂xs{[βi+1(x, xn+1, t) − βi(x, xn+1, t)](dit(v1), . . . ,dit(vn−1)}|dt
≤ C7|ui+1(x0) − ui(x0)|

where the first inequality comes from the definition of γi, γi+1; the second one comes from the fact that,
by (2.16),

(βj+1 − βj)(dit(v1), . . . ,dit(vn−1)) =
n∑

k=1

(−1)k[ηj+1 − ηj ]|H◦it(x,xn+1,t)(∇x,xn+1(H ◦ it)(v1), . . . ,∇x,xn+1(H ◦ it)(vk−1), ∂t(H ◦ it)(vk),

∇x,xn+1(H ◦ it)(vk+1), . . . ,∇x,xn+1(H ◦ it)(vn−1))
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and thus∫ 1

0

|∂xs [(βj+1 − βj)(dit(v1), . . . ,dit(vn−1))]|dt ≤
∫ 1

0

∣∣∣ n∑
k=1

(−1)k∂xs [ηj+1 − ηj ]|H◦it(x,xn+1,t)

× (∇x,xn+1(H ◦ it)(v1), . . . ,∇x,xn+1(H ◦ it)(vk−1), ∂t(H ◦ it)(vk),

∇x,xn+1(H ◦ it)(vk+1), . . . ,∇x,xn+1(H ◦ it)(vn−1))
∣∣∣dt+

∫ 1

0

∣∣∣ n∑
s,k=1

(−1k)[ηj+1 − ηj ]

× (∇x,xn+1(H ◦ it)(v1), . . . ,∇x,xn+1(H ◦ it)(vk−1), ∂t(H ◦ it)(vk),∇x,xn+1(H ◦ it)(vk+1), . . . ,

∇x,xn+1(H ◦ it)(vk−1), ∂xs∇x,xn+1(H ◦ it)(vk),∇x,xn+1(H ◦ it)(vk+1), . . . ,∇x,xn+1(H ◦ it)(vn−1))
∣∣∣dt

≤ C8|ui+1(x0) − ui(x0)|.

The first integral above is estimated by 1
2C8|ui+1(x0) − ui(x0)| because ∂xs [η̃j+1 − η̃j ] and ∇x,xn+1(H ◦ it)(vl)

are bounded, while
‖∂t(H ◦ it)(vk)‖ ≤ C9|ui+1(x0) − ui(x0)|

where the last inequality comes from the estimate on the diameter of Vx0 . The second integral is smaller than
1
2C8|ui+1(x0) − ui(x0)| by the first formula of (2.20).

Now we consider {
φ ∈ C∞(R) : φ(s) = 0 if s ≤ 1

3 , φ(s) = 1 if s ≥ 2
3

φ ≥ 0, |φ′(s)| ≤ 4 (2.22)

and we define on Mi

ω(x) =
[
1 − φ

(
xn+1 − ui(x)
ui+1(x) − ui(x)

)]
γi(x, xn+1) + φ

(
xn+1 − ui(x)
ui+1(x) − ui(x)

)
γi+1(x, xn+1).

We set dω = η on Mi and we see that dω is closed and that it satisfies (2.10) on ∂Mi. Now

η = [1 − φ]ηi + φηi+1 + dφ ∧ [γi+1 − γi].

We shall show that the derivatives of η are bounded, i.e. that η is Lipschitz. The norm of the derivatives
∂xsη(x, xn+1) contains the following terms:

|∂xn+1φ| · ‖ηi+1 − ηi‖ + [1 − φ] · ‖∂xn+1ηi‖ + φ‖∂xn+1ηi+1‖

‖∂xn+1dφ‖ · ‖γi+1 − γi‖ + ‖dφ‖ · ‖∂xn+1[γi+1 − γi]‖
[1 − φ] · ‖∇xηi‖ + φ‖∇xηi+1‖ + ‖∇xφ‖ · ‖ηi+1 − ηi‖

‖∇xdφ‖ · ‖γi+1 − γi‖ + ‖dφ‖ · ‖∇x[γi+1 − γi]‖.
Since all these terms are bounded by (2.20), (2.21) and (2.22), we have that

‖η(x, xn+1) − η(z, zn+1)‖ ≤ C13‖(x, xn+1) − (z, zn+1)‖. (2.23)

The function η just defined satisfies (2.10) on Mi.
On Tn+1 we define the form η̃ by

η̃(x, xn+1) = η̄i(x, xn+1) if (x, xn+1) ∈Mi ∪ ∂Mi.

Since Mi and Mi+1 abut along the graph of ui+1, where η̄i = η̄i+1 = η by (2.10), we get by (2.23) that η̃
satisfies (2.15).
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Now, either M rec
−α′(c) is a finite set, or not. In the first case, we can suppose that the set of (2.12) coincides

with M rec
−α′(c), and then η̃ is a closed extension of η. In the second case, we can take finer and finer parti-

tions in (2.12), so that, eventually, they approximate every element of M rec
−α′(c); then we can pass to the limit

using (2.15) and Ascoli-Arzelà.

Step 3. We suppose as in Steps 1 and 2 that α′(c) ∈ Qn; moreover, we suppose that M rec
−α′(c) is a foliation.

In this case, (2.10) defines defines a form η on all Tn+1; clearly, this form coincides with the η̃ defined in Step 2.
We set ηB,c = η = η̃; we want to prove that η is exact.

Let u ∈M rec
−α′(c); since η satisfies (2.10), we have that

∂p[fc(x, u(x), p) − ηx(x, u(x)) · p− ηu(x, u(x))]|p=∇u(x) ≡ 0.

Since fc−ηx·p−ηu is convex in p, the last formula says that p = ∇u(x) is minimal along each fiber (x, u(x))×Rn.
From the second one of (2.10) it follows that the minimum is constantly zero:

fc(x, u(x),∇u(x)) − ηx(x, u(x)) · ∇u(x) − ηu(x, u(x)) ≡ 0. (2.24)

Since the u ∈ M rec
−α′(c) form a foliation, we have that on each fiber (x, xn+1) × Rn the minimum is zero, which

implies that
fc(x, u, p) − ηx(x, u) · p− ηu(x, u) ≥ 0 ∀(x, u, p).

We have seen before that the elements of M rec
−α′(c) are minimal for fc; from the last two formulas it follows that

they are minimal also for fc − η. Thus, αc([η]x) = Ac(T )−T (ηx) for a current T induced by some u ∈M rec
−α′(c);

taking the mean of (2.24) over a fundamental domain, we get that [η]u = αc([η]x). It is a standard fact of
Aubry-Mather theory that, if αc(d) and αc(d′) are attained on the same current, then (d, αc(d)) and (d′, αc(d′))
lie on the same flat of αc; thus, we have that (0, 0) and ([η]x, αc([η]x)) lie on the same flat of αc. In particular,
if we show that the flat at [η]x of αc reduces to a point, we have that [η]x = 0. Since [η]u = αc([η]x), we have
that [η]u = αc(0) = 0; at the end [η] = 0, which is what we wanted to show. Equivalently, we shall show that
the flat of α at c+ [η]x reduces to a point.

This means to show that, if dx �= 0, then

α(c+ [η]x + dx) < α(c+ [η]x) + α′(c+ [η]x) · dx.

Let [u] denote the homology class of u ∈M rec
−α′(c); we have seen in Section 1 that [u] = (−α′(c), 1). In particular,

given any dx, we can always find du such that d = (dx, du) is orthogonal to [u]; thus the formula above becomes:

if 〈[u], d〉 = 0 and d �= 0, then α(c+ [η]x + dx) < α(c + [η]x) + α′(c+ [η]x) · dx.

We want to write the formula above using the function α̃ defined at the end of Section 1. We recall that
α̃(c+ λen+1) = α(c) − λ, so that α̃(c+ [η] + d) = α(c+ [η]x + dx) − [η]u − du. Now d ⊥ [u] = (−α′(c), 1); thus
du = α′(c) · dx. Since we just saw that c and c + [η]x are on the same flat, we have that α′(c + [η]x) · dx =
α′(c) · dx = du. Moreover, we already know that [η]u = α(c+ [η]x); thus the last formula becomes

if 〈[u], d〉 = 0 and d �= 0, then α̃(c+ [η] + d) < 0. (2.25)

To show (2.25), we let

−α′(c) =
(
p1

q1
, . . . ,

pn

qn

)
and

Q = {x ∈ Rn : 0 ≤ x1 < q1, . . . , 0 ≤ xn < qn}.
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Since u repeats periodically outsideQ, we get that the volume ofQ is a multiple of the volume of the fundamental
domain of u. Since B is a foliation, we can choose the {ui}k

i=1 of (2.12) in such a way that ui(0) = u0(0) + i
k .

Now we fix a ball B(0, r) such that B(0, r) ⊃ Q; (2.18) and (2.19) hold for any fixed r (actually we proved (2.19)
only for r ≤ 1, but it was only to have a constant independent on r), and since ui repeats periodically outside Q
we get

‖ui+1 − ui‖C1(Rn) ≤ C1

k
· (2.26)

We define a function ũ in the homology class of k[u] + e1
∏n

i=2 qi in the following way. We set φk(t) = φ(t
√
k)

where φ is the cutoff of (2.22). We set

ũ0(x) = [1 − φk(x1)][uk−1(x) − 1] + φk(x1)u0(x)

ũ1(x) = [1 − φk(x1 − q1)]ũ0(x) + φk(x1 − q1)u1(x)

ũ2(x) = [1 − φk(x1 − 2q1)]ũ1(x) + φk(x1 − 2q1)u2(x)

up to

ũk(x) = [1 − φk(x1 − kq1)]ũk−1 + φk(x1 − kq1)uk(x).

Now by (2.12), uk(x+kq1e1) = u0(x)+kp1 +1, which implies that, if x1 ∈ [0, q1], then ũk(x+kq1e1) = ũk(x)+
kp1 + 1. From this it follows easily that we can find a continuous ũ which coincides with ũk on [0, kq1]×Rn−1

and satisfies ũ(x + kq1e1) = ũ(x) + kp1 + 1 for all x. Moreover, it is easy to see that the homology class of ũ,
which we denote by [ũ], satisfies [ũ] = k[u] + e1

∏n
i=2 qi where ei is the basis defined in Section 1.

Since (2.24) implies that

∫
[iq1,(i+1)q1]×∏

n
j=2[0,qj ]

[fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]}dx = 0

we have that

∫
[0,kq1]×∏

n
j=2[0,qj ]

[fc(x, ũ,∇ũ) − ηx(x, ũ) · ∇ũ− ηu(x, ũ)]dx =

k−1∑
i=0

∫
[iq1,(i+1)q1]×∏

n
j=2[0,qj ]

{[fc(x, ũ,∇ũ) − ηx(x, ũ) · ∇ũ− ηu(x, ũ)]

− [fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]}dx.

