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STABILITY AND SENSITIVITY ANALYSIS FOR OPTIMAL CONTROL
PROBLEMS WITH A FIRST-ORDER STATE CONSTRAINT

AND APPLICATION TO CONTINUATION METHODS
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Abstract. The paper deals with an optimal control problem with a scalar first-order state constraint
and a scalar control. In presence of (nonessential) touch points, the arc structure of the trajectory is
not stable. Under some reasonable assumptions, we show that boundary arcs are structurally stable,
and that touch point can either remain so, vanish or be transformed into a single boundary arc.
Assuming a weak second-order optimality condition (equivalent to uniform quadratic growth), stability
and sensitivity results are given. The main tools are the study of a quadratic tangent problem and the
notion of strong regularity. Those results enable us to design a new continuation algorithm, presented
at the end of the paper, that handles automatically changes in the structure of the trajectory.
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Introduction

This paper deals with an optimal control problem (of an ordinary differential equation) with a scalar first-
order state constraint and a scalar control, with a free final state and no control constraints. It is well-known
that for first-order state constraints, when the strengthened Legendre-Clebsch condition holds and the state
constraint is regular, touch points (locally unique times where the constraint is active) are nonessential (the
associated jump of the multiplier is null) (see e.g. [17,19]). Situations where touch points are present may be
encountered, for instance, when solving the optimal control problem by indirect approaches using an homotopy
method in order to guess the arc structure of the trajectory, see e.g. the example in [3]. Therefore it is of
interest to study sensitivity of solutions around touch points, when the constraint becomes active. Under a
small perturbation, several events may occur. Among them, the constraint may locally become inactive, the
touch point may remain a touch point, or it may give rise to a boundary arc. Our main result is that, under
natural hypotheses, these are the only three possibilities, and that the boundary arcs have a length of the order
of the perturbation, and satisfy a “strict complementarity” hypothesis. In addition, we show how to compute
a first-order expansion of the solution. The analysis uses in a critical way a certain tangent quadratic problem,
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and at the same time is in the spirit of the shooting approach, in the sense that touch points are converted into
boundary arcs of zero length, and we compute the first-order expansion of all entry and exit points. Fréchet
directional derivatives are obtained as the solution of an inequality-constrained linear quadratic problem. The
proof applies the notion of “strong regularity” in the sense of Robinson [31] to a system that happens to be
equivalent to the optimality conditions of the tangent quadratic problem. Our formulation of the corresponding
shooting formulation (of which all entry and exit times are variables, in addition to the initial costate and jumps
of the alternative multiplier at entry times) allows exit times to be lower than entry times; however, we check
that the solution of the shooting formulation is such that entry times are lower than or equal to corresponding
exit times.

Optimal control problems with first-order state constraints were first studied in the book by
Pontryagin et al. [28]. Numerous results have been obtained since for stability and sensitivity analysis of
those problems. Two different approaches have been used. The first one is the use of implicit function the-
orems in infinite dimensional spaces (see [16,20,27,32]), and the second one is to reduce the problem to a
finite-dimensional one (a two- or multi points boundary value problem) using the so-called shooting formulation
(see [26,33]). With first-order state constraints, L2-stability of solutions was first obtained by Malanowski [21],
under strong second-order sufficient conditions, using an infinite-dimensional implicit function theorem based
on two-norms approach, and later by Dontchev and Hager [12], using an implicit function theorem in metric
spaces. In Malanowski [21], directional differentiability of solutions in L2 was established, using the results
on differentiability of projection onto a closed convex cone in Hilbert spaces [16]. The second-order sufficient
condition used in the analysis was weakened by Malanowski [22]. All those results require no assumptions on
the structure of the trajectory. In order to obtain L∞-stability of solutions, Dontchev and Hager [12] needed
an additional assumption on the structure of the contact set (“contact separation”). Using a finite dimensional
approach, Malanowski and Maurer obtained in [23] differentiability of solutions in L∞ by application of the
implicit function theorem to the shooting mapping, under stronger assumptions (finitely many nontangential
junction points, and strict complementarity) needed to ensure the stability of the structure of solutions.

The approach presented in this paper is different from the ones in [12,21,22] where the stability and sensitivity
analysis was done in infinite dimensional spaces without any assumptions on the structure of the trajectory.
On the contrary, our aim is to describe changes in the structure of the trajectory, both qualitatively and
quantitatively. Thus the first step is to consider nonessential touch points. Indeed, as mentioned before, changes
in the structure are likely to occur when performing continuation methods, therefore the more information we
have on the continuity and/or differentiability of the homotopy path, the easier will be the latter to follow.
Our stability and sensitivity results generalize those of [23] to the case when (nonessential) touch points are
present. However, in that case strict complementarity does not hold anymore, so we cannot apply the classical
implicit function theorem as done in [23]. This paper is related to our previous work: the study of no-gap
second-order optimality conditions in [7], and the shooting formulation, allowing nonessential touch points for
state constraints of order greater than one, and for which we also use the notion of strong regularity [6]. In
both papers we assume also the state constraint and the control to be scalar-valued. Some of these results are
extended to the case of vector-valued state constraints and control in [5]. We follow here the analysis in [6] where
sensitivity results with nonessential touch points for state constraints of order greater than one were obtained.
The contributions of this paper are the following:

• A stability result of the structure of stationary points (and not only the stability of the structure of locally
optimal solutions) is proved. That is, if the nominal trajectory satisfies several assumptions, among
which uniform strict complementarity on boundary arcs, then any stationary point in the neighborhood
has a “neighboring structure”, in a sense made precise in Section 2.

• In the stability and sensitivity analysis we cover the case of the possible transformation of touch points
into boundary arcs. This possibility was excluded from the analysis in [6] and in [23], and leads
to technical complications. In particular we show that for first-order state constraints, the shooting
algorithm remain well-posed when touch points are converted in boundary arcs, which is false for
control constraints (see Rem. 6.3).
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• At the end of the paper, we present an application of those results to a preliminary homotopy algorithm
whose novelty is to handle changes in the structure (appearance/disappearance of a boundary arc)
automatically. Numerical application on a simple academic problem is presented.

The paper is organized at follows. The framework is presented in Section 1. In Section 2, the stability results
of the structure of stationary points are given. In Section 3, the main result is stated. In Section 4, the problem
is reduced to a generalized finite-dimensional equation, with a complementarity constraint. Robinson’s strong
regularity theory is applied to the latter in Section 5, where the main result is proved. Section 6 deals with
directional differentiability of solutions. In Section 7, a basic illustrative example is presented. The homotopy
method is described in Section 8. Section 9 contains the proofs of the results of Section 2.

1. Preliminaries

Let U := L∞(0, T ) (resp. Y := W 1,∞(0, T ; Rn)) denote the control (resp. state) space. Let M be a Banach
space (the space of perturbations parameter) and, for μ ∈ M , the cost function �μ : R × R

n → R, final cost
function φμ : R

n → R, dynamics fμ : R × R
n → R

n, state constraint gμ : R
n → R, initial condition yμ0 ∈ R

n,
and (fixed) final time T > 0. We consider the following optimal control problem:

(Pμ) min
(u,y)∈U×Y

∫ T

0

�μ(u(t), y(t))dt + φμ(y(T )) (1.1)

subject to ẏ(t) = fμ(u(t), y(t)) for a.a. t ∈ [0, T ], y(0) = yμ0 , (1.2)
gμ(y(t)) ≤ 0, for all t ∈ [0, T ]. (1.3)

This notation allow us to deal with non autonomous problems (i.e. when the data �μ, fμ, gμ depend on time t)
as well, by assuming w.l.o.g. that the last component of the state variable yn satisfies in (1.2)

ẏn(t) = 1 on [0, T ], yn(0) = 0 (i.e. yn(t) = t). (1.4)

We shall assume in all the paper that (Pμ) is written such that (1.4) holds. In this way our analysis will include
non autonomous perturbations, even when the starting problem is autonomous. This assumption is only used
in Theorem 3.3 to obtain the implication (i) ⇒ (ii).

We study perturbations of problem (Pμ) around a given value of parameter μ0 ∈ M , and we often omit the
superscript μ when we refer to the problem and data associated with μ0, i.e. (P) := (Pμ0) and (�, φ, f, g, y0) :=
(�μ0 , φμ0 , fμ0 , gμ0 , yμ0

0 ).
We assume throughout the paper that the assumptions below hold:

(A0) the mappings �, φ, f and g are of class C2, with locally Lipschitz continuous second-order derivatives,
and the dynamics f is Lipschitz continuous;

(A1) the initial condition satisfies g(y0) < 0.
These assumptions will not be repeated in the various results of the paper.

A parameterization (�μ, φμ, fμ, gμ, yμ0 ), identified with problem (Pμ), is a stable extension of (P), if there
exists an open neighborhood M0 of μ0, such that (i) there exist C2 mappings �̂ : R × R

n × M0 → R; φ̂ :
R
n × M0 → R; f̂ : R × R

n × M0 → R
n; ĝ : R

n × M0 → R and ŷ0 : M0 → R
n, such that �μ(u, y) = �̂(u, y, μ) for

all (u, y) ∈ R×R
n and all μ ∈ M0 (and similarly for φμ, fμ, gμ, and yμ0 ); (ii) the mappings �μ, fμ, φμ, gμ have

Lipschitz continuous second-order derivatives and fμ is Lipschitz continuous, uniformly over μ ∈ M0.
In this paper, we always consider stable extensions (Pμ), that satisfy (1.4) as said before.

Definitions and notations

The space of row vectors is denoted by R
n∗, and the adjoint and transposition operator in R

n are denoted
by a star ∗. Fréchet derivatives of f , �, etc. w.r.t. arguments u ∈ R, y ∈ R

n, are denoted by a subscript, for
instance fu(u, y) = Duf(u, y). The space Lr(0, T ), r ∈ [1,∞], is the Lebesgue space of measurable functions
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such that ‖u‖r := (
∫ T
0 |u(t)|r)1/r < ∞ for 1 ≤ r < ∞ and ‖u‖∞ := supesst∈[0,T ] |u(t)| < ∞, and W 1,r(0, T ) is

the Sobolev space of functions in Lr(0, T ) with a weak derivative in Lr(0, T ). The space of continuous functions
and its dual space, the space of bounded Borel measures, are denoted respectively by C0[0, T ] and M[0, T ]. The
cone of nonnegative measures is denoted by M+[0, T ], and BV ([0, T ]; Rn) denotes the space of vector-valued
functions of bounded variation over [0, T ]. The elements of M[0, T ] are identified with the derivative of functions
of bounded variation vanishing at T . We denote by ϕ(t−) and ϕ(t+) the respectively left- and right limits of a
function of bounded variation ϕ at a time t ∈ [0, T ]. Jumps are denoted by [ϕ(t)] := ϕ(t+) − ϕ(t−).

Given μ ∈ M0, a trajectory of (Pμ) is an element (u, y) ∈ U ×Y satisfying the state equation (1.2). A feasible
trajectory is one satisfying the state constraint (1.3). The first-order time derivative of the state constraint
is the function defined by (gμ)(1) : R × R

n → R, (u, y) �→ gμy (y)fμ(u, y). In this paper, we consider state
constraints of first order, that is, the function (gμ)(1)(u, y) depends explicitly on the control variable u in the
neighborhood of the contact set of the constraint, see assumption (A3). It will be convenient to introduce the
second-order time derivative of the state constraint by:

(gμ)(2) : R × R × R
n → R, (υ, u, y) �→ (gμ)(1)u (u, y)υ + (gμ)(1)y (u, y)fμ(u, y). (1.5)

Wherever u is differentiable, we have that

d2

dt2
gμ(y(t)) = (gμ)(2)(u̇(t), u(t), y(t)). (1.6)

The classical (resp. augmented) Hamiltonian functions Hμ : R×R
n×R

n∗ → R (resp. H̃μ : R×R
n×R

n∗×R →
R) are defined by:

Hμ(u, y, p) := �μ(u, y) + pfμ(u, y) (1.7)

H̃μ(u, y, p1, η1) := Hμ(u, y, p1) + η1(gμ)(1)(u, y). (1.8)

For (u, y) a feasible trajectory of (Pμ), define the contact set by:

I(gμ(y)) := {t ∈ [0, T ]; gμ(y(t)) = 0}. (1.9)

We say that the constraint is active at time t, if t ∈ I(gμ(y)); otherwise it is said inactive at time t. A boundary
arc (resp. interior arc) is a maximal interval of positive measure I such that gμ(y(t)) = 0 (resp. gμ(y(t)) < 0),
for all t ∈ I. Left and right endpoints of a boundary arc [τen, τex] are called entry and exit point, respectively.
A touch point τto is an isolated contact point, satisfying gμ(y(τto)) = 0 and gμ(y(t)) < 0, for t 	= τto in the
neighborhood of τto. The endpoints of interior arcs belonging to (0, T ) are called junction points (or times).

If the set of junction points of a trajectory is finite, then it is of the form

T =: Ten ∪ Tex ∪ Tto,

with Ten, Tex and Tto the disjoint (and possibly empty) subsets of respectively regular entry, exit and touch
points. We denote by Ib the union of boundary arcs, i.e. Ib := ∪Nb

i=1[τ
en
i , τex

i ] for Ten := {τen
1 < . . . < τen

Nb
} and

similar definition of Tex, and we have I(gμ(y)) = Tto∪Ib. The arc structure (or simply structure) of a trajectory
is the (finite) number of boundary arcs and touch points, and the order in which they occur.

Given a finite subset S of (0, T ), we denote by PC k
S [0, T ] the set of functions over [0, T ] that are of class Ck

outside S, and have, as well as their first k derivatives, a left and right limit over S and a left (resp. right)
limit at T (resp. 0). The subset of functions in PC k

S [0, T ] having continuous derivatives on [0, T ] until order r,
0 ≤ r ≤ k, is denoted by PC k,r

S [0, T ] := PC k
S [0, T ]∩Cr[0, T ]. We also use the notation νS := (ντ )τ∈S ∈ R

CardS .
Given (μ, u) ∈ M0 × U , we denote by yμu the (unique) state solution in Y of:

ẏμu(t) = fμ(u(t), yμu(t)) a.e. on [0, T ], yμu(0) = yμ0 . (1.10)
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By definition of a stable extension, the mapping U × M0 → Y, (u, μ) �→ yμu is C2. A useful equivalent abstract
formulation of (Pμ) is

min
u∈U

Jμ(u), Gμ(u) ∈ K, (1.11)

with the cost function Jμ : U → R, u �→
∫ T
0 �μ(u(t), yμu(t))dt+φμ(yμu(T )), K := C0

−[0, T ] the cone of continuous
functions taking nonpositive values, and Gμ the mapping U → C0[0, T ], u �→ gμ(yμu). We write J and G for Jμ0

and Gμ0 , respectively.

Optimality conditions

Let us first recall the definition of Pontryagin extremals.

Definition 1.1. A trajectory (u, y) is a Pontryagin extremal of (Pμ), if there exist α ∈ R+, dη ∈ M[0, T ] and
p ∈ BV ([0, T ]; Rn∗), (dη, p, α) 	= 0, such that:

ẏ(t) = fμ(u(t), y(t)) a.e. on [0, T ], y(0) = yμ0 (1.12)
dp(t) = {α�μy (u(t), y(t)) + p(t)fμy (u(t), y(t))}dt + gμy (y(t))dη(t) on [0, T ] (1.13)

p(T +) = αφμy (y(T )) (1.14)

u(t) ∈ argminû∈R{α�μ(û, y(t)) + p(t)fμ(û, y(t))} a.e. on [0, T ] (1.15)

0 ≥ gμ(y(t)), dη ≥ 0,

∫ T

0

gμ(y(t))dη(t) = 0. (1.16)

When α > 0, dividing p and η by α, we can take α = 1 in the above equations, and in that case we say that
(u, y) is a regular Pontryagin extremal.

It is well known that optimal solutions of (Pμ) are Pontryagin extremals. A sufficient condition to ensure
that α = 1, i.e. that an optimal solution (u, y) of (Pμ) is a regular Pontryagin extremal, is that Robinson’s
constraint qualification [29,30] below is satisfied (recall (1.11)):

∃γ > 0, γBC0[0,T ] ⊂ Gμ(u) + DGμ(u)U − K, (1.17)

with BC0[0,T ] the unit (open) ball of the space of continuous functions.
A trajectory (u, y) is a stationary point of (Pμ), if there exist dη ∈ M[0, T ] and p ∈ BV ([0, T ]; Rn∗) such

that (1.12)–(1.14) and (1.16) hold (with α = 1), as well as

0 = �μu(u(t), y(t)) + p(t)fμu (u(t), y(t)) for a.a. t ∈ [0, T ]. (1.18)

The above condition is in general weaker than (1.15). However, when the Hamiltonian Hμ is convex w.r.t.
the control variable along the trajectory (and in particular when assumption (1.22) below holds), then the
definitions of regular Pontryagin extremals and stationary points are equivalent.

We say that (u, y) is a local solution (weak minimum) of (Pμ), if it minimizes (1.1) over the set of feasible
trajectories (ũ, ỹ) satisfying ‖ũ−u‖∞ ≤ δ for some δ > 0. Local solutions of (Pμ) satisfying (1.17) are stationary
points.

