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AUBRY SETS AND THE DIFFERENTIABILITY OF THE MINIMAL AVERAGE
ACTION IN CODIMENSION ONE

Uco BEesst!

Abstract. Let L£(x,u,Vu) be a Lagrangian periodic of period 1 in x1,...,Zn,u. We shall study
the non self intersecting functions u: R"™ — R minimizing £; non self intersecting means that, if
u(zo + k) + j = u(zo) for some zo € R™ and (k,j) € Z™ x Z, then u(z) = u(z + k) + j Vz. Moser
has shown that each of these functions is at finite distance from a plane u = p - x and thus has an
average slope p; moreover, Senn has proven that it is possible to define the average action of u, which is
usually called 3(p) since it only depends on the slope of u. Aubry and Senn have noticed a connection
between 3(p) and the theory of crystals in R™™', interpreting 8(p) as the energy per area of a crystal
face normal to (—p, 1). The polar of § is usually called —a; Senn has shown that « is C* and that the
dimension of the flat of a which contains ¢ depends only on the “rational space” of a’(c). We prove
a similar result for the faces (or the faces of the faces, etc.) of the flats of a: they are C' and their
dimension depends only on the rational space of their normals.
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INTRODUCTION

We begin recalling some results of [17]. Let L(x1,...,Zpn,u,p1,...,pn) be a Lagrangian such that
1) £L e Ot (R2H) 1> 2,4 > 0.

2) L has period 1 in &1, ..., 2Ty, u.

3) There is 0 > 0 such that

0%L 1
I< <-=I
oI < é)pié)pj )
where I denotes the identity matrix on R™.
4) There is C' > 0 such that
0L %L
— <C(1
‘é?p@x ‘6p8u‘ < CA+IPD
%L 0*L 0%L
<c( 2.
‘axax ‘61&83@ ‘auﬁu‘ < C+1plY)
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2 U. BESSI

We say that u € W,5*(R™) is a minimizer for £ if

loc
/n (00 + 6, V(u+6) — L(w,u, Va)lde >0 Ve € C°(R™). (1)

Since L is periodic, if u is a minimizer and (k,j) € Z"™ x Z, then u(x + k) + j is a minimizer too; we say that u
is non self intersecting if
V(k,j) € Z" x Z, either wu(z+k)+j> u(x) Vo
or u(z+k)+j<u(z)Vr or ulr+k)+j=u(r)Vve. (2)
It is proven in [17] that, if u satisfies (1) and (2), then w is at finite distance from a plane; more precisely, there
is p € R™ such that, for 1 < k </,

[u(z) = u(0) = p-zlcrr@mmy < Mi(lpl) (3)

where p -z denotes the scalar product and ~ is the same as in 1). The vector p, which is clearly unique, is called
the slope, or rotation vector, of u. Since [ > 2, u € C?(R"™) and u is a classical solution of the Euler-Lagrange
equation of (1):

divaﬁ(:ﬂ,u,V’u) _ OL(z,u, Vu) (4)

Op ou
Let M, denote the set of all minimal, non self intersecting u of slope p; in [17] it is proven that M, is never
empty.
In [20] it is proven that, if u € M, then the following limit exists:

1

lim ———r L(z,u, Vu)dz. (5)
R—+oo |B(0, R)| Jp(0,R)
Moreover, the limit above does not depend on the particular u € M, we choose, and we can call it 3(p). The
function f is strictly convex and superlinear, thus its polar, usually called —a, is of class C'. We shall study
the differentiability of 3. This problem is motivated by an observation of Gibbs’, recalled in [2] and [22], which

says that \/141%7 B(p) can be interpreted as the energy per unit of area of the face of a (n + 1)-dimensional

crystal which is orthogonal to (—p,1). This energy is called a Wulff functional by crystalline people (see for
instance [23]); we want to study what kind of corners are possible for Wulff functionals which arise from a
microscopic theory like that of Gibbs’.

Following [13], instead of studying the corners of 3, we shall study the flats of its polar which is tradition-
ally [15] called —a. We recall that, if p € R™, then we can always find a unimodular matrix A4, 0 < s < n,
(p1,---,ps) € Q% and (ps+1, ..., pn) rationally independent, such that

Ap: (pla'~'7psaps+1a"'7pn)'

We set A~1(R®* x {0}) = rat(p), the rational space of p. We recall a theorem of [21]: let —a/(c) = p, and let
D, be the flat of a containing ¢. Then either D, is reduced to a point, or it generates rat(p). The first case
happens iff M, is an ordered set.

The theorem we prove in this paper, Theorem 2.1 below, deals with the faces and subfaces of D,; we state
it now in a rather vague form because we haven’t defined yet many of the objects involved. Let us suppose
that D, does not reduce to a point; we restrict ourselves to the smallest affine subspace containing D, and we
denote by 0D, the boundary of D, relative to this space. We shall show that every point of 0D, admits a
unique normal; in particular, since D, is convex, 0D, is of class C*. Moreover, if ¢ € 0D, and v; is the normal
to 0D, at ¢, then the dimension of the face of D, containing c is either zero, or an integer depending only on p
and wv1; it is zero iff a certain subset M, ,,) of M, is ordered. Similar results on dimension and C"' regularity
hold for the faces of the faces of D,, down to the 0-dimensional faces.
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We conclude with a brief history of this problem. Aubry in [2] was the first to study the function  when
n = 1; he conjectured that [ is differentiable at p if p is an irrational number. This conjecture has been proven
in [14] and [5]; the theorem has been extended in [21] to all n. The paper [3] considers the corners of the stable
norm, i.e. the same problem as [21], but for the area functional. The papers [7,12,13,18] consider the case of
1-dimensional currents on compact manifolds. Our method is a linear combination of [13] and [21].

1. PRELIMINARIES

In the following, it will be convenient to consider the current induced by u € M,; in this section, following [6,8],
we show how the mean action of u coincides with the action of the current it induces.

Let T be a n-current of finite mass on T+t = W’ we suppose that T is closed, i.e. that T'(n) = 0 whenever
7 is exact. In particular, if n) is a closed form, T'(n) depends only on its cohomology class [n], and we can define
a linear mapping

pr: H'(T"™) - R
pr: [n] — T(n).
Since H,(T"1) is the dual of H"(T""!), we can identify the rotation number pr with an element of H,,(T"1).
On H™(T™*!) we have the basis dz; = (—1)""'day A... Ada;_ 1 Adai g A...Adzpuyq fori € (1,...,n), and
dz,e1 =dzy A... Adxy; on H,(T™ 1) we have the basis {ei}?:"’ll dual to {dmi}:-fll. For uw € M, we define the

current T,, by

L) = fim g L ) Vuee (11)

where we have denoted by n(z, u(x)) - Vu(z) the n-form n applied the n-vector

1 0 0
0 1 0
(1.2)
0 0o ... 1
81u ag’u 8nu

To show that the limit in (1.1) exists, we borrow some facts from the beginning of Section 2. If p € Q", then
M, contains periodic elements u, which means that u(z + k) + j = u(z) if (k,j) € (Z" x Z) N (p,1)*. For these
elements, the limit of (1.1) exists trivially. If u € M, but u is not periodic, then there are u;,us € M, periodic
and v € R"™ such that

Jmlu —wiflorey<n =0= lm[lu—uzlloreea,o)-

Thus u is asymptotic to u; and usg, for which the limit in (1.1) exists; for M > 0 we write

1 1
1B(0, R)| B0 n(x,u(x)) - Vu(r)dr = BO.R)| B0 ey« n(z,u(z)) - Vu(r)ds
* e n(z,u(z)) - Vu(z)de +

n(x,u(z)) - Vu(z)de.
|B(0, R)| JB(0,R)n{(z,0)> M}

|B(0, R)| JB(0,R)n{—M<(zw)<M}
Since u is asymptotic to u; and us we can fix M large enough to have

1
limsup =——— [n(x,u(z)) - Vu(zr) — n(x,ui () - Vuy (z)|de <e
R—oo B0, R)| JB(0,R)n{(2,0)<— 1}

. 1
lim sup

n(z,u(z)) - Vu(x) — n(z,uz(x)) - Vue(x)|dz <e.
R—oco |B(0,R)| B(O,R)m{(x,v>2M}| (= u(z)) () = (@, ua 2(2)
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Since |n(z,u(x)) - Vu(z)| is bounded by (3), we have that, for M fixed as above and R large enough,

1

—_— In(z,u(x)) - Vu(x)|dz <e.
|B(0, R)| JB0,m)n{-M<(zw)<M}
Since the limit in (1.1) exists for u; and ug, we get from the last four formulas that it exists also for u.

If p ¢ Q", then the recurrent elements of M, can be parameterized by y € R in the following way: u(z,y) =
U(z,p-x+vy), where U(x, Xy11) — Tpy1 is bounded and periodic of period 1 in @1, ..., z,, Typ+1. In particular,
u(z + k,y) =u(z,y + p- k). Now we note that

1
lim ——— n(x,u(z,y)) - Veul(z,y)de =
A TBOB)] [0, " W) V)
lim ! Z / n(x +k,u(z+k,y)Veulze + k,y)de
R—o0 #{k eZn |k| S R}' |k|<R [0,1]™ ’ ’ ’
1

S [ atwutey o R)Vaute - Ry
[0,1]™

= lim
R—oo #{k € Z™ : |k| < R} =R

The limit of the last quantity exists by the ergodic theorem for Z™ actions of [25]; we apply it to the Z™-action
on T! ®,:y — y + p- k, which leaves invariant the Lebesgue measure, and to the integrable function on T!

fly) = /[O . n(z,u(z,y)) - Vyu(z,y)dz

getting

1
.
Roo #{k € Z" : |k| < R}

> / n(@,u(z,y +p-k)Veul,y +p-k)de = [ f(y)dy
kj<r’ 011" T

=/ n(x,u(z,y)) - Veu(z,y)de dy
Tn+1

which implies the existence of the limit in (1.1).
If w € M, is not recurrent, then u is heteroclinic between the two recurrent elements u; and us, and the
same argument as in the rational case applies.
With our choice of the basis, if u € M, then pr, = (p,1). To show this, let n be a closed n-form on T"*!;
we can write
n+1 -
n=Y_ cdz; +di

i=1

where ¢; € R. For the limit of the exact form di, we use Stokes:

lim —— / dy(z,u(z)) - Vu(z)dz| = lim ——— / dy
oo [B(0, R)| | /0. R0 | B(0, R)| | /graph(u)| 50
n—1
:limi/ ¥ < lim 05— =0 (13)
R—oo |B(0, R)| graph(u)las o, r) fimeo
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where the inequality comes from the fact that ¢, being a periodic (n — 1)-form on R"*!, is bounded. As a side
result, we have that T, is closed. For the limit of the constant form ¢, we set w(z) = p - z; we have that

n+1 n+1
1

lim 7/ cidz (x) — Vw = hm cl/ 0; (u(z) — w(z)) dx

R—o0 |B(07R B(0,R) <Z 1) ())‘ R—o0 |B0 R Z B(0,R) ())
| ‘ ' Ledzi1d@igy . dan|(u — e T, VRE TP, Tyt - T
Rggo|BOR|ZC/,OR) Xi—1dais ZTn (v — w)(z1 i1 |2'|2, 241 Tn)

n—1
—(u—w)(x1,...,xi—1,—/RZ— |22, 241, .., Tn)] §Rlim C G =0 (14)
—00

where B’(0, R) denotes the ball of radius R in R"~! and 2’ = (z1,...,%_1,%it1,- .., %n); the second equality
of the formula above is Fubini, the inequality follows from (3) in the introduction. An easy calculation shows
that

n+1
1
lim E cidz; | - Vw(z)dae = E Cipi + Cnt1- (1.5)
R—oo |B(O R)| Js(0,r) ( ) *

i=1 i=1
By (1.3), (1.4) and (1.5) we get that, if n is as above, then

n
= Z CiPi + Cny1
i=1

or pr, = (p, 1), which is what we wanted to prove.

A mean action for currents

Let A, (R""!) denote the set of n-vectors of R"+1. Since the forms {dz;}"*! are a base of A"(R"*1), the
dual space of A, (R"*1), they induce a dual base {e;}!"! on A, (R"*1); the Lagrangian £ of the introduction
induces immediately a Lagrangian £ on R"1 x A, (R"t1) by

5 L(x,u,p1,...,Pn if a1 =1
E(I,wpm+---+pnen+pn+1en+1)={( b1 fo<)> i 5:#1

For the standard duality coupling between A,,(R™*!) and A”(R™*1) we can define the Legendre transform of £:
H: T x A"(R™) - R

H(x,u,w) = sgp{(p7w> — L(z,u,p)}.

Since £ = 400 outside the affine plane Pnt1 = 1, we have that

n+1 n
H(z, x4, Z cidx;) = H(x, Tpy1, Z cida;) + enta.

i=1
Let now T be a n-current of finite mass; it is well-known that
T=XAp

where £ is a measure on T"*! and
X: T AL (R
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is a Borel vector field. This parameterization is not unique: for instance, if f,% € L*(T™* ! 1), then we also

have
T=(Xf)N (%M)

To a current T we associate its component along T"+!, which is the measure p on T"! defined by
/ f@ ap1)dpr (@, 2001) = T(fdenga)  Vf e C(T™H). (1.6)
Tn+1

Choosing f = 1, we see that pup(T™1) is the (n + 1)-th component of pr.
Let Qg denote the space of continuous k-forms on T"1; if w € QY let w”® denote the projection of w on the

space generated by (Tx\l, . ,@L, and let w" denote the component of w along (g,:l The following proposition
is taken from [6].

Proposition 1.1. Let T be a closed n-current on T" | and let us suppose that the measure ur defined by (1.6)
is a probability measure. Then all the A;(T) defined below are equal:

A(T) = sup {W) -

H(z,zpq1,w”)dpr(z, $n+1)}
weN?

Tn+1

2a(t) = sup {T) = [ [ 00,07 4 (000 |

weN?
A3(T) = sup { T(w) — sup [H(z,zpy1,w0") + w"]
weN? (z,@p41)ETHL

AyT) =sup{T(w) : we DY, W'+ H(z,zps1,0") <0}
As(T) = sup {T(w) T wE Qg, w4+ H(x, Tpir,w”) = 0}.

Proof. By (1.6) we have that
T(w"dzni1) 7/ wdpr = 0. (1.7)

Tn+1
Thus

AL (T) = As(T).

Since pr is a probability measure, we get that
A3(T) < Ax(T).

We also note that

As(T) < Ay(T) < A3(T)
where the first inequality follows since we are taking the sup on a smaller set and the second one is obvious.
For w = (w*, w") € Q2 we set ©, = —H (x,2,+1,w") and we see that

T(w” + w“cgn:) — /

Tn+1

[H(z,zpy1,w”) + 0" ]dur = T (W7 + Ca“cgn:) - / [H(z, zpy1,w”) + 0% |dur

Tn+1

< A5(T). (1.8)

The equality comes from (1.7) applied to w* and @* and the inequality from the fact that H(z, 2,41, w®) + 0% =
0. Since (1.8) holds Vw € Q2 we have that

Ax(T) < As(T)
and this ends the proof. O
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Notation. From now on we shall call A(T) the common value of the 4;(T"), 1 <i <5.

We won’t address the question whether the minimum of A on all closed currents of rotation number p is the
current induced by an element of M,; we have introduced A(T) only to have a compact notation for the limit
in (5).

We shall need another formulation, taken from [8]. Given a probability measure o on T"*! and a closed
current T', we define

AG(Ua T) = sup {/ _g(xa .I'n_i,_l,(U(I, l‘n+1))d0'($, xn+1) + T(LU)}
Tn+1

weN?

or equivalently

Ag(0,T) = sup {/NH alx, Xpy1)do(z, Tpy1) + T(w)}

a,w

where the sup is taken over all the couples (a,w) € C(T"*1) x Q0 satisfying
a(x, Tpy1) + H(x,xn+1,w(x,xn+1)) <0 Y(z,xpeq) € T
If the measure pr defined by (1.6) is a probability measure, we obviously have
Ag(ur,T) = Ax(T) = A(T). (1.9)

We only sketch the proof of the following two lemmas, since they are identical to [8].

Lemma 1.2. There is C' € R such that, for any probability measure o and any current of finite mass T, we have
Ag(0,T) > C. If Ag(0,T) < +00, then there is a Borel n-vector field X € L*(T"" o) such that T = X A o.
Moreover, Xp,41 =1 0 a.e.

Proof. Our hypotheses on £ imply that £ > C; by the definition of Legendre transform we have that
H(z,2p41,0) = sup{—L(x,zn41,p) : p € A (R} < —C. (1.10)
As a consequence, the couple a = €', w = 0 is admissible for the sup in the definition of Ag, and thus
Ag(0,T) > C.