Recalling that ui and ũ coincide on [iq1 + 1√
k
, (i+ 1)q1] ×

∏n
j=2[0, qj], we get that

∫
[0,kq1]×∏n

j=2[0,qj ]

[fc(x, ũ,∇ũ) − ηx(x, ũ) · ∇ũ− ηu(x, ũ)]dx =

k−1∑
i=0

∫
[iq1,iq1+ 1√

k
]×∏n

j=2[0,qj ]

{[fc(x, ũ,∇ũ) − ηx(x, ũ) · ∇ũ− ηu(x, ũ)]

− [fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]}dx.
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Setting ũ = ui + ψi on [iq1, iq1 + 1√
k
] ×∏n

j=2[0, qj], we can write the last formula as

∫
[0,kq1]×∏n

j=2[0,qj ]

[fc(x, ũ,∇ũ) − ηx(x, ũ) · ∇ũ− ηu(x, ũ)]dx =

k−1∑
i=0

∫
[iq1,iq1+ 1√

k
]×∏n

j=2[0,qj ]

{[fc(x, ui,∇(ui + ψi)) − ηx(x, ui) · ∇(ui + ψi) − ηu(x, ui)]

− [fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]}dx

+
k−1∑
i=0

∫
[iq1,iq1+ 1√

k
]×∏n

j=2[0,qj ]

{[fc(x, ũ,∇ũ) − ηx(x, ũ) · ∇ũ− ηu(x, ũ)]

− [fc(x, ui,∇ũ) − ηx(x, ui) · ∇ũ − ηu(x, ui)]}dx. (2.27)

Since
ψi(x) = [1 − φk(x1 − iq1)] · [ui−1(x) − ui(x)]

we get by (2.26) that {‖ψi‖C1([iq1,iq1+ 1√
k
]×∏n

j=2[0,qj ]) ≤ C2√
k

‖ψi‖C0([iq1,iq1+ 1√
k
]×∏n

j=2[0,qj ]) ≤ C2
k ·

Since ∇ui(x) minimizes : p→ fc(x, ui(x), p)−ηx(x, ui(x)) ·p−ηu(x, ui(x)), this function has at most quadratic
growth in a neighbourhood of ∇ui(x) and thus

||[fc(x, ui,∇(ui + ψi)) − ηx(x, ui) · ∇(ui + ψi) − ηu(x, ui)]

− [fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]||L∞([iq1,iq1+ 1√
k
]×∏n

j=2[0,qj ]) ≤ C3

(
C2√
k

)2

.

Using the fact that, by (2.11), : z → fc(x, z, p) − ηx(x, p) · p− ηu(x, z) is Lipschitz, we get

||[fc(x, ũ,∇ũ) − ηx(x, ũ) · ∇ũ− ηu(x, ũ)]

− [fc(x, ui,∇ũ) − ηx(x, ui) · ∇ũ− ηu(x, ui)]||L∞([iq1,iq1+ 1√
k
]×∏n

j=2[0,qj ]) ≤ C3
C2

k
·

From the last two formulas and (2.27) we get that

∫
[0,kq1]×∏

n
j=2[0,qj ]

[fc(x, ũ,∇ũ) − ηx(x, ũ) · ∇ũ− ηu(x, ũ)]dx ≤
k−1∑
i=0

C3

[(
C2√
k

)2

+
C2

k

]
1√
k

n∏
j=2

qj ≤ C4√
k

n∏
j=2

qj .

Let now d ∈ [u]⊥, and let ηd be a n-form representing d; we have that∫
[0,kq1]×∏n

j=2[0,qj ]

[ηx
d · ∇ũ+ ηu

d ]dx =
∫

Graph(ũ)

ηd =

〈
k[u] + e1

n∏
j=2

qj , d

〉
= 〈e1, d〉

n∏
j=2

qj .

In the second equality, we have used the fact that [ũ] = k[u] + e1
∏n

i=2 qi, in the third we used the fact that
d ∈ [u]⊥. By the last two formulas we get that, if 〈[u], d〉 = 0, 〈e1, d〉 > 0 and k is sufficiently large,∫

[0,kq1]×∏
n
j=2[0,qj ]

[fc(x, ũ,∇ũ) − ηx(x, ũ) · ∇ũ− ηu(x, ũ) − ηx
d · ∇ũ− ηu

d ]dx ≤ C4√
k

n∏
j=2

qj − 〈e1, d〉
n∏

j=2

qj < 0.
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But this implies that α̃(c + [η] + d) < 0 if d ∈ [u]⊥ and 〈e1, d〉 > 0. Building a function ũ as before, but in
the homology class of k[u] − e1Πn

i=2qi (i.e. starting its construction from uk and not from u1) one proves that
α̃(c+ [η] + d) < 0 also if 〈d, e1〉 < 0. Applying this argument to the other coordinates we get that (2.25) holds
and we have seen that this implies that η is exact. �

We shall need the following extension of Step 3 of the last lemma.

Lemma 2.7. Let fc and αc be as before, and let us suppose that

−α′
c(0) =

(
p1

q1
, . . . ,

pn−1

qn−1
,
pn

qn

)
with qn relatively prime to qi, 1 ≤ i ≤ n − 1. Let B = M rec

−α′(c), and let η = ηB,c be the n-form given by
Lemma 2.6. Then there is C > 0, only depending on ‖α′(c)‖, such that

| 〈en, [η]〉 | ≤ C√
q

n

· (2.28)

More in general, let

−α′
c(0) =

(
p1

q1
, . . . ,

ps

qs
,
ps+1

qs+1
, . . .

pn

qn

)
and let us suppose that, for i ∈ (s+ 1, . . . , n), qi is relatively prime to qj for j �= i. Then

| 〈ei, [η]〉 | ≤ C√
qi

i ∈ (s+ 1, . . . , n).

Proof. We begin to prove the first assertion. We shall proceed as in Step 3 of Lemma 2.6; since we shall
build the test function ũ gluing together several translates of u ∈ M rec

−α′
c(0)

, we need some preliminaries on the
fundamental domain of −α′

c(0). We begin to consider

Γ =
{
k ∈ Zn−1 :

(
p1

q1
, . . . ,

pn−1

qn−1

)
· k ∈ Z

}
and a fundamental domain AΓ ⊂ Rn−1 of Γ.

Since qn is relatively prime with q1, . . . , qn−1, Lemma A2 of the Appendix implies that AΓ × [0, qn] is a
fundamental domain for −α′(c). Let us now take (k, j) ∈ Zn × Z such that −α′(c) · k + j > 0 is minimal; by
Lemma A1 of the Appendix,

1
−α′(c) · k + j

= l ∈ N and u(x+ lk) + lj = u(x) + 1.

Let now u ∈M rec
−α′(c), and let

B = {(x, xn+1) : x ∈ AΓ × [0, qn], u(x) ≤ xn+1 < u(x+ k) + j}.

By Lemma A1 of the Appendix, B projects without self intersections onto Tn+1 and |B| = 1. But this is
equivalent to say that ∫

AΓ×[0,qn]

[u(x+ k) + j − u(x)]dx = 1.

Clearly, this implies that∫
AΓ×[0,qn]

[u(x+ sk) + sj − u(x+ (s− 1)k) − (s− 1)j]dx = 1 ∀s ∈ Z. (2.29)
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Now we have

1 =
1

qn|AΓ|
∫

AΓ×[0,qn]

[u(x) + 1 − u(x)]dx =
1

qn|AΓ|
∫

AΓ×[0,qn]

[u(x+ lk) + lj − u(x)]dx

=
l∑

i=1

1
qn|AΓ|

∫
AΓ×[0,qn]

{u(x+ ik) + ij − [u(x+ (i− 1)k) + (i− 1)j]}dx =
l

qn|AΓ|

where the last equality comes from (2.29). From the last formula we get

l = qn|AΓ|. (2.30)

Moreover, from (2.29) with s = 1 we get that there is m ∈ [0, qn − 1] ∩ Z such that∫
AΓ×[m,m+1]

[u(x+ k) + j − u(x)]dx ≤ 1
qn

· (2.31)

Translating, we can always suppose m = 0. With the same argument, we have that∫
AΓ×[0, 1√

qn
]

[u(x+ k) + j − u(x)]dx ≤ 1
qn
√
qn

· (2.32)

By (2.19), if u(x0 + k) + j − u(x0) ≥ a > 0, then u(x + k) + j − u(x) ≥ a
C on a ball B(x0, 1), with C not

depending on a. This fact and (2.31) imply

‖u(x+ k) + j − u(x)‖C0({0<xn<1}) ≤ C1

qn
(2.33)

for some C1 > 0. Since the map Φ: (x, u(x)) → ∇u(x) is Lipschitz, possibly enlarging C1 we get

‖∇[u(x+ k) + j] −∇u(x)‖C0(AΓ×[0,1]) ≤ C1

qn
· (2.34)

Again using the fact that Φ: (x, u(x)) → ∇u(x) is Lipschitz, we get from (2.32) that

‖∇[u(x+ k) + j] −∇u(x)‖L1(AΓ×[0, 1√
qn

]) ≤
C1

qn
√
qn

· (2.35)

We now build a cycle in a way similar to Step 3 of Lemma 2.6. We let

ui(x) = u(x+ ik) + ij, φqn(t) = φ(t
√
qn)

where φ is the cutoff of (2.22). We define

ũ0(x) = [1 − φqn(xn)]u−1(x) + φqn(xn)u0(x)

ũ1(x) = [1 − φqn(xn − qn)]ũ0(x) + φqn(xn − qn)u1(x)
. . .

ũl(x) = [1 − φqn(xn − lqn)]ũl−1(x) + φqn(xn − lqn)ul(x).
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As in Step 3 of Lemma 2.6, we can use the fact that ul(x) = u0(x) + 1 to extend ũl by periodicity outside
AΓ × [0, lqn]; we call the resulting function ũ+. Again as in Step 3 of Lemma 2.6 we have that

∫
AΓ×[0,lqn]

[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]dx =

l−1∑
i=0

∫
AΓ×[iqn,(i+1)qn]

[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]dx

=
l−1∑
i=0

∫
AΓ×[iqn,(i+1)qn]

{[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]

− [fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]}dx

where the last equality comes from the fact that, by Step 1 of Lemma 2.6,∫
AΓ×[iqn,(i+1)qn]

[fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]dx = 0. (2.36)

Recalling that ui and ũ+ coincide on AΓ × [iqn + 1√
qn
, iqn], we get that

∫
AΓ×[0,lqn]

[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]dx =

l−1∑
i=0

∫
AΓ×[iqn,iqn+ 1√

qn
]

{[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]

− [fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]}dx. (2.37)

On AΓ × [iqn, iqn + 1√
qn

] we have that ũ+ = ui + ψ, with

ψ = [1 − φqn(xn − iqn)] · [ui−1(x) − ui(x)].