Note that the complementarity conditions (1.16) can be equivalently rewritten as:

gμ(y) ∈ K, dη ∈ M+[0, T ], supp(dη) ⊂ I(gμ(y)), (1.19)

where supp(dη) denotes the support of the measure dη. Another condition equivalent to (1.16) is dη ∈
NK(Gμ(u)), where NK(Gμ(u)) denotes the normal cone (in the sense of convex analysis) to K at point Gμ(u).
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Assumptions

We assume that problem (P) has a local solution, denoted in the sequel by (ū, ȳ), and that the latter satisfies,
with p̄ and η̄ its associated multipliers, the following assumptions:
(A2) The control ū is continuous over [0, T ], and there exists α > 0 such that

Huu(ū(t), ȳ(t), p̄(t±)) ≥ α, for all t ∈ [0, T ]. (1.20)

(A3) Uniform regularity of the state constraint near the contact set, i.e., there exists β, ε > 0 such that

|g(1)
u (ū(t), ȳ(t))| ≥ β, for a.a. t, dist{t; I(g(ȳ))} ≤ ε. (1.21)

A condition stronger than (A2) implying the continuity of the control is the uniform strong convexity of the
Hamiltonian w.r.t. the control variable, i.e. there exists α > 0, such that

Huu(û, ȳ(t), p̄(t±)) ≥ α, for all û ∈ R and all t ∈ [0, T ]. (1.22)

It is well-know (see e.g. [15,17]) that when (A2)–(A3) hold, then ū and the multiplier η̄ are Lipschitz contin-
uous. In particular this implies that all touch points τto are nonessential, i.e. [η̄(τto)] = 0. Furthermore, (A3)
implies that (1.17) holds, and that the multipliers (p̄, η̄) associated with (ū, ȳ) are unique. This is a consequence
of the lemma below. For δ > 0, let Ωδ := {t ∈ [0, T ], dist{t; I(g(ȳ))} < δ}.

Lemma 1.2. Assumption (A3) implies that for all 0 < δ < ε, with the ε of (1.21), assumed to be so small that
Ωε ⊂ [a, T ] for some a > 0, the linear mapping

U → W 1,∞(Ωδ), v �→ (DG(ū)v)|Ωδ , (1.23)

where |Ωδ denotes the restriction to the set Ωδ, is onto.

Proof. Let us recall the proof of [7], Lemma 9. For v ∈ U , we have that DG(ū)v = gy(ȳ)zv, where zv is the
(unique) solution in Y of the linearized state equation:

żv = fu(ū, ȳ)v + fy(ū, ȳ)zv, a.e. on [0, T ], zv(0) = 0. (1.24)

It is easy to see that
d
dt

gy(ȳ(t))zv(t) = g(1)
u (ū, ȳ)v + g(1)

y (ū, ȳ)zv,

and since by (1.21) and (A1), g
(1)
u (ū, ȳ) is uniformly invertible on a neighborhood of Ωδ for small δ > 0, the

result follows as a consequence of Gronwall’s lemma. �

We will also make in addition to (A2)–(A3) the following assumptions:
(A4) The trajectory (ū, ȳ) has a finite set of junction times T̄ , and we assume that g(ȳ(T )) < 0.
(A5) Uniform strict complementarity on boundary arcs:

∃β > 0
dη̄

dt
(t) ≥ β for all t in the interior of boundary arcs. (1.25)

(A6) Non tangentiality at second-order at (nonessential) touch points: for all touch point τ̄to,

d2

dt2
g(ȳ(t))|t=τ̄to < 0. (1.26)
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Note that (1.26) makes sense, since d2

dt2 g(ȳ(t)) is by (1.6) a continuous function of (ȳ, ū, ˙̄u), and ū and ˙̄u are
continuous at a touch point τ̄to (indeed, τ̄to being a nonessential touch point, (τ̄to − ε, τ̄to + ε) ∩ supp(dη̄) = ∅
for some small ε > 0, so the continuity of ˙̄u follows from the implicit function theorem applied to the relation
Hu(ū, ȳ, p̄) = 0). This condition is similar to the reducibility hypothesis when the state constraint is of order
q ≥ 2 (see [6]). The lemma below will be proved later (see Lem. 4.9), the proof being based on the alternative
formulation (Def. 4.1).

Lemma 1.3. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A4). Then assumption (A5) implies that
the following non-tangentiality condition at second-order holds at entry and exit points:

d2

dt2
g(ȳ(t))|t=τ̄−

en
< 0, τ̄en ∈ T̄en;

d2

dt2
g(ȳ(t))|t=τ̄+

ex
< 0, τ̄ex ∈ T̄ex. (1.27)

2. Structural stability of stationary points

Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A6). Assume that (ū, ȳ) has Nba boundary arcs and
Nto touch points, and let N := Nba+Nto. Number the boundary arcs and touch points of (ū, ȳ) by i = 1, . . . , N ,
and denote by Iba and Ito the (disjoint) sets of index in {1, . . . , N} corresponding respectively to boundary arcs
and touch points. Denote the junction times of (ū, ȳ) by T̄en = {τ̄ ien}i∈Iba , T̄ex = {τ̄ iex}i∈Iba , and T̄to = {τ̄ ito}i∈Ito .
For δ > 0, define

Ωδi := (τ̄ ien − δ, τ̄ iex + δ), i ∈ Iba, Ωδi := (τ̄ ito − δ, τ̄ ito + δ), i ∈ Ito. (2.1)

In view of (A4), (A6) and (1.27), we may fix κ, δ̄ > 0 satisfying the conditions below:

δ̄ ≤ ε with the ε of (1.21), (2.2)
d2

dt2
g(ȳ(t)) ≤ −κ < 0 on Ωδ̄i \ [τ̄ ien, τ̄ iex], for all i ∈ Iba and on Ωδ̄i , for all i ∈ Ito, (2.3)

the sets (Ωδ̄i )1≤i≤N are pairwise disjoint and contained in [a, T ] for some a > 0. (2.4)

The next theorem gives a direct result (i.e. without using a shooting formulation) of the stability of structure
of stationary points, when assumptions (A2)–(A6) are satisfied.

Theorem 2.1. Let (ū, ȳ) be a stationary point of (Pμ0) satisfying (A2)–(A6), and let δ̄ satisfy (2.2)–(2.4).
Then for all 0 < δ < δ̄ and all stable extensions (Pμ) of (Pμ0), there exists a neighborhood Vu × Vμ of (ū, μ0)
in U × M , such that all stationary points (u, y) of (Pμ) with (u, μ) ∈ Vu × Vμ satisfy the following properties,
with the contact set I(gμ(y)) defined by (1.9):

(S1) I(gμ(y)) ⊂ ∪Ni=1Ω
δ
i ;

(S2) for all i ∈ Iba, I(gμ(y)) ∩ Ωδi is an interval of positive measure;
(S3) for all i ∈ Ito, I(gμ(y)) ∩ Ωδi is either empty, or a singleton, or an interval of positive measure.

When (S1)–(S3) are satisfied, we say that a stationary point (u, y) of (Pμ) has a neighboring structure to
that of (ū, ȳ).

Remark 2.2. We can actually state a “local” version of Theorem 2.1. More precisely, if a stationary point (ū, ȳ)
of (Pμ0) satisfying (A3) has a boundary arc [τ̄en, τ̄ex] (resp. a touch point τ̄to) and if assumptions (A2) and
(A4)–(A6) hold locally over (τ̄en − δ, τ̄ex + δ) (resp. over (τ̄to − δ, τ̄to + δ)) for some δ > 0, then all stationary
points (u, y) of (Pμ) with (u, μ) in the neighborhood of (ū, μ0) have exactly one boundary arc on (τ̄en−δ, τ̄ex+δ)
(resp. have at most either one touch point or one boundary arc on (τ̄to − δ, τ̄to + δ)).

The proof of Theorem 2.1 is given in Section 9 and will use two lemmas below. Note that by continuity of
the mapping (u, μ) �→ gμ(yμu), it is immediate that all stationary points of a stable extension (Pμ) with (u, μ)
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in the neighborhood of (ū, μ0) satisfy (S1). Let us first define alternative multipliers needed in Lemma 2.3 (see
also [12,15,17,21,23] where these multipliers are used)

η1(t) :=
∫ T

t

dη(s) = − η(t+) (2.5)

p1(t) := p(t) − η1(t)gμy (y(t)). (2.6)

With this definition, and without any assumptions on the arc structure of the trajectory (i.e. without
assuming a finite number of junction points), we have that

−dp1 = (Hμ
y (u, y, p1) + (gμ)(1)y (u, y)η1)dt,

and hence, the new alternative costate p1 is absolutely continuous. Consequently, an equivalent form of (1.13)–
(1.14) (when α = 1) and (1.18) is, a.e. on [0, T ]:

− ṗ1(t) = Hμ
y (u(t), y(t), p1(t)) + (gμ)(1)y (u(t), y(t))η1(t), p1(T ) = φμy (y(T )) (2.7)

0 = Hμ
u (u(t), y(t), p1(t)) + (gμ)(1)u (u(t), y(t))η1(t). (2.8)

In addition, (1.16) implies the following (weaker) relations, since η1 is constant on interior arcs:

0 = (gμ)(1)(u(t), y(t)) on boundary arcs, 0 = η̇1(t) on interior arcs. (2.9)

Note that given a trajectory (u, y) of a stable extension (Pμ), if (u, μ) is close enough to (ū, μ0), Robinson’s
constraint qualification (1.17) still holds. This implies the uniqueness of the multipliers associated with a
stationary point (u, y) of (Pμ) with (u, μ) in the neighborhood of (ū, μ0). The two lemmas below, used in the
proof of Theorem 2.1, are proved in Section 9.

Lemma 2.3. Let (ū, ȳ) be a stationary point of (Pμ0) satisfying (A2)–(A3) with multipliers (p̄, η̄), and let the
associated alternative multipliers (p̄1, η̄1) be given by (2.5)–(2.6). Consider a stable extension (Pμ), and let
(un, yn = yμn

un
) be a stationary point of (Pμn), such that un → ū in L∞ and μn → μ0. Denote by pn, ηn the

(unique) multipliers associated with (un, yn), and let p1
n, η

1
n be given by (2.5)–(2.6). Then:

(1) the sequence (dηn) is bounded in M[0, T ];
(2) ‖dηn − dη̄‖1,∞∗ → 0, where ‖ · ‖1,∞∗ denote the norm of the dual of W 1,∞ for the strong topology;
(3) p1

n → p̄1 uniformly over [0, T ];
(4) η1

n → η̄1 uniformly over [0, T ].

Remark 2.4. Note that under the assumptions of Lemma 2.3, by (2.6) and (2.5), we deduce the uniform
convergence of (pn, ηn) towards (p̄, η̄).

The key tool for deriving the structural stability result of Theorem 2.1 is the following lemma.

Lemma 2.5. Let (ū, ȳ) be a stationary point of (Pμ0) satisfying (A2)–(A6), and let δ̄ be defined as in Theo-
rem 2.1. Then for all 0 < δ < δ̄ and all stable extensions (Pμ) of (Pμ0), there exists a neighborhood Vu × Vμ
of (ū, μ0) in U × M , such that if (u, y) is a stationary point of (Pμ) with (u, μ) ∈ Vu × Vμ, then (u, y) has no
interior arc contained in Ωδi , for all i = 1, . . . , N .
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3. Statement of the main result

Let us first recall the second-order conditions of [4,7]. Let the linearized control and state spaces be respec-
tively V := L2(0, T ) and Z := H1(0, T ; Rn), where H1(0, T ) = W 1,2(0, T ). The quadratic function over V × Z
involved in the second-order conditions is:

J (v, z) :=
∫ T

0

H(u,y),(u,y)(ū, ȳ, p̄)((v, z), (v, z))dt + z(T )∗φyy(ȳ(T ))z(T ) +
∫ T

0

z(t)∗gyy(ȳ(t))z(t)dη̄(t) (3.1)

and the set of constraints (defining the critical cone):

ż = fu(ū, ȳ)v + fy(ū, ȳ)z on [0, T ], z(0) = 0 (3.2)
gy(ȳ(t))z(t) = 0 t ∈ Īb (3.3)
gy(ȳ(τ))z(τ) ≤ 0 τ ∈ T̄to, (3.4)

where Īb and T̄to denote respectively the union of boundary arcs and the set of touch points of (ū, ȳ).

Theorem 3.1 ([4,7]). (i) Let (ū, ȳ) be a local solution of (P) satisfying (A2)–(A5). Then

J (v, z) ≥ 0, for all (v, z) ∈ V × Z satisfying (3.2)–(3.4). (3.5)

(ii) Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A5). Then

J (v, z) > 0, for all (v, z) ∈ V × Z, (v, z) 	= 0, satisfying (3.2)–(3.4), (3.6)

iff (ū, ȳ) is a local solution of (P) satisfying the quadratic growth condition:

∃c, ρ > 0, J(u) ≥ J(ū) + c‖u − ū‖2
2, ∀u ∈ U ; G(u) ∈ K, ‖u − ū‖∞ ≤ ρ. (3.7)

Let us recall that a quadratic form Q on an Hilbert space H is a Legendre form, if Q is weakly lower
semicontinuous and if for all weakly convergent subsequence (vn) ∈ HN, say vn ⇀ v, we have that vn → v
strongly if Q(vn) → Q(v). Using (A2) we can show that the quadratic form J is a Legendre form (see [8,18]).
This plays a role to obtain the no-gap second-order conditions of Theorem 3.1.

In the stability and sensitivity analysis, we will use the condition below, stronger than (3.6):

J (v, z) > 0, for all (v, z) ∈ V × Z, (v, z) 	= 0, satisfying (3.2)–(3.3). (3.8)

Definition 3.2. Let (ū, ȳ) = (uμ0 , yμ0) be a stationary point of (Pμ0). We say that (ū, ȳ) satisfies the uniform
quadratic growth condition, if for all stable extensions (Pμ) of (Pμ0) satisfying (1.4), there exist c, ρ > 0 and
an open neighborhood V0 of μ0, such that for all μ ∈ V0, there exists a unique stationary point (uμ, yμ) of (Pμ)
with ‖uμ − ū‖∞ ≤ ρ, and this point satisfies

Jμ(u) ≥ Jμ(uμ) + c‖u − uμ‖2
2, ∀u ∈ U ; Gμ(u) ∈ K, ‖u − ū‖∞ ≤ ρ, ∀μ ∈ V0. (3.9)

Of course (3.9) implies that (uμ, yμ) is a local solution of (Pμ). Note that the constants c and ρ in the
uniform growth condition (3.9) does not depend on μ.

The arc structure of the trajectory (in the sense of number and order of boundary arcs and touch points)
is not necessarily stable under a small perturbation. However, by (A5), boundary arcs are locally preserved,
and by (A6), the only three possibilities for a touch point is to become a boundary arc, remain a touch point
or become inactive at a local solution of the perturbed problem, i.e. the solutions of the perturbed problems
have a neighboring arc structure of active constraints to that of (ū, ȳ) (see Th. 2.1). Below is our main result
(together with Ths. 2.1 and 6.1), that will be proved later in Section 5.
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Theorem 3.3. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A6). Then assertions (i) and (ii) below
are equivalent:

(i) The uniform quadratic growth (Def. 3.2) holds.
(ii) The strong second-order sufficient condition (3.8) holds.

If either point (i) or (ii) is satisfied, for μ ∈ V0 denote by (uμ, yμ) the unique local solution of (Pμ) with
‖uμ − ū‖ ≤ ρ, and by (pμ, ημ) the (unique) associated multipliers. Then (uμ, yμ) has a neighboring structure to
that of (ū, ȳ), and the mapping μ �→ (uμ, yμ, pμ, ημ) ∈ C0[0, T ] × C1([0, T ]; Rn) × C0([0, T ]; Rn∗) × C0[0, T ] is
Lipschitz continuous on V0.

The above result implies that the solutions of the perturbed problems satisfy the quadratic growth condi-
tion (3.9), and hence the no-gap sufficient condition (3.6) by Theorem 3.1(ii). The lemma below (proved at the
end of Sect. 5) shows that the strong second-order sufficient condition (3.8) remains satisfied as well for the
perturbed problems (this will be useful for the analysis of the homotopy algorithm in Sect. 8).

Lemma 3.4. Under assumptions (A2)–(A6), if either point (i) or (ii) of Theorem 3.3 is satisfied, then the
locally unique stationary point (uμ, yμ) of (Pμ) satisfies the strong second-order sufficient condition (3.8), for
μ close enough to μ0.

Remark 3.5. We show more precisely (see Lem. 5.1) that under assumptions (A2)–(A6) and point (i) or (ii) of
Theorem 3.3, then the shooting parameters associated with (uμ, yμ) (initial costate, jump parameters at entry
times and all junction times, see the next section) are Lipschitz continuous functions of μ.

Related results to Theorem 3.3, based on a shooting approach (see the next section) too, are [23], Theorem 8.3,
where the existence of a locally unique local solution of (Pμ) having the same structure as (ū, ȳ) was shown
(but the uniqueness of the stationary point or the converse implication “(i) ⇒ (ii)” are not discussed), and [6],
Theorem 4.3, where only the uniqueness of stationary points satisfying some restrictions on the arc structure is
argued. In addition, both results assume the absence of touch points for state constraints of first-order. Here
we are able to show that (uμ, yμ) is locally the unique stationary point of (Pμ) (see Lem. 5.4) thanks to the
analysis done in Section 2. As mentioned in the Introduction, this is difficult to compare to [12,21,22] where
an infinite dimensional approach was used, which required weaker assumptions, e.g. (A4)–(A6) are not needed,
so their results are more general than Theorem 3.3, but the conclusions obtained are also weaker than those of
Theorem 3.3.

In Section 6, we will provide the first-order expansion of the local optimal solution and associated multipliers
of the perturbed problem (see Th. 6.1).

4. Alternative and shooting formulations

4.1. Alternative formulation of optimality conditions

In presence of pure state constraints, a reformulation of the optimality conditions is needed to apply shoot-
ing methods. Our results are based on the following alternative formulation of optimality conditions, see
e.g. [6,9,17,19,25]. We use in this alternative formulation another set of alternative multipliers, that we denote
by (p1, η1), different from the alternative multipliers (p1, η1) used in Section 2. Whereas the latter are contin-
uous, (p1, η1) have jumps at entry points. The jumps of p1 at entry times τen, denoted by ν1

τen , are part of the
shooting parameters used in the shooting algorithm.