Let us now assume that Ag(o,T) < 4o00. It is a standard fact (see for instance [8]) that T' can be parameterized
as T = X A &, with & a probability measure on T, and || X||s, @n+1) = M(T) & a.e., where M(T') denotes
the mass of 7. The mass norm || X||,, gn+1) and its dual [[w|[sn(gn+1) are defined in the standard way, as
n [24], Chapter II, p. 10. We write 6 = 6% + 6°, with 6* < ¢ and &° L o; we must show that 5° = 0.

We rewrite Ag as

Ag(0,T) = sup/ a(z, Tpy1)do(x, Tpgr) +/ w(@, xpt1) - X (2, Tpy1)do(x, pgr). (1.11)
Tn+1

o,w Tn+1

We can find a Borel n-form @ which, for & a.e. (x,2,1), satisfies

. (1.12)
||w||Loo(Tn+1) S 1.

{ &2, 2p41) - X (2, 2011) = | X (@, 2041) || o, ey = M(T)
Since the unit ball of the mass norm is not strictly convex, @(x,x,1) is not unique; but, since the set of the
&(x, p41) of mass norm 1 and satisfying the equality of (1.12) is convex, it is not hard to find a measurable
selection.
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Let us call B the set on which &% is concentrated. Let us set w(z, 2p41) = @(2, Tnt1) - 15(2, 2541). Using
Lusin’s theorem with respect to the measure ¢ + &° on T+, we can find continuous forms w, such that

||w€||Loo(Tn+l) <1
We—w o+0° ae. (1.13)
(0 + ) {(z,2pn41) € T ¢ we(m,2041) # W(T, Tpy1)} < e

Let us define ae(x,zp41) = fﬁ(x,xnﬂ,wé(x,xnﬂ)). Since H is continuous, also a. is such and converges,
o+6° a.e., toa(x,rnt1) = —H(z, Xpi1,w(x, 2n41)). Moreover, the couple (ae,we) is admissible for the sup in
the definition of Ag. This and (1.11) implies the first inequality in the following formula:

Ao(0,T) > /

(2, Tny1)do (2, Tngr) + / We(®, Zng1) - X (2, Tpy1)do (@, 2ng1)
Tn+1

Tn+1

= / ado — / ﬁ(x,xnﬂ,w(m, ZTnt1))do + / we - Xdo
{weAw) {we=w} ot

> —|lae|loco{we # w} — / H(x,Zpi1,w(z, 2py41))do —|—/ we - Xdo
{we=w} Tn+1
> —C’16+C+/ we - Xdo. (1.14)
Tn+1

The equality comes from the definition of «., and the only inequality which need explanation is the last one.

For the estimate on ||ae||c{w. # w}, we have used the fact that o = —H (2, z,41,we), we have set
C1 = sup{|H(z, zus1.p)| + ]l < 1, (@, 2041) € T

and we have used (1.13). For the estimate on the integral of H , which we want independent on the norm of w,
we have used the fact that

/ ﬁ(m,xn+1,w(x,xn+1))da :/ ﬁ(m,xn+1,w(x,xn+1))da +/ I:[(x,xn+1,w(x,xn+1))da
{we=w} {we=w}NB {we=w}\B

:/ H(z,2p41,0)do < -C
{we=w}\B

because o(B) = 0, w|ge = 0 and (1.10) holds. Passing to the limit as e — 0 in (1.14), and taking into account
that

lim we - Xdo = w-Xdo
e—0 T-,L+1 Tn+1

by (1.13) and dominated convergence, we get that

Ao(0,T) > 0+/

Tn+1

w-Xdo =C +/ &-Xdé = C+ M(T)5%(T")
B

where the first equality comes from the fact that w = 1@ and the last one from (1.12). Now it suffices to note
that, for any k € N, one can repeat the argument above with kw instead of w; since the constant C' of (1.10)
does not depend on k but only on H, we get that

Ag(o,T) > C + kM (T)5*(T™H1).

Letting kK — 400, we get 6° =0, i.e. T'= X A o, which is what we wanted.
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To prove the last assertion of the thesis, we suppose by contradiction that there is B ¢ T"! with o(B) > 0
such that X,,41 > 14 ¢ on B. We define the form wy = Alpdz,4+1 and we see that

Ag(o,T) > sup {/ 7]7{(1', Tpt1,wy)do + T(wA)}
A>0 LJon+t

= sup {/ —H(z,p41,wy)do — / wydo + T(wA)}
A>0 Tn+1 Tn+1

= sup {/ —H(x,2p41,0)do — / A pgdo + / AlBX,H_ldU}
A>0 Tn+1 Tn+1 Tn+1

> sup {/ —H(z,2p41,0)do +/ )\eda} = 4o00.
A>0 (JTn+1 B

Using Lusin to smooth wy, we see that

A6 (0’7 T) = 400
contrary to the hypothesis. By a similar argument, X, 41 > 1 —€ o a.e.; thus, X,,1+1 = 1 0 a.e., which ends the
proof. O

Lemma 1.3. Let T = X Ao with X € L' (o) and X,,y1 =1 o a.e. Then

Ag(0,T) = / E(ﬂfaﬂanaX(ﬂ%ﬂan))dU(ma=’En+1)-
Tn+1

Proof. We recall that
E(I’,:L’n+1,p)+H(l’,l‘n+1,W) Zw'p (115>
with equality only when w is the Legendre transform of p. Thus, for any couple («,w) such that

o2, Tpi1) + H(, opg1, w(@, 2p041)) <0

we get that

/ +1[oz(ac, Tny1) Fw(@, Tpy1) - X(2, 2pp1)|do (2, 2pg1) < / L(z,zpi1, X (2, 2p41))do(z, 2pyr).
T’IL

T7L+1
Passing to the sup, this implies

AG(Ua T) < / ‘C(xaanrle(xaanrl))do—(ma:L'nJrl)' (116)

Tn+1

Now we consider w(x,x,+1), the Legendre transform of X (z,z,4+1). We know from the hypotheses that
X,41 = 1; in particular, this implies that the Legendre transform of X is not unique, because if w yields equal-

ity in (1.15), then also w + )\cgr:l yields equality. We choose the w with w,4+1 = 0; equivalently, w = (w®,0)
with w” the Legendre transform of (Xi,...,X,) by

: (Xl,.. ,Xn) — £($,$n+1,X1,.. .,Xn,l).

Let now wy, be w truncated to 0 when |lw|| > k. Since X is Borel, by the continuity of the Legendre transform
we have that w too is Borel; in particular, wy € L (o). Moreover, defining

A ={(@,2n41) * w(z, 2pt1)| <k}
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we have that 14, — 1 o a.e.; this is because X € L!(0) is finite o a.e. and w, being the Legendre transform
of X, has the same property. Now we take

(wka A = *H(l’, Tn+1, wk))

as an admissible couple in the sup defining Ag and we get

Ag(o,T) > / [fﬁ(m, Tnt1, Wk (T, Tny1)) + wi - X]do

Tn+1

= / [ff{(:n, Tnt1, Wk (T, Tny1)) + wi - X]do
Ag

+ _g(xaxn-i-ho)da(xaxn—'rl)
Ay

= / £($,l‘n+1,X($,l‘n+1))1Ak ($,$n+1)d0($,l‘n+1)
Trn+1

- H(:E,:En+1,0)[1 —1a, (T, Znt1)|do (2, Tny1)
Tn+1
where the last equality comes from the fact that w is the Legendre transform of X. We let now k& — +o0; we
apply Fatou’s lemma to the first term on the right and note that, since 14, — 1 and H(x, 2,+1,0) is bounded,
dominated convergence applies to the second term. Thus

Ag(o,T) > / L(z,xpy1, X)do

Tn+1
which, together with (1.16), yields the thesis. O

Now, if T'= X Ao and v is the probability measure on T"*! x A, (R"!) which is the push-forward of o
by X, Lemma 1.3 implies that

Ag(o,T) = / L(x,pi1,p)dv(T, Tni1,p). (1.17)
Tr+l A(R7+1)

Let now u € M,, and let vg be the measure on T" ™! x A, (R"*!) defined by

1

pr(o) = m B(0,R)

o(z,u, Vu)dz

for any continuous ¢ compactly supported in T®* x A,,(R"1). It is easy to see that vy is positive and that
vr(T™" x A, (R"1)) =1 (i.e. vy is a probability measure); moreover, (3) implies that the support of all the
vR is contained in the bounded set T"*! x B(0, Mi(p)). In particular, we can find Ry — +oo such that vg,
converges, up to a subsequence, to a compactly supported v. Thus we have that

1
f(zyu, p)dv(z,u,p) = lim ———— f(z,u, Vu)dx (1.18)
/I‘"+1><AW,(R"“) koo [ B(0, Bi)| Jp(0,Rs)
for all continuous functions vanishing at infinity; actually, since v and vg, are supported on the same compact
set, it holds for all continuous functions.
Now v induces a current T' by

T(w) = / w(z,u) - pdv(x,u,p)
Tn+1lx A, (R7+1)
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for any n-form w. We have that T'= T,,, because by definition

1
T,() = lim —— u) - Vud
®) R=too [B(0, )| B(0,R) Y@ u) Vuds

for continuous n-forms 1, i.e. on a subspace of C(T"*1 x A, (R"*1)). For u as above, we can define by (1.2) a
field of n-vectors X on the graph of u; since by [17] this field is Lipschitz, we can extend it to the closure of the
graph of u in T"*L. Tt is easy to check that T\, = X A pur, for the measure ur, defined in (1.5), and that pr,
is the Lebesgue measure. Moreover, v is the push-forward of pup, by X; thus, by (1.17) and (1.18) with f = L
we get

A6(07 Tu) = / £($,$n+1,p)dl/(x,$n+1,p)
Tn+1lx A, (Rm+1)

1
= lim ——— L(x,u, Vu)dz = [(p
P TR R oo v

where 3 has been defined in (5) of the introduction. We shall extend 3 to all H,,(T"!) by

~ 'f n =
B(p, pn+1) { i(op(z ilf ppnj:# 11

We shall call —a the polar of 3; it is clear that a(c, cnt1) = a(c) — cpg1 with ¢ € H, where H is defined by
H=H"(T"") N {chs1 = 0}.
The same calculation as in [15] now yields
a(e) = min{A(T) - T(n.)} (1.19)

where 7). is a n-form representing ¢, and the minimum is over all currents induced by elements of M,, with (p,1)
varying in H, (T™"!). We recall that the minimum above is attained by the currents induced by the elements
of M—a’(c)'

2. LAMINATIONS IN M, AND THE DIFFERENTIABILITY OF (3

Let £, H, § and « be as in the previous section; we want to study the differentiability of 8 or, equivalently,
the flats of «. Before giving a precise statement, we recall some notions from [17] and [4]. First of all, we define
the recurrent elements of M,,.

If p € Q", we say that u € M), is recurrent if it is periodic:

u(z +k)+j=u(x) if (k,j) €Z"xZN(p,1)*.

If p & Q™, the recurrent elements of M, are, by definition, those in the one-parameter family wu,(z, A), where
u, is built in the following way. There is a function U,: R"*! — R such that U,(z, ;1) — Z»41 has period 1
inzy,...,&nq1, the map : 2,41 — Upy(x, £pq1) is strictly monotone increasing and continuous from above, and

Up(l‘, >‘) = UP(:L'a p-T+ )‘)

belongs to M, for every value of A. In other words, the self-map of T"! given by

: (xaanrl) - (mﬂUp(maanrl))
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brings the foliation x,41 = p -z + A into the recurrent elements of M,. Moreover, the function U, is unique
in the following sense: if U: R""! — R is another function with the properties above, then U(z,z,41) =
U,(z,xn41 + 0B) for some § € R.

It is proven in [17] that, for all p € R™, M, contains recurrent elements.

Definition. We shall call M;ec the set of all recurrent elements of M.
If p € R™\ Q", it follows from the monotonicity of U, that

A< XN i uy(z,A) <up(z,\') VoreR"
i.e. M is an ordered set. This is also true if p € Q™:
if w,ve My, theneither w<v or u=v or u>w.
An ordered subset of M, is called a lamination, and in general there are laminations of M, strictly contain-
ing M°°. We now recall the way they are classified in [4].
Let u € M, and let us consider the set
o(u) = {(k,j) € Z" X Z : u(w+ k) +j = u(@)}.
Clearly, ®o(u) contains all the information on the directions in which w increases; it is also clear that it is a
semigroup. We want to explain the method used in [4] to characterize this semigroup by a sequence of mutually
orthogonal vectors. We begin to note that, since (0, j) & ®o(u) if 7 <0,
(1) ®o(u) #Z™ x Z.
Moreover, by formula (2) of the introduction,
(i1) Po(u) U —=Pg(u) = Z" x Z.
A semigroup with these two properties determines uniquely an open half-space V; of R**! by
Vo N (Z™ x Z) C ®o(u) C VN (Z™ x Z).
In our case it is easy to see that

Vo = {(Zaanrl) ER"xR: <(l‘,l‘n+1), (pv 1)> > 0}

We want to describe the elements of 9V N @g(u); thus, let rat(p, 1) denote the subspace of R™ x R generated
by (Z™ x Z) N (p, 1)+, and let us define

Oy (u) = Bo(u) N (p,1)" = Bo(u) Nrat(p, 1)
where the second equality comes from the fact that ®g(u) C (Z™ x Z). Again by (2) we have that
Dy (u) U—Py(u) = (Z" x Z) Nrat(p, 1).
If ®1(u) # (Z™ x Z) Nrat(p, 1), we can find as before a vector vy (u) € rat(p, 1) such that
D, (u) Crat(p, 1) N {(k,5) = ((K,7),v1(u)) = 0}

In the terminology of [19], u is a heteroclinic between two different elements of M;*“, and v (u) is the asymptotic
direction of u. In general, if ®;(u) = ®;_1(u) Nratv;_1(u) is strictly contained in

(Z™ x Z) Nrat(p,1) Nrat vy (u) N ... Nratv;—q(u)
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we can find v;(u) in the intersection above such that
D, (u) Crat(p,1)Nratovy(u)N...Nratv;—1(u) N{(k,7) : ((k,7),vi(u)) > 0}.
We can iterate until we come to a stop when
Di(u) = (Z" x Z) Nrat(p, 1) Nratwvy(u) N ... Nratv;_1(u).

We recall that ratv;_;(u) is the space generated by v;_1(u)t N (Z" x Z); since v;(u) € ratv;_i(u), the vec-
tors v;(u) are mutually orthogonal. In particular, at each step the dimension of the intersection in the formula
above decreases at least by 1, and eventually a stop is reached, say after | = [(u) steps. In this way, we get the
[+ 1 vectors

(p,1), wi(u) €rat(p,1), wva(u) € rat(p, 1) Nratvy(u),...,
v(u) € rat(p, 1) Nrat vy (uw) N ... Nratv_q(u). (2.1)

By definition, these vectors satisfy
{(k,j) : ulx+k)+j>ulx),(kj)ecrat(p,1)N...Nratvs(u)} C

{(k,5) € rat(p, 1) N... Nratvs(u) : ((k,7),vs41(u)) > 0}
for0<s<I[l-—1.

In [4] the vectors (p,1),v1(u),...,v;(u) are called the invariants of wu; clearly wv;(u) is determined up to
multiplication by a positive constant, and in the following we shall feel free to multiply this vector by any
positive scalar.

Let us make some examples. If u € M, with p rational or irrational, it is easy to see that

(I)O(u) = {(ka.j) : <(ka.7)a (pa 1)> 2 0}

If p is irrational, this comes from the fact that : z,41 — U,(x, £p41) is strictly monotone and U, (z, Zp41) — Tn41
is periodic; if p is rational, the formula above comes from a simple verification. Thus, if u € M/, Dy (u) =
(Z™ x Z) Nrat(p,1) and I(u) = 0. The converse does not hold, if p is irrational: as we shall see below, there can
be u € M, with I(u) = 0 and not recurrent. Let now n = 1 and u € M, i.e. u(z + 1) = u(x); as we just said

Do(u) = {(k,)) EZX Z : j >0}
and I(u) = 0. In the same setting, let u; < ug be two elements of Mj and let u € My satisfy

lim |u(z) —wui(x)]=0= lim |u(z)— uz(x)|.
T——00 r—+00
Then
Do(u) = {(k,j) : 7 >0y U{(k,j) : j=0, k=>0}
In this case, I[(u) = 1 and vy (u) = (1,0).
Let now n > 2, let p = (p1,..., Ps, Pst1,---,Pn) With (p1,...,ps) € Q° and (ps41,. .., pn) rationally inde-
pendent. If u € M), i.e. if u(z) =u,(z,\) = Uy(z,p- x + ), we said before that

Oo(u) = {(k,j) : p-k+j =0}
Thus ®1(u) = rat(p, 1) N (Z"™ x Z) and I(u) = 0. But if A is a point of discontinuity of : A — w,(x, A), if u € M,

satisfies
Up(x, A=) < u(z) < up(z, A +)
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and u is periodic in the first s coordinates, then [ = 0, but w is not recurrent. More precisely, the graph
of u,(x, ju), when projected on T"*! and closed, forms a Cantor set; this Cantor set does not depend on the
parameter p and w lives in its gaps. There are examples of such solutions in [2,4]. Always if A is a point of
discontinuity of : A — u,(x, A), if u € M, satisfies

lm Ju(z +twr) —up(x +tw, A=) =0= lim |u(z+ twr) — u,(z + twi, \+)|

t——o0 t——+oo

uniformly for some (wy, —p - wy) € rat(p,1), then I(u) > 1 and vy(u) = (w1, —p - w1). If (p1,...,ps) = 0, if
u satisfies the formula above with v (u) = e; = (1,0,...,0) and is periodic in the directions zs,...,zs, then
I(u) = 1. Let us suppose that there are two heteroclinics @1 and @y satisfying the formula above with v; = ey;
if w € M, is heteroclinic in the direction e; from w,(-, A=) to u,(-, A+), and in the direction es = (0,1,0,...,0)
from @y to U, then [(u) > 2, v1(u) = e1 and va(u) = es.