Taking derivatives and recalling (2.32), (2.33), (2.34) and (2.35), we get that⎧⎪⎨⎪⎩
‖∇ψ‖L∞(AΓ×[iqn,iqn+ 1√

qn
]) ≤ C1√

qn

‖∇ψ‖L1(AΓ×[iqn,iqn+ 1√
qn

]) ≤ C1
qn

‖ψ‖L1(AΓ×[iqn,iqn+ 1√
qn

]) ≤ C1
qn

√
qn
·

We now get that

||[fc(x, ui,∇(ui + ψ)) − ηx(x, ui) · ∇(ui + ψ) − ηu(x, ui)]

− [fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]||L1(AΓ×[iqn,iqn+ 1√
qn

])

≤ C2

∫
AΓ×[iqn,iqn+ 1√

qn
]

|∇ψ|2dx ≤ C2‖∇ψ‖L∞

∫
AΓ×[iqn,iqn+ 1√

qn
]

|∇ψ|dx ≤ C3

qn
√
qn

· (2.38)

In the first inequality above we used the fact that ∇ui(x) minimizes : p → fc(x, ui(x), p) − ηx(x, ui(x)) · p −
ηu(x, ui(x)), in the last one we used the last formula. Analogously, since : z → fc(x, z,∇ũ+)− ηx(x, z) · ∇ũ+ −
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ηu(x, z) is Lipschitz (with a Lipschitz constant depending only on || − α′(c)||), we get

||[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]

− [fc(x, ui,∇ũ+) − ηx(x, ui) · ∇ũ+ − ηu(x, ui)]||L1(AΓ×[iqn,iqn+ 1√
qn

]) ≤

C2‖ψ‖L1(AΓ×[iqn,iqn+ 1√
qn

]) ≤
C4

qn
√
qn

· (2.39)

Thus∫
AΓ×[iqn,iqn+ 1√

qn
]

{[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]

− [fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]}dx =∫
AΓ×[iqn,iqn+ 1√

qn
]

{[fc(x, ui,∇(ui + ψ)) − ηx(x, ui) · ∇(ui + ψ) − ηu(x, ui)]

− [fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui)]}dx
+
∫

AΓ×[iqn,iqn+ 1√
qn

]

{[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]

− [fc(x, ui,∇ũ+) − ηx(x, ui) · ∇ũ+ − ηu(x, ui)]}dx ≤ C3

qn
√
qn

+
C4

qn
√
qn

=
C5

qn
√
qn

where the inequality comes from (2.38) and (2.39). From the last formula and (2.37) we get∫
AΓ×[0,lqn]

[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]dx ≤ l
C5

qn
√
qn

=
C5|AΓ|√

qn
(2.40)

where the equality comes from (2.30). From the fact that [ũ+] = l[ui] + en|AΓ| we get that, if d ∈ [ui]⊥ and
〈en, d〉 > 2C5√

q
n

, then 〈
[ũ+], d

〉 ≥ 2C5|AΓ|√
q

n

·

From this and (2.40), we get that, if ηd is a n-form representing d, then∫
AΓ×[0,lqn]

[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+) − ηx
d · ∇ũ+ − ηu

d ]dx =∫
AΓ×[0,lqn]

[fc(x, ũ+,∇ũ+) − ηx(x, ũ+) · ∇ũ+ − ηu(x, ũ+)]dx− 〈
[ũ+], d

〉 ≤ C5|AΓ|√
q

n

− 2C5|AΓ|√
q

n

< 0.

We can build in the same way a periodic ũ− with [ũ−] = l[ui] − en|AΓ| and such that∫
AΓ×[0,mqn]

[fc(x, ũ−,∇ũ−) − ηx(x, ũ−) · ∇ũ− − ηu(x, ũ−) − ηx
d · ∇ũ− − ηu

d ]dx < 0

for d ∈ [ui]⊥ and 〈en, d〉 ≤ −2C5√
q

n

. By (2.36) and the fact that d ∈ [ui]⊥ we get that∫
AΓ×[iqn,(i+1)qn]

[fc(x, ui,∇ui) − ηx(x, ui) · ∇ui − ηu(x, ui) − ηx
d · ∇ui − ηu

d ]dx = 0.
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By the last three formulas, ui cannot minimize fc − ηx · p− ηu − ηx
d · p− ηu

d when d ∈ [ui]⊥ and | 〈en, d〉 | ≥ 2C5√
q

n
;

since ui minimizes fc, and the set of minimizers of fc − η− ηd depends only on the cohomology class of η + ηd,
we have that the cohomology class of η + ηd cannot be zero if d ∈ [ui]⊥ and | 〈en, d〉 | ≥ 2C5√

q
n

. Since we know

by (2.14) that η ∈ [ui]⊥, we can take ηd = −η and get that

|[η]n| ≤ 2C5√
qn

i.e. the thesis.
To prove the second assertion of the lemma, we notice that (2.28) is uniform in the first n − 1 frequencies.

We then apply this estimate separately to the n-th coordinate, to the (n − 1)-th, all the way down to the
(s+ 1)-th. �

Remark. We refer the reader to Section 3 of [14] and to Theorem 3 of [21] for a more precise estimate on the
width of the face containing c; see also [22] for a connection with the Miller indices of crystallographers.

Lemma 2.8. Let c ∈ H and let fc be defined as before. Let B be a (−α′(c), v1, . . . , vs)-lamination at c. Then
there is an exact n-form η(B,c) which satisfies (2.10) on B.

Proof. Let us begin with the case in which B is a −α′(c)-lamination.
We note that, if u satisfies (1) and (2) for the Lagrangian L and A is a unimodular transformation of Rn,

then u(Ax) satisfies (1) and (2) for L(A−1x, u, p ·A). Since L(A−1x, u, p ·A) satisfies the same hypotheses as L,
albeit with different constants, we can always consider u(Ax) instead of u. By Lemma A3 of the Appendix, we
can choose A in such a way that

− α′(c) = (ρ1, . . . , ρs, ρs+1, . . . , ρn) (2.41)

with (ρ1, . . . , ρs) ∈ Qs and (ρs+1, . . . , ρn) rationally independent.
Thus we have to prove the following: if ρ is as in (2.41) and if c ∈ π−1(Dρ), there is a closed n-form ηc such

that ⎧⎨⎩
ηc satisfies (2.10) on B for the Lagrangian fc

ηc satisfies (2.11)
[ηc] = 0.

(2.42)

Step 1. We note that π−1(Dρ) is a convex set, since it is the projection on Rn of the convex Dρ. Let
D̃ ⊂ π−1(Dρ) be a set such that the closure of co(D̃) is π−1(Dρ). We assert that it is sufficient to find ηc

for c ∈ D̃.
First of all, it is easy to check that, if λ ∈ [0, 1] and if ηc1 and ηc2 satisfy (2.42) then also (1 − λ)ηc1 + ληc2

satisfies (2.42). Thus, we have (2.42) for all c ∈ co(D̃). To extend (2.42) to the closure of co(D̃), we consider
{ci} ⊂ co(D̃) with ci → c0; we let ηci satisfy (2.42). Since ηci satisfies (2.11), we can use Ascoli-Arzelà to get
a subsequence ηci′ converging uniformly to a n-form ηc0 . We want to prove that ηc0 satisfies (2.42). It is clear
that ηc0 satisfies (2.11); it also satisfies the last one of (2.42) since [ηci ] = 0 and the map : η → [η] is continuous
for the uniform topology. We have to prove that ηc0 satisfies (2.10) for the Lagrangian fc0 ; but this follows
easily from the fact that ηci satisfies (2.10) for fci , and fc depends continuously on c.

Step 2. We define the set D̃ of Step 1.
Let π−1(Dρ) be the projection of Dρ on H , and let Wε be a ε-neighbourhood of π−1(Dρ) in H . Since α is

concave, we get that, for any fixed c0 ∈ π−1(Dρ),

〈α′(d) − α′(c0), d− c0〉 < 0 ∀d ∈ ∂Wε.

This and the fact that α ∈ C1 imply by a standard argument of degree theory (see for instance [9], Th. 1.3.3)
that α′(Wε) contains a ball centered in α′(c0). Let now v be an exterior normal to π−1(Dρ) at c̄ ∈ π−1(Dρ);
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in other words, v is the slope of any plane : c → 〈v, c〉 + a such that 〈v, c〉 + a ≤ 0 for c ∈ π−1(Dρ) and
〈v, c̄〉 + a = 0. Since α′(Vε) ⊃ B(α′(c0), r), we can find dk ∈ H such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−α′(dk) =
(

p1
k

q1
k
, . . . ,

pn
k

qn
k

)
∈ Qn

qi
k and qj

k are relatively prime if i �= j
α′(dk) → α′(c0)

α′(dk)−α′(c0)
‖α′(dk)−α′(c0)‖ → −v

qj
k → +∞ for j = 1, . . . , n.

(2.43)

Since −α is convex and superlinear, the third one of (2.43) implies that, up to a subsequence, dk → d ∈ π−1(Dρ).
Again by concavity, we have that

〈α′(dk) − α′(c̄), dk − c̄〉 ≤ 0.

By the fourth one of (2.43) we deduce that
〈v, d− c̄〉 ≥ 0

which implies that d may be different from c̄, but lies on the same face of π−1(Dρ): v is an exterior normal both
at c̄ and at d.

We define D̃ as the set of all points d obtained as above as v varies in H . We want to prove that the closure
of co(D̃) equals π−1(D).

Let us suppose that the closure of co(D̃) is strictly contained in π−1(Dρ); then there is a plane : c→ 〈v, c〉+a
such that 〈v, c〉 + a ≤ 0 for c in the convex hull, and 〈v, c̃〉 + a > 0 for some c̃ ∈ π−1(Dρ). For this v, we take
a sequence dk as in (2.43) and we call d its limit; using the concavity of α, it is easy to see that 〈v, d− c̃〉 ≥ 0.
Since 〈v, c̃〉 + a > 0, we get that {dk} converges to a point d ∈ D̃ with 〈v, d〉 + a > 0, a contradiction.

Step 3. We prove that (2.42) holds for c ∈ D̃.
Let dk be as in (2.43), and let c be its limit; let Bk = M rec

−α′(dk) and let us consider ηBk,dk
given by Lemma 2.6.

By (2.11) and Ascoli-Arzelà we can suppose that ηBk,dk
converges in C0

loc to a n-form ηc. By (2.14) we have that

[ηBk,dk
] ∈ (−α′(dk), 1)⊥

and since −α′(dk) → −α′(c), we get
[ηc] ∈ (−α′(c), 1)⊥.

We want to apply Lemma 2.7 to
−α′(dk) = (ρk

1 , . . . , ρ
k
s , ρ

k
s+1, . . . , ρ

k
n).

By the fifth one of (2.43), the denominators of ρk
1 , . . . , ρ

k
n tend to +∞; moreover, by the second one of (2.43)

each denominator is relatively prime to the denominators of all the other ρk
j . Thus Lemma 2.7 applies and

we get
lim

k→+∞
[ηBk,dk

]j = 0 if j = 1, . . . , n.

Since η is the limit of ηBk,dk
, we have that

[ηc]j = 0 if j = 1, . . . , n.