Definition 4.1. A trajectory (u, y) is solution of the alternative formulation, if it has finitely many junction
times T and gμ(y(T )) < 0, if (u, y) ∈ PC0

T [0, T ] × PC1,0
T ([0, T ]; Rn) and if there exist p1 ∈ PC 1

T ([0, T ]; Rn∗),
η1 ∈ PC 1

T [0, T ], and alternative jump parameters ν1
Ten

and νTto , such that the following relations are satisfied,
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with the augmented Hamiltonian (1.8) (time dependence is omitted):

ẏ = fμ(u, y) on [0, T ], y(0) = yμ0 (4.1)

−ṗ1 = H̃μ
y (u, y, p1, η1) on [0, T ] \ T (4.2)

0 = H̃μ
u (u, y, p1, η1) on [0, T ] \ T (4.3)

(gμ)(1)(u, y) = 0 on Ib (4.4)
η1(t) = 0 on [0, T ] \ Ib (4.5)

p1(T ) = φμy (y(T )) (4.6)

gμ(y(τen)) = 0, τen ∈ Ten (4.7)
gμ(y(τto)) = 0, τto ∈ Tto (4.8)

[p1(τen)] = −ν1
τeng

μ
y (y(τen)), τen ∈ Ten (4.9)

[p1(τex)] = 0, τex ∈ Tex (4.10)
[p1(τto)] = −ντtog

μ
y (y(τto)), τto ∈ Tto. (4.11)

A solution of the alternative formulation satisfies the additional conditions, if the conditions below hold:

gμ(y(t)) < 0 on [0, T ] \ (Ib ∪ Tto) (4.12)
η̇1(t) ≤ 0 on Int Ib (4.13)
ν1
τen = η1(τ+

en), τen ∈ Ten; η1(τ−
ex) = 0, τex ∈ Tex (4.14)

ντto = 0, τ ∈ Tto. (4.15)

Proposition 4.2 (see e.g. [17,19,28]). Let (ū, ȳ) be a local solution of (P), satisfying (A2)–(A4). Then (ū, ȳ)
is solution of alternative formulation (4.1)–(4.11), and satisfies additional conditions (4.12)–(4.15).

The following remarks comment on those optimality conditions and on the relations existing between the
different sets of multipliers.

Remark 4.3. It can be shown (see [6], Prop. 2.10) that under assumptions (1.22) (resp. (A2)) and (A3)–(A4),
relations (4.1)–(4.15) characterize regular (α = 1) Pontryagin extremals (resp. stationary points), and the
(unique) classical multipliers dη ∈ M+[0, T ] and p ∈ BV ([0, T ]; Rn∗) of Definition 1.1 are given by (recall that
we adopted the convention η(T +) = 0):

η(t) = −
∑
τ∈Ten

ν1
τ1[0,τ)(t) − η1(t+), p(t) = p1(t) + η1(t)gμy (y(t)), (4.16)

with 1[0,τ)(t) = 1 if 0 ≤ t < τ and zero otherwise. Equivalently, η is given by dη(t) = −η̇1(t)dt.
The classical multipliers (p, η) and alternative ones (p1, η1) can be recovered from each other by (4.16)

and (4.14). By (4.9)–(4.11) and additional conditions (4.14)–(4.15), we have (p, η) ∈ PC 1,0
T ([0, T ]; Rn∗) ×

PC 1,0
T [0, T ]. It is also easy to see that, when (4.16) holds, H̃μ(·, y, p1, η1) = Hμ(·, y, p), and hence, (1.20) is

equivalent (with p̄1 and η̄1 the alternative multipliers associated with ū) to:

H̃uu(ū(t), ȳ(t), p̄1(t±), η̄1(t±)) ≥ α, for all t ∈ [0, T ]. (4.17)

Remark 4.4. On [0, T ] \ T , the multipliers η1 and p1 in Section 2 are related to p1 and η1 by the following
relations:

η1(t) =
∑
τ∈Ten

ν1
τ1[0,τ)(t) + η1(t), p1(t) = p1(t) −

∑
τ∈Ten

ν1
τ1[0,τ)(t)gμy (y(t)). (4.18)
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Remark 4.5. By (4.13)–(4.14), the following necessary condition holds:

ν1
τen ≥ 0, τen ∈ Ten. (4.19)

Lemma 4.6. Let (u, y) be a trajectory of (Pμ) satisfying the alternative formulation. Assume that there exist
α, β, ε > 0 such that (we denote here [u(t−), u(t+)] := {(1 − σ)u(t−) + σu(t+); σ ∈ [0, 1]})

α ≤ H̃μ
uu(û, y(t), p1(t±), η1(t±)) for all û ∈ [u(t−), u(t+)] and all t ∈ [0, T ] (4.20)

β ≤ |(gμ)(1)u (û, y(t))| for all û ∈ [u(t−), u(t+)] and all t: dist{t; I(gμ(y))} ≤ ε. (4.21)

Then (4.14) is equivalent to the condition below

(gμ)(1)(u(τ−
en), y(τen)) = 0, τen ∈ Ten; (gμ)(1)(u(τ+

ex), y(τex)) = 0, τex ∈ Tex. (4.22)

Also (4.14) or (4.22) is equivalent to the continuity of the control at entry/exit points.

Proof. We recall here the proof (see [23] and [6], Prop. 2.15) since the arguments will be used later in Lemma 5.2.
Since (gμ)(1)(u(τ+

en), y(τen)) = 0 = (gμ)(1)(u(τ−
ex), y(τex)), by (4.21)–(4.22) is equivalent to the continuity of the

control at entry and exit times. Now let τ ∈ Ten. By (4.3) and (4.9),

H̃μ
u (u(τ−), y(τ), p1(τ−), η1(τ−)) = H̃μ

u (u(τ+), y(τ), p1(τ+), η1(τ+))

= H̃μ
u (u(τ+), y(τ), p1(τ−), η1(τ+) − ν1

τ ).

If (4.14) holds, then we obtain (since η1(τ−) = 0)

H̃μ
u (u(τ−), y(τ), p1(τ−), η1(τ−)) = H̃μ

u (u(τ+), y(τ), p1(τ−), η1(τ−)),

which implies by (4.20) that u(τ−) = u(τ+). Conversely, if (4.22) holds, i.e. if u is continuous at τ , then we
obtain

(η1(τ+) − ν1
τ )(g

μ)(1)u (u(τ), y(τ)) = 0.

Since by (4.21), (gμ)(1)u (u, y) 	= 0, we obtain the result. Similar arguments hold at exit points. �
Remark 4.7. By (4.11) and (4.15), (4.3) and hypothesis (4.20), we can show similarly that a solution (u, y) of
the alternative formulation and additional conditions satisfying (4.20)–(4.21) is such that u is also continuous
at touch points, and hence (u, y) ∈ PC 1,0

T [0, T ]× PC 2,1
T ([0, T ]; Rn).

Remark 4.8. At a touch point τto, the function t �→ gμ(y(t)) has a local isolated maximum, and a continuous
derivative at τto (due to the continuity of u), hence the condition below is satisfied (compare to (4.22)):

(gμ)(1)(u(τto), y(τto)) = 0, τ ∈ Tto. (4.23)

The next lemma provides in particular a proof for Lemma 1.3.

Lemma 4.9. Let (u, y) be a trajectory of (Pμ) solution of the alternative formulation and additional conditions.
Assume that there exist α, β, ε > 0 such that (4.20) and (4.21) holds. Then, for all τen ∈ Ten and τex ∈ Tex,

d2

dt2
gμ(y(t))|t=τ−

en
< 0 iff η̇1(τ+

en) < 0;
d2

dt2
gμ(y(t))|t=τ+

ex
< 0 iff η̇1(τ−

ex) < 0. (4.24)

Proof. Let τen ∈ Ten. We omit in the proof the superscript μ on H̃, g and f . Derivation w.r.t. time of the
relation (4.3) on the left and right neighborhood of τen yields (omitting the dependence in t and arguments
(u, y, p1, η1) of H̃):

H̃uuu̇ + H̃uyf(u, y) − H̃yfu(u, y) + g(1)
u (u, y)η̇1 = 0. (4.25)
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Recall that g(1)(u, y) = gy(y)f(u, y). By Lemma 4.6 and (4.14), u is continuous, so it follows that, taking the
jumps at time τen (omitting again arguments and setting ν1 := ν1

τen):

[H̃uu] = [p1]fuu + [η1]g(1)
uu = −ν1gyfuu + ν1g(1)

uu = 0,

[H̃uy]f − [H̃y]fu = ([p1]fuy + [η1]g(1)
uy )f − ([p1]fy + [η1]g(1)

y )fu

= (−ν1gyfuy + ν1g(1)
uy )f − (−ν1gyfy + ν1g(1)

y )fu = 0.

Taking then the jump in (4.25) at time τen, the above relations imply that

H̃uu[u̇] + g(1)
u [η̇1] = 0. (4.26)

Since u, y, p1 and η1 are all continuous at exit times by Lemma 4.6, (4.26) holds as well at exit times. Since
the function d2

dt2 g(y(t)) = g(2)(u̇, u, y), with g(2) given by (1.5), vanishes on (τen, τex), and (u, y) is continuous,
we have by (4.21) that g(2)(u̇, u, y) is discontinuous at τ iff u̇ is, and hence by (4.26) and (4.20)–(4.21) iff η̇1 is.
Since η̇1 = 0 locally outside (τen, τex), and η̇1 ≤ 0 on (τen, τex) by (4.13), the result follows. �

Remark 4.10. We know by [6], Lemma 3.6, that we can express the quadratic cost J , using (p̄1, η̄1) defined
by (4.16) instead of (p̄, η̄), over the space of linearized trajectories (v, z) satisfying (3.2), by J (v, z) = J1(v, z),
with

J1(v, z) :=
∫ T

0

H̃(u,y),(u,y)(ū, ȳ, p̄1, η̄1)((v, z), (v, z))dt

+ z(T )∗φyy(ȳ(T ))z(T ) +
∑
τ∈T̄en

ν̄1
τ z(τ)∗gyy(ȳ(τ))z(τ),

(4.27)

where H̃ is the augmented Hamiltonian (1.8), and the constraint (3.3) is equivalent to

gy(ȳ(τ))z(τ) = 0, τ ∈ T̄en (4.28)

g
(1)
(u,y)(ū(t), ȳ(t))(v(t), z(t)) = 0, t ∈ Īb. (4.29)

Remark 4.11. The second-order sufficient condition (3.8) used in the stability and sensitivity analysis, is
equivalent by Remark 4.10 to

J1(v, z) > 0, for all (v, z) ∈ V × Z, (v, z) 	= 0, satisfying (3.2) and (4.28)–(4.29). (4.30)

This condition is weaker than the one in [23], where the entry-point constraint (4.28) is omitted. The authors
present a numerical method, based on Riccati equations, allowing to check the coercivity of the quadratic
form J1 over the subspace defined by (3.2) and (4.29), which is of interest in applications, while the verification
of (3.8) or (4.30) in practice remains open.

4.2. Shooting formulation with nonessential touch points

By (A2)–(A4), applying the implicit function theorem to (4.3)–(4.5), we may express the algebraic vari-
ables (u, η1) on each arc as C1 functions of the differential variables (y, p1). Denote by Fμ

b and Fμ
i the flows

on (y, p1) obtained respectively on boundary and interior arcs, by eliminating the algebraic variables, and write
(y, p1)(t) = (y(t), p1(t)). On each arc (t1, t2), we have that

(y, p1)(t−2 ) = Fμ
a ((y, p1)(t+1 ), t2 − t1) (4.31)

where Fμ
a equals Fμ

b for a boundary arc, and Fμ
i for an interior arc. So we can (and this is precisely the

idea of shooting methods) describe the alternative optimality system (4.1)–(4.11) as a sequence of applications
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of mappings Fμ
b and Fμ

i , combined with junction conditions. Note that the mappings (x, t1, t2) → Fμ
a (x, t2−t1),

a = i, b, are (locally) C1 w.r.t. all arguments, and allow in particular t2 − t1 to be nonpositive.
Now let us view a touch point as a boundary arc of zero length. This makes sense since, as we will see later,

under a small perturbation, a touch point may switch into a boundary arc. So we have an entry point and an
exit point, τen and τex, whose common value is the one of the touch point. The jump ν1

τen at entry point τen

equals ντto (i.e., zero). There is a zero jump of p1 at the entry (and exit) time τen.
Assume that we have Nba boundary arcs and Nto touch points. Let N := Nba + Nto. We have now N entry

and N exit points. Denote by ten (resp. tex) the N dimensional vector of entry (resp. exit) points, taken in
the chronological order, and ν1

i := ν1
teni

. We use the notation tex0 := 0 and tenN+1 := T . We may rewrite the
alternative formulation as follows, taking into account the continuity of state and of costate at exit points:

(y, p1)(0) = (yμ0 , p0) (4.32)

(y, p1)(ten−i ) = Fμ
i ((y, p1)(texi−1), t

en
i − texi−1), i = 1, . . . , N + 1, (4.33)

(y, p1)(texi ) = Fμ
b ((y, p1)(ten+

i ), texi − teni ), i = 1, . . . , N, (4.34)

[p1(teni )] = −ν1
i g
μ
y (y(teni )), i = 1, . . . , N, (4.35)

p1(T ) = φμy (y(T )) (4.36)

gμ(y(teni )) = 0, i = 1, . . . , N, (4.37)

where p0 ∈ R
n∗ denotes the initial value of the costate.

We come now to the definition of the shooting mapping. Let Θ := R
n × R

N × R
N × R

N be the space of
shooting parameters, of dimension N̄ := n + 3N . A vector of shooting parameters is denoted by

θ = (p∗0, ν
1, ten, tex) ∈ Θ. (4.38)

The shooting mapping F is defined over a neighborhood Vθ × Vμ of (θ0, μ0) in R
N̄ × M0 into R

N̄ , by

F (θ, μ) =

⎛
⎜⎜⎜⎝

p1(T ) − φμy (y(T ))
gμ(y(ten))

(gμ)(1)(u(ten−), y(ten))
(gμ)(1)(u(tex+), y(tex))

⎞
⎟⎟⎟⎠ , (4.39)

where the values of (y, p1, u) at times ten±i , tex±i , T are given by (4.32)–(4.35), and where we used e.g. the
notation

(gμ)(1)(u(ten−), y(ten)) :=
(
(gμ)(1)(u(ten−i ), y(teni ))

)
1≤i≤N

∈ R
N .

Being a composition of C1 mappings, the shooting mapping is itself locally of class C1.
Let (ū, ȳ) be a stationary point of (P), satisfying (A2)–(A4), with finite set of junction times T̄ . Let Iba

and Ito denote the (disjoint) sets of index in {1, . . . , N} corresponding respectively to boundary arcs and touch
points of the trajectory (ū, ȳ). Split F into two components:

F (θ, μ) = (Φ(θ, μ)∗, Ψ(θ, μ)∗)∗,
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where Ψ corresponds to the components gμ(y(teni )) for i ∈ Ito, denoted by the vector gμ(y(tento )) ∈ R
Nto . Denote

similarly by ν1
to the vector of components ν1

i , for i ∈ Ito. Consider the following nonlinear complementarity
problem, for μ close to μ0:

Find θ ∈ Θ such that Φ(θ, μ) = 0 and Ψ(θ, μ) ∈ N(θ), (4.40)
where

N(θ) :=
{

R
Nto
− ∩ (ν1

to)
⊥ if ν1

to ∈ R
Nto
+ ,

∅ otherwise.
(4.41)

Note that by (4.36)–(4.37) and (4.22)–(4.23), θ0 := (p̄1(0)∗, ν̄1, t̄en, t̄ex) is solution of (4.40) for μ = μ0, with
t̄en and t̄ex the vectors of times in T̄en ∪ T̄to and T̄ex ∪ T̄to respectively, in increasing order, ν̄1

i = ν̄1
t̄eni

if i ∈ Iba,
and ν̄1

i = 0 if i ∈ Ito.
It should be underlined that we allow, in formulation of problem (4.40), entry times to be greater than exit

times. However, we will check in the next section, after having shown that (4.40) has a locally unique solution,
that the constraint ν1

to ≥ 0 in (4.40) (compare with (4.19)) is sufficient, with assumption (A6), to ensure locally
for μ in the neighborhood of μ0 that the solution of (4.40) is such that teni ≤ texi for all i ∈ Ito. In addition, we
will show that by (1.26), strict complementarity η̇1 < 0 holds on the boundary arc (teni , texi ) whenever teni < texi .

As we will see, the formulation (4.40) is strongly related with the associated linear-quadratic tangent prob-
lem min(v,z)∈V×Z J1(v, z) subject to the equality constraints (3.2) and (4.28)–(4.29), and the inequality con-
straint (3.4).

Remark 4.12. When the state constraint is of higher order, under small perturbations, a nonessential touch
point satisfying (1.26) cannot switch into a boundary arc, i.e. it either becomes inactive, remains nonessential,
or becomes an essential touch point (with a nonzero jump of the costate), see [6].

5. Stability analysis

In problem (4.40), there are inequality constraints that cannot be reduced to equality ones since strict
complementarity does not hold at touch points, and those inequality constraints introduce nonsmoothness.
Therefore we cannot apply the classical implicit function theorem as it is done in [23]. Our stability analysis uses
the notion of strong regularity, introduced by Robinson in [31], applied to the complementarity problem (4.40).