Definition. We say that (p,1),v1,...,v; are admissible if (2.1) holds. Since the v; are defined up to multiplica-
tion by a positive constant, we shall identify (p, 1), v1,...,v; with (p,1),w1,...,w; if v; = \;w; for some A; > 0.

A theorem of [4] says the following: if (p,1),v1,...,v; are admissible, then the set of all u € M, such that
l(u) <1 and v;(u) = v; for i <l(u), is ordered.

Definition. We define M(,,, ... ..y as the set of all u € M, which satisfy v;(u) = v; for i < min(l(u),s).

We remark that this set in general is not ordered: for instance, if I = 0 then it reduces to M, which in general
is not ordered.

After these two definitions, it is natural to ask whether, given (p,1),v1,...,v; admissible, there is u € M,
with {(u) = and v;(u) = v; for i € (1,...,1). In [4] it is proven that there is w € M, with I(u) = 1 and
v1(u) = vy iff the lamination of the u € M, with I(u) = 0 has gaps; there is u € M, with I(u) = 2 and
v1(u) = v1, v2(u) = vy iff the lamination of all the u € M, with either I(u) = 0 or I(u) = 1 and v (u) = v; has
gaps, and so on.

We want to understand the behaviour of ®g(u,) when u, — u in C’looc. We list a few facts, easy to verify.
1) Let A C B C Z" x Z be two semigroups such that AU—A = BU—-B =7Z" x Z; if (p,1),v1,...,v; are the
invariants of A, one checks easily that the invariants of B are (p,1),v1,...,vy with I’ <.

2) ®g(u) D liminf ®g(uy,), i.e. Po(u) contains those vectors which stay in ®g(uy) from a certain n onwards.
3) Possibly passing to a subsequence, we can suppose that (u,) and v;(u,) converge; the invariants of the
semigroup lim inf ®g(u,,) are the limits of the v;(uy,).

From the three properties above we get that [(u) < liml(u,) and v;(u) = limwv;(uy,) for 0 < @ < I(u).
A consequence of this is the following: let u, — u and let u, (- + k) + j, — w in Cp (R™); then the set of the
invariants of u is contained in the set of the limits of the invariants of {u,}, and the set of the invariants of w
is contained in the set of the limits of the invariants of {u, (- + k») + jn}. But the invariants of u,, are the same
of {un (- + kn) + jn}; thus the two sets of invariants of w and w respectively, are both contained in the same set;
thus, either [(u) < I(w) or [(w) < I(u); in both cases, v;(u) = v;(w) for 0 < ¢ < min(l(u), (w)).

We need to define the flats of a. We recall that « is of class C! since f3 is strictly convex and superlinear
by [20]. Given (p,1) € H,(T"*1), the flat of slope p is

D, = {(c.a(e) : —d(c) = p}.

Clearly, D, C H x R and it is a face of the hypograph of a with exterior normal (p, 1%. Given a convex
set D, we denote by D° and by 0D the interior and the boundary of D relative to the smallest affine subspace

containing D; a face of D is a flat of D. By this definition, if D is a point, then D° = D and 8D = (). We
define F'p as the vector space generated by the differences (¢1, a(c1)) — (2, a(c2)), with (¢;, a(c;)) € D. We also
recall that, if D is convex and v is a vector, then v is an exterior normal to a unique face of D, namely the one

on which
sup (2, 0)
€D

is attained.
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Theorem 2.1. Let £ € C*Y with | > 3, and let D, be a flat of a of slope p; then the following holds.

(a) Fp, C rat(p,1); the dimension of Fp, is either the dimension of rat(p,1) or zero; the latter happens iff M,
is an ordered set.

(b) Let us suppose that D, is not zero-dimensional. Since D, is a convex set contained in rat(p,1), each unit
vector vy € rat(p, 1) is the exterior normal to a unique face of D,, which we call D(, .. We assert that the
dimension of D, .,y is either the dimension of rat(p,1) Nrat(vy) or zero; the latter happens iff M, .y is a
lamination. Moreover, the correspondence face-normal is bijective.

(c) Let (p,v1,...,vs—1,vs) be admissible; for i < s we define iteratively Dy, ,, . v,y as the face of D(, .y, . v, 1)
with exterior normal v; when D, ., . v, ) 18 not reduced to a point; otherwise, we define it as the empty set.
Then, if Dpu,,...0;_1) 8 not reduced to a point, the correspondence between v; and the faces of D,y .. v, 1) 18
bijective and

., Crat(p, 1) Nrat(vy) N ... Nrat(v;—1) Nrat(v;).

Moreover, the dimension of D, ., .. .,) is either the dimension of rat(p,1) Nrat(vi) N ... Nrat(v;—1) Nrat(v;)
or zero, and the latter happens iff M, ,, ... v) @8 a lamination.
(d) OD(p.us,....0.) s a C* surface in rat(p, 1) Nrat(vy) N... Nrat(vs).

The directions of differentiability of a convex function are orthogonal to the corresponding flat of its polar;
recalling this, point 1) of Theorem 2.1 has already been proven in [21].

Theorem 2.2 [21]. Let (p,1) € H,(T™* ) and let S be the projection of rat(p, 1)+ on the first n coordinates.
Then (3 restricted to p+ S is differentiable at p. Moreover, [3 is differentiable at p iff M, is a lamination.

To prove Theorem 2.1 we shall follow [13] and we shall study the relation between the flat of v of slope o/ (c)
and the Aubry set at c.

2.1. The Aubry sets and the flats of «

We recall from [16] the notion of the Aubry set in the 1-dimensional case. Let us suppose that, for any € > 0,
there is u., periodic of integer period N, (i.e. uc(Ne) — ue(0) = ac € Z), such that

Ne
0< /0 [L(t, U, te) — Me - Ue — a(c)]dt < € (2.2)

where 7, is a 1-form representing (c,0) € H*(T?). It is proven in [16] that u. converges, up to subsequences
in C}.(R), to some u € M_, (). The set of these limits is the Aubry set at c. From (2.2) we get that, if T, is

loc
a minimal current of rotation number (p(uc),1), then

0 < A(Te) = Te(ne) — ale) < A

where the inequality on the left comes from (1.19). We know that p(uc) = {¢ € Q; if —a/(c) = £ is rational
too, and p(u.) # —a’(c), then it is easy to see that

1
< |p(T. /
& < lelT) +a' (@)

and thus
0 < A(T.) — Tu(ne) — a(c) < qelo(T) — o/(0)].
The formula above also holds when p(u.) = —a/(c), because in this case A(T¢) — Te(n:) — a(c) = 0 by (1.19).
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Also in the case when —a/(¢) is irrational, one can prove that, if u. is as in (2.2) and T is the current induced
by a minimal u with p(u) = p(u.), then

0 < A(Te) = Te(ne) — ) < Celp(Te) — o/ (¢)]

for some positive C. This is the property of the Aubry set we shall need in the following.

Definition. Let —a/(c),v1,...,vs be admissible. We say that B C M_,/(.) is a (—a/(c),v1, ..., vs)-lamination
at ¢ if B satisfies the following three conditions:
1) If w € B, then I(u) < s and v;(u) = v; for i <I(u). In particular, by [4], B is an ordered set, a lamination.
2) B contains u with invariants (—o/(c), vy, ..., vs).
3) Let w has invariants —a/(c), v1, ..., vs with s’ < s. Then u € B iff there is {d;} C H and u; € M’/ ;) such
that

u; —u in Cp(R™) (2.3)

and for any § > 0 we eventually have

|A(T:) = Ti(ne) — al0)] = leldi) + {a'(di), ¢ = di) — a(c)]
< Oflmy 1 (e (di) — @' ())]- (2.4)

In the formula above, 7. is a closed n-form representing ¢ € H, T; the current induced by w; and (-, -) the duality
coupling between H,,(T"*!) and H"(T"*!); we recall that, since —a is the polar of 3, p(T;) = —a’(d;) and
thus T;(n.) = (—a’(d;), c¢). To define the operators 7, we consider H,, (T""!1) ~ R"*!, with the base defined in
Section 1. We let V_; = R™ x {0} and we define m_; as the orthogonal projection on V_1; we set

Vs = m_1[rat(—a/(c), 1) Nratvy N ... Nrat v

and we let 75 be the orthogonal projection on V.

We define A., the Aubry set at ¢, as the union of all the (—a/(c),v1, ..., vs)-laminations at c.

We note that our definition is a little at variance with that of [16], where the Aubry set is the set of orbits
approximated by some sequence u. satisfying (2.2); we ask, in addition, that these orbits are minimal and
recurrent. In Lemma 2.12 we shall see that, when n = 1, our definition coincides with that of [16].

The next lemma gives another interpretation of the Aubry set.

Lemma 2.3. Let u € M_,/ () have invariants —o'(c),v1,...,vs, and let V, C H be defined as above. Let us
suppose that
d; — c, di—c€eVs_q (25)
or
d; — c, o' (di) —a'(c) € V1. (2.6)
Let ug € M™%, ;) and let u; — u in CL.(R™). Then u belongs to a (—a'(c),v1,...,vs)-lamination at c.

Proof. Let us suppose that (2.5) holds; since (2.3) holds by hypothesis, the lemma follows if we prove (2.4). We
begin to note that, by (2.5),

[ (0/(di) — (), e = di) | = [ {ms—1(a’(di) — &/ (¢)), ¢ —di) | < gllﬂs—l(a’(di) —a(c))|

for ¢ large; thus it suffices to prove that

la(di) + (o (¢), ¢ = di) — a(c)] < gllﬂs—l(a’(di) —a'(e)) (2.7)
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for 4 large. If we introduce the function
g Ve =R, g(h) = alc+h) — (@/(e), h) — a(c)

then (2.7) follows from
0 .
gl < Sllg" It [A]] < €()- (2.8)

To prove this, we consider the concave function of one variable f(t) = g(th). We note that ¢ = 0 is a point
of maximum of f, simply because h = 0 is a point of maximum of g. The tangent to f at the point (¢, f(t))
intersects the ordinates at y = f(t) — tf'(t); since f stays below its tangents and f(0) = 0, we have y > 0 or
equivalently f(t) > tf’(t). Since t = 0 is a point of maximum of f, we have that f(¢) <0 and that f'(¢t) <0 if
t > 0, while f/(t) > 0if ¢ < 0. This and the last formula yields |f(¢)| < || - |f'(¢)| for t € R. Going back to g,
and setting th = k, we get that
lg(k)| < [ (g (k). k) |

which implies (2.8) for €(5) = 3.

We now prove the lemma when (2.6) holds; first we note that, also in this case, the lemma follows if we
prove (2.7). By the very same argument which yielded (2.8) we get that

la(di) + (o (¢), ¢ = di) — a(c)] < glla'(di) —a'(d

which implies (2.7) by (2.6). O

The following proposition gives the relation between the Aubry set A, and the flat of o containing ¢; essen-
tially, the flat is normal to the invariants of the elements of A..

Proposition 2.4. Let D, be a flat of a of slope p, and let D denote a face of D,, or a face of a face of D,,
etc... Then the following holds:
1) If (c1,(c1)) € D°, (c2,a(c2)) € D, then A., C A.,. In particular, if (c1,a(c1)), (c2, ac2)) € D°, then
Ay = Ae,. Conversely, if (c1,a(c1)) € D° and A¢, C Ae,, then (c2,a(c2)) € D.
2) If c € D?p,vl,m,vs)’ then A. is a (p,v1,...,vs)-lamination.
3) We have that

Fp,, .., Crat(p,1)Nratvr N...Nratv,.

Moreover, the dimension of Fp,,, . is either the dimension of rat(p,1) Nratvi N ... Nratv; or zero, and
the latter happens iff M, ., .. v,) 15 a lamination.

Proof of Theorem 2.1. Point (a) follows from point 3) of Proposition 2.4; we shall not prove point (b) since it is
a particular case of point (¢). Point 3) of Proposition 2.4 implies almost all of point (c), except the assertion on
the unique correspondence between vs and the faces of D, ., .. ., ;). To prove this, we begin to note that, if Dy
and Do are two different faces of D, ,, . ., ), then they have different normals since D(, ,, .. ., ,) is convex.
We want to prove the converse, i.e. that different normals correspond to different faces, or that 9D, ., . . )
has no corners. Let ¢ € 9D(, ,, ... .o, ,); we have that ¢ € D° with D a face or subface of D, ., .. . _,); We can
write D = D(p,vl,m,vsfl,vs,m,vj)- By point 2) of Proposition 2.4, A, is a (p,v1,...,Vs—1, Vs, - .., v;)-lamination.
Since —a/(¢),v1,v2,...,Vs—1, Vs is admissible, we have that v, is orthogonal to (—a/(c),1),v1,v2,...,05_1; by
the formula of point 3), we get that v is orthogonal to 9D, ., .. v._,) at c. Let us suppose by contradiction
that 0D(, ,,,....v,_,) has another normal at ¢, say 0s; by convexity, the face of D, . .. _,) normal to v
is unique and contains ¢; by definition, this face is D(,.,,... 0. ,,5,)- Thus ¢ belongs to the interior both
Of Dy, a1 vayvy) A0A Of Dy w1 5. 5,,) Dut this contradicts point 2) of Proposition 2.4, because A,
should be contemporarily a (p, v1,...,vs-1,Vs,...,v;) and a (p,v1,...,Vs—1, s, . . . , U )-lamination.

We have proven in the last paragraph that every point of 0D, ., . .. ,) has a unique normal; since
Dy v,,....v._,) is convex, this implies that 0D, ,, .. .. ,) is of class C1, i.e. point (d) of Theorem 2.1. (|

cey



18 U. BESSI

We shall prove Proposition 2.4 in the following subsections.

2.2. The Aubry set is constant in the interior of a face

Lemma 2.5. Let D, be a flat of o of slope p, and let D be a face of D,, or a face of a face of D,, etc. Then,
if (co,a(co)) € D° and (c1,a(c1)) € D, we have that Aey C Ac,. In particular, if also (c1,c(c1)) € D°, then
Acy = A, .

Proof. If (co,a(co)) € D°, (c1,a(c1)) € D and (co, a(cg)) # (c1,a(er)), then we can find (c2, a(c)) € D and
A € (0,1) such that

(co,aco)) = Aler, efer)) + (1 = A)(ez; afc2)). (2.9)
We have used the fact that « is affine on D. Let now u belong to a (—d/(¢c), vy, . .., vs)-lamination at ¢p; in other
words, u has invariants —a’(c), v1, ..., vy with s < s and there are {d;} C H and u; € M"Y, satisfying (2.3)

and (2.4) at ¢op. We want to prove that u belongs to a (—a/(c), v1, . .., vs)-lamination at ¢y, i.e. that (2.4) holds
at ¢y too. Let T; and T be the currents induced by u; and u respectively, and let 7. be a n-form representing
c € H. We have that

0 < A(T3) = Ti(1ey) — (co) < 6lmer—1(a’(ds) — o'(co))|
where the first inequality comes (1.19) and the second one is (2.4) at ¢o. We get by (2.9) that

A(T3) = Ti(ne,) — o) = AJA(TE) = Ti(ne,) — ()] + (1 = M[A(T2) = Ti(ne,) — ale2)]-

The equality above follows because (co, a(co)) and (¢1,a(c1)) are on the same flat. Since both summands on
the right are non-negative by (1.19), the last two formulas imply

0 < A(T) = Ti(ne,) — aler) < %Hﬂs/—l(a'(di) —a'(co))|| = gllﬂsf—l(a'(di) — o/ (c1))

which proves (2.4) at ¢;. O

2.3. The flat is contained in the rational space of the Aubry set

Let D, be a flat of a of slope p, and let D be a face of D,, or a face of a face of D, etc. Let Fp be the
space generated by D. Our aim in this subsection is to prove that, if ¢ € D° and there is a (—&'(¢), v1,...,vs)-
lamination at ¢, then

Fp Crat(—ad/(c),1) Nratvy N... Nratvs.