Thus ηc satisfies the third one of (2.42); the second one of (2.42) follows easily. We have to show that ηc

satisfies (2.10) on B. By (3) and Ascoli-Arzelà, the elements ofM rec
−α′(dk) converge to the elements of a lamination

C ⊂M−α′(c); moreover, ηc clearly satisfies (2.10) on C. We also note that the elements of M rec
−α′(dk) intersect the

elements of B, since by (2.43) −α′(di) �= −α′(c). Now by the same arguments as in the proof of Lemma 2.12
below we get that B ⊂ C, i.e., η satisfies (2.10) on B.
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Step 4. We now define a form η satisfying (2.42) when B is a (−α′(c), v1)-lamination at c. By Lemma A3 in
the Appendix, we can suppose that, setting as usual v1 = (vx

1 , v
u
1 ),

vx
1 = (ν1, . . . , νs′ , νs′+1, . . . , νs, 0, . . . , 0)

with (ν1, . . . , νs′) ∈ Qs′
and (νs′+1, . . . , νs) rationally independent.

By Step 3, we know that, setting C = M rec
−α′(c), we can find an exact form ηC,c which satisfies (2.10) onM rec

−α′(c);
applying Lemmas 2.9 and 2.10 below to this situation, we get that the space generated by Dρ is contained in
rat(ρ, 1). On the other hand, since (ρ, v1) is admissible, we have that v1 ∈ rat(ρ, 1). Since B is a (−α′(c), v1)-
lamination, we can find {di} and ui ∈M rec

−α′(di)
satisfying (2.3) and (2.4) at c. Let

Γ = {(k, j) ∈ Zn × Z : − α′(c) · k + j = 0}.

Since ui converges to a solution with invariants −α′(c), v1, we must have

lim inf{(k, j) ∈ Γ : ui(x+ k + j) > ui(x)} ⊂ Γ ∩ {〈(k, j), v1〉 ≥ 0}

or equivalently
lim inf{(k, j) ∈ Γ : − α′(di) · k + j > 0} ⊂ Γ ∩ {〈(k, j), v1〉 ≥ 0}.

Since −α′(c) · k + j = 0 for (k, j) ∈ Γ and v1 ∈ rat(ρ, 1), the formula above implies that

lim inf{(k, j) ∈ Γ : − α′(di) · k + j > 0} ⊂ {(k, j) ∈ Γ : 〈(k, j), v1〉 ≥ 0} =

{(k, α′(c) · k) ∈ Γ : k · vx
1 + (α′(c) · k)(α′(c) · vx

1 ) ≥ 0}.

The last formula implies that, for some λ > 0,

−α′(di) + α′(c)
|| − α′(di) + α′(c)|| → v : = λ[vx

1 + (α′(c) · vx
1 )α′(c)] (2.44)

and
v ∈ π−1(rat(−α′(c), 1)) = V0

where the space V0 is the same as in the definition of a (−α′(c), v1)-lamination. An easy calculation that the
vector v is an exterior normal to the face π−1(Dρ,v1) of π−1(Dρ).

By the formula above and the concavity argument we already employed in Step 2, we have that, if ui ∈
M rec

−α′(di)
converges to a (−α′(c), v1)-lamination at c, then di converges to the face of π−1(Dρ) with exterior

normal v. Let us call this face M . We want to proceed as in Steps 1 and 2: we want to find a set M̃ ⊂M whose
closed convex hull is M , and such that there is an exact form η(B,d) satisfying (2.10) and (2.11) at d ∈ M̃ .

We note as in Step 2 that
π0(α′(Wε ∩ V0)) ⊃ B(c0, r) ∩ V0

where Wε has been defined in Step 2. Thus we can find a sequence {di} such that (2.44) is satisfied and,
moreover, if P is the projection on V0 ∩ v⊥ and v2 ∈ V0 ∩ v⊥, we can ask

P (−α′(di) + α′(c))
||P (−α′(di) + α′(c))|| → v2.

We let M̃ the set of all the d which are limits of such sequences {di}. We have seen after formula (2.44) that
M̃ ⊂ M . We set Bi = M rec

−α′(di)
and we consider the exact forms η(Bi,di) given by Step 3; using (2.44), it is

easy to see that the elements of Bi converge to a set containing the (−α′(c), v1)-lamination B, and thus the
limit η(B,d) of η(Bi,di) satisfies (2.10) on B. Formula (2.11) follows because the uniform limit of Lipschitz functions
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is Lipschitz. The fact that the closure of co(M̃) is M follows as in Step 2, using the fact that we can choose v2
as we want in V0 ∩ v⊥.

The proof for a (−α′(c), v1, . . . , vs)-lamination is similar. �

We define A⊥
c as the linear subspace of all the elements of Hn(Tn+1) which, for any (−α′(c), v1, . . . , vs)-

lamination B at c, have a representative vanishing on B.

Lemma 2.9. Let Dρ be a flat of α of slope ρ, and let D be a face of Dρ, or a face of a face of Dρ, etc...
Let (c0, α(c0)) ∈ D◦, and let FD denote the linear space generated by D. Then FD ⊂ A⊥

c0
; in other words, if

B ⊂ Ac0 is a (−α′(c0), v1, . . . , vs)-lamination at c0, then any element (c+α(c) ̂dxn+1) ∈ FD has a representative η
vanishing on it.

Proof. We note that FD is the space generated by (c1 − c2, α(c1)−α(c2)), with (ci, α(ci)) ∈ D◦; thus it suffices
to prove that c1 − c2 + (α(c1) − α(c2)) ̂dxn+1 has a representative vanishing on B when (ci, α(ci)) ∈ D◦.

By Lemma 2.5, we have that B is a (−α′(c), v1, . . . , vs)-lamination both at c1 and at c2. We can apply
Lemma 2.8 at c1 and c2, getting two exact forms η(B,c1) and η(B,c2) that satisfy (2.10) for fc1 and fc2 respectively.
Setting

η̃1 = c1 + η(B,c1) + α(c1) ̂dxn+1

η̃2 = c2 + η(B,c2) + α(c2) ̂dxn+1

we immediately get that η̃1 − η̃2 represents (c1 + α(c1) ̂dxn+1) − (c2 + α(c2) ̂dxn+1); moreover, since η(B,ci)

satisfies (2.10) for fci, an easy calculation yields{
η̃x

i (x, u(x)) = ∂pL(x, u(x),∇u(x))
η̃u

i (x) = L(x, u(x),∇u(x)) − 〈∂pL(x, u(x),∇u(x)),∇u(x)〉

for u ∈ B, x ∈ Rn and i = 1, 2. But this implies that η̃1 − η̃2 vanishes on B, which is the thesis. �

Lemma 2.10. Let D be either the flat Dρ, or one of its faces, subfaces, etc. Let c ∈ D◦, and let us suppose
that B is a (−α′(c), v1, . . . , vs)-lamination at c. Then FD, the vector space generated by D, satisfies

FD ⊂ rat(−α′(c), 1) ∩ rat v1 ∩ . . . ∩ vs.

If B is a foliation, then FD = {0}.
Proof. We must prove that, if (c1, α(c1)), (c2, α(c2)) are two elements of D, then

(c1 − c2, α(c1) − α(c2)) ∈ rat(−α′(c), 1) ∩ rat v1 ∩ . . . ∩ vs.

As in Lemma 2.9, we can as well suppose that (ci, α(ci)) ∈ D◦. As usual, we shall suppose that

π−1[rat(−α′(c), 1) ∩ rat v1 ∩ . . . ∩ vs] = Rj × {0}.

By Lemma 2.9, c1−c2+(α(c1)−α(c2)) ̂dxn+1 has a representative vanishing on B. If B is a foliation, we have that
this representative vanishes everywhere, i.e. FD = {0}, and the thesis follows. If B is not a foliation, we consider
one of its gaps, say A; let H1(i) be the map form H1(A) to H1(Tn+1) induced by the injection i : A → Tn+1.
By Alexander duality, the space of all forms vanishing on B is isomorphic to the image of H1(i); in particular,
it has dimension j. Thus, the thesis follows if we prove that this space contains the space generated by
d̂x1 + ρ1dxn+1, . . . , d̂xj + ρj

̂dxn+1: since the dimension is the same, they must coincide.
To prove this, we note that, since B is closed by Lemma 2.12 below, the gap A is bounded by two elements

of B, say u < ū. Let −α′(c) = (p1
q1
, . . . ,

pj

qj
, ρj+1, . . . , ρn); from the last formula above we deduce easily that u
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and ū are periodic in the directions e1, . . . , ej ; in other words, u(x+ qiei) = u(x)+pi and ū(x+ qiei) = ū(x)+pi

for i ∈ (1, . . . , j). From this it follows that, if ε is small enough, the loops

γi : t→ eit+ [u(tei) + ε]en+1 i ∈ (1, . . . , j)

have image in the gap and their projection on Tn+1 is closed.
We now assert that the vector space of all closed n-forms vanishing on the boundary of the gap contains

{(c, cn+1) : c ∈ Rj × {0}, cn+1 = ρ · c}

for the base d̂x1, . . . , ̂dxn+1. To prove this, we consider M = S1 × [−1, 1]n with coordinates x1 ∈ S1,
x2, . . . , xn+1 ∈ [−1, 1]n; on M we define the vector field v = e1ψ(x2, . . . , xn+1) with ψ a cutoff compactly
supported in [−1, 1]n. Since div v = 0, the n-form ω = ψ d̂x1 corresponding to v is closed; moreover, if ψ has
integral 1, we have ∫

{xi=0}
ω =

{
1 if i = 1
0 if i �= 1.

We now consider a neighbourhood of the loop γi all contained in B; we send M into this neighbourhood by a
diffeo φi. If we extend φ∗i (ω) to zero outside the image of M , we get a closed form ωi, supported in a gap of B
such that [ωi] = d̂xi + ρi

̂dxn+1; this proves the assertion. �

The next lemma gives information on the structure of the Aubry set; we have used part of it in the proof of
Lemma 2.8.

Lemma 2.11. Let c ∈ H, and let B ⊂ Ac be a (−α′(c), v1, . . . , vs)-lamination. Then
1) B is closed in the C1

loc topology.
2) B contains all the u ∈M−α′(c) with l(u) ≤ s and vi(u) = vi for i ≤ l(u).
3) If n = 1, B contains the Aubry set of [16].

Proof. We begin to prove that B is closed. Let {ui} ⊂ B satisfy

ui → u in C1
loc(R

n) as i→ +∞. (2.45)

We have to prove that u ∈ B. Since ui has invariants (−α′(c), v1, . . . , vs′
i
) with s′i ≤ s, the remarks at the

beginning of this section imply that u has invariants (−α′(c), v1, . . . , vl) with l ≤ lim inf s′i ≤ s. Since ui ∈ B,
we can find uk,i ∈M rec

α′(dk,i)
such that

uk,i → ui in C1
loc(R

n) as k → +∞

|A(Tk,i) − Tk,i(ηc) − α(c)| ≤ δ‖πs′
i−1(α′(dk,i) − α′(c))‖ for k large

where Tk,i denotes the current induced by uk,i. By (2.45) and the last two formulas, we get that there is k(i)
such that

uk(i),i → u in C1
loc(R

n) as i→ +∞
|A(Tk(i),i) − Tk(i),i(ηc) − α(c)| ≤ δ‖πs′

i−1(α′(dk(i),i) − α′(c))‖ ≤ ‖πl−1(α′(dk(i),i) − α′(c))‖
where the last inequality follows from the fact that l ≤ lim inf s′i. The last two formulas imply that u ∈ B,
i.e. that B is closed.