The point θ0 solution of (4.40) for μ = μ0 is strongly regular, if there exist neighborhoods (V ′
θ , Vδ) in R

N̄×R
N̄

of (θ0, 0), such that, for all δ ∈ Vδ, δ = (δ1, δ2) ∈ R
N̄−Nto × R

Nto , there exists in V ′
θ a unique solution θ of:

{
DθΦ(θ0, μ0)(θ − θ0) − δ1 = 0
DθΨ(θ0, μ0)(θ − θ0) − δ2 ∈ N(θ)

(5.1)

and the mapping Ξ : δ → θ(δ) is Lipschitz continuous over Vδ.
If θ0 is strongly regular, then by [31], there exist neighborhoods (Vθ, Vμ) of (θ0, μ0), such that for each μ ∈ Vμ,

(4.40) has in Vθ a unique solution θμ,

θμ = (pμ∗0 , νμ,1, tμ,en, tμ,ex), (5.2)

and there exists κ > 0 such that for all μ, μ′ ∈ Vμ,

|θμ − θμ
′
| ≤ κ‖μ− μ′‖. (5.3)

In addition, the following expansion of θμ holds (see e.g. [8], p. 413, Eq. (5.41)):

θμ = Ξ(−DμF (θ0, μ0)(μ − μ0)) + o(‖μ − μ0‖). (5.4)
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Lemma 5.1. Under assumptions (A2)–(A6), (3.8) implies that θ0 is a strongly regular solution of (4.40) for
μ = μ0. More precisely, given δ = (δ1, δ2) ∈ R

N̄−Nto × R
Nto , δ1 = (aT , bba, c

en, cex) ∈ R
n × R

Nba × R
N × R

N ,
δ2 = bto, there exists a unique ω ∈ Θ, ω = (π∗

0 , γ1, σen, σex), solution of the following relation, equivalent to (5.1)
with ω = θ − θ0: {

DθΦ(θ0, μ0)ω − δ1 = 0
DθΨ(θ0, μ0)ω − δ2 ∈ N(ω),

(5.5)

and ω is given as follows. Let (vδ, zδ, πδ, ζδ, λ1
δ) be the unique solution and associated multipliers of the following

linear-quadratic problem (recall that J1 is given by (4.27))

(Pδ) min
(v,z)∈V×Z

1
2J1(v, z) + a∗

T z(T ) (5.6)

subject to (3.2), (4.29),
gy(ȳ(t̄eni ))z(t̄eni ) = bi, i ∈ Iba (5.7)
gy(ȳ(t̄eni ))z(t̄eni ) ≤ bi, i ∈ Ito, (5.8)

where the multipliers πδ, ζδ and λ1
δ are associated, respectively, with constraint (3.2), (4.29) and (5.7)–(5.8).

Then ω is given by: π0 = πδ(0), γ1 = λ1
δ , and

σen
i =

cen
i − g

(1)
(u,y)(ū(t̄eni ), ȳ(t̄eni ))(vδ(t̄en−i ), zδ(t̄eni ))

d
dtg

(1)(ū, ȳ)|t=t̄en−
i

, i = 1, . . . , N, (5.9)

σex
i =

cex
i − g

(1)
(u,y)(ū(t̄exi ), ȳ(t̄exi ))(vδ(t̄ex+

i ), zδ(t̄exi ))
d
dtg

(1)(ū, ȳ)|t=t̄ex+
i

, i = 1, . . . , N. (5.10)

Proof. The proof uses the block-decoupling property of the Jacobian of the shooting mapping w.r.t. junction
times for first-order state constraints established in [23], Lemma 4.2. See also [6], Lemma 4.5. Let us first
explicit the relation (5.5). Let (v, z, π, ζ) be the linearized control, state, costate and state constraint multiplier
solution of the linearized shooting equations (4.32)–(4.35):

(z, π1)(0) = (0, π0) (5.11)
(z, π1)(t̄en−i ) = DFμ0

i ((ȳ, p̄1)(t̄exi−1), t̄
en
i − t̄exi−1)(z, π1)(t̄exi−1), i = 1, . . . , N + 1, (5.12)

(z, π1)(t̄exi ) = DFμ0
b ((ȳ, p̄1)(t̄en+

i ), t̄exi − t̄eni )(z, π1)(t̄en+
i ), i = 1, . . . , N, (5.13)

[π1(t̄eni )] = −ν̄1
i gyy(ȳ(t̄eni ))z(t̄eni ) − γ1

i gy(ȳ(t̄eni )), i = 1, . . . , N. (5.14)

Then (5.5) writes

π1(T ) = φyy(ȳ(T ))z(T ) + aT (5.15)
gy(ȳ(t̄eni ))z(t̄eni ) = bi, i ∈ Iba (5.16)

gy(ȳ(t̄eni ))z(t̄eni ) ≤ bi, γ1
i ≥ 0, (gy(ȳ(t̄eni ))z(t̄eni ) − bi)γ1

i = 0, i ∈ Ito (5.17)

Dg(1)(ū(t̄eni ), ȳ(t̄eni ))(v(t̄en−i ), z(t̄eni )) + σen
i

d
dt

g(1)(ū, ȳ)|t=t̄en−
i

= 0, i = 1, . . . , N (5.18)

Dg(1)(ū(t̄exi ), ȳ(t̄exi ))(v(t̄ex+
i ), z(t̄exi )) + σex

i

d
dt

g(1)(ū, ȳ)|t=t̄ex+
i

= 0, i = 1, . . . , N. (5.19)

We recognize that (5.11)–(5.17) is the first-order optimality condition of problem (Pδ), with γ1
i the multipli-

ers associated with the constraints (5.7) and (5.8) for i in respectively Iba and Ito. By (A2), we can show
that the quadratic form J1 is a Legendre form over the space of linearized trajectories (v, z) satisfying (3.2).
Therefore, (3.8), equivalent to (4.30) by Remark 4.11, implies that J1 is uniformly positive over the linear space
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of (v, z) ∈ V ×Z satisfying (3.2) and (4.28)–(4.29) (i.e. there exists α > 0 such that J1(v, z) ≥ α(‖v‖2
V + ‖z‖2

Z)
for all (v, z) ∈ V ×Z satisfying (3.2) and (4.28)–(4.29)). It follows then that problem (Pδ) has, for all δ ∈ R

N̄ ,
a unique solution and multipliers (vδ, zδ, πδ, ζδ, λ1

δ) that are Lipschitz continuous w.r.t. δ. Thus (5.5) has a
unique solution, and by (5.18)–(5.19) and (A6) and (1.27), the variations of junction times σen

i and σex
i are

given by (5.9)–(5.10). �

Lemma 5.2. Under assumptions (A2)–(A6) and (3.8), there exists a neighborhood Vμ of μ0, such that the
locally unique solution θμ of (4.40) given by (5.2) satisfies:

tμ,exi ≥ tμ,eni , for all i ∈ Ito (5.20)

and
tμ,exi = tμ,eni ⇔ νμ,1i = 0, i ∈ Ito. (5.21)

In particular, the solution (uμ, yμ, pμ1 , ημ1 ) of (4.32)–(4.35) with θ = θμ is well-defined over [0, T ], and there
exists a constant γ > 0, such that for all i ∈ Ito and all μ ∈ Vμ:

η̇μ1 (t) < −γ on [tμ,eni , tμ,exi ] whenever tμ,exi > tμ,eni . (5.22)

Proof. Let i ∈ Ito. By strong regularity (Lem. 5.1), we have that

tμ,exi − tμ,eni = O(‖μ − μ0‖), νμ,1i = O(‖μ − μ0‖). (5.23)

Denote by (u, y, p1, η1) the solution of (4.32)–(4.35) for θ = θμ. Note that this is well-defined on each arc, but
not a priori as function of time, since it may take several values for t ∈ ((tμ,eni , tμ,exi )) if tμ,eni > tμ,exi (where
((a, b)) stands for (a, b) if a ≤ b and (b, a) otherwise). We will see that this last case cannot occur, i.e. (5.20)
holds (and clearly also holds by continuity with a strict inequality for i ∈ Iba), and is satisfied with equality
iff νμ,1i = 0.

Note first that by (A2)–(A3) and the strong regularity property, for ‖μ − μ0‖ small enough, (4.20)–(4.21)
are satisfied on each arc. Suppose first that tμ,exi = tμ,eni . Then (u, y, η1, p1) is defined as function of time
without ambiguity in the neighborhood of tμ,eni (the algebraic variables are given by the dynamics on interior
arcs). By (4.32)–(4.35), there is a jump of p1 at entry time and no jump at exit time, and thus (y, p1)(t

μ,en+
i ) =

(y, p1)(t
μ,ex−
i ) = (y, p1)(t

μ,ex+
i ). By definition of the problem (4.40), we have

(gμ)(1)(u(tμ,en−i ), y(tμ,eni )) = (gμ)(1)(u(tμ,ex+
i ), y(tμ,exi )) = 0,

and hence, since tμ,exi = tμ,eni , (4.21) implies that u is continuous at time tμ,eni . We deduce that:

0 = [Hμ
u (u(tμ,eni ), y(tμ,eni ), p1(t

μ,en
i ))] = −νμ,1i (gμ)(1)u (u(tμ,eni ), y(tμ,eni )).

Since (gμ)(1)u (u(tμ,eni ), y(tμ,eni )) 	= 0 by (4.21), it follows that νμ,1i = 0. This proves the “⇒” implication in (5.21).
Suppose now that tμ,exi 	= tμ,eni . In order to avoid any confusion, denote the solution of (4.32)–(4.35) for

θ = θμ by (u−, y−, p−1 , η−
1 ) on the boundary arc ((tμ,eni , tμ,exi )), and by (u+, y+, p+

1 , η+
1 ) on the succeeding interior

arc (tμ,exi , tμ,eni+1 ). Note that the limits of these functions and of their time derivative at endpoints of the interval
where they are defined do exist, and are continuous w.r.t. μ (this follows from the implicit function theorem
applied by (4.20)–(4.21) on each arc of the trajectory). This holds in particular for u̇μ. Here the jump has the
following signification, for instance [u(tμ,exi )] := u+(tμ,exi ) − u−(tμ,exi ).

Since (4.20)–(4.21) are satisfied, we can show using the same local arguments as in Lemma 4.6 that

(u+, y+, p+
1 , η+

1 )(tμ,exi ) = (u−, y−, p−1 , η−
1 )(tμ,exi ), (5.24)
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and we denote this common value by (u(tμ,exi ), y(tμ,exi ), p1(t
μ,ex
i ), η1(t

μ,ex
i )). By (A6), there exists by continuity

a constant c > 0 such that, for μ close enough to μ0,

lim
t→tμ,ex+

i

d
dt

(gμ)(1)(u+(t), y+(t)) < −c. (5.25)

On the other hand, we have on the boundary arc ((tμ,eni , tμ,exi )):

lim
t→tμ,ex

i

d
dt

(gμ)(1)(u−(t), y−(t)) = 0. (5.26)

Since d
dt(g

μ)(1)(u±(t), y±(t)) = (gμ)(2)(u̇±, u±, y±) with (gμ)(2) given by (1.5), the jump of u̇ at tμ,exi satisfies

(gμ)(1)u (u(tμ,exi ), y(tμ,exi ))[u̇(tμ,exi )] =
[

d
dt

(gμ)(1)(u(t), y(t))|t=tμ,ex
i

]
< −c, (5.27)

and hence, u̇−(tμ,exi ) 	= u̇+(tμ,exi ). By time-derivation of (4.3) on the boundary arc ((tμ,eni , tμ,exi )) of nonzero
length and on the interior arc (tμ,exi , tμ,eni+1 ), we obtain (omitting arguments (u±(t), y±(t), p±1 (t), η±

1 (t))):

H̃μ
uuu̇

± + H̃μ
yuf

μ − H̃μ
y fμu + (gμ)(1)u η̇±

1 = 0. (5.28)

Hence, taking the jump at time tμ,exi gives, since (u, y, p1, η1) is continuous at tμ,exi by (5.24):

H̃μ
uu(u, y, p1, η1)(t

μ,ex
i )[u̇(tμ,exi )] + (gμ)(1)u (u, y)(tμ,exi )[η̇1(t

μ,ex
i )] = 0.

Since η̇+
1 (tμ,exi ) = 0, by (5.27) and (4.20)–(4.21) there exists by continuity a constant C > 0 such that, for

‖μ − μ0‖ small enough,

η̇−
1 (tμ,exi ) = −[η̇1(t

μ,ex
i )] =

H̃μ
uu(u, y, p1, η1)(t

μ,ex
i )

((gμ)(1)u (u, y)(tμ,exi ))2
(gμ)(1)u (u, y)(tμ,exi )[u̇(tμ,exi )] < −C. (5.29)

By (5.28) and time derivation of (4.4), we see that η̇−
1 (t) is given by a Lipschitz continuous function of time

on ((tμ,eni , tμ,exi )), uniformly w.r.t. μ, so there exists m > 0 independent of μ, such that

η̇−
1 (t) ≤ −C + m|tμ,exi − tμ,eni |, t ∈ ((tμ,eni , tμ,exi )). (5.30)

In view of (5.23), this implies that η̇−
1 is negative on ((tμ,eni , tμ,exi )) for sufficiently small ‖μ−μ0‖, and consequently,

η−
1 (tμ,eni ) = η−

1 (tμ,eni )−η−
1 (tμ,exi ) is nonzero and has the sign of tμ,exi −tμ,eni . By similar arguments to Lemma 4.6,

we can show that η−
1 (tμ,eni ) = νμ,1i , and since νμ,1i ≥ 0 by definition of the problem (4.40), it follows that

tμ,exi > tμ,eni necessarily holds whenever tμ,eni 	= tμ,exi , which proves (5.20). In addition, (5.30) implies that
νμ,1i = η1(t

μ,en+
i ) > 0 for μ close enough to μ0, which show by contraposition the “⇐” implication in (5.21).

Finally, relation (5.22) follows from (5.29) and (5.23), which completes the proof. �
Lemma 5.3. Under assumptions (A2)–(A6) and (3.8), the solution (uμ, yμ, pμ1 , ημ1 ) of (4.32)–(4.35) for θ = θμ,
where θμ is solution of (4.40), is, for ‖μ−μ0‖ small enough, such that (uμ, yμ) is a stationary point of (Pμ), with
classical multipliers (pμ, ημ) given by (4.16), and the mapping μ �→ (uμ, yμ, pμ, ημ) ∈ C0[0, T ]×C0([0, T ]; Rn)×
C0([0, T ]; Rn∗) × C0[0, T ] is Lipschitz continuous on a neighborhood of μ0.

Proof. By Lemma 5.2, we see that (uμ, yμ, pμ1 , ημ1 ) is well-defined over [0, T ], and by definition of the prob-
lem (4.40), satisfies the alternative formulation (4.1)–(4.11). By (A2)–(A3), (4.20)–(4.21) hold for ‖μ − μ0‖
small enough, so Lemma 4.6 implies that the additional condition (4.14) is satisfied, and that uμ is continuous
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on [0, T ], as well as ημ and pμ given by (4.16). In view of Remark 4.3, in order to show that (uμ, yμ) is a
stationary point of (Pμ) it remains to show that the additional conditions (4.12), (4.13) and (4.15) are satisfied.
By (4.20)–(4.21), the implicit function theorem applied on each arc shows that u̇μ(tμ,en−i ) and u̇μ(tμ,ex+

i ) are
continuous w.r.t. μ, for all i = 1, . . . , N , as well as η̇μ1 (tμ,en+

i ) and η̇μ1 (tμ,ex−i ) for i ∈ Iba. So let ‖μ − μ0‖ be so
small that, by (1.25)–(1.27) and (1.6),

(i)
d2

dt2
gμ(yμ(t))|t=tμ,en−

i ,tμ,ex+
i

< 0, i = 1, . . . , N, (ii) η̇μ1 (t) ≥ β

2
on (tμ,eni , tμ,exi ), i ∈ Iba. (5.31)

Let i ∈ Nto. If νμ,1i = 0, then by Lemma 5.2, tμ,eni = tμ,exi , uμ and its time derivative are continuous at tμ,eni ,
and (gμ)(1)(uμ(tμ,eni ), yμ(tμ,eni )) = 0. By (A6) and standard continuity arguments, there exists ε > 0 such that
gμ(yμ(·)) attains its maximum over (t̄eni − ε, t̄eni + ε) at the unique point tμ,eni . Therefore if gμ(yμ(tμ,eni )) < 0,
the state constraint is locally not active. If gμ(yμ(tμ,eni )) = 0, then tμ,eni is a touch point of the perturbed
problem, and (4.15) holds by (5.21). If νμ,1i > 0, then by Lemma 5.2, tμ,eni < tμ,exi and we have a boundary arc.
By (5.22), additional condition (4.13) holds on this boundary arc. If i ∈ Iba, then (4.13) holds on the boundary
arc (tμ,eni , tμ,exi ) by (5.31)(ii). Finally, (4.12) holds near the junction points by (5.31)(i), and outside a small
neighborhood of contact points, we obtain gμ(yμ) < 0 by a standard compactness argument. Hence (uμ, yμ) is
a stationary point, with classical multipliers (pμ, ημ) given by (4.16).

Lipschitz continuity of the mapping μ �→ (uμ, yμ, pμ, ημ) follows from Lipschitz continuity of the mapping μ �→
θμ by strong regularity (Lem. 5.1), Lipschitz continuity of (θ, μ) �→ (u, y, p, η)|k, where (u, y, p, η)|k denotes the
restriction of the solution of (4.32)–(4.35) and (4.16) to “arc” k (possibly a singleton), for all k = 1, . . . , 2N +1,
and continuity of uμ, ẏμ, pμ and ημ on [0, T ]. �

Thanks to Theorem 2.1, we can show that (uμ, yμ) is the locally unique stationary point of (Pμ).

Lemma 5.4. Under assumptions (A2)–(A6) and (3.8), there exist a L∞ neighborhood Vu of ū and a neighbor-
hood Vμ of μ0, such that for all μ ∈ Vμ, (uμ, yμ) is the locally unique stationary point of (Pμ) with u ∈ Vu.

Proof. Let (u, y) be a stationary point of (Pμ) with (u, μ) in the neighborhood of (ū, μ0). By Theorem 2.1,
(u, y) satisfies (S1)–(S3), and therefore has finitely many junction times, so it makes sense to speak of the finite-
dimensional vector of “shooting parameters” θ (initial costate, jump parameters at entry times, and junction
times) such that (u, y) is solution of the alternative formulation (Def. 4.1). Now construct its augmented set of
shooting parameters θ̂ as follows. For all i ∈ Ito, if the state constraint is not active on Ωδi , add to the set of
shooting parameters θ the (unique by (A6)) time in Ωδi where gμ(y) attains its maximum over Ωδi , duplicate all
such times as well as touch points, add a zero jump parameter for each of them, and obtain then a θ̂ ∈ Θ such
that θ̂ is solution of (4.40), and (u, y) is the trajectory associated with θ̂.