We shall do this in the following lemmas about the extension of closed n-forms; using ideas of [13], we shall
prove that Fp is contained in the space of closed forms which vanish on the (—a’(¢),v1,...,vs)-lamination;
once we have this, the formula above follows easily. The heart of the matter Lemma 2.8 below on the extension
of closed n-forms.

Let ¢ € H; we choose a n-form representing c; for simplicity, we choose the one with constant coefficients,
which we still call ¢; we define

fc(l'; :EnJrlap) = E(SL', :EnJrlap) —C-p— Ot(C).

We denote by A. the mean action of the Lagrangian f., and by 3. and a. the two conjugate functions. By the
definitions of a and «, it follows immediately that a.(0) = 0 and that a.(0) is attained on the same currents
on which a(c) is attained; moreover, o’(c) = a;(0) and thus M_ /() = M_4 (o). In the following, we shall often
switch from L to f., since many proofs are simpler if we suppose that ¢ =0 and «a(c) = 0.
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Lemma 2.6. Let c € H, and let f. be as above. Let —a/(c) € Q™ and let B = Mﬁff,(c). Then there is a closed
n-form ng.. on R"™ which is periodic in all its variables (i.e. it quotients on T ') and such that, Yu € B and
Vr € R,
{ o) =Syl u), 9ute) (2.10)
N2, u(@) = fe(z,u(z), Vu(z)) — (Opfe(z, u(z), Vu(z)), Vu(z)) . '

In the formula above, ng . is expressed in the coordinates d/x\z of Section 1. The form ng.. satisfies

||776,c(fﬂ, Tpy1) — 778,5(2, Zn1)|| S Cl(2, Tpgr) — (2, 2ng1) || (2.11)

where the constant C' depends only on ||a’(c)||. Moreover, if B is a foliation, ng . is exact and the flat of a at ¢
is reduced to a point.

Remark. We shall see in Lemma 2.8 below that, also if B is not a foliation, 1z, can be modified outside B to
an exact form.

Proof. The reference is obviously the part of [1] on foliations and calibrations; we shall proceed a little differently
since we are not dealing with foliations, but with laminations; the problem is how to extend the form to the
gaps of the lamination in such a way that (2.11) holds.

Let

F={keZ": —a.(0) keZ}

Since —al(0) € Q™, we have that T" is n-dimensional and we can find a bounded fundamental domain Ar for
the action of I' on R".

We recall that M", © is an ordered set; let

ug < up < ... <up =1ug+1 (2.12)

be elements of M7 We define the strip

o (e)"
M; = {(z,2p41) €ER" X R : ui(x) < Tpp1 < uig1(z)}
and call M; its projection on T™*!. We shall need in the following that
{(z,2n41) € Ar x R @ u(2) < Tpy1 < uipr(2)}
projects injectively on T"*!; by Lemma Al of the Appendix, one sees that this is the case if
wir1(z) <ui(z+k)+ 7
where o
—ad'(¢) k+j=min{—ad'(c) - k+j>0: (k,j) €Z" x Z}.

In the following, we shall always suppose that the wu; satisfy the condition above. In particular, if u;y1 < u; +1
then OM; has two components: the projection on T of {z,, 11 = uj(z),z € Ar} for j =1i,i+ 1.

Step 1. We consider the vector field 1, defined on 9M; by (2.10); before extending it to a divergence-free vector
field on M;, we check that its flow across the boundary of M; is zero. Let T; be the current induced by u;. We
know that

0=a.(0) =min{A.(T) : T isinduced by u € M,, p e R"} = A.(T})
where the third equality comes from the remarks at the end of Section 1. Since

1

AC(T’L) == |AF| AL

felz,usy, Vu;)da
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we have that

fe(z,ui, Vu;)dz = 0. (2.13)
Ar

Since 1|ans; is defined by (2.10), we get that

fe(zyus, Vug) — 0% (x,u;) - Vu; — n*(x,u;) =
fc(l', Us VUI) - <8Pfc(ma Us VUI); vul> - fc(xa Us VUI) + <apfc(937 Us VUI)? VU1> =0

which implies
[ Ui, V) = o ) - Vs = ) = 0
Ar

From the last formula and (2.13) we get that
/ (7" (@, wi) - Vui + 0" (2, ui)ldz = 0
Arp

or equivalently

/ n=0. (2.14)
Graph(u.;\AF)

Step 2. By (2.14), the flow of 5 across both sides of M; is zero; we want to extend 1 to a divergence-free vector
field (or closed n-form) 7; on M;. Moreover, we want

17 (2, Tnt1) = 1i(2, 2nt1) | < Cll(2 2nt1) — (2, 2041) |- (2.15)

We want the constant C' to depend only on ||&/(¢)||, but not on the choice of the {u;}.
We do this in the following way. We consider the strip

Si = {(&,2n11) ¢ wil®) < zpir < wiw) +2}
which sits above the graph of u; and contains M;. On S; we define a family of hypersurfaces, the graphs of
ur(x) = ui(z) +
where ¢ € [0,2]. If we set
g(z,u(z)) = divoy fe(x, ue(x), Vug(z)) — Oy felz, u(z), Vg (x))
we have that u; solves the elliptic problem
divoy fe(z, ut(x), Vur(2)) = Oy fe(x, ut(2), Vur (2)) + g(2, ut(x)).

We define

G(z,s) = / g(x,7)dr
uﬂ(l)

and we set fc(x, u,p) = fe(x,u,p) + G(x,u). We have that u; satisfies

divd, fo(z, us(x), Ve () = O folz, us(x), Vg (z)).
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Now the Lagrangian fc admits a fgliation of solutions u; by the same calculations as in [1], this implies that
the form 7; which on (z,u;(x)) € S; takes value

0 (@, w(2) = Oy folw, (@), Vin(e)
(@) = fola, ua(@), Vue(@) = (O o, un(w), Vir (@), Vur ()

is closed. Since G = 0 on the graph of u;, we have that n; satisfies (2.10) on the graph of u;. The problem is
that we don’t have G = 0 on the graph of w; 1, and thus 7; does not satisfy (2.10) on this set. To solve this,
we let

Siv1 ={(@, zn11) + w1 (@) =2 < wppr < wiga(2)}-
On S¢+1 we define a n-form n;41 as before; this form satisfies (2.10) on the graph of u;;1. We note that, since
ui+172<ui<ui,1+2
5’1- and S¢+1 contain ]\Zfi. .
We now want to find a closed form 7; on M; which coincides with 7;,1 on the graph of Uiy, and with n; on

the graph of u;; moreover, we want 7; periodic and satisfying (2.15). To do this, we define in M; two primitives
of n; and n;+1 by the Poincaré lemma ([10], Chap. 4). The two primitives are

1
yj(:c,xnﬂ)(m,...,vn_l):/ By(2, @mst, ) (dig(01), o dig(on))dt j=iyi+ 1
0

where
Z-t : (LL’, anrl) - (1'; Tn41, t)

and the (3; are defined through the following homotopy
H(z, xpi1,t) = (@, uis1 (@) + H(Tns1 — it (2)))-
Denoting by H* the pull-back by H, we set
H'nj =a+dtAp;, j=1d,i+1 (2.16)

where a does not contain terms in dt. We have to derive a few estimates on 3; and n;.
Since the u; in S; are all translates of the same function, we have that

Vus — Vuy =0 (2.17)
and the same holds for the u; in ,S~'i+1 We now assert that
[Virr — Vil coBae,r)) < Crluivi(wo) — ui(zo)] (2.18)
with C independent on xg and r < 1. To prove this, we recall from [17] that the map

b U Graph(u) — R", O: (x,u(z)) — Vu(z)
weMree

—a’(e)

is Lipschitz; thus, (2.18) follows if we prove the Harnack-like inequality

lwir1 — willco(B(ao,r)) < Caltir1(wo) — ui(wo)|. (2.19)
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In other words, we have to show that
uit1(2) — wi(@)] < Caluivi(zo) — wilwo)]

for ||z — zo|| < r. But this is a consequence of the Gronwall lemma, since

%[uﬂ_l(tm + (1 — t)$0) — ui(tx + (1 — t)xo)] = (Vuiﬂ(tx + (1 — t)$0) — Vui(tm + (1 — t)$0),$ — IQ>
< Csrfugpr (tx + (1 — t)xo) — ui(te + (1 — t)xo)]

where C5 is the Lipschitz constant of .
By the definition of 7;, (2.18) and (2.19) imply that, if r <1

i1l @i 2)) = Mil (i) 00 (B(wo,r)) < Calttiva(zo) — us(xo)l.
For r < min(u;4+1(x0) — wi(zo), 1), we define
Vo = {(®,2n11) + @ € B(wo,7), wi(z) < zpi1 < uipr(2)}

Since £ € CY7 with | > 3, we can apply (3) with [ = 3; thus the first and second derivatives of Vu;, j = i,i+ 1,
are bounded; by the definition of n; and (2.17), the first and second derivatives of n; are bounded; by the last
formula and (2.19), this implies that

{ [Mmi+1 = nillooqv,,) < Csluipi(wo) — ui(wo)] (2.20)

[mit1llezviy) + Inillc2v,,) < Cs
with C5 independent on xy. By the last formula and (2.16), we get

{ 1Bi+1 = Billcoqva, x0.1) < Celuiti(zo) — ui(wo)
1Biv1llc2vi, xjo,1)) + 1Billc2(vi, x01) < Cé.
0 0

If we choose r < min(u;+1 (o) —u;(zo), 1), we have that the diameter of V,,, is bounded by v/n|uit1(zo)—ui(zo)|;
using this fact and integrating, the last formula yields

[¥it1 = villco(vay) < Crluira(wo) — wilwo)|?
[vit1 = viller(vay) < Crluita(zo) — ui(wo) (2.21)
vit1 = ville2(vay) < Cr

with C7 independent on xy. We give a proof of the second one:

1
102, [(Vi1 — vi) (V15 vp1)]| < /O 102 A[Biv1(x, ng1,t) — Bix, oy, )(dig(v1), ..., dig(vp—1)}|dE
< Crluiyi(zo) — ui(xo)|

where the first inequality comes from the definition of ~;, v;41; the second one comes from the fact that,
by (2.16),

(Bj+1 — B5)(dig(v1), ..., dit(vh—1)) =

n

> D i1 = )l Hoi @) (Vaznn (H 0 6) (1), -+, Vi oy (H 0g) (05—1), 00 (H 0 1) (),
k=1

VI,In+1(H o it)(vk+1)a sy vﬂ?ﬂ:n+1 (H © Z‘t)(v’ﬂfl))
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and thus

1 1 n
[ 1081 = ) @intwn). il < [ SO0 0 s =l nen
k=1
X (Vi (H 00} (01)s - Ve (B 080)(0h1), 0 (H 010) (01,
1 n
Vainr (o i)0ns1)s s Vom0 i)t 4[| 3 (1) lmps0 =y
0 k=1

X (Vaz, (H oie)(v1), ..., Vo, (H o) (vk-1), 0(H 0it) (vk), Voo, (H 0it) (Vkg1), - - -
Vi ania (H 0it)(Vk=1), 02, Vg, (H 00) (), Va,z, oy (H 0 6) (Vkt1), - -+, Vg, (H 0de)(0n—1)) |dE
< Csluir1(wo) — wi(zo)|-
The first integral above is estimated by $Cs|ui1(wo) — wi(zo)| because 9y, [7j+1 — ;] and Vg g, ., (H 0 is)(v;)
are bounded, while
[0e(H o i) (vr)[| < Coluita(wo) — wi(wo)]

where the last inequality comes from the estimate on the diameter of V;,,. The second integral is smaller than
%Cg|ui+1(xo) — u;(xo)| by the first formula of (2.20).

Now we consider . 1 . 2
peC®R): ¢(s)=0 if s<3, ¢(s)=1 if s>2 (2.22)

¢$>0, |¢/(s) <4 '
and we define on M;

w(z) = [1 -9 (Lul(x)))} Yi(T, Tpg1) + @ (M) Yit1 (T, Tpt1).

uitr(z) — ui(z uit1(z) — ui(z)
We set dw = n on M; and we see that dw is closed and that it satisfies (2.10) on OM;. Now
n=1[1—=¢ln+ nit1+do A [yiq1 — il

We shall show that the derivatives of n are bounded, i.e. that n is Lipschitz. The norm of the derivatives
02 .n(Z, Tnt1) contains the following terms:

10,2 @1 - i1 = mill + 1 = O] 10, 17| + D110z, i

102, 1 AP - [Vir = ill + 1| - 10z, 1, [yia — ]l
(1= @] [IVanill + SIVeniall + [IVadll - mir1 — nill
IVad@l - lvier = 2ill + 141 - [ Valyier = ll-
Since all these terms are bounded by (2.20), (2.21) and (2.22), we have that

In(z, ny1) — n(2, 2n41)ll < Cusll(z, Tt1) — (2, 2n41)]]- (2.23)

The function 1 just defined satisfies (2.10) on M;.
On T"*! we define the form 7 by

(@, 2pi1) = 0i(2, 2py1) i (2, 2041) € M; UOM;.

Since M; and M;;; abut along the graph of w; i, where 7; = 7,11 = n by (2.10), we get by (2.23) that 7
satisfies (2.15).
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Now, either Mﬁflc,(c) is a finite set, or not. In the first case, we can suppose that the set of (2.12) coincides
with Mff;/( o) and then 77 is a closed extension of 7. In the second case, we can take finer and finer parti-
tions in (2.12), so that, eventually, they approximate every element of Mﬁeof,(c); then we can pass to the limit

using (2.15) and Ascoli-Arzela.

Step 3. We suppose as in Steps 1 and 2 that o/(c) € Q™; moreover, we suppose that Mff;/(c) is a foliation.

In this case, (2.10) defines defines a form 7 on all T"*1; clearly, this form coincides with the 7 defined in Step 2.
We set ng,. = n = 1; we want to prove that 7 is exact.
Let uw € MT<, ,; since 7 satisfies (2.10), we have that

—a/(c)
8p[fc(ﬂ%u(ﬂf)7p) - ﬂz(lﬂ, ’U,(IL')) 2 nu(ﬂfau(ﬂf))] |p=Vu(x) =0.

Since f.—n*-p—n" is convex in p, the last formula says that p = Vu(x) is minimal along each fiber (x, u(x)) x R™.
From the second one of (2.10) it follows that the minimum is constantly zero:

felw, u(x), Vu(z)) —n"(z,u(x)) - Vu(z) —n"(z, u(z)) = 0. (2.24)

Since the u € M, ) form a foliation, we have that on each fiber (, p+1) x R™ the minimum is zero, which
implies that

felw,u,p) = n*(z,u) - p—n*(x,u) 20 V(z,u,p).
We have seen before that the elements of M,

they are minimal also for f. —n. Thus, a.([n]*) = A.(T) — T (n*) for a current T' induced by some u € MZT 0y

() AT€ minimal for f.; from the last two formulas it follows that
taking the mean of (2.24) over a fundamental domain, we get that [n]* = «a.([n]®). It is a standard fact of
Aubry-Mather theory that, if a.(d) and «a.(d') are attained on the same current, then (d, a.(d)) and (d’, a.(d"))
lie on the same flat of a.; thus, we have that (0,0) and ([]”, a.([n]*)) lie on the same flat of a.. In particular,
if we show that the flat at []” of . reduces to a point, we have that [n]* = 0. Since [n]* = a.([n]*), we have
that [n]* = a.(0) = 0; at the end [n] = 0, which is what we wanted to show. Equivalently, we shall show that
the flat of « at ¢+ [n]* reduces to a point.
This means to show that, if d* # 0, then

alc+ " +d*) < alc+[n]") +a'(c+[n]") - d*.

Let [u] denote the homology class of u € Mﬁ‘ff,(c); we have seen in Section 1 that [u] = (—d/(¢), 1). In particular,

given any d*, we can always find d* such that d = (d*,d") is orthogonal to [u]; thus the formula above becomes:
if (u],d)=0 and d=#0, then alc+[n]*+d")<alc+[n]*)+ (c+[n]*)-d".