Let now B be as above, and let w ∈M−α′(c) have invariants −α′(c), v1, . . . , vs′ with s′ ≤ s; we must prove that
w ∈ B. For starters, we prove this when s ≥ 1. Let (di, ui) satisfy (2.3) and (2.4) and let the limit u ∈ B have
invariants (−α′(c), v1, . . . , vs); such a u exists by the definition of (−α′(c), v1, . . . , vs)-lamination. We begin to
show that w is approximated by suitable translates of ui. We note that α′(di) �= α′(c): otherwise, l(u) = s = 0,
while we are supposing that s ≥ 1. But, if α′(di) �= α′(c), then ui ∈ M rec

−α′(di)
intersects w; if instead of ui
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we consider ui(x + ki) + ji, we can suppose that the intersection point xi is bounded as i → +∞. Now
by (3) of the introduction and the Ascoli-Arzelà theorem we get that, up to a subsequence, ui(· + ki) + ji → ū
in C1

loc(R
n). Since (1) and (2) are preserved by C1

loc convergence, we have that ū ∈ M−α′(c). We note that,
since ui(xi + ki) + ji = w(xi) and xi is bounded, then ū(x0) = w(x0) for some x0 ∈ Rn. If ū = w, then we
have that w ∈ B; indeed, this means that ui(· + ki) + ji → w in C1

loc, which is (2.3). Since u has invariants
−α′(c), v1, . . . , vs, since (di, ui) satisfies (2.4) and s′ ≤ s, we get that

|α(di) + 〈α′(di), c− di〉 − α(c)| ≤ δ‖πs′−1(α′(di) − α′(c))‖
which is (2.4) for w.

To prove that ū = w, we use the result of [4] we mentioned at the beginning of this section: if ū, w ∈M−α′(c),
if ū(x0) = w(x0) and if the invariants of ū are contained in, or contain the invariants of w, then ū = w. We
have already seen that ū(x0) = w(x0). To determine the relation between the invariants, we note that u is
approximated by {ui} and ū by {ui(x+ ki) + ji}; by the remarks at the beginning of this section, we have that
the invariants of ū are contained in, or contain, those of u, which is exactly what we wanted to prove.

To prove point 2) when s = 0, we begin to show that M rec
−α′(c) ⊂ B; it suffices to show that u ∈ M rec

−α′(c)
satisfies (2.3) and (2.4). But this follows immediately if we take di ≡ c and ui ≡ u. This implies that, if
−α′(c) ∈ Qn then B contains all the u ∈M−α′(c) with l(u) = 0; this is because, when −α′(c) ∈ Qn, it is easy to
see that l(u) = 0 iff u is recurrent. Let now −α′(c) ∈ Rn \ Qn; we know from Lemma 2.9 that the flat D of α
containing c is contained in rat(−α′(c), 1). Since −α′(c) has at least one irrational component, we have that
π−1(rat(−α′(c), 1)) has codimension at least 1. But then by Lemma 2.9 π−1(D) has codimension at least 1.
Thus c ∈ π−1(D) is accumulated by points outside D, i.e. we can find di → c with −α′(di) �= −α′(c). Now
the elements ui ∈ M rec

−α′(di)
converge to the elements of a (−α′(c))-lamination by Lemma 2.3; moreover, since

−α′(di) �= −α′(c), they intersect any u ∈M−α′(c), among which the ones with l(u) = 0; now the same argument
as above yields that {ui} converges, up to a subsequence, to u, i.e. u ∈ B.

To prove point 3), we distinguish various cases. In the first one, ρ ∈ R \ Q; but then Mρ is ordered and all
its elements u have l(u) = 0; by point 2), this implies that Mρ is the Aubry set at c; since Mρ is the Aubry set
also in the sense of [16], we have done in this case. The other cases are when ρ ∈ Q and

Dρ = {(c, α(c)) : c ∈ [c1, c2]}.
If c = c1, then it is easy to see that the limits of sequences ui ∈M−α′(di) with {di} satisfying (2.4) at c = c1 have
invariants (ρ, (−1, ρ)); by point 2), this implies that our Aubry set is M(ρ,(−1,ρ)), which is also the Aubry set in
the sense of [16]. The situation at c2 is analogous. If c ∈ (c1, c2), we see easily that our Aubry set is M rec

−α′(c),
which again coincides with the Aubry set of [16]. �

2.4. The flat extends into the rational space

We begin with a lemma about the shape of Dρ for rational frequencies.

Lemma 2.12. Let us suppose that ρi ∈ Qn and that

ρi =
(
p1

q1
, . . . ,

pL

qL
, ρL+1

i , . . . , ρn
i

)
.

Let ρ, v1, . . . , vt be admissible and let us denote by C the lamination of all the u ∈Mρ with l(u) ≤ t and vi(u) = vi

for i ≤ l(u). Let us suppose that the gaps of C contain elements of Mρ with different invariants or, equivalently,
that M(ρ,v1,...,vt) is not ordered. Let us suppose that the elements of M rec

ρi converge to elements of C, and let Dρi

be the flat of α of slope ρi. Then there is γ > 0 such that the following holds: if j ∈ (1, . . . , L) and if i is large
enough, then we can find (d, α(d)), (d′, α(d′)) ∈ Dρi such that

| 〈ej , (d, α(d)) − (d′, α(d′))〉 | ≥ γ.
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Proof. Let us pick di with −α′(di) = ρi; as usual, we consider the Lagrangian fdi and the related α-function αi;
the latter satisfies αi(0) = 0, −α′

i(0) = ρi. We call Ai the mean action of fdi and we suppose for the moment
that q1 is relatively prime to the other denominators.

Step 1: Heteroclinics in Mρi.
Let AΓi ⊂ Rn−1 be a fundamental domain for (p2

q2
, . . . , pL

qL
, ρL+1

i , . . . , ρn
i ). Since q1 is relatively prime to

the other denominators, [0, q1] × AΓi is a fundamental domain for ρi by Lemma A2 of the Appendix. Let
(ki, ji) ∈ Zn × Z be such that

γi = ρi · ki + ji > 0
be minimal. We get as in formula (2.30) that

1
γi

= q1|AΓi | = li ∈ N. (2.46)

We set
ρi,s
± = ρi ± 1

q1s
e1

and we select ui,s
± ∈M rec

ρi,s
±
. We have that ui,s

± satisfies

ui,s
± (x + q1se1) = ui,s

± (x) + p1s± 1.

Our first step consist in fixing i and letting s→ +∞; we shall study the limits of ui,s
± as s→ +∞. Let ui ∈M rec

ρi ;
from point 4) of Lemma A1 we see that, for li defined as in (2.46),

ui(x+ liki) + liji = ui(x) + 1.

For 0 ≤ m < li, let us define

G+
m = {x ∈ Rn : ui(x+mki) +mji ≤ ui,s

+ (x) < ui(x+ (m+ 1)ki) + (m+ 1)ji,

(x2, . . . , xn) ∈ AΓi}.
By the last three formulae, we get that

li−1⋃
m=0

G+
m = {x : ui(x) ≤ ui,s

+ (x) < ui(x) + 1}

is a fundamental domain for ui,s
+ , equivalent to [0, sq1] ×AΓi . We define analogously G−

m for ui,s
− . Now∫

[0,sq1]×AΓi

[L(x, ui,s
+ ,∇ui,s

+ ) + L(x, ui,s
− ,∇ui,s

− )]dx =

li−1∑
m=0

[∫
G+

m

L(x, ui,s
+ ,∇ui,s

+ )dx +
∫

G−
m

L(x, ui,s
− ,∇ui,s

− )dx
]
. (2.47)

We now show that we can translate ui,s
+ and ui,s

− in such a way that they intersect in G+
m ∩ G−

m; we also want
the last formula to hold for the translates.

For r ∈ N, let

G̃+
m = {x ∈ Rn : ui(x+mki) +mji ≤ ui,s

+ (x+ rq1e1) − rp1 < ui(x+ (m+ 1)ki) + (m+ 1)ji,

(x2, . . . , xn) ∈ AΓi}.
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It is easy to see that G̃+
m = G+

m − rq1e1; moreover, ui,s
+ (x + rq1e1) − rp1|G̃+

m
is a translate of ui,s

+ |G̃+
m

. This
implies that we can translate ui,s

± in such a way that they intersect between ui(x+mki) +mji and ui(x+ (m+
1)ki)+(m+1)ji; the strip between these two periodic solutions translates to itself and the action of the portion
of ui,s

± contained in the strip remains unchanged. Let us call xi,s a point of intersection; we can also require
that xi,s is bounded for s ∈ Z, and that the distance of (xi,s, ui,s

± (xi,s)) from the graphs of ui(x +mki) +mji
and ui(x + (m+ 1)ki) + (m+ 1)ji is bounded away from 0. Using (3) and Ascoli-Arzelà we get that there are
ui

+, u
i
− ∈Mα′(c) such that

ui,s
+ → ui

+, ui,s
− → ui

− in C1
loc(R

n) as s→ +∞. (2.48)

It is easy to see that ui
+ has invariants ρi, (e1,−ρ1), and ui

− has invariants ρi, (−e1, ρ1). In other words, ui
± are

heteroclinics living in the gap

{(x, xn+1) : ui(x+mki) +mji < xn+1 < ui(x+ (m+ 1)ki) + (m+ 1)ji}.

We also note that ui
+ �= ui

−, since they have different invariants.

Step 2: Action estimates.
We now use an argument of [17] and [19]: we set{

umax(x) = max(ui
+(x), ui

−(x))
umin(x) = min(ui

+(x), ui
−(x)).

Let x1 ∈ G+
m∩G−

m and δ > 0 be such that umax(x1) = umin(x1), but umax and umin do not coincide in B(x1, δ) ⊂
G+

m ∩ G−
m; since umax ≥ umin, by the maximum principle they cannot be both solutions of (4) in B(x1, δ). In

particular, they cannot both be minimal in B(x1, δ). Let us suppose to fix ideas that umax is not minimal; thus
we can find φi,m ∈ C∞

0 (B(x1, δ)) and ai,m > 0 such that∫
B(x1,δ)

L(x, umax,∇umax)dx− 2ai,m ≥
∫

B(x1,δ)

L(x, umax + φi,m,∇(umax + φi,m))dx.

Since ∫
B(x1,δ)

di · ∇φdx = 0

by the divergence theorem, we can as well write∫
B(x1,δ)

fdi(x, umax,∇umax)dx− 2ai,m ≥
∫

B(x1,δ)

fdi(x, umax + φi,m,∇(umax + φi,m))dx.

Actually, by Lemma 2.8 we can add an exact form to fdi in such a way that

fdi(x, ui(x),∇ui(x)) ≡ 0.