Let us show that this augmented set of shooting parameters θ̂ is arbitrarily close to θ0 when ‖μ − μ0‖ and
‖u − ū‖∞ are small enough. Indeed, the convergence of the initial costate is a consequence of Remark 2.4. For
i ∈ Iba, since we know by Theorem 2.1 that Ωδi ∩ I(gμ(y)) is an interval [τμen,i, τ

μ
ex,i], letting δ → 0, we obtain

that t̄eni ≤ lim infμ→μ0 τμen,i and t̄exi ≥ lim supμ→μ0
τμex,i. The converse inequalities t̄eni ≥ lim supμ→μ0

τμen,i and
t̄exi ≤ lim infμ→μ0 τμex,i are obtained as follows. Assume e.g. by contradiction that t̄eni < lim supμ→μ0

τμen,i. Then
there exist δ > 0, a stable extension (Pμ), a sequence μn → μ0, and a stationary point (un, yn) of (Pμn), with
multipliers (pn, ηn), such that un → ū in L∞ and τμn

en,i ≥ t̄eni + δ for all n. Let ϕ be a C∞ function with support

in [t̄eni , t̄eni + δ] and positive on (t̄eni , t̄eni + δ). Then
∫ T
0

ϕ(t)dηn(t) = 0, for all n. But by (A5),
∫ T
0

ϕ(t)dη̄(t) > 0,
which contradicts the second assertion in Lemma 2.3. This achieves to show the convergence of entry/exit
points for i ∈ Iba. Letting δ → 0 in (S3), we obtain similarly the convergence of touch points and entry/exit
points of boundary arcs to the common value t̄eni , for all i ∈ Ito. The convergence of nonactive local isolated
maxima of gμ(y) in Ωδi when i ∈ Ito, is obtained by classical arguments, since (1.26) holds and locally on Ωδi , the
second-order derivative (1.6) is continuous on interior arcs since u and u̇ are (indeed, for ‖u− ū‖∞ and ‖μ−μ0‖
small enough, Hμ

uu(u, y, p) ≥ α/2 > 0 by (A2) and Rem. 2.4), so that gμ(y) belongs to a C2 neighborhood
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of gμ0(ȳ). Finally, the convergence of jump parameters at entry times follows from assertion (4) in Lemma 2.3,
since η1 and η1 are related by (4.18), and η1 satisfies (4.5) and (4.14).

Hence if (μ, u) is close enough to (μ0, ū), the augmented set of shooting parameters θ̂ belongs to the neigh-
borhood Vθ of θ0, on which (4.40) has a unique solution θμ by Lemma 5.1, and (u, y) is the (unique) trajectory
associated with θ̂. Consequently, θ̂ = θμ and (u, y) = (uμ, yμ) is the unique stationary point of (Pμ) with (u, μ)
in the neighborhood of (ū, μ0). �

Now we can prove the main result. Under assumptions (A2)–(A6) and point (ii) of Theorem 3.3, for μ in the
neighborhood of μ0 and v ∈ L2, denote by zμv the unique solution in Z of the linearized state equation

żμv = fμu (uμ, yμ)v + fμy (uμ, yμ)zμv a.e. on [0, T ], zμv (0) = 0 (5.32)

and by Qμ the quadratic form over L2 defined by

Qμ(v) = J μ(v, zμv ) (5.33)

where J μ is defined by (3.1) for (Pμ) and its stationary point and multipliers (uμ, yμ, pμ, ημ).

Proof of Theorem 3.3. By Lemmas 5.1–5.4, to achieve the proof of (ii) ⇒ (i), it remains to show that uμ

satisfies the uniform quadratic growth condition. The arguments used are similar to those in the proof of [6],
Theorem 4.3. We argue by contradiction. Assume that the uniform quadratic growth does not hold. Then
there exist a sequence μn converging to μ0 and a sequence un → ū in L∞ such that for all n, Gμn(un) ∈ K and

Jμn(un) ≤ Jμn(uμn) + o(‖un − uμn‖2
2). (5.34)

Introducing the Lagrangian of (1.11) defined by Lμ(u, η) := Jμ(u) + 〈η, Gμ(u)〉, with 〈·, ·〉 the duality product
in M[0, T ]× C0[0, T ] defined by 〈η, x〉 =

∫ T
0

x(t)dη(t), we obtain that

Lμn(un, ημn) ≤ Lμn(uμn , ημn) + o(‖un − uμn‖2
2).

Set εn := ‖un − uμn‖2 → 0 and vn := (un − uμn)/εn. A second-order expansion of the Lagrangian shows that

Lμn(un, ημn) = Lμn(uμn , ημn) + ε2
nQ

μn(vn) + o(ε2
n),

where Qμn is defined by (5.33). It follows then that Qμn(vn) ≤ o(1). Since (vn) is bounded in V = L2, we
may assume that it converges weakly to some v̄ ∈ L2. In view of the compact inclusion of H1(0, T ) in C0[0, T ],
the associated linearized state zn := zμn

vn
defined by (5.32) converges uniformly to z̄ := zμ0

v̄ . We may write that

Qμn(vn) = Qμ0(vn) + Qμn(vn) − Qμ0(vn),

and using that ‖vn‖2 is bounded it is not difficult to check that Qμn(vn) − Qμ0(vn) → 0. Therefore by weak
lower-semicontinuity of the Legendre form Q = Qμ0 by (1.20), we obtain that

J (v̄, z̄) = Q(v̄) ≤ lim inf
n→+∞

Q(vn) ≤ lim sup
n→+∞

Q(vn) ≤ 0. (5.35)

Moreover, v̄ and z̄ satisfy the constraint (3.3). Indeed, since Gμn(un) ∈ K, we have that gμn
y (yμn)zn + rn ≤ 0

on I(gμn(yμn)), where rn satisfies ‖rn‖∞ = O(εn). Since d
dtg

μn
y (yμn(t))zn(t) = (gμn

u )(1)(uμn , yμn)vn +
(gμn
y )(1)(uμn , yμn)zn, it follows from Cauchy-Schwarz inequality that the functions (of time) gμn

y (yμn)zn are
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uniformly Hölder continuous. Therefore, there exists a constant C > 0 such that, for all large enough n, using
Lemma 5.1,

sup
t∈∪N

i=1[t̄
en
i ,t̄exi ]

gμn
y (yμn(t))zn(t) ≤ O(εn) + C

√
max

i=1,...,N
{|tμn,en

i − t̄eni |, |tμn,ex
i − t̄exi |} = o(1). (5.36)

Since gμn
y (yμn)zn → gy(ȳ)z̄ uniformly, it follows that gy(ȳ)z̄ ≤ 0 on ∪Ni=1[t̄

en
i , t̄exi ]. In addition, by (5.34),

we have that 〈ημn , gμn
y (yμn)zn〉 = −DJμn(uμn)vn ≥ O(εn). Therefore, 〈η̄, gy(ȳ)z̄〉 ≥ 0, which implies finally

by (A5) that gy(ȳ)z̄ = 0 on ∪Ni=1[t̄
en
i , t̄exi ], i.e. (3.3) holds. Thus (3.8) and (5.35) imply that v̄ = 0. But then

Q(vn) → Q(v̄), and hence, by the property of Legendre forms, vn → v̄ strongly, contradicting that ‖vn‖2 = 1
for all n.

To prove the converse implication, we construct a perturbation of the constraint gμ, so that (nonessential)
touch points becomes inactive on the perturbed problem (Pμ), and (ū, ȳ) is a stationary point of (Pμ). This
is where we need nonautonomous perturbations. Let ϕ be a C∞ function with support in [−1, 1] and positive
on (−1, 1). Set μ0 = 0 and gμ(y) := g(y) −

∑
τ∈T̄to

μ5ϕ((yn − τ)/μ) for μ 	= 0 (recall that we assume (1.4)).
Then (�, φ, f, gμ, y0) is a stable extension of (P), (ū, ȳ) is a stationary point of (Pμ) for all |μ| small enough, and
gμ(ȳ(τ)) < 0 for all nonessential touch point τ . By the definition of the uniform growth condition, (ū, ȳ) is a
local solution of (Pμ) satisfying (3.9), so it follows from Theorem 3.1(ii) that the strong second-order sufficient
condition (3.8) holds. �

We end this section by the proof of Lemma 3.4.

Proof of Lemma 3.4. Denote by Qμ the quadratic form (5.33) and C̃μ the set of v ∈ V satisfying the con-
straints (3.2)–(3.3) for (Pμ) and its stationary point (uμ, yμ), i.e. such that

gμy (yμ)zμv = 0 on [tμ,eni , tμ,exi ], for all i = 1, . . . , N. (5.37)

Let us show that there exists α′ > 0 such that for all μ close enough to μ0 and all v ∈ C̃μ(uμ), we have
Qμ(v) ≥ α′‖v‖2

2, which will give the result.
We argue by contradiction, as in the proof of the uniform growth condition in Theorem 3.3. Assume this is

not the case. Then there exist sequences (μn)n∈N∗ and (vn)n∈N∗ , such that μn → μ0, vn ∈ C̃μn for all n, and

Qμn(vn) ≤ o(1)‖vn‖2
2. (5.38)

Since C̃μn is a cone (in fact, here, a linear subspace of V), and Qμn is a quadratic form, assume w.l.o.g. that
‖vn‖2 = 1, and taking a subsequence if necessary, that the sequence (vn) converges weakly to some v̄ ∈ V .
Then the associated state zn := zμn

vn
given by (5.32) is weakly convergent to z̄ := zμ0

v̄ in H1, and hence zn → z̄

uniformly. By the same argument as in the proof of Theorem 3.3 (see (5.36)), since vn ∈ C̃μn , we deduce that
supt∈∪N

i=1[t̄
en
i ,t̄exi ] |gμn

y (yμn(t))zn(t)| ≤ C
√

maxi=1,...,N{|tμn,en
i − t̄eni |, |tμn,ex

i − t̄exi |} = o(1). It follows then that
v̄ ∈ C̃μ0 . But (5.38) implies that Qμ0(v̄) ≤ 0, therefore v̄ = 0 by (3.8), and then Qμ0(vn) → Qμ0(v̄). Since Qμ0

is a Legendre form, it follows that vn → v̄ strongly, contradicting that ‖vn‖2 = 1 for all n. This achieves the
proof. �

6. Sensitivity analysis

Under assumptions (A2)–(A6) and point (i) or (ii) of Theorem 3.3, we investigate in this section directional
differentiability of solutions. Given a stable extension (Pμ), by Lemma 5.1, strong regularity holds, and the
mapping Ξ : Vδ → V ′

θ , δ �→ θ(δ) solution of (5.1) is given by Ξ(δ) = θ0 + ω(δ), where ω(δ) is the solution
of (5.5). It is easy to see that the mapping δ �→ ω(δ) is positively homogeneous of degree one, and it follows
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then from (5.4) that the mapping μ �→ θμ is Fréchet directionally differentiable. The directional derivatives in
direction d ∈ M are obtained by substituting into (5.5) δ by −DμF (θ0, μ0)d. Therefore,

θμ0+d = θ0 + ωd + o(‖d‖), (6.1)

where
ωd = (π∗

d,0, γ
1
d , σ

en
d , σex

d ) ∈ R
n × R

N × R
N × R

N (6.2)
is as follows. Denote by

(vd, zd, π1,d, ζ1,d, λ
1
d) (6.3)

the (unique) optimal solution, costate and multipliers of the linear-quadratic problem below:

(Pd) min
(v,z)∈V×Z

1
2

∫ T

0

D2
(u,y,μ),(u,y,μ)H̃(ū, ȳ, p̄1, η̄1, μ0)((v, z, d), (v, z, d))dt

+ 1
2D2φ̂(ȳ(T ), μ0)((z(T ), d), (z(T ), d))

+ 1
2

∑
i∈Iba

ν̄1
i D

2ĝ(ȳ(t̄eni ), μ0)((z(t̄eni ), d), (z(t̄eni ), d))

subject to: ż = Df̂(ū, ȳ, μ0)(v, z, d) on [0, T ], z(0) = Dŷ0(μ0)d (6.4)

Dĝ(1)(ū, ȳ, μ0)(v, z, d) = 0 on Īb (6.5)
Dĝ(ȳ(t̄eni ), μ0)(z(t̄eni ), d) = 0, i ∈ Iba (6.6)
Dĝ(ȳ(t̄eni ), μ0)(z(t̄eni ), d) ≤ 0, i ∈ Ito, (6.7)

with π1,d associated with the constraint (6.4), ζ1,d with (6.5), and λ1
d with (6.6)–(6.7). Then we have

πd,0 = π1,d(0) (6.8)

γ1
d = λ1

d (6.9)

σen
d,i =−Dĝ(1)(ū(t̄eni ), ȳ(t̄eni ), μ0)(vd(t̄en−i ), zd(t̄eni ), d)

d
dtg

(1)(ū, ȳ)|t=t̄en−
i

, i = 1, . . . , N, (6.10)

σex
d,i =−Dĝ(1)(ū(t̄exi ), ȳ(t̄exi ), μ0)(vd(t̄ex+

i ), zd(t̄exi ), d)
d
dtg

(1)(ū, ȳ)|t=t̄ex+
i

, i = 1, . . . , N. (6.11)

Since the mapping μ �→ θμ is Fréchet directionally differentiable, and the solution (uμ, yμ, pμ1 , ημ1 ) of (4.32)–
(4.36) is, on each arc, a C1 function of (θμ, μ), combining with the continuity of uμ and of the classical
multipliers pμ and ημ given by (4.16) (which follows from Lem. 5.3), we obtain the following result.

Theorem 6.1. Let (ū, ȳ) be a stationary point of (P) satisfying (A2)–(A6). If either point (i) or (ii) of
Theorem 3.3 is satisfied, then there exists a neighborhood Vμ of μ, such that the mapping μ �→ (uμ, yμ, pμ, ημ)
is Fréchet directionally differentiable in the space

Lr(0, T ) × W 1,r(0, T ; Rn) × Lr(0, T ; Rn∗) × Lr(0, T ), for all 1 ≤ r < +∞,

and the derivatives of the state and control in direction d are the optimal solution (vd, zd) of linear-quadratic
problem (Pd), while those of the costate pμ and state constraint multiplier ημ are obtained, respectively, a.e. by

πd(t) = π1,d(t) + ζ1,d(t)gμ0
y (ȳ(t)) + η̄1(t)Dĝy(ȳ(t), μ0)(zd(t), d) (6.12)

ζd(t) = −
N∑
i=1

γ1
d,i1[0,t̄eni )(t) − ζ1,d(t). (6.13)
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In addition, all shooting parameters (initial costate, jump parameters and junction times) are Fréchet direction-
ally differentiable w.r.t. μ, and their directional derivative in direction d are given by (6.8)–(6.11).

Remark 6.2. We can show that an equivalent formulation of (Pd) is (see Rem. 4.10) to minimize

∫ T

0

D2
(u,y,μ),(u,y,μ)H(ū, ȳ, p̄, μ0)((v, z, d), (v, z, d))dt + D2φ̂(ȳ(T ), μ0)((z(T ), d), (z(T ), d))

+
∫ T

0

D2ĝ(ȳ(t), μ0)((z(t), d), (z(t), d))dη̄(t)
(6.14)

for (v, z) ∈ V × Z subject to the constraints (6.4), (6.7) and

Dĝ(ȳ, μ0)(z, d) = 0 on Īb. (6.15)

This last constraint is equivalent to (6.5)–(6.6) since Dĝ(1)(ū, ȳ, μ0)(v, z, d) = d
dtDĝ(ȳ(t), μ0)(z(t), d). Then,

using the relation (6.12), we can show that πd, the directional derivative of pμ w.r.t. μ, is the multiplier
associated with (6.4) in formulation (6.14)–(6.15) of (Pd), and that the directional derivative of dημ

dt w.r.t. μ,
equal by (6.13) to ζ̇d = −ζ̇1,d, is equal to the multiplier associated with the constraint (6.15).

Let us conclude this section by the following observation. For i ∈ Ito, since t̄eni = t̄exi , the optimality system
of (Pd), easily obtained, yields that Huuvd + Huyzd + π1,dfu = 0 at t̄en±i , and that the jump of π1,d is given by
[π1,d(t̄eni )] = −γ1

d,igy(ȳ(t̄eni )). Hence, the jump of vd is given by

[vd(t̄eni )] = γ1
d,iH

−1
uu (ū, ȳ, p̄)(t̄eni )gy(ȳ(t̄eni ))fu(ū, ȳ)(t̄eni ) = γ1

d,iH
−1
uu (ū, ȳ, p̄)(t̄eni )g(1)

u (ū, ȳ)(t̄eni ),

and we obtain from (6.10)–(6.11)

σex
d,i − σen

d,i = −g
(1)
u (ū, ȳ)(t̄eni )[vd(t̄eni )]

d
dtg

(1)(ū, ȳ)|t=t̄eni

= Ciγ
1
d,i, with Ci :=

H−1
uu (ū, ȳ, p̄)(t̄eni )(g(1)

u (ū, ȳ)(t̄eni ))2

− d
dtg

(1)(ū, ȳ)|t=t̄eni

> 0. (6.16)

Since γ1
d,i ≥ 0 for i ∈ Ito, we see that σex

d,i − σen
d,i ≥ 0, with equality iff γ1

d,i = 0. It follows that, for μ − μ0 = d,
the length of the boundary arc and the jump parameter are related, at first order, by

tμ,exi − tμ,eni = Ciν
μ,1
i + o(‖μ − μ0‖). (6.17)

Remark 6.3. It was quite expected that nonessential touch points generally turn into boundary arcs for
constraints of first order (see e.g. [9]). However it was surprising to be able to describe this transition between
touch points and boundary arcs by a shooting approach when the structure is not stable, and obtain the
differentiability of the shooting mapping, and in particular of the entry and exit times of the appearing boundary
arcs.