We want to write the formula above using the function & defined at the end of Section 1. We recall that

a(c+ Aept1) = afe) — A, so that a(c+ [n] +d) = alc+ [n)* +d*) — [n]* —d*. Now d L [u] = (—d'(c),1); thus

d* = o/(c) - d*. Since we just saw that ¢ and ¢ + []* are on the same flat, we have that o/(c + [n]*) - d* =

o/(¢) - d* = d*. Moreover, we already know that [n]* = a(c + [1]*); thus the last formula becomes

if ([ul,d)=0 and d#0, then a&(c+ [n]+d) <0. (2.25)

—ad'(c) = (E, o p_n)
q1 dn

Q={zeR": 0<z1 <q1,...,0 <z, < qn}

To show (2.25), we let

and
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Since u repeats periodically outside @, we get that the volume of @) is a multiple of the volume of the fundamental
domain of u. Since B is a foliation, we can choose the {u;}%_; of (2.12) in such a way that u;(0) = uo(0) + .
Now we fix a ball B(0,r) such that B(0,r) D Q; (2.18) and (2.19) hold for any fixed r (actually we proved (2.19)
only for » < 1, but it was only to have a constant independent on r), and since u; repeats periodically outside @
we get

(2.26)

Cq
luiyr — willcrmrny < A

We define a function @ in the homology class of k[u] + e1 [[1_, ¢; in the following way. We set ¢ (t) = ¢(tVk)
where ¢ is the cutoff of (2.22). We set

to(w) = [1 — ¢x(z1)][ug—1(2) — 1] + dx(w1)uo(z)
a1(z) = [1 = ¢r(z1 — q1)]to(x) + dx(z1 — q1)ua (z)
Uo(x) = [1 — ¢z — 2q1)]01(x) + dr (21 — 2¢1)ua(2)

up to
tg(z) = [1 — (1 — kq1)|tg—1 + ¢r(z1 — kqr)ug(z).

Now by (2.12), ug(x+ kgie1) = uo(z) + kp1 + 1, which implies that, if x; € [0, ¢1], then g (2 +kqrer) = ar(x) +
kp1 + 1. From this it follows easily that we can find a continuous % which coincides with g on [0, kg1] x R"~!
and satisfies a(x + kqre1) = a(x) + kpy + 1 for all z. Moreover, it is easy to see that the homology class of 4,
which we denote by [i], satisfies [@] = k[u] 4+ e1 [}, ¢; where e; is the basis defined in Section 1.

Since (2.24) implies that

/ ol ts, Vi) — 0 () - Vs — (@, )] der = 0
liqr,(i+1)q1]x]]}_51[0,95]

we have that

/ fole, @ V) — 1 (2,4) - Vi — (2, @))da =
[Ofkql]XH7:2[01qj]
k—1
/ (ol @, Vi) — o (2, 0) - Vit — " (3]
i—0 Y liar,(i+1)q1] X175 [0,q;]
— [fe(x,us, Vug) — n%(x,u;) - Vug — 0 (x,u;)] pde.

Recalling that u; and @ coincide on [ig; + ﬁ, (i 4+ 1)¢1] x H?ZQ[O, g;], we get that

/ fole, @ V) — 1 (2,4) - Vi — (2, @))da =
[0,kq1]x]]5_5[0,q5]
k—1
/ (ol Vi) — (2, @) - Vi — 1 (2, 3)]
i=0 ¥ ligryiqr+ =175 [0.q5]

— [felx, ui, Vug) — n*(z,u;) - Vug — 0" (2, u;)] pd.
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Setting @ = u; + 1; on [iq1,iq1 + ﬁ] X H?ZQ[O, q;], we can write the last formula as

/ fole, @, V) — i (2, @) - Vi — (2, @) de =
[Oﬁkql] XH7:2[01‘1J]

k—1

/ {fe(@, ui, V(ug + i) — 0" (2, u5) - V(ug + i) — 0" (2, u;)]
i—0 Y lig i+ XI5, [0,45]

— [fe(x,usy V) — 0¥ (2, u;) - Vu; — 0" (x, u;)| pde
k—1

£y / {[ful, 8, V8) — o (2 3) - Vi — "z, )]

i=0 * lia1,iq1+ =] xTT 75 [0,45]
— [felz,us, V) — 0°(z,u;) - Vi — n(x,u;)] Jda. (2.27)

Since
Yi(x) = [1 = dp(wr —iqr)] - [ui-1(z) — ug(a)]
we get by (2.26) that
c
{||¢z||01 ligrig+ S IxIs00,]) S UF
e
1billcoiaria+dixTr_sl00) < &
Since Vu;(z) minimizes : p — fe(z,ui(z),p) —n" (2, u;(x)) - p—n"(x,u;(x)), this function has at most quadratic
growth in a neighbourhood of Vu;(x) and thus

[fe(@s ui, V(ui + i) = 0" (z, u) - V(g + 95) — 0" (@, ui)]
, . G\
s F0) = o) ¥t = )] 1700 = € ()
= Vk
Using the fact that, by (2.11), : z — f.(z, z,p) — n*(z,p) - p — n*(x, 2) is Lipschitz, we get
||[fc($’ ﬂ’7 Vﬂ’) - 771(%@) -V — 77”(30’@)]
Csy

- [fc(:v,ui, V’EL) - Ux(x,uz‘) -V — ($ ui)]”L“([qu,qu—i-\/_]XHJ 5[0,q;]) = 03

From the last two formulas and (2.27) we get that

/ (Ful, %, V) — 1% (2,) - Vi — i (z, @)]de < 3 Cy
[0,kq1]x]]7_5[0,q;] i=0

Let now d € [u]*, and let ng be a n-form representing d; we have that

n
[nd“’-Vﬂ—i—nzj]dx:/ nd=< I+ei ||, >= e, d) || 4
/[o,kq11xr[72[o,qj1 Graph(a) H g

In the second equality, we have used the fact that [4] = k[ |+ e1 ]Iy ¢i, in the third we used the fact that
d € [u]*. By the last two formulas we get that, if ([u],d) = 0, (e;,d) > 0 and k is sufficiently large,

R . . . _ Cy
felz,a,Va) —n"(x,a) - Va — n“(x,a) —n3 - Va —nylde < —= q; — (e1,d q; <0.
[ AL BT (@) ~ni- Vi~ nifde < [T oy~ () [
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But this implies that &(c + [5] +d) < 0 if d € [u]* and (e;,d) > 0. Building a function @ as before, but in
the homology class of k[u] — e1II? ,q; (i.e. starting its construction from wuj and not from wu;) one proves that
a(c+[n] +d) <0 also if (d,e;) < 0. Applying this argument to the other coordinates we get that (2.25) holds
and we have seen that this implies that n is exact. O

We shall need the following extension of Step 3 of the last lemma.
Lemma 2.7. Let f. and a. be as before, and let us suppose that
—al(0) = (&,...,p_n—l,@)
C( ) q1 4n—1 dn
with qp relatively prime to q;, 1 < i < n—1. Let B = Mﬁff,(c),
Lemma 2.6. Then there is C > 0, only depending on ||/ (c)||, such that

and let n = np,. be the n-form given by

C

[ (ens [n) | < N

(2.28)

More in general, let
p1 Ps Ps+1 p
—al(0) = (____)
q1 qs (gs+1 An
and let us suppose that, fori € (s+1,...,n), g; is relatively prime to q; for j #i. Then

C
Vi

Proof. We begin to prove the first assertion. We shall proceed as in Step 3 of Lemma 2.6; since we shall

build the test function @ gluing together several translates of u € M"%;, (0)) We need some preliminaries on the

| {ess ) | < ie(s+1,...,n).

fundamental domain of —a’,(0). We begin to consider

r:{kez"—l : (ﬁ,...,p”‘l) -k;eZ}
q1 dn—1

and a fundamental domain Ar ¢ R™* ! of I

Since ¢, is relatively prime with ¢i,...,¢,—1, Lemma A2 of the Appendix implies that Apr x [0,¢,] is a
fundamental domain for —a/(¢). Let us now take (k,j) € Z"™ x Z such that —a/(¢) - k + j > 0 is minimal; by
Lemma A1l of the Appendix,

1

Let now u € M7 and let

a’(c)’
B = {(xaanrl) : x € Ar X [OaQn]vu(x) <opp < u(er k) +.7}

By Lemma Al of the Appendix, B projects without self intersections onto T"*! and |B| = 1. But this is
equivalent to say that

/ [u(z + k) + 5 — u(x)]de = 1.
Ar x[0,gx]

Clearly, this implies that

/ [w(z+sk)+sj—ulz+(s—1)k)—(s—1)jlde =1 VseZ (2.29)
AFX[OaQn]
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Now we have
-1 (@) + 1 — u(z)de = —— (w(z + 1) + 1j — u(z)|dz
qn|Ar| Ar x[0,qn] qn|Ar| Arx[0,qn]
Lo l
= —_— {u(x +ik) +ij — [u(z+ (i — Dk)+ (1 — 1)j]}de = ——
; anlAr] Jarx(0,q.] n|Ar|
where the last equality comes from (2.29). From the last formula we get
I = gulAr. (2.30)
Moreover, from (2.29) with s = 1 we get that there is m € [0, ¢, — 1] N Z such that
. 1
/ [u(z+ k) + 7 —u(z)de < —- (2.31)
Ar x[m,m+1] Adn
Translating, we can always suppose m = 0. With the same argument, we have that
1
(2.32)

/ [ + k) + j — u(a)]dz <
Arx[0,—2=] dn
By (2.19), if u(xo + k) +j — u(zo) > a > 0, then u(z + k) +j — u(z) > & on a ball B(xo,1), with C' not

depending on a. This fact and (2.31) imply
C
! (2.33)

[u(z + k) +j — u(@)]|co(goca,<1y) < n
n

for some Cy > 0. Since the map ®: (z,u(z)) — Vu(z) is Lipschitz, possibly enlarging Cy we get

. C
[VIw(z + k) + j] = Vu(z)llcoarxo,1) < q—l (2.34)

Again using the fact that ®: (z,u(z)) — Vu(x) is Lipschitz, we get from (2.32) that

C

L. (2.35)
dn+/Aqn

L)<

ﬂ

IVIu(z + k) + 4] = V(@) 11 carxpo,

We now build a cycle in a way similar to Step 3 of Lemma 2.6. We let
ui(r) = u(x +ik) +ij,  éq,(t) = ¢(tv/q,,)
where ¢ is the cutoff of (2.22). We define
to(2) = [L = g, (wn)]u—1(z) + @q, (xn)uo(x)

w1 (2) = [1 = ¢q, (2n = qn)]to(z) + g, (2n — gn)ur ()

w(x) = [1 = g, (2n = lgn)t-1(2) + g, (Tn — lgn)ui(2).
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As in Step 3 of Lemma 2.6, we can use the fact that u;(z) = ug(z) + 1 to extend u; by periodicity outside
Ar x [0,1qn]; we call the resulting function @. Again as in Step 3 of Lemma 2.6 we have that

[ e V) e ) Vi a1 =
AFX[O,lqn]

-1

Z/ [fe(z, 0™, Vat) —n®(z,a") - Vit —n*(z,a")]dz

1=0 Ar‘><[i(17l,(i+1)q"]
-1
-/ {Ufelo, @+, V5) — 17(z, &%) - Vi — (2, @)
1=0 ArX[iq,L,(i+1)q"]

= [fe(x,ui, Vug) — n*(z,u;) - Vu; —n"(z,u;)] pd

where the last equality comes from the fact that, by Step 1 of Lemma 2.6,
/ e, V) = ) - Vg — (e ) = (2.36)
Ar x[ign,(i+1)gn]

Recalling that u; and @™ coincide on Ar X [igq, + \/%, iqn], we get that

/ [fC(xaa+7va+) _ng;(xaa—i_) va—i_ _nu(x’,&-i-)]dx:
AFX[OalQH]
-1
/ {Uela, @, Vit) — o (2, @*) - Vit — (2, a")]

i—0 Apx[iqn,ianr\/%fn]

— [fe(z,us, Vug) — % (2, ui) - Vu; — n*(z,u;)]pde. (2.37)
On Ar X [iqn,iqn + \/%] we have that a1 = u; + 9, with

Y = [1 = bg, (xn —ign)] - [ui—1(z) — ui(z)].

Taking derivatives and recalling (2.32), (2.33), (2.34) and (2.35), we get that

C
VOl Lo ar xfigniot2D S Var
C
||V¢||L1(Ap><[iqn,iqn+ﬁ]) < q_wlC
||1/}||L1(A1"X[ilZn,’L-Qn‘i’\/%]) S qn\/qu.

We now get that
fe@,ui, V(ui + ) = 0" (@, ui) - V(us + ) = n"(2,us)]
_ [fc(x, Ui, Vug) — nl‘(x,ui) -Vu; — n“(m, ui)]||L1(Ar‘><[iq-,“7;qn+\/—+])

C-
< 02/ |Vep|2da < 02||WJ||LOO/ |Vap|da < 5. (2.38)
Ar X [ign,ign+ ] Ar X lign ign+4~] An+/qn

In the first inequality above we used the fact that Vu;(z) minimizes : p — fo(x,ui(z),p) — 0% (x, ui(x)) - p —
n“(x,u;(z)), in the last one we used the last formula. Analogously, since : z — fo(z, 2z, Va*) —n®(z, z) - VT —
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n"(z, z) is Lipschitz (with a Lipschitz constant depending only on || — o/ (¢)]|), we get

|[fe(w,a®, Va™) —n"(@,a") - V@© —n"(z,a")]
[

, U
= [fel@,ui, Va©) — 0" (z,ui) - V" —n"(@,uwi)]ll

(Arx[ign ign+—A1) <
Cally <G (239)
2 Ll(Arx[iqn,iqn+f+n]) > Qn\/q_n .
Thus
/ {Ufeloyit, V@) — (0, @t) - Vit — (o, @)
Ar x[ign yign+ =]
— [fe(@, ui, Vug) — 0" (x,u;) - Vug — 0" (z,u;)) de =
/ {fe(@,ui, V(ug + b)) — 0" (2, u;) - V(ui + ) — n*(z, uy)]
Arx[iq,“iq,ﬂrﬁ]
— [fe(@, wi, Vug) — n* (2, u;) - Vg — 0" (v, u;)] pda
+/ {[fc(x,a-‘r,va-‘r)_nx(x’a-i-),v,a-‘r_nu(x,,a-i-)]
Ar X [ign ign+ =]
o Cy Cs

— [fe(z,us, Vi) — n*(z,u;) - Va* —n*(z,u;)] }dr <

—+ =
dn+/4n dn+\/Adn dn+/Adn

where the inequality comes from (2.38) and (2.39). From the last formula and (2.37) we get

A
/ el @, Vit — i (2, @%) - Yt — (@, 5o < 1—22 = SolAr] (2.40)
AFX[O,lqn]

N

where the equality comes from (2.30). From the fact that [a+] = I[u;] + e,|Ar| we get that, if d € [u;]* and

(en,d) > \2/%5 , then

205/ Ar|
vV,

From this and (2.40), we get that, if 4 is a n-form representing d, then

([a*],d) >

/ [fC(xaa+7va+) - 77m(30aa+) : vaJr - 77u($aa+) - 775 : vaJr - Ug]df =
AFX[O,lqn]

CslAr| _ 205 Ar]| _

N A 0.

[ e V) (e a) Vi - e a e - (a7),d) <
AFX[O,lq-,L]
We can build in the same way a periodic 4~ with [a~] = l[u;] — e,|Ar| and such that
/ o, i, Vi) =i (i) - Vi~ — (i) — 1 - Vi~ = ni]da < 0
Ar x[0,mqy]

for d € [u;]t and (e, d) < %qc‘“. By (2.36) and the fact that d € [u;]* we get that

n

/ [fe(@, ui, Vug) — 0" (x,u;) - Vug — 0" (z,u;) — 0 - Vu; — nglde = 0.
AFX[ian(i‘i‘l)Qn]
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> 20Cs .

- V4,’
since u; minimizes f., and the set of minimizers of f. —n — 7y depends only on the cohomology class of 1 + 1y,

By the last three formulas, u; cannot minimize f. —7®-p—n*—n3% - p—n% when d € [u;]* and | (e, d) |

we have that the cohomology class of 7 + 14 cannot be zero if d € [u;]* and | (e, d) | > 2725. Since we know
by (2.14) that n € [u;]*, we can take g = —n and get that
2C5
|[n)n] <

TV

i.e. the thesis.

To prove the second assertion of the lemma, we notice that (2.28) is uniform in the first n — 1 frequencies.
We then apply this estimate separately to the n-th coordinate, to the (n — 1)-th, all the way down to the
(s + 1)-th. O

Remark. We refer the reader to Section 3 of [14] and to Theorem 3 of [21] for a more precise estimate on the
width of the face containing c; see also [22] for a connection with the Miller indices of crystallographers.

Lemma 2.8. Let ¢ € H and let f. be defined as before. Let B be a (—d/(¢),v1,...,vs)-lamination at ¢. Then
there is an exact n-form g,y which satisfies (2.10) on B.

Proof. Let us begin with the case in which B is a —a/(c)-lamination.

We note that, if u satisfies (1) and (2) for the Lagrangian £ and A is a unimodular transformation of R",
then u(Ax) satisfies (1) and (2) for L(A 'z, u,p- A). Since L(A 'z, u,p- A) satisfies the same hypotheses as L,
albeit with different constants, we can always consider u(Ax) instead of u. By Lemma A3 of the Appendix, we
can choose A in such a way that

—Oél(C) = (pla"'apsvps-i-la"'apn) (241)
with (p1,...,ps) € Q% and (ps41,- .-, pn) rationally independent.