Since∫
B(x1,δ)

[fdi(x, u
i
+,∇ui

+) + fdi(x, u
i
−,∇ui

−)]dx =
∫

B(x1,δ)

[fdi(x, u
i
max,∇ui

max) + fdi(x, u
i
min,∇ui

min)]dx
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Figure 1. The dotted and dashed lines cannot both be minimizers.

we have that∫
B(x1,δ)

[fdi(x, u
i
+,∇ui

+) + fdi(x, u
i
−,∇ui

−)]dx− 2ai,m ≥∫
B(x1,δ)

[fdi(x, u
i
max + φi,m,∇(ui

max + φi,m)) + fdi(x, u
i
min,∇ui

min)]dx. (2.49)

Let us define {
ui,m

max(x) = min[max(ui,s
+ (x), ui,s

− (x)), ui(x+ (m+ 1)ki) + (m+ 1)ji]

ui,m
min(x) = max[min(ui,s

+ (x), ui,s
− (x)), ui(x +mki) +mji].

We refer the reader to Figure 1: ui(x+mki) +mji and ui(x + (m+ 1)ki) + (m+ 1)ji are the two continuous
horizontal lines, ui,s

+ and ui,s
− are the two continuous slanted lines, ui,m

max is the dotted line and ui,m
min is the dashed

line.
We have that, for i large,

∫
G+

m

fdi(x, u
i,s
+ ,∇ui,s

+ )dx+
∫

G−
m

fdi(x, u
i,s
− ,∇ui,s

− )dx =
∫

G+
m\B(x1,δ)

fdi(x, u
i,s
+ ,∇ui,s

+ )dx

+
∫

G−
m\B(x1,δ)

fdi(x, u
i,s
− ,∇ui,s

− )dx+
∫

B(x1,δ)

[fdi(x, u
i,s
+ ,∇ui,s

+ ) + fdi(x, u
i,s
+ ,∇(ui,s

+ ))]dx

≥
∫

G+
m\B(x1,δ)

fdi(x, u
i,s
+ ,∇ui,s

+ )dx+
∫

G−
m\B(x1,δ)

fdi(x, u
i,s
− ,∇ui,s

− )dx

+
∫

B(x1,δ)

[fdi(x, u
i,m
max + φm,∇(ui,m

max + φm)) + fdi(x, u
i,m
min,∇ui,m

min)]dx+ ai,m

=
∫

G+
m

fdi(x, u
i,m
max + φi,m,∇(ui,m

max + φi,m))dx +
∫

G−
m

fdi(x, u
i,m
min,∇ui,m

min)dx+ ai,m

=
∫

[0,sq1]×AΓi

[fdi(x, u
i,m
max + φi,m,∇(ui,m

max + φi,m)) + fdi(x, u
i,m
min,∇ui,m

min)]dx+ ai,m. (2.50)

The first inequality of the formula above comes from (2.48) and (2.49), and the last equality comes from the
fact that

fdi(x, ui,∇ui) ≡ 0.



40 U. BESSI

We have that∫
[0,sq1]×AΓi

[fdi(x, u
i,s
+ ,∇ui,s

+ ) + fdi(x, u
i,s
− ,∇ui,s

− )]dx =

li−1∑
m=0

[∫
G+

m

fdi(x, u
i,s
+ ,∇ui,s

+ )dx+
∫

G−
m

fdi(x, u
i,s
− ,∇ui,s

− )dx
]

≥
li−1∑
m=0

∫
[0,sq1]×AΓi

{
[fdi(x, u

i,m
max + φm,∇(ui,m

max + φm)) + fdi(x, u
i,m
min,∇ui,m

min)]dx+ ai,m

}
. (2.51)

In the equality above, we have used the fact that ∪li−1
m=0G±

m are fundamental domains for ui,s
± respectively; in the

inequality, we have used (2.50).

Step 3: Uniformity.
Now let (k′i, j

′
i) ∈ Zn−1 × Z be such that

1
l′i

=
(
p2

q2
, . . . ,

pL

qL
, ρL+1

i , . . . , ρn
i

)
· k′i + j′i > 0

be minimal. We know from Lemma A1 that l′i ∈ N, and from (2.30) that l′i = |AΓi |. We note that, by (2.46),
li = l′iq1. We now translate the four functions u(x+mki)+mji, u(x+(m+1)ki)+(m+1)ji and ui,s

± by (k′i, j
′
i);

we obtain u(x+ (m+ q1)ki) + (m+ q1)ji, u(x+ (m+ q1 + 1)ki) + (m+ q1 + 1)ji and ui,s
± (x+ k′i) + j′i. In other

words, Gm and the two heteroclinics intersecting in Gm are brought to Gm+q1 . As a consequence,

ai,m = ai,m+q1 = . . . = ai,m+(l′i−1)q1 .

If we denote by {m} the equivalence class of m modulo q1, we get that ai,m = ai,{m}. Now we get from (2.51)
that∫

[0,sq1]×AΓi

[fdi(x, u
i,s
+ ,∇ui,s

+ ) + fdi(x, u
i,s
− ,∇ui,s

− )]dx ≥
li−1∑
m=0

[∫
[0,sq1]×AΓi

[fdi(x, u
i,m
max + φm,∇(ui,m

max + φm)) + fdi(x, u
m
min,∇um

min)]dx+ ai,{m}

]
. (2.52)

Now it is easy to see that, for at least one equivalence class {m̄}, the two solutions bounding Gm̄ converge in C1
loc

to different elements of C; otherwise, we would have that ui(x+ ki) + ji − ui(x) → 0, while we know that it is
constantly 1. But this implies that we can choose m̄ is such a way that, on Gm̄, the heteroclinics ui± converge
to intersecting heteroclinics, say u±, in a gap of C as i → +∞. Since ui,s

± are close to u± on B(x1, δ) for i, s
large, we get that ai,{m̄} ≥ a > 0. Since in an equivalence class there are l′i = |AΓi | elements, we get

∫
[0,sq1]×AΓi

[fdi(x, u
i,s
+ ,∇ui,s

+ ) + fdi(x, u
i,s
− ,∇ui,s

− )]dx ≥
li−1∑
m=0

∫
[0,sq1]×AΓ1

[fdi(x, u
i,m
max + φi,m,∇(ui,m

max + φi,m)) + fdi(x, u
i,m
min,∇ui,m

min)]dx + a|AΓi |.
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The last formula implies that there is at least one ui,m̃
max + φi,m̃ or ui,m̃

min, which we call ũ, such that∫
[0,sq1]×AΓi

fdi(x, ũ,∇ũ)dx ≤ 1
li

∫
[0,sq1]×AΓi

[fdi(x, u
i,s
+ ,∇ui,s

+ ) + fdi(x, u
i,s
− ,∇ui,s

− )]dx− 1
li
a|AΓi |.

By (2.46), we have

1
s

∫
[0,sq1]×AΓi

fdi(x, ũ,∇ũ)dx ≤ 1
sq1|AΓ1 |

∫
[0,sq1]×AΓi

[fdi(x, u
i,s
+ ,∇ui,s

+ ) + fdi(x, u
i,s
− ,∇ui,s

− )]dx − a

sq1
·

We now denote by T i,s
± the currents associated to ui,s

± respectively; we denote by Ai the action of fdi and
by αi the α-functional associated to Ai. As usual, we have that αi(0) = 0, −α′

i(0) = ρi. In the first term of the
last formula, we divided by sq1|AΓi |, the volume of the fundamental domain of ui,s

± ; thus this term is the sum
of the mean actions of ui,s

+ and ui,s
− , and we get

1
s

∫
[0,sq1]×AΓi

fdi(x, ũ,∇ũ)dx ≤ Ai(T
i,s
+ ) +Ai(T

i,s
− ) − a

sq1
· (2.53)

On the other side, if di,s
± are such that α′(di,s

± ) = ρi,s
± , we have that

0 ≥ αi(d
i,s
− ) + αi(d

i,s
+ ) +

〈
ρi, di,s

+ + di,s
−
〉

= Ai(T
i,s
− ) −

〈
ρi,s
− , di,s

−
〉

+Ai(T
i,s
+ ) −

〈
ρi,s
+ , di,s

+

〉
+
〈
ρi, di,s

+ + di,s
−
〉

= Ai(T
i,s
− ) +Ai(T

i,s
+ ) −

〈
e1
sq1

, di,s
+ − di,s

−

〉

≥ 1
s

∫
[0,sq1]×AΓi

[fdi(x, ũ,∇ũ) + fdi(x, u
i,s
min,∇ui,s

min)]dx +
a

sq1
−
〈
e1, d

i,s
+ − di,s

−
〉

sq1
·

In the formula above, the first inequality comes from the fact that αi is concave, αi(0) = 0 and −α′
i(0) = ρi;

the first equality comes from the fact that αi(d
i,s
± ) is realized by T i,s

± , the second equality from the definition
of ρi and ρi,s

± ; the last inequality comes from (2.53). Now the last formula implies that∫
[0,sq1]×AΓi

fdi(x, ũ,∇ũ)dx < 0

if 〈
e1, d

i,s
+ − di,s

−
〉
< a.

Since the integral above cannot be negative without contradicting the minimality of ui, we get that

|
〈
e1, d

i,s
+ + di,s

−
〉
| ≥ a

which clearly implies the thesis. If q1 is not relatively prime to the other denominators, the proof remains the
same, only the arithmetic arguments become a little more complicated. �
Lemma 2.13. Let us consider Dρ, the flat of α of slope ρ; we have called FDρ the space it generates. Let
(c, α(c)) ∈ D◦

ρ. Then

dimFDρ =
{

0 if Mρ is an ordered set
rat(ρ, 1) otherwise. (2.54)

Moreover, Ac is a ρ lamination at c.
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Let D(ρ,v1) be the face of Dρ with exterior normal v1. Let (c, α(c)) ∈ D◦
(ρ,v1); then

dimFD(ρ,v1) =
{

0 if M(ρ,v1) is an ordered set
rat(ρ, 1) ∩ rat v1 otherwise. (2.55)

Moreover, Ac is a (ρ, v1)-lamination at c.
Similar statements hold for the faces of D(ρ,v1), the faces of the faces, down to dimension zero.

Proof. Let us begin with the statement for Dρ; since (c, α(c)) ∈ D◦
ρ, we have that ρ = −α′(c). We begin to take

di ≡ c in (2.4), and we get that M rec
−α′(c) is contained in a −α′(c)-lamination at c; by Lemma 2.10,

FD−α′(c) ⊂ rat(−α′(c), 1).

If Mρ is an ordered set, then by [4] there are only three possibilities: either rat(−α′(c), 1) is reduced to zero, or
Mρ is a foliation, or both. In all these cases, FD−α′(c) = {0}: in the first one by the last formula, in the second
and third one by the last assertion of Lemma 2.10. This proves the first case of (2.54).

We prove the second case of (2.54). If M−α′(c) is not an ordered set, then we consider the lamination C of
all the u ∈ M−α′(c) with l(u) = 0. By [4], the gaps of C contain elements of M−α′(c) with different invariants,
i.e. C satisfies the hypotheses of Lemma 2.12. By Lemma A3 of the appendix, we can suppose that

−α′(c) = (ρ1, . . . , ρl, ρl+1, . . . , ρn)

with (ρ1, . . . , ρl) ∈ Ql and (ρl+1, . . . , ρn) rationally independent. Let ρi ∈ Qn be such that

ρi = (ρ1, . . . , ρl, ρ
i
l+1, . . . , ρ

i
n) → (ρ1, . . . , ρl, ρl+1, . . . , ρn).