Note that those results are false for control constraints. Consider for example the problem below:

min
u∈U

∫ 2

0

(u(t) − (t − 1)2)2dt.

Here we have no state, or more precisely, the state is equal to the time. Obviously the solution is u(t) = (t−1)2.
Add now a constraint u(t) ≥ ε for ε > 0. Then the optimal solution is u(t) = ε on [τε−, τε+] with τε± = 1 ±

√
ε,

and u(t) = (t− 1)2 on [0, τε−)∪ (τε+, 2]. So for ε > 0 a boundary arc appear, whose end points τε− and τε+ are not
differentiable at the point ε = 0, and whose length is of order

√
ε and not ε. A fortiori the shooting mapping

is not differentiable at the point ε = 0, and the algorithm described in Section 8 has no obvious extension to
control constraints (or more generally to mixed control-state constraints).
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7. Example of sensitivity analysis

We illustrate the results of this paper on a very basic example. We consider the problem of an elastic line
of positive mass, fixed at its endpoints and submitted to a vertical uniform force (g). The problem is to find
the equilibrium position, i.e. minimize the energy. Assuming the elastic potential to be quadratic with unit
constant, this can be written as the optimal control problem (with t replaced by x ∈ [0, 1]):

min
∫ 1

0

(
u(x)2

2
+ gy(x)

)
dx, ẏ(x) = u(x), y(0) = 0 = y(1). (7.1)

We add a first-order state constraint, e.g. the level of the floor

y(x) ≥ −h. (7.2)

Here g and h denotes positive constants.

Remark 7.1. Our results can be extended with only slight adaptations to the case when there are also finitely
many equality and inequality constraints on the final state, if we assume in addition a controllability condition.
In the case of a fixed final state, y(T ) = yT given in R

n, this controllability condition is assumption (A1’) below.
Recall that given δ > 0, we denote by Ωδ := {t ∈ [0, T ], dist{t; I(g(ȳ))} < δ}.
(A1’) (i) The initial and final conditions satisfy g(y0) < 0 and g(yT ) < 0.

(ii) There exists δ > 0 such that the linear mapping U → W 1,∞(Ωδ)×R
n; v �→ (gy(ȳ(·))zv(·)|Ωδ , zv(T )),

where zv is the solution of (1.24) and |Ωδ denotes the restriction to the set Ωδ, is onto (and therefore
has a bounded right inverse by the open mapping theorem).

This assumption (A1’) plays the role of Lemma 1.2 in the proofs. Note that when the dynamics f is linear,
i.e. f(u, y) = Ay +Bu, then (A1’)(ii) is satisfied if the pair (A, B) is controllable, and if (A1’)(i) and (A3) hold.

For the example considered here, (A1’) is obviously satisfied so all the previous results are valid. The
unconstrained optimal trajectory when h/g ≥ 1/8 is given by:

y(x) = 1
2gx2 − 1

2gx, u(x) = gx − 1
2g. (7.3)

The resolution of the constrained problem when h/g ≤ 1/8 is as follows. The trajectory is:

u(x) =

⎧⎨
⎩

g(x − xen) on [0, xen]
0 on [xen, xex]
g((x − 1) − (xex − 1)) on [xex, 1]

y(x) =

⎧⎨
⎩

g(x2/2 − xenx) on [0, xen]
−h on [xen, xex]
g((x − 1)2/2 − (xex − 1)(x − 1)) on [xex, 1].

Entry and exit positions xen and xex are given by:

xen =
√

2h/g, xex = 1 −
√

2h/g. (7.4)

The alternative state constraint multiplier on [xen, xex] is given by:

η1(x) = p1(x) = −g(x − xex) ≥ 0, η̇1(x) = −g < 0,

and hence, the jump parameter at entry time is:

ν1
en = η1(xen) = g(xex − xen) = g

(
1 − 2

√
2h/g

)
≥ 0. (7.5)
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We consider perturbations w.r.t. nominal values of parameters g = g0 = 1 and h = h0 = 1/8, for which
there is a touch point at x = 1/2. The strong sufficient second-order condition (3.8) clearly holds, since the
linear-quadratic problem:

min
∫ 1

0

v2(x)
2

dx, ż(x) = v(x), z(0) = 0 = z(1)

having a strongly convex cost function, has (v, z) = 0 for unique solution. Let us then study the perturbed
quadratic problem at (g0, h0) in direction d := (γ, η):

min
∫ 1

0

(
v(x)2

2
− γz(x)

)
dx, ż(x) = v(x), z(0) = 0 = z(1),

subject to the interior point inequality constraint:

z(1/2) ≥ −η. (7.6)

The unconstrained trajectory is:

zd(x) = γ

(
x2

2
− x

2

)
, vd(x) = γ

(
x − 1

2

)
. (7.7)

Therefore, the constraint is active, iff η ≤ γ/8. If η > γ/8, (7.7) corresponds to the directional derivative of the
unconstrained trajectory (7.3). When η ≤ γ/8, the constraint (7.6) is active, i.e. zd(1/2) = −η, and therefore,
the solution of the linear-quadratic problem is as follows:

vd(x) =
{

γx − (2η + γ/4) on [0, 1/2]
γ(x − 1) + (2η + γ/4) on [1/2, 1].

zd(x) =
{

γx2/2 − (2η + γ/4)x on [0, 1/2]
γ(x − 1)2/2 + (2η + γ/4)(x − 1) on [1/2, 1].

The multiplier λd associated with the constraint (7.6) is, by (6.16):

λd = [πd(1/2)] = −[vd(1/2)] = −2(2η − γ/4) ≥ 0, (7.8)

and, by (6.10)–(6.11), the variations of entry and exit points σd,en and σd,ex are given by:

σd,en = −v(1/2−)
g0

= −γ/4 + 2η, σd,ex = −v(1/2+)
g0

= γ/4 − 2η. (7.9)

By (7.5) and (7.4), we check that the above formula corresponds to the first-order variations, with g = g0 + γ
and h = h0 + η, |γ|, |η| small, of:

ν1
en = (1 + γ)

(
1 − 2

√
1/4 + 2η

1 + γ

)
, xen =

√
1/4 + 2η

1 + γ
, xex = 1 −

√
1/4 + 2η

1 + γ
·

We consider perturbations in three directions d = (γ, η):
Case (a) (γ, η) = (0,−0.02)
Case (b) (γ, η) = (1, 0)
Case (c) (γ, η) = (1,−0.02).



850 J.F. BONNANS AND A. HERMANT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.032

-0.028

-0.024

-0.020

-0.016

-0.012

-0.008

-0.004

0.000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.03

-0.02

-0.01

0.00

0.01

0.02

Figure 1. Perturbation of the state (left) and directional derivatives (right) in case (a) to (c)
(from top to bottom).
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Figure 2. Variation of the length of the boundary arc in case (c).
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Case (a) corresponds to an elevation of the ground level, case (b) corresponds to an increasing of the “gravi-
tational” force g, both of them leading to the emergence of a boundary arc, and case (c) combines elevation
of the ground and increasing of g. The perturbed trajectories and directional derivatives of the state in W 1,r,
1 ≤ r < +∞, are presented for each case in Figure 1. The unconstrained trajectory for (g0, h0) is a parabola.
In Figure 2, we focus on the appearance of the boundary arc in case (c), check that its length is of the order of
the perturbation and compare with the directional derivatives of variation of junction times (7.9).

8. Homotopy method

We present in this section an algorithm that combines shooting and continuation (or homotopy) methods for
solving optimal control problems with a scalar first-order state constraint, when the structure of the trajectory
is unknown. It keeps the advantages of shooting methods regarding to the (high) precision and the (low)
complexity, and enables to get rid of the (sometimes) hard task to guess a priori the structure of the trajectory,
and of the initialization of some of the shooting parameters (only the initialization of the initial costate is left
to the user). The idea is to handle automatically the appearance (and disappearance) of boundary arcs, so that
the algorithm finds itself the structure of the trajectory. The results of the previous sections are used.

General results on homotopy methods can be found in e.g. [1], [11], Chapter 5, and applications of homotopy
methods to optimal control problems in e.g. [10,14,24].

8.1. Description of the algorithm

The problem to be solved is the following:

(P) min
(u,y)∈U×Y

∫ T

0

�(u(t), y(t))dt + φ(y(T )) (8.1)

subject to ẏ(t) = f(u(t), y(t)) a.e. on [0, T ], y(0) = y0, (8.2)
g(y(t)) ≤ 0 on [0, T ]. (8.3)

We assume that (P) satisfies (A0)–(A1). In view of Remark 7.1, we can more generally consider a fixed final
state y(T ) = yT and φ = 0 if we assume in addition that the controllability condition (A1’) holds.

We consider the natural homotopy on the state constraint (Pμ), for μ ∈ [0, 1], defined by (�μ, φμ, fμ, yμ0 ) :=
(�, φ, f, y0) and

gμ(y) := g(y) − (1 − μ)K, (8.4)
where the constant K > 0 is large enough, so that the state constraint of problem (P0) is not active, except
maybe at finitely many (isolated) touch points in (0, T ). We explain later how we choose K in the algorithm.
We thus have (P1) ≡ (P).

The shooting mapping (4.39) for (Pμ) is denoted by F (θ, μ), where θ is the vector of shooting parameters,
of variable dimension depending on the structure of the trajectory, and μ is the (scalar) homotopy parameter.
Since we only have here one state constraint of first order, note that the structure of the trajectory, and hence F ,
is entirely determined by the dimension of θ. More precisely, the number of boundary arcs of the trajectory Nba

is given by (assuming the state constraint inactive at initial and final times)

Nba =
dim(θ) − n

3
∈ N. (8.5)

The structure of the trajectory follows then from the alternation between interior and boundary arcs. We
denote by yθ,μ the state solution of the alternative formulation for the shooting parameter θ and the value of
the homotopy parameter μ. The algorithm is as follows (see Algorithm 8.1).

The algorithm is initialized by solving the unconstrained problem (without the state constraint) (8.1)–(8.2).
We thus obtain a vector of shooting parameters θ0 (reduced to the initial costate), associated with a stationary
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point of (8.1)–(8.2), which is a local solution of (8.1)–(8.2) if the second-order sufficient condition (3.6) holds.
The constant K in (8.4) is taken equal to K := maxt∈[0,T ] g(yθ0,0(t)). If K ≤ 0, then θ0 is a vector of shooting
parameters associated with a local solution of (P). If K > 0, we start the homotopy from μ = μ0 := 0 in (8.4)
to μ = 1.

The variable mk denotes the maximum of gμk(yθk,μk), attained at time τk. If mk is positive, this means that
the state constraint is violated so the structure is not correct and we have to add a boundary arc (Step A).
The variable ik equals zero iff all entry and exit times of boundary arcs are such that entry times are lower
than or equal to the corresponding exit times, and equals i > 0 if the entry time of the ith boundary arc is
greater than the corresponding exit time. If ik = i > 0, the structure is not correct again so we have to delete
the ith boundary arc (Step A). All this will be justified later in Section 8.3 under some assumptions. If both
mk ≤ 0 and ik = 0, this means that the structure is correct, i.e. the current iterate θk is a vector of shooting
parameters associated with a stationary point (uμk , yμk) of (Pμk). We thus increase the value of μ and do a
simple predictor-corrector iteration (Steps B-C), keeping the same structure for the shooting mapping. Then
in Step D we calculate the new values of mk+1 and ik+1 that say whether the structure is still correct or has to
be updated in the next iteration. We do so until reaching the value μ = 1.

If the Newton algorithm in Step C fails, then we decrease the value of the step Δμk, and go back to the last
value (μk−1, θk−1) satisfying F (μk−1, θk−1) = 0 and max(mk−1, ik−1) = 0.

Algorithm 8.1 (homotopy algorithm).
Initialization

Input p0 ∈ R
n∗ and δ ∈ (0, 1].

– Solve by the shooting algorithm (initialized by the value p0) the unconstrained problem (8.1)–(8.2), and
obtain a vector of shooting parameters θ0.

– Set K := max g(yθ0,0(t)). If K ≤ 0 set μ0 := 1, else set μ0 := 0. Set m0 := 0, i0 := 0, k := 0, Δμ1 := δ.
While μk < 1 or max(mk, ik) > 0

If max(mk, ik) > 0 then Step A (update the structure)
If mk > 0 then (addition of a boundary arc)

Initialize the new shooting parameters (ν1, τen, τex) associated with this boundary arc by:

ν1 = 0 and τen = τex = τk. (8.6)

Take the remaining shooting parameters equal to the previous value θk, and obtain a vector of
shooting parameters θ̄k of dimension dim(θk) + 3.

End if

If ik > 0 (suppression of a boundary arc)
Remove the shooting parameters (ν1, τen, τex) corresponding to the ik-th boundary arc from the
vector of shooting parameters θk, and obtain a new vector of shooting parameters θ̄k of dimen-
sion dim(θk) − 3.

End if

Set μ̄k := μk (the value of μ is unchanged by this step).
Else Step B (prediction)

Set k := k + 1
μ̄k := min{μk−1 + Δμk; 1}
θ̄k := θk−1 − DθF(θk−1, μk−1)−1DμF(θk−1, μk−1)(μ̄k − μk−1).

End if
Step C (correction) Try to solve, by a Newton method, F(θ, μ̄k) = 0. The Newton algorithm is initialized

by the value θ̄k.
If the Newton algorithm fails then (go back to old values of μ and θ and decrease the step). Set μk :=

μk−1, θk := θk−1, mk := mk−1, ik := ik−1, τk := τk−1, Δμk := Δμk/2 and k := k − 1.
Else (success) obtain a solution θk such that F (θk, μ̄k) = 0. Set μk := μ̄k.
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Step D (verify if the structure is correct)
– Set mk := max gμk(yθk,μk(t)) and τk ∈ argmax gμk(yθk,μk(t)).
– Set ik := 0. For all i = 1, . . . , Nk

ba (Nk
ba given by (8.5)), if θk is such that the entry time corre-

sponding to the ith boundary arc is greater than the exit time corresponding to the ith boundary
arc, then ik := i.

– If max(mk, ik) = 0 then set Δμk+1 := δ.
End if

End while

Remark 8.2. Note that the Newton algorithm converges quadratically, provided that the initial point is good
enough. Therefore, we can see rapidly in Step C whether the Newton algorithm converges or not and if we need
to decrease the step Δμk.

Remark 8.3. Clearly, the present algorithm does not take into account all possible events, since it principally
assumes the stability of boundary arcs (which holds when uniform strict complementarity is satisfied, see
assumption (H2) below). If uniform strict complementarity does not hold along the homotopy path, then
it may happen for example that a boundary arc splits into two boundary arcs, or on the contrary that two
boundary arcs melt into one.

8.2. Existence of the homotopy path

Assume that the following holds:
(H0) For μ0 = 0, the unconstrained problem (P0) has a local solution (ū, ȳ) that satisfies (A0)–(A3), the

contact set I(g0(ȳ)) is composed of finitely many (nonessential) touch points in (0, T ), all of them
satisfying (1.26), and the strong second-order sufficient condition (3.8) is satisfied.

By Theorem 3.3, (H0) implies that there exists μ̃ > 0 such that for all μ ∈ [0, μ̃), (Pμ) has a locally unique local
solution (uμ, yμ) with multipliers (pμ, ημ), that satisfies assumptions (A1)–(A3) for (Pμ). In addition, this local
solution (uμ, yμ) of (Pμ) has a neighboring structure to that of (ū, ȳ), implying that if (ū, ȳ) has N touch points,
then (uμ, yμ) has at most N boundary arcs or touch points, i.e. satisfies (A4). Further, strict complementarity
holds on the boundary arcs of (uμ, yμ), and the touch points satisfy (1.26) by continuity, i.e. (A5)–(A6) are
satisfied. Finally, (uμ, yμ) satisfies the strong second-order condition (3.8) for (Pμ) by Lemma 3.4.

Consequently, assumption (H0) ensures that the homotopy path is well-defined on an interval [0, μ̃) ⊂ [0, 1],
and that assumptions (A1)–(A6) as well as the strong second-order sufficient condition (3.8) remain satisfied
on this neighborhood. Let

μmax := sup{μ̃ ∈ [0, 1] : for all μ ∈ [0, μ̃], the locally unique local solution (uμ, yμ)
of (Pμ) satisfies (A1)–(A6) and (3.8) }.

The preceding discussion shows that assumption (H0) implies that μmax > 0.

Lemma 8.4 (existence of the homotopy path). Assume that (H0) holds, that there exists L > 0 such that for
all μ ∈ [0, μmax),

‖u̇μ‖1 + ‖uμ‖∞ ≤ L, (8.7)

and that (A1) and (A3) are uniformly satisfied, i.e. there exist β, ε, ζ > 0 such that for all μ ∈ [0, μmax),

gμ(yμ0 ) < −ζ and |(gμ)(1)u (uμ(t), yμ(t))| ≥ β, for all t, dist{t; I(gμ(yμ))} ≤ ε. (8.8)

Then there exists a sequence (μn)n∈N∗ such that μn ↑ μmax, (uμn , yμn) → (ũ, ỹ) uniformly, (pμn , dημn) weakly-*
converges to (p̃, dη̃) in L∞(0, T ; Rn∗)×M[0, T ], and (ũ, ỹ, p̃, η̃) is a stationary point and its multipliers of (Pμmax).

Moreover, if (ũ, ỹ, p̃, η̃) satisfies assumptions (A1)–(A6) and the strong second-order sufficient condition (3.8),
then (uμ, yμ, pμ, ημ) converges when μ ↑ μmax to a locally unique local solution of (Pμmax) and its multipliers
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(ũ, ỹ, p̃, η̃) =: (uμmax , yμmax , pμmax , ημmax), and μmax = 1, i.e. the homotopy path is locally well-defined over
μ ∈ [0, 1].