Thus we have to prove the following: if p is as in (2.41) and if ¢ € 7_1(D,), there is a closed n-form 7. such
that

7. satisfies (2.10) on B for the Lagrangian f,
7. satisfies (2.11) (2.42)

[nc] =0.
Step 1. We note that m_1(D,) is a convex set, since it is the projection on R"™ of the convex D,. Let
D C 7_1(D,) be a set such that the closure of co(D) is 7_1(D,). We assert that it is sufficient to find 7.
for ¢ € D.
First of all, it is easy to check that, if A € [0,1] and if 1., and 7., satisfy (2.42) then also (1 — A\)ne, + A\je,

satisfies (2.42). Thus, we have (2.42) for all ¢ € co(D). To extend (2.42) to the closure of co(D), we consider
{ci} C co(D) with ¢; — co; we let 7, satisfy (2.42). Since 7., satisfies (2.11), we can use Ascoli-Arzela to get
a subsequence 7., converging uniformly to a n-form 7.,. We want to prove that ., satisfies (2.42). It is clear
that 7., satisfies (2.11); it also satisfies the last one of (2.42) since [1.,] = 0 and the map : n — [n] is continuous
for the uniform topology. We have to prove that 7., satisfies (2.10) for the Lagrangian f.,; but this follows

easily from the fact that 7., satisfies (2.10) for f.,, and f. depends continuously on c.

Step 2. We define the set D of Step 1.
Let m_1(D,) be the projection of D, on H, and let W, be a e-neighbourhood of 7_;(D,) in H. Since « is
concave, we get that, for any fixed ¢y € 7_1(D,),

(a/(d) = d/(cp),d —co) <0  Vd € OW,.

This and the fact that o € C* imply by a standard argument of degree theory (see for instance [9], Th. 1.3.3)
that o/ (W) contains a ball centered in o'(cp). Let now v be an exterior normal to 7_1(D,) at ¢ € m_1(D,);
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in other words, v is the slope of any plane : ¢ — (v,¢) + a such that (v,¢) +a < 0 for ¢ € 7_1(D,) and
(v,¢) +a = 0. Since o/ (Ve) D B(d/(¢p),7), we can find dy, € H such that

1 n
~a(d) = (%, B eqQr
q; and qy, are relatively prime if ¢ # j
o/ (dy) — o/ (co) (2.43)
o' (di)—a’(co)
llo’ (dr)—a’ (co)l
q,— 400 for j=1,....n

— —v

Since —a is convex and superlinear, the third one of (2.43) implies that, up to a subsequence, di, — d € m_1(D,).
Again by concavity, we have that

(o' (dy) — & (€),dy, — ¢) < 0.
By the fourth one of (2.43) we deduce that
(v,d—¢) >0
which implies that d may be different from ¢, but lies on the same face of 7_;(D,): v is an exterior normal both

at ¢ and at d.
We define D as the set of all points d obtained as above as v varies in H. We want to prove that the closure

of co(D) equals m_1(D).

Let us suppose that the closure of co(D) is strictly contained in 7_1(D,); then there is a plane : ¢ — (v,¢)+a
such that (v,c) +a < 0 for ¢ in the convex hull, and (v, ¢) + a > 0 for some ¢ € 7_1(D,). For this v, we take
a sequence dy as in (2.43) and we call d its limit; using the concavity of «, it is easy to see that (v,d — ¢) > 0.
Since (v,é) +a > 0, we get that {dy} converges to a point d € D with (v,d) + a > 0, a contradiction.

Step 3. We prove that (2.42) holds for ¢ € D.
Let dj, be as in (2.43), and let ¢ be its limit; let By, = Mﬁeac,(dk) and let us consider 73, 4, given by Lemma 2.6.

By (2.11) and Ascoli-Arzela we can suppose that 1, 4, converges in CP

to a n-form 7.. By (2.14) we have that

[an,dk] € (_O/(dk)a 1)L

and since —a/(dy) — —a/(c), we get
[ne] € (—a’(e), 1)
We want to apply Lemma 2.7 to
—a/(dr) = (Y, P e ol
By the fifth one of (2.43), the denominators of pf,. .., p¥ tend to +oc; moreover, by the second one of (2.43)

each denominator is relatively prime to the denominators of all the other pf . Thus Lemma 2.7 applies and
we get

kEToo[nB"’d’“]j =0 if j=1,...,n

Since 7 is the limit of 73, 4, , we have that
M)y =0 if j=1,...,n.

Thus 7). satisfies the third one of (2.42); the second one of (2.42) follows easily. We have to show that 7.
satisfies (2.10) on B. By (3) and Ascoli-Arzela, the elements of M"% ;| converge to the elements of a lamination
C C M_,(c); moreover, 7). clearly satisfies (2.10) on C. We also note that the elements of M_ZC,(dk) intersect the
elements of B, since by (2.43) —a/(d;) # —d/(c). Now by the same arguments as in the proof of Lemma 2.12

below we get that B C C, i.e., n satisfies (2.10) on B.
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Step 4. We now define a form 7 satisfying (2.42) when B is a (—a/(c),v1)-lamination at ¢. By Lemma A3 in
the Appendix, we can suppose that, setting as usual v; = (v¥, v}),

v = (W1, Ve, Vsrg,y oo o3 Vs, 0,...,0)
with (vq1,...,vs) € Q¢ and (Vs 41, ..., Vs) rationally independent.
By Step 3, we know that, setting C = Mﬁff,(c), we can find an exact form n¢ . which satisfies (2.10) on Mfff,(c);

applying Lemmas 2.9 and 2.10 below to this situation, we get that the space generated by D, is contained in
rat(p,1). On the other hand, since (p,v1) is admissible, we have that vy € rat(p,1). Since B is a (—a/(¢), v1)-
lamination, we can find {d;} and u; € M"%) ;) satisfying (2.3) and (2.4) at c. Let

I={(kj)€Z"xZ: —d(c) k+j=0}.
Since u; converges to a solution with invariants —a/(c),v1, we must have
liminf{(k,j) €T : wi(x+k+7) >ui(z)} cTN{{(k,j),v1) >0}

or equivalently
liminf{(k,j) €T : —a'(d;)-k+7 >0} cTn{{(k,j),v1) >0}
Since —d/(c) -k +j =0 for (k,j) € T and vy € rat(p, 1), the formula above implies that

liminf{(k,j) €T : —a'(d;)-k+7>0} C{(k,j)el: ((k,j),v)>0}=
{(k,d'(c) - k) el : k-vf + (' (c) - k)(/(c) - v]) > 0}.
The last formula implies that, for some A > 0,

—d/(d;) + d/(c)
|| = a/(di) + /(o)

— v = Nof + (d/(c) - v7)d (¢)] (2.44)

and

v € m_q(rat(—a'(c),1)) = Vo
where the space 1} is the same as in the definition of a (—a/(c), v1)-lamination. An easy calculation that the
vector v is an exterior normal to the face m_1(D, ., ) of m_1(D,).

By the formula above and the concavity argument we already employed in Step 2, we have that, if u; €
M™%, 4,y converges to a (—a’(c),v1)-lamination at c, then d; converges to the face of m_1(D,) with exterior
normal v. Let us call this face M. We want to proceed as in Steps 1 and 2: we want to find a set M C M whose
closed convex hull is M, and such that there is an exact form 7z 4y satisfying (2.10) and (2.11) at d € M.

We note as in Step 2 that

mo(a/ (We NVp)) D B(co, ) N Vo
where W, has been defined in Step 2. Thus we can find a sequence {d;} such that (2.44) is satisfied and,
moreover, if P is the projection on Vo Nv+ and vy € Vo Nwvt, we can ask

P(=d/(d;) + d/(c))
[[P(—a/(d;) + /()|

— V3.

We let M the set of all the d which are limits of such sequences {d;}. We have seen after formula (2.44) that
M C M. We set B; = M:eac,(d%) and we consider the exact forms 73, 4,) given by Step 3; using (2.44), it is
easy to see that the elements of B; converge to a set containing the (—a’(c), v1)-lamination B, and thus the
limit 73 4) of 1B, 4,) satisfies (2.10) on B. Formula (2.11) follows because the uniform limit of Lipschitz functions
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is Lipschitz. The fact that the closure of CO(M ) is M follows as in Step 2, using the fact that we can choose vq
as we want in Vp N ot.
The proof for a (—a’(c),v1, .. .,vs)-lamination is similar. O

We define AL as the linear subspace of all the elements of H"(T"*!) which, for any (—a/(c),v1,...,vs)-
lamination B at ¢, have a representative vanishing on 5.

Lemma 2.9. Let D, be a flat of a of slope p, and let D be a face of D,, or a face of a face of D,, etc...
Let (co,a(co)) € D°, and let Fp denote the linear space generated by D. Then Fp C AL ; in other words, if

co’
B C A isa(—d(co),v1,...,vs)-lamination at co, then any element (c+a(c)dxny1) € Fp has a representative n
vanishing on it.

Proof. We note that Fp is the space generated by (¢1 — co, a(c1) — a(ea)), with (¢, afe;)) € D°; thus it suffices
to prove that ¢; — co + (a(c1) — O[(CQ))CEL; has a representative vanishing on B when (¢;, a(c;)) € D°.

By Lemma 2.5, we have that B is a (—d’(c),v1,...,vs)-lamination both at ¢; and at ¢3. We can apply
Lemma 2.8 at ¢; and ¢, getting two exact forms (g ,) and 73 ., that satisfy (2.10) for f., and f., respectively.
Setting

M = c1 +1N(B,e,) + alc1)dr, 1

fla = Co + 1(B,cy) + (c2)dTpi1
we immediately get that 777 — 72 represents (¢1 + a(cl)c@) — (c2 + O[(CQ)CEL;); moreover, since 7g.c,)

satisfies (2.10) for f.,, an easy calculation yields

{ ﬁf(f, U(I)) = apﬁ(x’u(x)v VU(I))
i () = L(z, u(x), Vu(z)) = (OpL(z, u(z), Vu(z)), Vu(z))

for u € B, x € R™ and i = 1,2. But this implies that 77; — 7> vanishes on B, which is the thesis. (I

Lemma 2.10. Let D be either the flat D,, or one of its faces, subfaces, etc. Let c € D°, and let us suppose
that B is a (—a/(c),v1,...,vs)-lamination at c. Then Fp, the vector space generated by D, satisfies

Fp Crat(—ad/(c),1)Nratvy N...Nwvs.

If B is a foliation, then Fp = {0}.

Proof. We must prove that, if (¢1, a(c1)), (c2, a(c2)) are two elements of D, then
(c1 — c2,a(c1) — ale2)) € rat(—a’(c), 1) Nratvr N ... N vs.
As in Lemma 2.9, we can as well suppose that (¢;, a(c;)) € D°. As usual, we shall suppose that
m_1[rat(—a/(c),1) Nratv; N...Nwv,] = R7 x {0}.

By Lemma 2.9, ¢; —co+ (a(cl)—a(@))(@ has a representative vanishing on B. If B is a foliation, we have that
this representative vanishes everywhere, i.e. Fp = {0}, and the thesis follows. If B is not a foliation, we consider
one of its gaps, say A; let H;(i) be the map form H;(A) to H;(T™"!) induced by the injection i: A — T™*L.
By Alexander duality, the space of all forms vanishing on B is isomorphic to the image of H;(7); in particular,
it has dimension j. Thus, the thesis follows if we prove that this space contains the space generated by
d/zv\l + prdxpga, .- ,ch\j + pj(g,:l: since the dimension is the same, they must coincide.

To prove this, we note that, since B is closed by Lemma 2.12 below, the gap A is bounded by two elements

of B, say u < . Let —d/(c) = (%, cee %,ijrl, .«y pn); from the last formula above we deduce easily that u
J
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and % are periodic in the directions e, ..., e;; in other words, u(xz+¢;e;) = u(x) +p; and a(z+ ge;) = u(x) +p;
fori e (1,...,7). From this it follows that, if € is small enough, the loops

it — et + [u(te;) + €lent1 i€ (1,...,7)

have image in the gap and their projection on T"*! is closed.
We now assert that the vector space of all closed n-forms vanishing on the boundary of the gap contains

{(c;ent1) : c€RI x {0}, cpnp1=p-c}

for the base (T:a,...,c@. To prove this, we consider M = S! x [~1,1]" with coordinates z; € S*,
Zoy..yTnp1 € [—1,1]"; on M we define the vector field v = ey (xa,...,x,1) with ¢ a cutoff compactly

supported in [—1,1]". Since dive = 0, the n-form w = v dz; corresponding to v is closed; moreover, if ¢ has

integral 1, we have
/ " { 1 if i=1
{220} 0 if #1.

We now consider a neighbourhood of the loop 7; all contained in B; we send M into this neighbourhood by a
diffeo ¢;. If we extend ¢} (w) to zero outside the image of M, we get a closed form w;, supported in a gap of B

such that [w;] = g:c\l + pidx,11; this proves the assertion. O

The next lemma gives information on the structure of the Aubry set; we have used part of it in the proof of
Lemma 2.8.

Lemma 2.11. Let c € H, and let B C A, be a (—a/(c),v1,...,vs)-lamination. Then
1) B is closed in the C}., topology.

2) B contains all the u € M_q: oy with l(u) < s and vi(u) = v; for i < l(u).
3) If n =1, B contains the Aubry set of [16].

Proof. We begin to prove that B is closed. Let {u;} C B satisty

u; —u in Cp (R™) as i— +oo. (2.45)
We have to prove that u € B. Since u; has invariants (—a/(c), vy, ... s Vs) With si < s, the remarks at the
beginning of this section imply that w has invariants (—o/(c),v1,...,v) with I < liminf s} < s. Since u; € B,

we can find uy; € M;,e(cdk ) such that

up; —u; in CpL.(R") as k— 400

A(Ths) — Thi(ne) — a(e)] < 8lma 1 (0! (dis) — ' (@)]] Tor & Targe
where T}, ; denotes the current induced by wuy ;. By (2.45) and the last two formulas, we get that there is k(7)
such that
Uy —u in Ch (R") as i— +oo

|A(Tr(i),i) = Tr(iy,i(me) — a(e)| < dllmg —1(e (digay,i) — ' ()|l < w1 (e (digiy,i) — &' (0)]l

where the last inequality follows from the fact that [ < liminfs,. The last two formulas imply that u € B,
i.e. that B is closed.

Let now B be as above, and let w € M_,/(.y have invariants —a/(c), v, ..., ve with s’ < s; we must prove that
w € B. For starters, we prove this when s > 1. Let (d;,u;) satisfy (2.3) and (2.4) and let the limit v € B have
invariants (—a’(c), v1,...,vs); such a u exists by the definition of (—a/(c),v1,...,vs)-lamination. We begin to
show that w is approximated by suitable translates of u;. We note that o’ (d;) # o/(c): otherwise, I(u) = s = 0,
while we are supposing that s > 1. But, if o/(d;) # o/(c), then u; € Mff;/(di) intersects w; if instead of wu;
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we consider u;(x + k;) + j;, we can suppose that the intersection point z; is bounded as i — +oo. Now
by (3) of the introduction and the Ascoli-Arzela theorem we get that, up to a subsequence, u;(- + k;) + j; — @
in CL.(R™). Since (1) and (2) are preserved by C}. = convergence, we have that @ € M_,/ (). We note that,
since u;(x; + ki) + j; = w(x;) and z; is bounded, then @(zg) = w(xp) for some zo € R™. If u = w, then we
have that w € B; indeed, this means that w;(- + k;) + j; — w in C}. ., which is (2.3). Since u has invariants
—a/(¢),v1,...,vs, since (d;,u;) satisfies (2.4) and s’ < s, we get that

la(d;) + {0/ (di), ¢ — d5) — a(e)] < 3y (' (d;) — &/ (€))]

which is (2.4) for w.

To prove that @ = w, we use the result of [4] we mentioned at the beginning of this section: if u,w € M_,/ (),
if u(xo) = w(xo) and if the invariants of @ are contained in, or contain the invariants of w, then @ = w. We
have already seen that @(zg) = w(zg). To determine the relation between the invariants, we note that wu is
approximated by {u;} and @ by {u;(x + k;) + j; }; by the remarks at the beginning of this section, we have that
the invariants of u are contained in, or contain, those of w, which is exactly what we wanted to prove.

To prove point 2) when s = 0, we begin to show that Mﬁff,(c) C B; it suffices to show that u € Mﬁff,(c)
satisfies (2.3) and (2.4). But this follows immediately if we take d; = ¢ and w; = w. This implies that, if
—a'(c) € Q" then B contains all the u € M_ () with I(u) = 0; this is because, when —a/(c) € Q", it is easy to
see that [(u) = 0 iff u is recurrent. Let now —a’(c¢) € R™\ Q"; we know from Lemma 2.9 that the flat D of «
containing ¢ is contained in rat(—a/(c),1). Since —a’(c) has at least one irrational component, we have that
m_1(rat(—a’(c),1)) has codimension at least 1. But then by Lemma 2.9 w_;(D) has codimension at least 1.
Thus ¢ € m_1(D) is accumulated by points outside D, i.e. we can find d; — ¢ with —a/(d;) # —a'(¢). Now
the elements u; € M"Y, ;) converge to the elements of a (—a/(c))-lamination by Lemma 2.3; moreover, since
—a/(d;) # —d/(c), they intersect any u € M_,(.), among which the ones with [(u) = 0; now the same argument
as above yields that {u;} converges, up to a subsequence, to u, i.e. u € B.