We can find di ∈ H such that −α′(di) = ρi; since −α is superlinear and −α′(di) → −α′(c), we get that {di}
is bounded and we can suppose that di → d; clearly, α′(d) = α′(c) and we have that (d, α(d)) ∈ D−α′(c). Let
ui ∈M rec

ρi ; since the rational coordinates of ρi coincide with those of −α′(c), one sees easily that ui converges to
u periodic in the first l coordinates; this in turn implies that l(u) = 0 and thus that u ∈ C. Since the gaps of C
contain elements with different invariants, we can apply Lemma 2.12 and get that the flat of α at di contains a
ball B((ci, α(ci)), r)∩rat(ρi, 1), with r which does not depend on i. We note that ci does not necessarily coincide
with di, it only lies on the same flat. Denoting by d̃ the limit of the sequence {ci}, we get that d̃ lies on the same
flat as c and d; moreover, this flat contains a ball B((d̃, α(d̃)), r)∩rat(−α′(c), 1). Thus FD−α′(c) ⊃ rat(−α′(c), 1);
since we have already proven the opposite inclusion, we have the second case of (2.54).

We have to prove that Ac is a ρ-lamination at c. Let us consider the sequence {di} of the paragraph above,
and let B be the set of the limits of the elements of M−α′(di); the proof of Lemma 2.11 shows that B contains all
the elements u of M−α′(c) with l(u) = 0, while from Lemma 2.3 we get that (2.3) and (2.4) hold. This proves
that Ac contains a −α′(c)-lamination. Now Ac cannot contain any ρ̃-lamination with ρ̃ �= −α′(c): since α is C1,
it is easy to verify that no sequence {di} can verify (2.4) if −α′(di) does not converge to −α′(c). It remains to
prove that Ac does not contain any (−α′(c), v1, . . . , vs)-lamination at c with s ≥ 1; we shall prove this when
s = 1.

If dimFD−α′(c) > 0, Ac cannot contain any (−α′(c), v1)-lamination, otherwise by Lemma 2.10 FD−α′(c) ⊂
rat(−α′(c), 1) ∩ rat v1, i.e. the dimension of FD−α′(c) would be strictly smaller than the one given by (2.54). If
dimFD−α′(c) = 0, there are two cases: in the first one, rat(−α′(c), 1) = {0}; since by [4] v1 ∈ rat(−α′(c), 1), we
cannot have any (−α′(c), v1)-lamination at c. In the second one, rat(−α′(c), 1) �= 0, but M−α′(c) is an ordered
set; by [4], these two conditions imply that M−α′(c) is a foliation. But then, again by [4], there is no u ∈M−α′(c)
with l(u) > 0, and again the assertion follows.
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We now prove formula (2.55). Let us consider the face D(ρ,v1) and let us suppose that (c, α(c)) ∈ D◦
(ρ,v1).

Again by Lemma A3 of the Appendix, we can suppose that v1, the first invariant of C, satisfies

π−1(v1) = (λ1, . . . , λmλm+1, . . . , λl, 0, . . . , 0) (2.56)

with (λ1, . . . , λm) ∈ Qm and (λm+1, . . . , λl) rationally independent. We want to show that there is a (−α′(c), v1)-
lamination at c. To this purpose, we consider v, the normal in π−1(rat(ρ, 1)) to π−1(D(ρ,v1)), and we let

ρi = −α′(c) +
1
i
v. (2.57)

We find di be such that −α′(di) = ρi. We can suppose as before that di → d, with (d, α(d)) ∈ D−α′(c). Since α
is concave, we have that, if α′(c′) = α′(c), then

0 ≥ 〈α′(di) − α′(c′), di − c′〉 =
〈
−1
i
v, di − c′

〉
.

Passing to the limit, the inequality above implies that

〈v, d− c′〉 ≥ 0

if c′ ∈ π−1(D−α′(c)); since equality is attained for c′ = d, we have that d lies on the face of π−1(D−α′(c)) with
exterior normal v. Now we see that, by our choice of ρi, ui ∈ M rec

ρi
converges to u ∈ C; since di satisfies

condition (2.6) of Lemma 2.3, C is a (−α′(c), v1)-lamination at d. We assert that C is a (−α′(c), v1)-lamination
also at c. This is because

δ‖π0(α′(di) − α′(d))‖ ≥ α(di) + 〈α′(di), d− di〉 − α(d)

= α(di) + 〈α′(di), d− di〉 − [α(c) + 〈α′(c), d− c〉]
= α(di) + 〈α′(di), c− di〉 − α(c)

where the first inequality is (2.4) at d, the first equality comes from the fact that c and d are on the same
flat of α and the second one from (2.57) and the fact that di − c ⊥ v since d and c are both on a face whose
exterior normal is v. By the last formula, (2.4) holds at c too, i.e. C is a (−α′(c), v1)-lamination at c; since
(c, α(c)) ∈ D◦

(−α′(c),v1), we get by Lemma 2.10 that

FD(−α′(c),v1)
⊂ rat(−α′(c), 1) ∩ rat v1.

Now there are two cases: in the first one, B, the (−α′(c), v1)-lamination at c, is a foliation, or rat(−α′(c), v1) ∩
rat v1 = 0; in this case, we prove as before that FD(ρ,v1) = 0. In the second case, the gaps of B contain elements
with different invariants. By (2.56) and Lemma 2.12 the projections on Rn of the flats of α at di contain balls
in Rm×{0} of fixed radius; thus the projection of the flat at d contains a ball in Rm×{0}; but this means that

π−1(FD(−α′(c),v1)
) ⊃ Rm × {0}

or, by (2.56),
FD(−α′(c),v1)

⊃ rat(−α′(c), 1) ∩ rat v1. (2.58)

This proves the second case of (2.55).
This also proves that there are no (−α′(c), v1, v2)-laminations at c: if there were one, then by Lemma 2.10

FD(−α′(c),v1)
⊂ rat(−α′(c), 1) ∩ rat(v1) ∩ rat(v2) (2.59)
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contradicting (2.58). We have to prove that there are no (−α′(c), v2)-laminations at c with v2 �= λv1 for
any λ > 0. We have just seen that, if at c there were both a (−α′(c), v1) and a (−α′(c), v2)-lamination, then
D−α′(c) would have the exterior normals v1 and v2 and obviously all their linear combinations. Let v1 and v2
be as above; we assert that rat v1 = rat v2; indeed, if it were not so, then (2.59) would again contradict (2.58).
Let us suppose by contradiction that

π−1(v2) = (λ1, . . . , λm, λ
′
m, . . . , λ

′
l, 0, . . . , 0)

with (λ′m+1, . . . , λ
′
l) rationally independent and (λ′m+1, . . . , λ

′
l) �= (λm+1, . . . , λl). Setting

vμ = (1 − μ)v1 + μv2

we get that there is μ ∈ (0, 1) such that rat(−α′(c), 1) ∩ rat vμ strictly contains rat(−α′(c), 1) ∩ rat v1. We also
get as before that Ac contains a (−α′(c), vμ)-lamination C. There are two cases: in the first one C satisfies the
hypotheses of Lemma 2.12, and thus the dimension of FD(−α′(c),vμ)

= FD(−α′(c),v1)
is strictly larger than that of

rat(−α′(c), 1) ∩ rat v1, a contradiction with Lemma 2.10. In the second one, C does not satisfy the hypotheses
of Lemma 2.12, and then by Lemma 2.10 D(−α′(c),vμ) is reduced to a point.

Now rat(−α′(c), 1) ∩ rat vμ �= 0, and the gaps of C do not contain elements with different invariants; this
easily implies that C is a foliation. Let us consider the form η(C,c) defined in (2.10), and let

L1(x, u, p) = L(x, u, p) − ηx
(C,c) · p− ηu

(C,c).

The lamination of the u ∈M−α′(c) with l(u) = 0 has gaps, otherwise by [4] we would not have any (−α′(c), v1)-
lamination at c. Let u1 < u2 be two elements of M−α′(c) with l(u1) = l(u2) = 0; let us suppose that they bound
a gap and let us consider the strip

Sε = {(x, y) ∈ Rn × R : u1(x) + ε < y < u2(x) − ε}.

Since u1 < u2 the strip above is not empty if ε is sufficiently small. We recall that, if u ∈ C, then ∇u(x) is the
unique minimizer of : p→ L1(x, u(x), p); by compactness, there is a > 0 such that

L1(x,w,∇w) ≥ a

if w belongs to a (−α′(c), v1)-lamination and (x,w(x)) ∈ Sε. Let now α′(di) ∈ Qn and

α′(di) → α′(c) with α′(di) − α′(c) ∈ π−1(rat(−α′(c), 1)).

If α′(di) − α′(c) = 1
i v1, we have that ui ∈ M rec

−α′(di)
converge to the elements of a (−α′(c), v1)-lamination.

Moreover, it is easy to see that

lim
R→+∞

1
|B(0, R)| |{x ∈ B(0, R) : (x, u(x)) ∈ Sε}| ≥ C‖π0(α′(di) − α′(c))‖

where π0 is the projection on π−1(rat(−α′(c), 1)). By the last three formulas and the fact that L1(x, u, p) ≥ 0,
we get that, denoting by Ti the current induced by ui,

A(Ti) ≥ Ca‖α′(di) − α′(c)‖

a contradiction with Lemma 2.3.
Using induction and a similar argument, the lemma follows for all subfaces. �
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Proof of proposition 2.4. The direct part of point 1) is Lemma 2.5. Points 2) and 3) follow from Lemma 2.13.
The converse part of point 1) follows from point 2): if Ac1 is a (ρ, v1, . . . , vs)-lamination and Ac1 ⊂ Ac2 ,
then by point 2) Ac2 is a (ρ, v1, . . . , vs, vs+1, . . . , vl)-lamination; again by point 2), c1 ∈ D◦

(ρ,v1,...,vs)
, while

c2 ∈ D◦
(ρ,v1,...,vsvs+1,...,vl)

, i.e. c2 belongs to a subface of c1. �

Appendix

Lemma A1. Let ρ ∈ Qn, let u ∈M rec
ρ and let

Γ = {k ∈ Zn : ρ · k ∈ Z}.

Let also (k̄, j̄) be such that

u(x+ k̄) + j̄ − u(x) = min{u(x+ k) + j − u(x) : u(x+ k) + j − u(x) > 0, (k, j) ∈ Zn × Z}.

Then the following holds.
1) The set of the minima (k̄, j̄) does not depend on x; moreover, (k̄, j̄) satisfies the equation above iff

ρ · k̄ + j̄ = min{ρ · k + j : ρ · k + j > 0, (k, j) ∈ Zn × Z}.

2) If AΓ is a fundamental domain for Γ, then the set

S = {(x, xn+1) : x ∈ AΓ, u(x) ≤ xn+1 < u(x+ k̄) + j̄}

projects injectively and surjectively onto Tn+1.
3) The Lebesgue measure of S is 1.
4) l = 1

ρ·k̄+j̄
∈ N and u(x+ lk̄) + lj̄ = u(x) + 1.