Proof. Consider a sequence (μn)n∈N∗ ⊂ [0, μmax) such that μn → μmax when n → +∞. Since W 1,1(0, T )
is compactly embedded in C0[0, T ], (8.7) implies that there exists a subsequence, still denoted by (μn), such
that the sequence (uμn) converges uniformly to some ũ ∈ U . By (8.7), we may pass to the limit in the state
equation (1.2) and obtain that yμn converges in Y to the state ỹ := yμmax

ũ solution of (1.10).
By (8.8), Robinson’s constraint qualification (1.17) is uniformly satisfied for all μ ∈ [0, μmax), i.e. the

positive constant γ in (1.17) does not depend on μ. It follows then from [8], Proposition 4.43, and (8.7) that
‖dημn‖M[0,T ] is uniformly bounded. Therefore there exists a weakly-* convergent subsequence dημn

∗
⇀ dη̃

in M[0, T ]. Since dημ ∈ NK(gμ(yμ)) for all μ ∈ [0, μmax), and gμn(yμn) → gμmax(ỹ) strongly (i.e. uniformly),
we deduce easily from the definition of the normal cone that dη̃ ∈ NK(gμmax(ỹ)). By the costate equation (1.13)
(with α = 1), dpμ is uniformly bounded in M([0, T ]; Rn∗). Therefore, there exists a weakly-* convergent
subsequence dpμn

∗
⇀ dp̃ ∈ M([0, T ]; Rn∗). Due to the convergence of the final condition (1.14), we deduce

easily from the integration by parts formula [13], p. 154

∫ T

0

p(t)ϕ(t)dt = −
∫ T

0

dp(t)Φ(t) + p(T )Φ(T ) for all (p, ϕ) ∈ BV ×L1 with Φ(t) :=
∫ t

0

ϕ(s)ds

that pμn weakly-* converges in L∞(0, T ; Rn∗) to a limit p̃ given by p̃(t) :=
∫ t
T dp̃(s) + φμmax

y (ỹ(T )). Since (1.18)
and (1.13) are linear in p and η, we may pass to the weak-* limit and obtain that (ũ, ỹ) is a stationary point
of (Pμmax) with multipliers (p̃, η̃).

Now assume that this stationary point (ũ, ỹ) of (Pμmax) satisfies assumptions (A1)–(A6) and the strong
second-order sufficient condition (3.8). These assumptions imply by Theorem 3.3 that (ũ, ỹ) is an isolated sta-
tionary point of (Pμmax), which shows the local uniqueness of the stationary point (ũ, ỹ) of (Pμmax) constructed
above and of its multipliers. In addition (ũ, ỹ) is a local solution of (Pμmax), and by Theorem 3.3, we obtain the
existence of the homotopy path on the interval [μmax, μmax + ε), for some ε > 0, and assumptions (A1)–(A6)
hold on this interval by Theorem 3.3, as well as the strong second-order condition (3.8) by Lemma 3.4. This
implies that μmax = 1, otherwise this would contradict the definition of μmax. Therefore the homotopy path is
locally well-defined over [0, 1]. �

We thus make the assumptions below:

(H1) For all μ ∈ [0, 1], (uμ, yμ) satisfies (A2), there exist L > 0 and β, ε, ζ > 0 such that (8.7) and (8.8) hold,
and gμ(yμ(T )) < 0.

(H2) For all μ ∈ [0, 1], (uμ, yμ) has finitely many boundary arcs, and there exists β > 0 such that for all
μ ∈ [0, 1], η̇μ1 < −β on the boundary arcs of (uμ, yμ) (with ημ1 the alternative state constraint multiplier
associated with (uμ, yμ)).

(H3) For all μ ∈ [0, 1], (uμ, yμ) has finitely many (nonessential) touch points, all of them satisfying (1.26).
(H4) For all μ ∈ [0, 1], (uμ, yμ) satisfies the strong second-order sufficient condition (3.8) for (Pμ).

Actually the Algorithm 8.1 is correct only if we replace assumption (H3) by:

(H′
3) For all μ ∈ [0, 1], (uμ, yμ) has at most one (nonessential) touch point, and the latter satisfies (1.26).

But the algorithm can be generalized to the more general case case when (H3) holds (see Rem. 8.14).

Remark 8.5. Assumptions (H0)–(H4) needed to ensure the existence (and local uniqueness) of the homotopy
path, and the convergence of the algorithm, are rather strong, but they also give some indications on why the
algorithm fails, if it fails (for other reasons than numerical ones, see Rem. 8.13). Either (8.7) is not satisfied
(i.e. uμ is not uniformly Lipschitz continuous), or the problem becomes singular (i.e. (8.8) fails), or a solution
with infinitely many boundary arcs or touch points is met during the homotopy, or strict complementarity on
boundary arcs fails, or finally the strong second-order sufficient condition (3.8) fails.
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8.3. Correctness of the algorithm

The existence of a locally unique local solution (uμ, yμ) of (Pμ), for all μ ∈ [0, 1], is guaranteed by assump-
tions (H1)–(H4). In addition, for all μ ∈ [0, 1], the locally unique local solution (uμ, yμ) of (Pμ) has finitely
many boundary arcs and touch points. So to prove the correctness of the algorithm, it suffices to show that
the algorithm does find, in finitely many steps, these local solutions (uμ, yμ) for a finite increasing sequence
of values of μ, until μ = 1 (in fact, the algorithm gives the vector of shooting parameters θμ, of appropriate
dimensions, associated with the trajectory (uμ, yμ)). For this Lemmas 8.6 to 8.10 given below will be useful.

Lemma 8.6. Assume that (H0)–(H4) hold. Then the trajectories (uμ, yμ)μ∈[0,1] have finitely many different
structures, and the mapping μ �→ θμ is globally Lipschitz continuous over [0, 1].

Here, since the dimension of θμ may vary, by “globally Lipschitz continuous” we mean that on any subinterval
of [0, 1] where the trajectories (uμ, yμ) have “neighboring structures”, then the mapping μ �→ θμ is Lipschitz
continuous with a Lipschitz constant uniform on [0, 1].

Proof. By assumptions (H1)–(H4) and Theorem 3.3, for all μ ∈ [0, 1], there exists an open neighborhood Vμ of μ

such that for all μ′ ∈ Vμ, the locally unique local solution (uμ
′
, yμ

′
) of (Pμ′

) has a neighboring structure to that
of (uμ, yμ), and the mapping μ′ �→ θμ

′
is Lipschitz continuous over Vμ. We can thus extract from (Vμ)μ∈[0,1] a

finite covering (Vμ̂k
)k=0,...,M of [0, 1]. Since for each μ̂k, there exist finitely many possible neighboring structures

to that of (uμ̂k , yμ̂k), and μ �→ θμ is Lipschitz continuous on each Vμ̂k
, the result follows. �

Although by Lemma 8.6 the trajectories (uμ, yμ)μ∈[0,1] have finitely many different structures, assump-
tions (H0)–(H4) do not imply that there are finitely many changes in the structure of the trajectory along
the homotopy path (see Rem. 8.7 below). More precisely, we say that the structure of the trajectory changes at
μ̄ ∈ [0, 1), if (uμ̄, yμ̄) has a touch point that either disappears or turns into a boundary arc (of positive length)
when μ → μ̄+. We will therefore make the following assumption in the proof of correctness of the algorithm
(Prop. 8.11), in addition to (H0)–(H4) that ensure the existence of the homotopy path.

(H5) There exist finitely many values of μ ∈ (0, 1) for which the structure of the trajectory (uμ, yμ) changes.

Remark 8.7. Consider the problem (7.1), with g = 1, subject to the state constraint (7.2) where h depends
on μ ∈ [0, 1], i.e. y ≥ hμ with hμ = −1/8 + μ5 sin(1/μ). For μ = 0, there is a nonessential touch point at
τ = 1/2. When μ5 sin(1/μ) > 0, i.e. μ ∈ ∪n∈N∗( 1

(2n+1)π , 1
2nπ ) ∪ ( 1

π , 1], then the latter turns into a boundary
arc, and when μ5 sin(1/μ) < 0, i.e. μ ∈ ∪n∈N∗( 1

2nπ , 1
(2n−1)π ), the boundary arc disappear (the state constraint

is not active). Therefore, for any ε > 0 arbitrarily small, the structure changes for infinitely many values of μ
in the interval [0, ε]. By Theorem 6.1, the computation of the directional derivatives in direction d = 1 at point
μ = 0 shows that problem (Pd) has zero for unique solution, and therefore the directional derivatives of the
entry/exit points and jump parameters at entry times are all zero in that case.

After this general description of the homotopy path, we will focus now on the changes in the structure,
i.e. when there are nonessential touch points. So consider a value μ̄ ∈ [0, 1] for which (uμ̄, yμ̄) has Nto ≥ 1
(nonessential) touch points τ̄i, i = 1, . . . , Nto. Denote by Fj , for j = 1, . . . , 2Nto , the shooting mappings
corresponding to all possible neighboring structures to that of (uμ̄, yμ̄), i.e. each touch point τ̄i is or not
converted into a boundary arc like in Section 4.2. Denote by θ̄j the appropriate vector of shooting parameters
of (uμ̄, yμ̄) for Fj . Thus we have

Fj(θ̄j , μ̄) = 0, for all j = 1, . . . , 2Nto .

For μ in the neighborhood of μ̄, and all j = 1, . . . , 2Nto , we consider the problem:

Find θ of appropriate dimensions solution of: Fj(θ, μ) = 0. (8.9)
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Lemma 8.8. Assume that (H0)–(H4) hold. Let μ̄ ∈ [0, 1] be such that (uμ̄, yμ̄) has Nto ≥ 1 (nonessential)
touch points τ̄i, i = 1, . . . , Nto. Then there exist an open neighborhood V̄μ of μ̄ and open neighborhoods Vj of θ̄j,
j = 1, . . . , 2Nto , such that for all j = 1, . . . , 2Nto and for all μ ∈ V̄μ, the problem (8.9) has in Vj a unique solution
θμj , and the mappings V̄μ → Vj , μ �→ θμj , are of class C1.

Proof. By (H3), the touch points τ̄i all satisfy (1.26). By (H4) the strong second-order sufficient condition (3.8)
is satisfied, and hence the Jacobians DθFj(θ̄j , μ̄) are nonsingular, for all j = 1, . . . , 2Nto (by the same arguments
as in the proof of Lem. 5.1). So it follows from the classical implicit function theorem that (8.9) has a locally a
unique solution θμj , which is C1 w.r.t. μ. �

Under the assumptions of Lemma 8.8, for μ ∈ V̄μ and j = 1, . . . , 2Nto , denote by yμj the state associated
with θμj , i.e. solution of (4.32)–(4.35) for the arc structure of Fj . Note that yμj is well-defined on each arc of the
trajectory only (not on [0, T ]), since some entry times in θμj may be greater than the corresponding exit times.
Let θ̂μj denote the augmented vector of shooting parameters obtained from θμj by adding, for each touch point τ̄i
that was not converted into a boundary arc in Fj , a zero jump parameter for the costate and an entry and
exit time both equal to the unique local maximum of gμ(yμj (t)) in the neighborhood of τ̄i. Thus the augmented
vectors of shooting parameters θ̂μj have the same dimension for all j, which is also the dimension of the shooting
mapping F in (4.39) for which all the Nto touch points are converted into boundary arcs. For μ = μ̄, we denote
the augmented vector of shooting parameters by θ̄ = θ̂μ̄j , for all j.

Lemma 8.9. Under the assumptions of Lemma 8.8, there exists an open neighborhood ¯̄Vμ of μ̄ such that for
all j = 1, . . . , 2Nto , the mapping μ �→ θ̂μj is C1 over ¯̄Vμ, and for all μ ∈ ¯̄Vμ, the augmented vector of shooting
parameters θ̂μj is solution of (4.40), iff the two conditions below are satisfied:

gμ(yμj (t)) ≤ 0, on each arc, (8.10)

τμen,j ≤ τμex,j, for all boundary arcs, (8.11)

where for each boundary arc of Fj , τμen,j and τμex,j denote the components of θμj corresponding respectively to the
entry and exit point of the boundary arc.

Proof. In the neighborhood of a touch point τ̄i that was not converted into a boundary arc in Fj , for all μ ∈ V̄μ,
the function gμ(yμj (·)) is locally well-defined and C2. Therefore, since d2

dt2 gμ̄(yμ̄)|t=τ̄i < 0, the function that with
gμ(yμj ) associates its (unique) local maximum time in the neighborhood of τ̄i is C1, and hence, by Lemma 8.8,
μ �→ θ̂μj is C1. Now denote by tien and ν1

i respectively the entry time and jump parameter of the boundary arc
associated with the touch point τ̄i in θ̂μj , j = 1, . . . , 2Nto . By the arguments of the proof of Lemma 5.2, we have
that (8.11) is equivalent to ν1

i ≥ 0 for all i = 1, . . . , Nto, and for each i we have either gμ(yμj (tien)) = 0 or ν1
i = 0.

Therefore (8.10)–(8.11) are equivalent to the condition Ψ(θ̂μj , μ) ∈ N(θ̂μj ). The conclusion follows. �

Let j1, j2 ∈ {1, . . . , 2Nto}, j1 	= j2, and μ ∈ ¯̄Vμ. Given a solution θμj1 of (8.9) for j = j1, let us explain now
how to initialize the Newton algorithm in order to find a solution of (8.9) for j = j2. The initial point θ̃μj1,j2 is
obtained from θμj1 as follows:

• For every touch point τ̄i that was converted into a boundary arc in Fj1 but not in Fj2 , remove from θμj1
the shooting parameters associated with this boundary arc.

• For every touch point τ̄i that was converted into a boundary arc in Fj2 but not in Fj1 , add to θμj1 the
three shooting parameters associated with this boundary arc (ν1,i, τ ien, τ iex) as follows: ν1,i = 0, and τ ien
and τ iex are both equal to the unique point of local maximum of gμ(yμj1) in the neighborhood of τ̄i.

Lemma 8.10. Under the assumptions of Lemma 8.8, for all j1, j2 ∈ {1, . . . , 2Nto}, j1 	= j2, there exists
δ̄j1,j2 > 0, such that for all μ, |μ − μ̄| ≤ δ̄j1,j2 , the Newton method to solve the equation (8.9) for j = j2
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is convergent to θμj2 , whenever the initial point θ̃μj1,j2 is obtained from the solution θμj1 of (8.9) for j = j1 as
explained above.

Proof. By Lemma 8.8, there exists ρμj2 > 0 such that the Newton algorithm to solve (8.9) for j = j2 converges
to θμj2 for all initial point θ0 satisfying |θ0 − θμj2 | < ρμj2 , and this constant is uniformly positive, i.e. ρμj2 ≥ ρ > 0
for all μ in a compact neighborhood of μ̄ 1. Let |μ − μ̄| ≤ δ̄j1,j2 := min(κ−1

j1
, κ−1
j2

)ρ/3, with κj the Lipschitz
constant of the mapping μ �→ θ̂μj (Lem. 8.9). Let θ̄ := θ̂μ̄j1 = θ̂μ̄j2 and note that we obviously have θ̃μ̄j1,j2 = θ̄j2 . It
follows then that |θ̃μj1,j2 − θμj2 | ≤ |θ̃μj1,j2 − θ̃μ̄j1,j2 | + |θ̄j2 − θμj2 | ≤ |θ̂μj1 − θ̄| + |θ̄ − θ̂μj2 | ≤

2
3ρ, from which the result

follows. �

We give now a theoretical proof of correctness of the algorithm.

Proposition 8.11. Assume that (H0)–(H2), (H′
3) and (H4)–(H5) hold. Then there exists δ0 > 0 such that,

whenever p0 is close enough to p̄(0), for all 0 < δ < δ0 the Algorithm 8.1 follows the homotopy path previously
described, and ends with a vector of shooting parameters θ1 of adapted dimension associated with a local solution
(u1, y1) of (P1) ≡ (P). In addition, if 0 < δ < δ0, the steps Δμk are not reduced by the algorithm (i.e. Newton’s
algorithm in Step C do not fail).

Proof. By (H5), there exist finitely many values of μ ∈ (0, 1), 0 < μ̄1 < . . . < μ̄m < 1, for which the structure
of the trajectory (uμ, yμ) changes. By (H′

3), this implies that for all j = 1, . . . , m, the trajectory associated
with μ̄j has exactly one touch point τ̄ jto. Set μ̄0 := 0 and μ̄m+1 := 1. For all j = 0, . . . , m, denote by Fj the
shooting mapping corresponding to the structure of (uμ, yμ) for μ ∈ (μ̄j , μ̄j+1). We have Fj 	= Fj+1, for all
j = 0, . . . , m.

Let j = 0, . . . , m. For all μ ∈ [μ̄j , μ̄j+1], by (3.8) and Lemma 8.8, there exists a constant ρj > 0 (uniform
w.r.t. μ, see 1) such that the shooting algorithm (i.e. Newton’s algorithm to solve Fj(θ, μ) = 0) converges to θμ

for all initial point θ0 satisfying |θ0 − θμ| < ρj . For all μ, μ′ ∈ [μ̄j , μ̄j+1], with θ′ the solution of the prediction
step obtained from θμ by

DθFj(θμ, μ)(θ′ − θμ) + DμFj(θμ, μ)(μ′ − μ) = 0,

it is easy to see that there exists a constant Cj such that |θ′− θμ
′ | ≤ Cj |μ−μ′|2. Therefore the convergence of

the Newton algorithm to θμ
′
with the initial point θ′ is guaranteed if |μ−μ′| < δ̂ := minmj=0(ρj/Cj)1/2. Now let

δ0 > 0 be the minimum of δ̂ defined above, of all the finitely many constants δ̄j1,j2 > 0 of Lemma 8.10 involved
at the changes of structure of the trajectory, and finally of μ̄j+1 − μ̄j > 0, for j = 0, . . . , m.