To prove point 3), we distinguish various cases. In the first one, p € R\ Q; but then M, is ordered and all
its elements u have I(u) = 0; by point 2), this implies that M, is the Aubry set at ¢; since M, is the Aubry set
also in the sense of [16], we have done in this case. The other cases are when p € Q and

D, = {(c.a(c)) : c€ [er,cal}

If ¢ = ¢y, then it is easy to see that the limits of sequences u; € M_(q,) with {d;} satisfying (2.4) at ¢ = ¢; have
invariants (p, (—1, p)); by point 2), this implies that our Aubry set is M, 1 ,)), which is also the Aubry set in
the sense of [16]. The situation at co is analogous. If ¢ € (1, ¢c2), we see easily that our Aubry set is Mﬁeac,(c),
which again coincides with the Aubry set of [16]. O

2.4. The flat extends into the rational space

We begin with a lemma about the shape of D, for rational frequencies.

Lemma 2.12. Let us suppose that p* € Q™ and that

1 b1 pL
PZ: (q_17"'7q_L7piL+17"'7pzn) .

Let p,vq,. .., v be admissible and let us denote by C the lamination of all the w € M, with l(u) <t and v;(u) = v;
fori <l(u). Let us suppose that the gaps of C contain elements of M, with different invariants or, equivalently,
that M, .y, .....v,) is not ordered. Let us suppose that the elements of Mprfc converge to elements of C, and let D
be the flat of o of slope p'. Then there is v > 0 such that the following holds: if j € (1,...,L) and if i is large
enough, then we can find (d,a(d)), (d',a(d")) € D, such that

[ (e, (d, a(d)) = (d', a(d))) | = -
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Proof. Let us pick d; with —a/(d;) = p;; as usual, we consider the Lagrangian fg, and the related a-function ay;
the latter satisfies a;(0) = 0, —a(0) = p*. We call A; the mean action of fy, and we suppose for the moment
that ¢; is relatively prime to the other denominators.

Step 1: Heteroclinics in M.

Let Ar, C R"! be a fundamental domain for (Z—j, R ’;—Z,pf"’l, ...,p}). Since ¢ is relatively prime to
the other denominators, [0,q1] X Ap, is a fundamental domain for p* by Lemma A2 of the Appendix. Let
(ki,ji) € Z™ x Z be such that

vi=p' kit i >0
be minimal. We get as in formula (2.30) that

1
o @|Ar,| =1l e N. (2.46)

3

We set

, |
1,8 — 7 :l: e
pL =P s 1

and we select u’;® € M?eS. We have that u'y® satisfies
i
uité(ac + q1se1) = uité(ac) +pis+ 1.

Our first step consist in fixing ¢ and letting s — +00; we shall study the limits of uf as s — +o0o. Let u; € M;fc;
from point 4) of Lemma Al we see that, for [; defined as in (2.46),

For 0 < m < I;, let us define
Gl ={r e R"™: ui(x+mk;) +mj; < uf(ac) <wui(z+ (m+1)k;) + (m+1)7;,

(x2,...,xn) € Ar, }.
By the last three formulae, we get that

1i—1
U GE = {z: wi(z) <u’(z) < wiz) + 1}
m=0

is a fundamental domain for uT, equivalent to [0, sq1] x Ar,. We define analogously G, for u”*. Now

/[O I ) e Ve =
»8q1| X Ar,

li—1
Z {/ E(:E,uf,Vuf)d:ch/ L(z,u””, Vul")dz|. (2.47)
m=0 G Gm

1,8 _

We now show that we can translate u 7 and ui_’s in such a way that they intersect in g,jl ng
the last formula to hold for the translates.
For r € N, let

m; we also want

Gh ={z e R": wj(x+ mk;) + mj; < u:_‘(’(ac +rqrer) —rp1 < wi(z + (m+ ki) + (m + 1) 7,
(l’g,...,l‘n) EAF-;}'



33 U. BESSI

It is easy to see that C:'j‘n = G}, — rqie1; moreover, uf(x +rqrer) — rp1|é7+" is a translate of uf|é+ This
implies that we can translate u’;® in such a way that they intersect between wu;(z 4+ mk;) +m7j; and w;(z + (m +
1)k;) + (m+1)j;; the strip between these two periodic solutions translates to itself and the action of the portion
of uifts contained in the strip remains unchanged. Let us call ° a point of intersection; we can also require
that 2% is bounded for s € Z, and that the distance of (2%, u’;*(z"*)) from the graphs of u;(x + mk;) + mj;
and u;(x + (m + 1)k;) + (m + 1)j; is bounded away from 0. Using (3) and Ascoli-Arzela we get that there are
uﬂr, ul € M () such that

,8 .8

ui® — u”® — ' in CL.(R") ass— +oo. (2.48)

It is easy to see that uf,r has invariants p;, (e1, —p1), and u’ has invariants p;, (—e1, p1). In other words, u’, are
heteroclinics living in the gap

{(x,znp1)  wi(e +mk;) +mjs < g1 < ui(z+ (m+ k) + (m+1)5:}

We also note that uf‘_ # 4’ , since they have different invariants.

Step 2: Action estimates.
We now use an argument of [17] and [19]: we set

{ Umax () = max(u'y (), u’ (z))
'U/min(f) = min ’U:g_ (I), u” ($))

Let 1 € G}, NG,, and § > 0 be such that umax(21) = Umin (1), but Umax and umin do not coincide in B(z1, ) C

G NG osince Umax = Umin, by the maximum principle they cannot be both solutions of (4) in B(z1,4d). In

particular, they cannot both be minimal in B(z1, ). Let us suppose to fix ideas that umyax is not minimal; thus
we can find ¢; ., € C§5°(B(z1,0)) and a;, > 0 such that

/ E(CL’, Umax vumax)dx - 2ai,m Z / E(LL’, Umax + ¢i,m; v(umax + (bz,m))dx
B(z1,0) B(z1,6)

Since

/ d; - Vodzr =0
B(zl,zi)

by the divergence theorem, we can as well write

/ fdi (I) Umax vumax)dx - 2ai,m Z / fdi ($, Umax + ¢i,m, v(umax + ¢17m))dx
B(z1,6) B(z1,6)

Actually, by Lemma 2.8 we can add an exact form to fg, in such a way that

Since

[ faload Va4 faloat Ve = [ (a0 s Vi) + (02 Vi)l
B(z1,0) B(x1,9)
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FIGURE 1. The dotted and dashed lines cannot both be minimizers.

we have that

/ [fdl (ma Uér, Vu;) + fa, (x, uia VUL)]dm —2a;m >
B(z1,0)
[ Ut + s T+ 61m)) + (0, Vi . (2:49)
B(z1,6)
Let us define

,m

{ ul™ () = min[max(u?’(2), u
ul™ (2) = max[min(u’® (2), u
)

25(@)), i@ + (m 4 Dks) + (m+1)ji]
(@), il + mki) + myi].

min

We refer the reader to Flgure 1: ui(x + mk;) + mj; and w;(x + (m + 1)k;) + (m + 1)j; are the two continuous

horizontal lines, u';* and u”* are the two continuous slanted lines, w57, is the dotted line and uinﬁ is the dashed
line.

We have that, for ¢ large,

/ fa,(x uJr ,Vuf)dac + fa,(z, ub® Vui;s)dx :/ fa,(z, u+ ,Vuf) x
e

G FA\B(z1,8)

—|—/ fdi(x,ui’s,Vuif)dx —|—/ [fa, (m,uis,Vuf) + fa, (a:,uis,V(uf))]dx
m\B(z1,6) B(z1,0)
> / fa;(z, u+ ,Vuf)d:r +/ fdi(x,ui_’s,Vui_’s)d:r
GH\B(z1,9) Gm\B(z1,0)

+/ [fd (l‘ umr'?x+¢ma ( mmx+¢m))+fdi(xﬂuﬁlﬁ7v mln)]dx+alm

1

/ fd €T ummx+¢l ms ( mmx+¢lm dl‘—i—/ fd :n”;;l,v inrrlr;l)dx—i_alm

/[ » [fa, (@, ub + Gim, V(Ui + biim)) + fa. (@, upi, Vupi)]dz + aim.  (2.50)
0,8q1] X Ar,

The first inequality of the formula above comes from (2.48) and (2.49), and the last equality comes from the
fact that

fa,(z,u;, Vug) = 0.
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We have that
/ [ (o, V™) + fu (o, 0", V) =
[0 Sql] XAF

[/ Jai(@ u+ ,Vu:f’ dx—i—/ fa,(x ub® Vui_’s)dx]

li—1

> Z /0 fd ($ umrgx—’—(bm) ( max+¢m)) +fd ( ;:’ILNV mln)]dx+al m} . (251)

,8q1] X Ar;

In the equality above, we have used the fact that Ul ! Gt

inequality, we have used (2.50).

are fundamental domains for ui respectively; in the

Step 3: Uniformity.
Now let (k},j!) € Z"~! x Z be such that

1 P2 PL n ;

7= <—,...,—,pf+1,...,pi k440> 0

i 42 qrL

be minimal. We know from Lemma Al that I, € N, and from (2.30) that I, = |Ar,|. We note that, by (2.46),
l; = llq1. We now translate the four functions u(x +mk;) +mj;, u(z+ (m+1)k;) + (m+1)j; and u’® by (kl, jl);
we obtain u(x + (m + q1)ki) + (m + q1)ji, w(x + (m+q + ki) + (m+q1 +1)j; and u’*(x + k.) + j/. In other
words, Gy, and the two heteroclinics intersecting in G,, are brought to G,,44,. As a consequence,

Aiym = Qim+qr = -+ = Qim4-(1,—1)q1 -

If we denote by {m} the equivalence class of m modulo q;, we get that a;,,, = a; {,}. Now we get from (2.51)
that

/[o e [fa, (2,05, V™) + fa, (, 0>, Vub®)de >
$q1| X Ar,

) [/[0 ha [fa, (2, uplZe + Gy V(Ui + dm)) + fa, (, uih, Vurs Az + a; gmy | - (2.52)
m= Sq1] X Ar;

Now it is easy to see that, for at least one equivalence class {m}, the two solutions bounding G;; converge in Cllo .
to different elements of C; otherwise, we would have that u;(x + k;) + j; — u;(x) — 0, while we know that it is
constantly 1. But this implies that we can choose mm is such a way that, on G, the heteroclinics u’. converge
to intersecting heteroclinics, say u+, in a gap of C as i — +o0o. Since ulié are close to ug on B(z1,0) for i, s
large, we get that a; {»y > a > 0. Since in an equivalence class there are [; =

/[o " [fa, (2,05, V™) + fa, (z, 0, Vub®)de >
$q1| X Ar

l;—1
S / Far (s 4 iy VT + Bi)) + Far(, a2 Ve dz + al Ap, |
07 [0,8q1]x Ar

m=
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The last formula implies that there is at least one u%™ + ¢; ; or u:nTn, which we call @, such that

1 - - - - 1
/ fa,(z, 0, Va)dr < —/ [fa, (x,u’”, Vul®) + fa,(z,u"’, Vu®)|de — —alAr,|.
[0,sq1]x Ar, [0,sq1]x Ar, ly

By (2.46), we have

1

- / fa, (z, 4, Vi)de < a
[0,sq1]x Ar,

1 . . . .
_— fa, (@, u®, V™) + faq, (x, 02, Vub®)|de — —-
S SQ1|AF1| [O,sql]XApi[ ( T + ) ( ’ ’ )] Sq1

We now denote by Tjt’s the currents associated to uzié respectively; we denote by A; the action of fg4, and
by «; the a-functional associated to A;. As usual, we have that «;(0) = 0, —a}(0) = p;. In the first term of the
last formula, we divided by sqi1]|Ar,|, the volume of the fundamental domain of w’;°; thus this term is the sum

,S

of the mean actions of u%” and u”°, and we get

1 - -
3 fa (8, VA)dz < A(TES) + AT — . (2.53)
s [0,sq1]x Ar, Sq1

On the other side, if d* are such that o/(d") = pL*, we have that
02 ou(d") o auld?) + (1,7 +d27) = AT = (0, d27) o ATY) = (77 o+ (' 4 027)
= A(TH") + AT — <€_17di+,s _ di_,s>
sq1

! y ~ i, i, a <61’d157d1_75>
z [fd,, (x’“a Va) + fa, (f, Uy s Vur;“-n)]dx - 7.
S [O,sql]XAFi sq1 squ

In the formula above, the first inequality comes from the fact that «; is concave, a;(0) = 0 and —a4(0) = p;;
the first equality comes from the fact that a;(d%®) is realized by T77°, the second equality from the definition

]

of p* and p%°; the last inequality comes from (2.53). Now the last formula implies that

/ fa,(z, 0, Va)de <0
[O,Sql] XAFi

if
<61,dﬁf — di,’s> <a.

Since the integral above cannot be negative without contradicting the minimality of u;, we get that
(e, di? +d2) | > a

which clearly implies the thesis. If ¢; is not relatively prime to the other denominators, the proof remains the
same, only the arithmetic arguments become a little more complicated. O

Lemma 2.13. Let us consider D,, the flat of a of slope p; we have called Fp, the space it generates. Let
(c,a(c)) € Dy. Then
0 if M, is an ordered set

rat(p, 1) otherwise. (2.54)

dimFDP = {

Moreover, A, is a p lamination at c.
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Let D, .,y be the face of D, with exterior normal vi. Let (c,a(c)) € D?pm); then

0 if M,.,) is an ordered set

rat(p, 1) Nrat vy otherwise. (2.55)

dim FD(p,m) = {

Moreover, A. is a (p,v1)-lamination at c.
Similar statements hold for the faces of D, ., the faces of the faces, down to dimension zero.

Proof. Let us begin with the statement for D,; since (¢, a(c)) € Dy, we have that p = —a’(c). We begin to take
d; = ¢ in (2.4), and we get that M™%, ) is contained in a —a/(c¢)-lamination at ¢; by Lemma 2.10,

Fp_ C rat(—a’(c), 1).

a’(e)
If M, is an ordered set, then by [4] there are only three possibilities: either rat(—a/(c), 1) is reduced to zero, or
M, is a foliation, or both. In all these cases, FDw,(c) = {0}: in the first one by the last formula, in the second
and third one by the last assertion of Lemma 2.10. This proves the first case of (2.54).

We prove the second case of (2.54). If M_, () is not an ordered set, then we consider the lamination C of
all the u € M_,/ () with I(u) = 0. By [4], the gaps of C contain elements of M_,/ () with different invariants,
i.e. C satisfies the hypotheses of Lemma 2.12. By Lemma A3 of the appendix, we can suppose that

_al(c) = (pla' <o Pl Pl41s - - 7pn)

with (p1,..., ) € Q' and (pj11,-- ., pn) rationally independent. Let p’ € Q™ be such that

pi: (pla"'7plap;+1a"'7piz)*> (p17~'~7plapl+17~'~apn)~

We can find d; € H such that —a/(d;) = p’; since —« is superlinear and —a/(d;) — —ao/(c), we get that {d;}
is bounded and we can suppose that d; — d; clearly, o/ (d) = o/(c) and we have that (d,a(d)) € D_, (). Let
u; € M;fc; since the rational coordinates of p; coincide with those of —a/(c), one sees easily that u; converges to
u periodic in the first | coordinates; this in turn implies that {(u) = 0 and thus that u € C. Since the gaps of C
contain elements with different invariants, we can apply Lemma 2.12 and get that the flat of o at d; contains a
ball B((c;, a(ci)),r)Nrat(p?, 1), with r which does not depend on i. We note that ¢; does not necessarily coincide
with d;, it only lies on the same flat. Denoting by d the limit of the sequence {ci}, we get that d lies on the same
flat as ¢ and d; moreover, this flat contains a ball B((d, a(d)), r)Nrat(—a’(c),1). Thus Fp_ D rat(—a/(¢),1);
since we have already proven the opposite inclusion, we have the second case of (2.54).