Proof. Point 1) follows easily from a fact proven in [17]: the set {u(x + k) + j : (k, j) ∈ Zn × Z} is ordered,
and u(x+ k) + j > u(x) iff ρ · k + j > 0.

As for point 2), we begin to prove that the projection of S on Tn+1 is injective. Let us suppose by contra-
diction that (x, xn+1) ∈ S and (x + k̃, xn+1 + j̃) ∈ S for some (k̃, j̃) ∈ (Zn × Z) \ {0}. Since (x, xn+1) ∈ S we
have that

xn+1 < u(x+ k̄) + j̄ and u(x) ≤ xn+1

and since (x+ k̃, xn+1 + j̃) ∈ S we have that

u(x+ k̃) ≤ xn+1 + j̃ and xn+1 + j̃ < u(x+ k̃ + k̄) + j̄.

From the left sides of the two formulas above we get that

u(x+ k̄) + j̄ > u(x+ k̃) − j̃

which contradicts the minimality of (k̄, j̄) when u(x + k̃) − j̃ > u(x). The case u(x + k̃) − j̃ ≡ u(x) cannot
happen, because by the periodicity of u it would imply that k̃ ∈ Γ; but this contradicts the fact that x and
x+ k̃ belong to AΓ, the fundamental domain of Γ. It remains the case u(x+ k̃)− j̃ < u(x); in this case, we use
the right sides of the two formulas above and we get that

u(x+ k̃ + k̄) + j̄ > u(x) + j̃

or equivalently
u(y + k̄) + j̄ > u(y − k̃) + j̃.
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Since u(y − k̃) + j̃ > u(y), we again get that (k̄, j̄) is not minimal. This proves that S projects injectively.
Before proving that S projects surjectively, we prove point 4). It is easy to see that ρ · k̄ + j̄ ∈ (0, 1): it is

greater than zero by definition, and if it were larger than 1, we could show that (k̄, j̄) is not minimal simply
considering (k̄, j̄ − 1). Let l ∈ N be such that l(ρ · k̄ + j̄) ≤ 1 is maximal; in particular,

0 ≤ 1 − l(ρ · k̄ + j̄) < l(ρ · k̄ + j̄).

Now, 1 − l(ρ · k̄ + j̄) = 0, otherwise we would have two strict inequalities in the formula above, and this would
contradict the minimality of (k̄, j̄). Thus we get

l(ρ · k̄ + j̄) = 1

which is point 4).
We now show that S projects surjectively onto Tn+1. Let (x, xn+1) be such that

u(x) ≤ xn+1 < u(x) + 1.

We have to prove that an integer translate of (x, xn+1) belongs to S. Since u is non self intersecting, we have
that

u(x) < u(x+ k̄) + j̄ < u(x+ 2k̄) + 2j̄ < . . . < u(x+ lk̄) + lj̄ = u(x) + 1

where the last equality comes from point 4). Thus

u(x+ sk̄) + sj̄ ≤ xn+1 < u(x+ (s+ 1)k̄) + (s+ 1)j̄

for some 0 ≤ s ≤ l − 1. But this means that (x+ sk̄, xn+1 − sj̄) ∈ S, which yields surjectivity.
Now point 3) follows immediately from point 2), because S is brought bijectively onto Tn+1 by the projection,

a measure-preserving map. �

Lemma A2. Let (
p1

q1
, . . . ,

pn−1

qn−1
,
pn

qn

)
∈ Qn

and let qn be relatively prime to qi for 1 ≤ i ≤ n− 1. Let AΓ′ be a fundamental domain for

Γ′ =
{
k′ ∈ Zn−1 : k′1

p1

q1
+ . . .+ k′n−1

pn−1

qn−1
∈ Z

}
.

Then AΓ′ × [0, qn) is a fundamental domain for

Γ =
{
k ∈ Zn : k1

p1

q1
+ . . .+ kn

pn

qn
∈ Z

}
.

Proof. It is easy to see that, if the statement is true for a particular fundamental domain AΓ′ of Γ′, then it is
true for any fundamental domain. We choose a particular AΓ′ in the following way: we pick k1 ∈ Γ′ \ {0} of
minimal norm, k2 ∈ Γ′ \ Rk1 of minimal distance from Rk1, etc. It is a standard fact that k1, . . . , kn−1 are a
basis of Γ′, and that

AΓ′ = {x′ ∈ Rn−1 : x′ = t1k1 + . . .+ tn−1kn−1, 0 ≤ ti < 1}

is a fundamental domain of Γ′. We can always build a fundamental domain from a base using the formula
above; thus, to prove that AΓ′ × [0, qn) is a fundamental domain of G, is equivalent to prove that k1, . . . , kn−1, qn
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is a base of Γ. Let us suppose by contradiction that it is not: thus we can find (α1, . . . , αn) ∈ Γ which is not
generated by the vectors (k1, . . . , kn−1, qn). Since (α1, . . . , αn) ∈ Γ, we have that

p1

q1
α1 + . . .+

pn−1

qn−1
αn−1 +

pn

qn
αn ∈ Z.

There are two cases. If (α1, . . . , αn−1) is not generated by the basis of Γ′, k1, . . . , kn−1, then p1
q1
α1+. . .+

pn−1
qn−1

αn−1

is not an integer, but a fraction containing some factor of qi in the denominator; since qn is relatively prime
to qi, it is easy to see that the sum displayed above is not an integer. On the other side, if (α1, . . . , αn−1) is
generated by the vectors k1, . . . , kn−1, but αn is not a multiple of qn, then the sum of the first n− 1 terms in
the formula above is an integer, but pn

qn
αn �∈ Z, and again the full sum is not in Z. �

The following well-known lemma simplifies many calculations; we recall that a vector v ∈ Rs is rationally
independent if there is no k ∈ Zs \ {0} such that k · v ∈ Z.

Lemma A3. Let u ∈Mρ have invariants ρ, v1, . . . , vl. Then, up to a unimodular transformation of Rn, we can
suppose that

ρ = (ρ1, . . . , ρs, ρs+1, . . . , ρn)
with (ρ1, . . . , ρs) ∈ Qs and (ρs+1, . . . , ρn) rationally independent. Moreover, if we set vi = (vx

i , v
u
i ) as in

Section 1, we can suppose that

vx
1 = (v1

1 , . . . , v
s′
1 , v

s′+1
1 , . . . , vs

1, 0, . . . , 0), v1 = (vx
1 ,−ρ · vx

1 )

with (v1
1 , . . . , v

s′
1 ) ∈ Qs′

and (vs′+1
1 , . . . , vs

1) rationally independent, etc.

Proof. We must show that there is A, a unimodular transformation of Rn which brings the rotation vector ρ
to the required form. We consider

Γ = {k ∈ Zn : ρ · k ∈ Z}.
If Γ is n-dimensional, we have that ρ ∈ Qn and taking the identity matrix will do. If the dimension of Γ is
s < n, we build a basis of Rn in the following way.

Let us begin to suppose that Γ has the following property: for k ∈ Γ, all the integer vectors on the ray from 0
to k are in Γ.

We take k1 ∈ Γ \ {0} of minimal norm, k2 ∈ Γ \ {Rk1} of minimal distance from {Rk1}, up to ks ∈ Γ. We
take ks+1 ∈ Zn \ Γ of minimal distance from Γ, ks+2 ∈ Zn\ < Γ, ks+1 > of minimal distance from < Γ, ks+1 >,
etc. We define

BΓ = {t1k1 + . . .+ tnkn, 0 ≤ t1 < 1}.
It is clear that translating BΓ by the elements of Zn we cover all Rn, and this implies that |BΓ| ≥ 1. To show
that |BΓ| ≤ 1, by Theorem 3.34 of [11] it suffices to show that BΓ does not contain elements of Zn in its interior;
but this is an easy consequence of the choice of the ki and of our hypothesis on the rays of Γ. Now the matrix
A = (k1, . . . , kn) brings the unit cube into BΓ; since |BΓ| = 1, (k1, . . . , kn) is unimodular; we assert that AT is
the matrix we are looking for. Indeed, A brings the unit cube into BΓ, and thus it brings Zs × {0} into Γ; now〈
ρAT , k

〉
is an integer iff 〈ρ,Ak〉 is an integer, and we know that this happens iff Ak ∈ Γ, i.e. iff k ∈ Zs × {0}.

To state it differently,

(ρAT , 1)⊥ ∩ (Zn × Z) = {(k,− 〈
ρAT , k

〉
) : k ∈ Zs × {0}}.

But this means that (ρAT , 1)⊥ contains (e1, j1), . . . , (es, js) with j1, . . . , js ∈ Z. In other words,
〈
ρAT , ei

〉
+ji = 0

if i ∈ (1, . . . , s), i.e. the first s coordinates of ρAT , the slope of u ◦AT , are integers.
Let us now suppose that Γ does not have the property mentioned above; we extend Γ to Γ̃ adding all the

integer vectors on the rays 0̄k with k ∈ Γ. Starting from Γ̃, we build a basis k1, . . . , kn as we did before for Γ.
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Since ki ∈ Γ̃, if ki �∈ Γ we can find a minimal ri ∈ N such that riki ∈ Γ. We consider the matrix A = (k1, . . . , kn)
and we see as before that it is unimodular; moreover, it brings the module generated by r1e1, . . . , rses into Γ;
the same argument we used above shows that

〈
ρAT , riei

〉
+ ji = 0 for i ∈ (1, . . . , s), i.e. the first s coordinates

of ρAT ∈ Qs × {0} are rational.
It remains to prove that (ρs+1, . . . , ρn) is rationally independent, but if it were not so, then we could find

k̄ ∈ {0}×Zn−s such that Ak̄ · (ρs+1, . . . , ρn) ∈ Z. But then the module of integer vectors orthogonal to (ρAT , 1)
would generate

{(k,− 〈
ρAT , k

〉
) : k ∈ Zs × {0}} + 〈(Ak̄,−ρ ·Ak̄)〉

contradicting the fact that (ρAT , 1)⊥ ∩ (Zn × Z) projects to Zs.
We now show that we can bring v1 to the required form by another unimodular transformation; we shall

suppose that ρ = (ρ1, . . . , ρs, ρs+1, . . . , ρn), with (ρ1, . . . , ρs) ∈ Qn and (ρs+1, . . . , ρn) rationally indepen-
dent. Since v1 is admissible, we have that v1 ∈ rat(ρ, 1), i.e. v1 = (α1, . . . , αs, 0, . . . , 0, αn+1) with αn+1 =
−〈ρ, (α1, . . . , αs, 0, . . . , 0)〉. The projection of rat v1 on Rs coincides with a certain module Γ ⊂ Zs. But we
have just seen how to find a unimodular transformation of Rs bringing the first s coordinates of v1 to the form
(α1, . . . , αs′ , αs′+1, . . . , αs, 0, . . . , 0) with (α1, . . . , αs′) ∈ Qs′

and (αs′+1, . . . , αs) rationally independent. �

References
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