Let δ ∈ (0, δ0). The proof of the the algorithm is by finite induction on the property below, for k ≥ 0:
(Ak) At each passage in the prediction step (Step B), before k is increased, we have μk = min(kδ, 1), mk = 0,

ik = 0 and
– if μk /∈ {μ̄j}j=0,...,m, θk = θμk is the (unique) vector of shooting parameters associated with

(uμk , yμk);
– if μk = μ̄j for some j = 0, . . . , m,

∗ if either k = 0 or the touch point of μ̄j is either inactive or a (nonessential) touch point when
μ → μ̄−

j , then θk is the vector of shooting parameters associated with (uμk , yμk) that does
not contain the touch point of μ̄j as a boundary arc of zero length;

∗ if the touch point of μ̄j is a boundary arc for μ → μ̄−
j , then θk is the vector of shooting

parameters associated with (uμk , yμk) that contains the touch point of μ̄j as a boundary arc
of zero length.

1From the proof of the Newton algorithm, it can be seen that this constant ρμ
j depends continuously on the Lipschitz constant

of DθFj(·, μ), on ‖DθFj(θ
μ
j , μ)−1‖−1 and on the modulus of continuity of DθFj(·, μ)−1, and is therefore a continuous function

of μ.
2This constant Cj depends on ‖DθFj(θμ, μ)−1‖, on the Lipschitz constant of DFj and on the Lipschitz constant of the mapping

μ �→ θμ on [μ̄j , μ̄j+1] (Lem. 8.6).
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For p0 sufficiently close to p̄(0), the initialization step of the algorithm succeeds in obtaining the initial vector
of shooting parameters (reduced to the initial costate) θ0 = θμ0 associated with the local solution (ū, ȳ) of (P0).
So (A0) holds. Assume now that (Ak−1) holds, and let j ∈ {0, . . . , m + 1} be such that

μ̄j < μk−1 ≤ μ̄j+1.

We thus go through the prediction Step B and then to Step C. By (Ak−1), we try to solve, by the Newton
algorithm, the equation

Fj(θ, μk) = 0. (8.12)
By construction of δ0, the Newton algorithm succeeds and obtain a solution θ′k of (8.12). So we go to Step D.
There are two cases to consider. Either (a) μk ≤ μ̄j+1 or (b) μk > μ̄j+1.

In case (a), the structure of the trajectory does not change, so we obtain the vector of shooting parameters
θk := θ′k = θμk associated with (uμk , yμk). Therefore mk ≤ 0 and ik = 0, which shows (Ak).

In case (b), by construction of δ0, we have μk ∈ (μ̄j+1, μ̄j+2). Therefore θμk is the (locally unique) solution of

Fj+1(θ, μk) = 0. (8.13)

By Lemma 8.9, among all the “augmented vectors of shooting parameters” associated with one of the (two)
possible neighboring structures to (uμ̄j+1 , yμ̄j+1 ), only θμk satisfies (8.10)–(8.11). Therefore we deduce that
necessarily, the augmented vector of shooting parameters θ̂k obtained from θ′k solution of (8.12) does not satisfy
either (8.10) or (8.11), i.e. either mk > 0 or ik > 0.

Assume e.g. that mk > 0, i.e. gμk(yθ
′
k,μk) has positive values. Using (H2) and Lemma 4.9, this can only

happen in the neighborhood of the touch point τ̄ j+1
to of μ̄j+1, i.e. τk is close to τ̄ j+1

to . Note that this is possible
only if τ̄ j+1

to was not converted in a boundary arc in Fj . So we go to Step A and add a boundary arc. Here,
μ̄j having a single touch point, there are only two possible neighboring structures to that of (uμ̄j , yμ̄j ). Having
eliminated Fj , it remains only one possible structure, i.e. with τ̄ j+1

to as a boundary arc, which corresponds
necessarily to Fj+1. The shooting parameters associated with this new boundary arc are initialized by (8.6), and
hence we obtain an augmented vector of shooting parameters θ̃k, that by Lemma 8.10 belongs, by construction
of δ0, to the neighborhood of θμ̄j+1 for which the Newton algorithm solving (8.13) is convergent to θμk . We
thus obtain θk = θμk , which satisfies mk = 0 and ik = 0, and therefore (Ak) holds.

The case ik > 0 is dealt with similarly, i.e. if it happens that for a boundary arc, the entry time is greater
than the exit time, this can only happen in the neighborhood of the touch point τ̄ j+1

to of μ̄j+1, and this implies
that this touch point is converted in a boundary arc in Fj . So we remove in Step A this boundary arc, and
conclude with the same arguments that (Ak) holds again. The result follows by finite induction on k, since the
algorithms ends for the smaller integer k ≥ 1

δ . �
Remark 8.12. The process of reduction of Δμk is not active if δ is small enough, as appears from Proposi-
tion 8.8. However, in practice we do not know what a correct value of Δμk is so that this reduction process is
useful.

Of course when initialized with δ > δ0 it may happen that Newton’s method converges to a point that
does not belong to the continuous path (uμ, yμ), i.e., it computes another critical point, say (ûμ, ŷμ). If the
latter satisfies conditions of Theorem 3.3, then the algorithm continues despite the jump to another branch of
solutions.

Remark 8.13. We could theoretically give an explicit expression for the constant δ0 that ensures the conver-
gence in Proposition 8.11, but the latter depends on constants involving, among other, bounds on the Hessian
of the shooting mapping that are almost impossible to calculate. In case of ill-conditioning (δ0 is very small),
the convergence may be difficult, if not impossible, to achieve in practice, due to numerical errors.

Remark 8.14. Algorithm 8.1 and Proposition 8.11 can be extended to the case when (H3) holds instead
of (H′

3). If (H′
3) does not hold, but (H3) do, this means that there exists μ̄ ∈ (0, 1) such that (uμ̄, yμ̄) has
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Nto touch points, Nto ≥ 2. If the structure of the shooting mapping changes at this point, there are a priori
2Nto possibilities for the new structure when μ → μ̂+. It is possible to enumerate all of them, i.e. solve (8.9), for
all j = 1, . . . , 2Nto , for μ > μ̄ close to μ̄. Lemma 8.9 ensures that if (8.10)–(8.11) are satisfied for some j, then
we have found the new structure, and Lemma 5.1 ensures that (8.10)–(8.11) will be satisfied for at least one j.

A possibility that may reduces the enumeration is to use the directional differentiability of solutions in
Theorem 6.1. One can e.g. solve the problem (Pd), and whenever the variation σex

d,i − σen
d,i given by (6.8) is

positive (resp. negative), this tells us that the touch point τ ito have to be converted into boundary arc (resp.
removed from the shooting mapping). For touch points such that σex

d,i − σen
d,i = 0, this gives no information

on τ ito so it possibly remains different possibilities to enumerate.

8.4. Numerical implementation

The convergence of the algorithm presented in the previous subsections is illustrated on the academic problem
below:

(P) min
∫ 1

0

(
u2(t)

2
+ g(t)y(t)

)
dt

s.t. ẏ(t) = u(t), y(0) = y(1) = 0, y(t) ≥ h

with
g(t) := g0(c − sin(αt)), c, α > 0.

The time is introduced as a state variable, and let μ = (h − h0)/(h1 − h0) be the homotopy parameter, with
h0 = min ȳ(t), for ȳ the solution of the problem without the state constraint, and h1 = h the desired value of
the state constraint. Numerical values of constants are taken equal to

g0 := 10, α = 10π, c = 0.1, h1 = −0.001.

The algorithm is initialized with the value p0 = 0, and δ = 1/5 to initialize the steps Δμk. Let us comment
Figure 3 where the results of the algorithm are presented. The algorithm reduces the step Δμk once, in the
next to last iteration, since the Newton algorithm was not converging, meaning here that it was not converging
quadratically. Thus the solution was computed for the values μ0 = 0, μk = kδ = k/5 for k = 1, . . . , 4, μ5 = 9/10
and μ6 = 1. We plotted in dark blue the state yk solution of (Pμk) obtained at the exit of the while loop when
mk = ik = 0, for k = 0, . . . , 6. In light blue we plotted the previous iterations, including the states obtained
when mk > 0 at the exit of the while loop (so we can see the algorithm add a boundary arc at the following
iteration when this happens).

For k = 0, we just have the solution of the unconstrained problem. For k = 1, the algorithm adds a single
boundary arc around time t = 0.55. At each iteration k = 2, 3, 4, the algorithm detects that the state constraint
is violated so it adds a boundary arc. So for k = 4 we have μk = 0.8 and four boundary arcs. Then the algorithm
tries to pursue the homotopy with μ = 1. It detects that it has to add a boundary arc but Newton algorithm
fails. Therefore it decreases the step and obtained the solution for μ5 (see the figure for k = 5) that has a fifth
boundary arc. It then increases μ to μ6 = 1 and obtain the solution of (P) which exhibits five boundary arcs.

At each passage in the Newton algorithm (Step C), the latter converges very rapidly in 2 or 3 iterations (for
the tolerance |F (θk, μk)|∞ ≤ 10−10) excepted of course the time it failed because Δμk was too large, and at the
very last passage (which requires 5 iterations).

Finally, let us check that the uniform strict complementarity hypothesis (H2) is satisfied. On a boundary
arc, (4.3) gives

ub + p1 − η1 = 0 with ub = 0,

i.e. p1 = η1. Hence, η̇1 ≤ β < 0 on boundary arcs iff p1 is (uniformly) decreasing. This is the case, see the figure
bottom right in Figure 3 on which we plotted p1 for the final solution for μ6 = 1 (the portions corresponding
to boundary arcs are plotted in red). We can also check similarly that this uniform strict complementarity
assumption is satisfied as well for all other values of μk, k = 1, . . . , 5.



860 J.F. BONNANS AND A. HERMANT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

k = 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

k = 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

k = 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

k = 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

k = 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

k = 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

k = 6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

costate (k=6)

Figure 3. Iterations of the homotopy algorithm and costate p1 (for k = 6).
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9. Proof of Theorem 2.1

We start by the proof of Lemma 2.3, then give that of Lemma 2.5, and finally that of Theorem 2.1.

Proof of Lemma 2.3. Let δ > 0. By continuity of the mapping (u, μ) �→ gμ(yμu), there exists δ > 0, such that
for n large enough (this is precisely assertion (S1)),

I(gμn(yn)) ⊂ Ωδ := ∪Ni=1Ω
δ
i . (9.1)

The first assertion of the lemma is a classical consequence of Robinson’s constraint qualification (1.17) (see
e.g. [8], Prop. 4.43). By Lemma 1.2, reducing δ if necessary, the mapping (1.23) is onto. Since supp(dηn) ⊂
I(gμn(yn)) ⊂ Ωδ by (9.1), the second assertion follows from [8], Proposition 4.44 and Remark 4.45(i), meaning
that

sup
Φ∈W 1,∞(0,T ), Φ
≡0

∣∣∣∫ T0 Φ(t)(dηn − dη)(t)dt
∣∣∣

‖Φ‖1,∞
−→

n→+∞
0. (9.2)

Let p1
n and η1

n be the multipliers associated with the stationary point (un, yn) of (Pμn) by (2.5)–(2.6).
By (2.7),

d
dt

(p1
n − p̄1) = (p1

n − p̄1)fy(ū, ȳ) + g(1)
y (ū, ȳ)(η1

n − η̄1) + rn(t) a.e. on [0, T ],

with ‖rn‖∞ → 0 when n → +∞. By Gronwall’s lemma, there exists a constant C > 0 such that

|p1
n(t)− p̄1(t)| ≤ C|φμn

y (yn(T ))−φμ0
y (ȳ(T ))|+C

∫ T

t

|η1
n(s)− η̄1(s)|ds+o∞(1) ≤ C‖η1

n− η̄1‖1+o∞(1), (9.3)

where o∞(1) denotes a function that goes to zero in L∞ when n → +∞. Let us show that η1
n → η̄1 in L1. The

sequence (dηn)n∈N∗ being bounded in M[0, T ] by the first assertion (1), it follows that (η1
n)n∈N∗ is bounded

in BV , for the norm ‖η‖BV = ‖η‖1+‖dη‖M. By the compactness theorem in BV [2], Theorem 3.23, there exists
a subsequence (η1

ψ(n))n∈N∗ converging in L1 to some η̃ ∈ BV (0, T ), and such that dηψ(n)
∗
⇀ −dη̃ in M[0, T ]. It

suffices then to show that necessarily, −dη̃ = dη̄ and η̃ = η̄1 in order to obtain the convergence of the whole
sequence (η1

n)n∈N∗ to η̄1 in L1. So let us do that. The space W 1,∞(0, T ) being dense in C0[0, T ], it follows easily
from (9.2) that dηn

∗
⇀ dη̄, and hence −dη̃ = dη̄. Thus η̃ equals η̄ up to a constant. Using Fubini’s theorem and

(9.2), we obtain ∫ T

0

η1
n(t)dt =

∫ T

0

sdηn(s) −→
n→+∞

∫ T

0

sdη̄(s) =
∫ T

0

η̄1(t)dt,

implying finally that η̃ = η̄, and consequently, that η1
n → η̄1 in L1. By (9.3), we deduce then that p1

n → p̄1

uniformly over [0, T ].
Finally, for ‖un − ū‖∞ small enough, |(gμn)(1)u (un, yn)| ≥ β/2 > 0 on Ωδ, so by (2.8) we have on Ωδ:

η1
n = −Hμn

u (un, yn, p1
n)

(gμn)(1)u (un, yn)
→ −Hμ0

u (ū, ȳ, p̄1)

(gμ0)(1)u (ū, ȳ)
= η̄1 uniformly on Ωδ,

and η1
n is piecewise constant on [0, T ] \ Ωδ, which shows the last assertion. �

Proof of Lemma 2.5. Let (u, y) be a stationary point of (Pμ) with multipliers (p1, η1) given by (2.5)–(2.6). By
time derivation of (2.8), we have, using the augmented Hamiltonian (1.8),

H̃μ
uu(u, y, p1, η1)u̇ + H̃μ

uy(u, y, p1, η1)fμ(u, y) − H̃μ
y (u, y, p1, η1)fμu (u, y) + (gμ)(1)u (u, y)η̇1 = 0. (9.4)
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For ‖μ−μ0‖ and ‖u−ū‖∞ small enough, then ‖y− ȳ‖∞ is arbitrarily small, as well as ‖p1− p̄1‖∞ and ‖η1− η̄1‖∞
by Lemma 2.3. Consequently, for (u, μ) close enough to (ū, μ0), we have by (1.20) that H̃μ

uu(u, y, p1, η1) ≥ α/2
on [0, T ]. Multiplying (9.4) by (gμ)(1)u (u, y)/H̃μ

uu(u, y, p1, η1), we obtain that

(gμ)(1)u (u, y)u̇ +
(gμ)(1)u (u, y)2

H̃μ
uu(u, y, p1, η1)

η̇1 → g(1)
u (ū, ȳ) ˙̄u +

g
(1)
u (ū, ȳ)2

H̃uu(ū, ȳ, p̄1, η̄1)
˙̄η1 (9.5)

uniformly over [0, T ]. In view of (1.5)–(1.6), it follows that

(gμ)(2)(u̇, u, y) +
(gμ)(1)u (u, y)2

H̃μ
uu(u, y, p1, η1)

η̇1 → g(2)( ˙̄u, ū, ȳ) +
g
(1)
u (ū, ȳ)2

H̃uu(ū, ȳ, p̄1, η̄1)
˙̄η1 (9.6)

again, uniformly over [0, T ].
Now on every Ωδi , for small enough δ > 0, we have by (A5)–(A6), (1.27) and (1.21) the existence of a

constant κ1 > 0 such that either g(2)( ˙̄u, ū, ȳ) < −κ1 and ˙̄η1 = 0, or g(2)( ˙̄u, ū, ȳ) = 0, |g(1)
u (ū, ȳ)| ≥ κ1 and

˙̄η1 ≤ −κ1. It follows that, for some κ2 > 0, δ small enough and (μ, u) close to (μ0, ū),

(gμ)(2)(u̇, u, y) +
(gμ)(1)u (u, y)2

H̃μ
uu(u, y, p1, η1)

η̇1 ≤ −κ2 on Ωδi . (9.7)

If gμ(y(t)) < 0, then η̇1(t) = 0, and hence, (gμ)(2)(u̇, u, y)(t) < −κ2/2. But on an interior arc included
in Ωδi , gμ(y) would attain its minimum at some point t where (gμ)(2)(u̇, u, y)(t) ≥ 0, which gives the desired
contradiction. �

Remark 9.1. It follows from (9.7) that the property of uniform strict complementarity is stable, in the sense
that if the state constraint is active, then η̇1 remains uniformly far from zero (uniformly over [0, T ]).

Now we are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Assertion (S1) is immediate, and (S3) follows directly from Lemma 2.5 since there is
no interior arc of (u, y) in Ωδi . In view of Lemma 2.5, to complete the proof of (S2), it remains to show that
Ωδi ∩ I(gμ(y)) is an interval of positive measure, i.e. a boundary arc. Assume that this is false. Then there exist
a stable extension (Pμ), sequences un → ū in L∞, μn → μ0, and (un, yn) a stationary point of (Pμn), such that
for all n, Ωδi ∩ I(gμn(yn)) is either empty or a singleton by Lemma 2.5. Taking if necessary a subsequence, this
implies that there exists an interval of positive measure (t1, t2) ⊂ [t̄eni , t̄exi ], such that (t1, t2) ∩ I(gμn(yn)) = ∅
for all n, and hence, (t1, t2) ∩ supp(dηn) = ∅. Let ϕ be a C∞ function with support in [t1, t2] which is positive
on (t1, t2). Then we have

∫ T
0

ϕ(t)dηn(t) = 0, for all n. But by (A5), η̄ has a positive density over (t1, t2),
and hence,

∫ T
0

ϕ(t)dη̄(t) > 0, which contradicts the second assertion in Lemma 2.3. This achieves the proof of
assertion (S2). �
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