We have to prove that A, is a p-lamination at ¢. Let us consider the sequence {d;} of the paragraph above,
and let B be the set of the limits of the elements of M_(4,); the proof of Lemma 2.11 shows that B contains all
the elements u of M_ /() with [(u) = 0, while from Lemma 2.3 we get that (2.3) and (2.4) hold. This proves
that A, contains a —a/(c)-lamination. Now A, cannot contain any p-lamination with 5 # —a/(c): since a is C*,
it is easy to verify that no sequence {d;} can verify (2.4) if —a/(d;) does not converge to —a’(c). It remains to

a’(e)

prove that A. does not contain any (—a/(c),v1,...,vs)-lamination at ¢ with s > 1; we shall prove this when
s =1.
If dim Fp_ .., >0, A, cannot contain any (—a’(c),v1)-lamination, otherwise by Lemma 2.10 Fp_,., C

rat(—a/(c),1) Nratvy, i.e. the dimension of Fp__, =~ would be strictly smaller than the one given by (2.54). If
dim Fp__, ., =0, there are two cases: in the first one, rat(—a’(c), 1) = {0}; since by [4] v1 € rat(—a'(c), 1), we
cannot have any (—a’(c), v1)-lamination at c. In the second one, rat(—a’(c), 1) # 0, but M_, () is an ordered
set; by [4], these two conditions imply that M_ /(. is a foliation. But then, again by [4], there is no u € M_ /()
with [(u) > 0, and again the assertion follows.
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o

We now prove formula (2.55). Let us consider the face Dy, .,) and let us suppose that (c,a(c)) € D, -

Again by Lemma A3 of the Appendix, we can suppose that vy, the first invariant of C, satisfies
7T,1(1}1) = ()\1, ey )\m)\erla ceey >\l7 0, ey 0) (256)

with (A1,..., An) € Q™ and (Ap41, . - -, Ar) rationally independent. We want to show that there is a (—a/(c), v1)-
lamination at c. To this purpose, we consider v, the normal in 7_1(rat(p, 1)) to 7_1(D(,.,)), and we let

1
pi = —ad(c) + -0 (2.57)

We find d; be such that —a/(d;) = p;. We can suppose as before that d; — d, with (d, a(d)) € D_,/(.). Since a
is concave, we have that, if o/(¢’) = o/(¢), then

0> (d/(d;) — (), d; — ) = <—%v,di — c’> :
Passing to the limit, the inequality above implies that
(v,d—c') >0
if ¢ € m_1(D_q/(c)); since equality is attained for ¢’ = d, we have that d lies on the face of m_1(D_,/(c)) with
exterior normal v. Now we see that, by our choice of p;, u; € M converges to u € C; since d; satisfies

condition (2.6) of Lemma 2.3, C is a (—a’(¢), v1)-lamination at d. We assert that C is a (—a’(c), v1)-lamination
also at c. This is because

dl|mo(a’ (di) — &/ ()| = a(di) + (@ (d;),d — di) — a(d)
= a(d;) + (o' (di), d — di) — [a(c) + (d/(c), d — ¢)]
= a(d;) + (/(d;),c — d;) — a(c)

where the first inequality is (2.4) at d, the first equality comes from the fact that ¢ and d are on the same
flat of @ and the second one from (2.57) and the fact that d; — ¢ L v since d and ¢ are both on a face whose
exterior normal is v. By the last formula, (2.4) holds at ¢ too, i.e. C is a (—a/(c),v1)-lamination at ¢; since
(¢, () € DU_r(0).0,)» We get by Lemma 2.10 that

Fp._, C rat(—a/(c),1) Nratv;.

’(e),v1)

Now there are two cases: in the first one, B, the (—a/(¢), v1)-lamination at ¢, is a foliation, or rat(—a’(c),v1) N
rat v; = 0; in this case, we prove as before that Fp,.,,, = 0. In the second case, the gaps of B contain elements
with different invariants. By (2.56) and Lemma 2.12 the projections on R™ of the flats of « at d; contain balls
in R™ x {0} of fixed radius; thus the projection of the flat at d contains a ball in R™ x {0}; but this means that

Tr_l(FD(—a’(c),Ul)) D R™ x {0}

or, by (2.56),
Fp S rat(—a’(c),1) Nratv;. 2.58
(—a’(e),v1)

This proves the second case of (2.55).
This also proves that there are no (—a/(c), v1, v2)-laminations at c¢: if there were one, then by Lemma 2.10

FD_ iy, Crat(—=a’(c), 1) Nrat(vr) Nrat(vs) (2.59)
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contradicting (2.58). We have to prove that there are no (—a’(c), vs)-laminations at ¢ with v # vy for
any A > 0. We have just seen that, if at ¢ there were both a (—a/(c),v1) and a (—o/(¢), v2)-lamination, then
D_ /() would have the exterior normals v; and v2 and obviously all their linear combinations. Let v; and vz
be as above; we assert that ratv; = ratve; indeed, if it were not so, then (2.59) would again contradict (2.58).
Let us suppose by contradiction that

’/'T,l(UQ) = ()\1,...,>\m,>\;n,..., 2,0,...,0)
with (A, 1,...,A;) rationally independent and (X, 1,...,A]) # (Mms1,---,A1). Setting
v = (1= p)or + po2

we get that there is € (0, 1) such that rat(—a’(c), 1) Nrat v, strictly contains rat(—a/(c),1) Nratv;. We also
get as before that A, contains a (—a’(c),v,)-lamination C. There are two cases: in the first one C satisfies the
hypotheses of Lemma 2.12, and thus the dimension of FD@a/(c),vu) = FD(famc),vl) is strictly larger than that of
rat(—a’(c),1) Nrat vy, a contradiction with Lemma 2.10. In the second one, C does not satisfy the hypotheses
of Lemma 2.12, and then by Lemma 2.10 D(_,/(c),0,) is reduced to a point.

Now rat(—a’(c), 1) Nratv, # 0, and the gaps of C do not contain elements with different invariants; this

easily implies that C is a foliation. Let us consider the form 7 .y defined in (2.10), and let

Li(x,u,p) = L(x,u,p) = Nc,e) P~ Nec,e)-
The lamination of the u € M_,/(.y with I(u) = 0 has gaps, otherwise by [4] we would not have any (—a’(c), v1)-
lamination at c. Let uy < uy be two elements of M_ ;) with I(u1) = [(u2) = 0; let us suppose that they bound
a gap and let us consider the strip

Se={(z,y) e R" xR : ui(z) +e <y <uz(x)—e€l

Since uy < ug the strip above is not empty if € is sufficiently small. We recall that, if v € C, then Vu(z) is the
unique minimizer of : p — L4 (z,u(x),p); by compactness, there is a > 0 such that

Li(x,w,Vw) > a
if w belongs to a (—a’(¢), v1)-lamination and (x,w(x)) € Sc. Let now &/(d;) € Q™ and
o' (di) — d(e) with o (d;) — ' (c) € m_1(rat(—a’(c), 1)).

If o/(d;) — o/(c) = +v1, we have that u; € M™%, 4, converge to the elements of a (—a/(¢),v1)-lamination.
Moreover, it is easy to see that

i mux € B0,R) : (z,u(x)) € S.}| > Cllmo(a’(d;) — &/(¢))]

where g is the projection on 7m_;(rat(—a’(c), 1)). By the last three formulas and the fact that £;(x,u,p) > 0,
we get that, denoting by T; the current induced by u;,

A(Ti) = Calld/(di) — o/ (c) |

a contradiction with Lemma 2.3.
Using induction and a similar argument, the lemma follows for all subfaces. O
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Proof of proposition 2.4. The direct part of point 1) is Lemma 2.5. Points 2) and 3) follow from Lemma 2.13.

The converse part of point 1) follows from point 2): if A, is a (p,v1,...,vs)-lamination and A,, C A,
then by point 2) A., is a (p,v1,...,Vs,Vst1,-..,v)-lamination; again by point 2), ¢; € D?pm’_“,vs), while
c € D? i.e. co belongs to a subface of ¢;. O

(P15 Vs Vs 15000501))
APPENDIX

Lemma A1l. Let p € Q", let u € M;“° and let
={keZ": p-keZ}.
Let also (k, j) be such that
u(x +k)+j —u(z) = minf{u(z + k) +j —u(z) : u(z+k)+j—ulx) >0, (kj)e€Z"xZ}.

Then the following holds. -
1) The set of the minima (k, j) does not depend on z; moreover, (k, j) satisfies the equation above iff

p-k+j=min{p-k+j: p-k+j>0, (kj)eZ"xZ}
2) If Ar is a fundamental domain for T, then the set
S={(z,vn41) : v€ Ar, u(z) <y <ulz+ 1}) +5}

projects injectively and surjectively onto T"*1.
3) The Lebesgue measure of S is 1.

Proof. Point 1) follows easily from a fact proven in [17]: the set {u(x + k) +j : (k,j) € Z"™ x Z} is ordered,
and u(z + k) + 7> u(z) iff p-k+7>0.

As for point 2), we begin to prove that the projection of S on T™"! is injective. Let us suppose by contra-
diction that (z,2,41) € S and (z + k, .1 4+ j) € S for some (k,7) € (Z" x Z) \ {0}. Since (z,z,41) € S we
have that

Ty <u(z+k)+7 and w(z) < zpp
and since (z 4 k, Zn 41 + J) € S we have that

u(:ﬂ+l~€) <Tpp1+7 and Tup+J < u(lx+k+k)+7.
From the left sides of the two formulas above we get that
u(z+k)+j>ulz+k)—j
which contradicts the minimality of (k,;) when u(z + k) — j~> u(z). The case u(x + k) — j = u(z) cannot
happen, because by the periodicity of w it would imply that & € I'; but this contradicts the fact that x and

z + k belong to Ar, the fundamental domain of T'. It remains the case u(z + k) —j < u(x); in this case, we use
the right sides of the two formulas above and we get that

u(x 4+ k+k)+7>u(x)+7

or equivalently B B - -
uly+k)+j>uly—k)+ 7.
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Since u(y — k) +j > u(y), we again get that (k, ) is not minimal. This proves that S projects injectively.

Before proving that S projects surjectively, we prove point 4). It is easy to see that p-k +j € (0,1): it is
greater than zero by definition, and if it were larger than 1, we could show that (k,j) is not minimal simply
considering (k,j — 1). Let I € N be such that I(p-k + j) < 1 is maximal; in particular,

0<1—1I(p-k+7) <lp-k+7).

Now, 1 —l(p-k+j) =0, otherwise we would have two strict inequalities in the formula above, and this would
contradict the minimality of (k, ). Thus we get

Wp-k+j)=1

which is point 4).
We now show that S projects surjectively onto T"*1. Let (x,2,41) be such that

u(r) < Tpe1 < u(z) + 1.

We have to prove that an integer translate of (z,x,11) belongs to S. Since u is non self intersecting, we have
that

u(z) <ulr+k)+7<ul@+2k)+2j<...<u(z+1k)+1j =ux) +1

where the last equality comes from point 4). Thus
u(z + sk) + 85 < xpy1 <ulr+ (s + k) + (s +1)j

for some 0 < s <1 — 1. But this means that (x 4 sk, 2,1 — sj) € S, which yields surjectivity.
Now point 3) follows immediately from point 2), because S is brought bijectively onto T"*! by the projection,
a measure-preserving map. O

Lemma A2. Let
(ﬁ,...,p—”_l,@) ceQ"
q1 dn—1 (Qn
and let g, be relatively prime to ¢; for 1 <i <mn — 1. Let A be a fundamental domain for

F’:{k’eZ”lz TRy VA eZ}.

q1 qn—1

Then Ars x [0, ¢,) is a fundamental domain for

F{keZ”: k1&+...+knp—”ez}.

q1 An

Proof. Tt is easy to see that, if the statement is true for a particular fundamental domain A/ of IV, then it is
true for any fundamental domain. We choose a particular Ars in the following way: we pick k1 € TV \ {0} of
minimal norm, ks € I\ Rk; of minimal distance from Rk, etc. It is a standard fact that ki,...,k,—1 are a
basis of IV, and that

AFI :{IL'I GRn_l : I'I:tlk?1+...+tn,1k'n,1, Ogtz < ].}

is a fundamental domain of IV. We can always build a fundamental domain from a base using the formula
above; thus, to prove that Aps x [0, g,) is a fundamental domain of G, is equivalent to prove that ki,...,kn—1,¢n
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is a base of I'. Let us suppose by contradiction that it is not: thus we can find (a1,...,a,) € T' which is not
generated by the vectors (ki,...,kn—1,¢n). Since (a1,...,a,) € I', we have that

]2041 4.+ pn_lan_l + @an € Z.

q1 Gn—1 n
There are two cases. If (a1, ..., a,—1) is not generated by the basis of TV, k1, ..., kn—1, then %aﬁ—. ) .—l—Z:—:an_l
is not an integer, but a fraction containing some factor of ¢; in the denominator; since ¢, is relatively prime
to g;, it is easy to see that the sum displayed above is not an integer. On the other side, if (aq,...,an—1) is
generated by the vectors kq,...,k,_1, but a,, is not a multiple of g,, then the sum of the first n — 1 terms in
the formula above is an integer, but %an ¢ 7, and again the full sum is not in Z. O

The following well-known lemma simplifies many calculations; we recall that a vector v € R?® is rationally
independent if there is no k € Z* \ {0} such that k-v € Z.

Lemma A3. Let u € M, have invariants p, vy, ...,v;. Then, up to a unimodular transformation of R", we can
suppose that

p= (Pla--isaPerlw'an)

with (p1,...,ps) € Q° and (pst1,...,pn) rationally independent. Moreover, if we set v; = (v7,v}) as in
Section 1, we can suppose that

x _ (1 s, s +1 s _ (T x
vf = (vy,...,07 0] T L 07,0, 0), vy = (v],—p-v7)

with (v!,...,v5") € Q¥ and (vf/"’l, ..., v7) rationally independent, etc.

Proof. We must show that there is A, a unimodular transformation of R™ which brings the rotation vector p
to the required form. We consider

={keZ": p-keZ}.
If T is n-dimensional, we have that p € Q™ and taking the identity matrix will do. If the dimension of T" is
s < n, we build a basis of R™ in the following way.

Let us begin to suppose that I' has the following property: for k € T", all the integer vectors on the ray from 0
to k are in T'.

We take ky € T'\ {0} of minimal norm, k2 € I' \ {Rk;} of minimal distance from {Rk;}, up to ks € T. We
take ksy1 € Z™ \ T of minimal distance from T, ks1o € Z™\ < T',ks41 > of minimal distance from < T', kg1 >,
etc. We define

Br = {tlkl ++tnk’n, 0<t; < 1}

It is clear that translating Br by the elements of Z™ we cover all R”, and this implies that |Br| > 1. To show
that |Br| < 1, by Theorem 3.34 of [11] it suffices to show that Br does not contain elements of Z™ in its interior;
but this is an easy consequence of the choice of the k; and of our hypothesis on the rays of I'. Now the matrix
A= (k1,...,ky) brings the unit cube into Br; since |Br| =1, (ki1, ..., ky) is unimodular; we assert that AT is
the matrix we are looking for. Indeed, A brings the unit cube into Br, and thus it brings Z° x {0} into I'; now
<pAT, k> is an integer iff (p, Ak) is an integer, and we know that this happens iff Ak € T, i.e. iff k € Z° x {0}.
To state it differently,

(pAT, 1) N (Z" x Z) = {(k,— (pAT ,k)) : ke Z* x {0}}.

But this means that (pAT, 1)+ contains (e1, j1), - . ., (€s, js) With j1, ..., js € Z. In other words, (pAT, e;)+j; =0
ifi € (1,...,s), i.e. the first s coordinates of pA” the slope of u o AT, are integers.

Let us now suppose that I' does not have the property mentioned above; we extend I' to r adding all the
integer vectors on the rays Ok with k& € I'. Starting from I, we build a basis ki, ..., k, as we did before for T.
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Since k; € T, if k; ¢ T we can find a minimal r; € N such that r;k; € I'. We consider the matrix A = (ki,...,kp)
and we see as before that it is unimodular; moreover, it brings the module generated by rieq,...,rses into T';
the same argument we used above shows that <pAT, riei> +ji=0forie(1,...,s), i.e. the first s coordinates
of pAT € Q® x {0} are rational.

It remains to prove that (ps41,...,pn) is rationally independent, but if it were not so, then we could find
k € {0} x Z"~* such that Ak-(psi1,-..,pn) € Z. But then the module of integer vectors orthogonal to (pA”', 1)
would generate

{(k,— (pA" k) = k € Z° x {0}} + ((Ak, —p - Ak))
contradicting the fact that (pAT, 1)+ N (Z" x Z) projects to Z*.

We now show that we can bring v; to the required form by another unimodular transformation; we shall
suppose that p = (p1,..., P, Pst1s--sPn)s With (p1,...,ps) € Q™ and (pst1,...,pn) rationally indepen-
dent. Since v; is admissible, we have that v € rat(p,1), i.e. v1 = (1,...,05,0,...,0,ap+1) With @11 =
—{p,(a1,...,0s,0,...,0)). The projection of ratv; on R?® coincides with a certain module I' C Z°. But we
have just seen how to find a unimodular transformation of R® bringing the first s coordinates of v; to the form
(1, Qery g1y .oy s, 0,00, 0) with (aq,...,a4) € Q* and (s/41, .- ., ) rationally independent. O
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