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QUASICONVEX FUNCTIONS CAN BE APPROXIMATED
BY QUASICONVEX POLYNOMIALS

Sebastian Heinz1

Abstract. Let W be a function from the real m×n-matrices to the real numbers. If W is quasiconvex
in the sense of the calculus of variations, then we show that W can be approximated locally uniformly
by quasiconvex polynomials.
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1. Introduction

We study quasiconvexity in the calculus of variations. This concept was first introduced by Morrey [9]. He
showed that quasiconvexity is an essential condition in the context of the so-called direct methods in the calculus
of variations. We refer the reader to Dacorogna [3] for the full statements and a detailed introduction to direct
methods as well as applications.

Despite decades of research on quasiconvexity (recent developments include Müller [11], Iwaniec [6], Faraco
and Székelyhidi [4]), many problems are still open. See also the survey by Ball [2].

The investigation of quasiconvexity can be reduced to the class of polynomials according to the following
new result (equivalent to Th. 6.1).

Theorem 1.1. Let m,n ≥ 1 be fixed positive integers.
Every quasiconvex function W : R

m×n −→ R can be approximated locally uniformly by quasiconvex
polynomials.

We admit that quasiconvexity remains a challenging property even for polynomials. In fact, up to now,
there is no efficient way to decide whether a given polynomial is quasiconvex or not. An illustrating example
of a polynomial of degree four can be found in Alibert and Dacorogna [1] (in this context see also Iwaniec and
Kristensen [7], Gutiérrez [5]).

Nevertheless, the theorem indicates that the subset of quasiconvex polynomials already provides a compre-
hensive view on quasiconvexity. We wish to explain, why this was rather not expected to be the case.
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On one hand, Kristensen [8] shows, using Šverák’s example [13], that quasiconvexity in dimensions m ≥ 3,
n ≥ 2 cannot be a “local” property. He constructs a smooth function that is not quasiconvex. However, its
restriction to a neighborhood of any fixed point can be extended smoothly to a quasiconvex function on R

m×n.
On the other hand, every property is “local” if restricted to the class of polynomials. As a consequence, our
density result does not seem obvious.

We remark that the subset of quasiconvex functions has an empty interior with respect to locally uniform
convergence on the set of all continuous functions. In particular, every neighborhood of a quasiconvex function
contains non-quasiconvex functions. In order to guarantee that an approximating polynomial is quasiconvex,
we shall use only such polynomials whose difference to the function W is convex.

This idea works as long as the function W is of polynomial growth. Nevertheless, we are going to prove
the result without assuming growth conditions. In order to do so, we will apply an approximation result by
Müller [10] about quasiconvex functions that take the value +∞ outside a convex body. This is going to imply
that every quasiconvex function can be approximated locally uniformly by quasiconvex functions of polynomial
growth.

The paper is organized as follows:
In Section 2 we will fix the notation and symbols that are used later. Definitions and preliminaries can

be found in Section 3. In particular, we will give an application of the Stone-Weierstraß theorem. Section 4
is dedicated to a well known density result. It states that quasiconvex functions can be approximated by
quasiconvex smooth functions. A result by Müller [10] combined with an idea described here forms the key to
the proof of the theorem announced above. This is done in Sections 5 and 6 and completes the paper.

2. Notation

Let m,n ≥ 1 be fixed positive integers. We shall write a typical element A of the matrix space R
m×n like

A =

⎛
⎝ A11 · · · A1n

· · · · · ·
Am1 · · · Amn

⎞
⎠ , A11, . . . , Amn ∈ R.

We equip R
m×n with a scalar product defined by

A : B =
m∑

i=1

n∑
j=1

AijBij , A,B ∈ R
m×n.

The corresponding norm of a matrix A is the Frobenius norm |A|, so that

|A|2 = A : A, A ∈ R
m×n.

We denote the set of all continuous functions W : R
m×n −→ R by C(Rm×n) and the subset of all smooth

functions by C∞(Rm×n).
There is a natural embedding of the ring R[A11, . . . , Amn] of polynomials into the ring C∞(Rm×n) of

smooth functions. We denote the range of this embedding by P(Rm×n), and we identify a polynomial P ∈
R[A11, . . . , Amn] with its image in P(Rm×n).

3. Preliminaries

Recall that a function W : R
m×n −→ R is called convex if for all matrices A,B ∈ R

m×n and for all λ ∈ [0, 1]
it holds that

W (λA+ (1 − λ)B) ≤ λW (A) + (1 − λ)W (B).
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A function W : R
m×n −→ R is called quasiconvex if for all matrices A ∈ R

m×n and for all smooth functions φ :
R

n −→ R
m with compact support it holds that

0 ≤
∫
Rn

[W (A+ Dφ(x)) −W (A)] dx. (3.1)

The calculus of variations knows at least two more “convexity concepts”, namely, polyconvexity and rank-one
convexity. Yet they are not studied in this paper.

We aim to discuss the approximation of quasiconvex functions, so we have to fix a suitable space as well as
a topology. It is sufficient to concentrate on the set C(Rm×n) of all continuous functions, since every convex
function is quasiconvex and every quasiconvex function is continuous (even locally Lipschitz continuous). See
for example [3], pp. 29–32 and pp. 102–106 for a proof.

Next we associate a topology to C(Rm×n) that is given via converging sequences. We say that a sequence
of functions W1,W2, . . . ∈ C(Rm×n) converges locally uniformly to a function W ∈ C(Rm×n) whenever we have
uniform convergence for every non-empty compact subset K ⊆ R

m×n, that means

‖Ws −W‖K −→ 0 as s −→ ∞.

Here ‖Ws −W‖K stands for the supremum norm of the function Ws −W taken over the set K

‖Ws −W‖K = sup(|Ws(A) −W (A)| | A ∈ K).

Consider the family of closed balls B1,B2, . . . ⊆ R
m×n defined by

Br =
{
A ∈ R

m×n | |A| ≤ r
}
, r = 1, 2, . . .

In order to show locally uniform convergence in R
m×n, it suffices to show uniform convergence for every ball Br.

We shall also work in the set C∞(Rm×n) of smooth functions. In the next remark, we give a sufficient condition
for convexity that can be applied to smooth functions. The second derivative of a function W ∈ C∞(Rm×n) at
a matrix A ∈ R

m×n can be seen as a symmetric bilinear form

D2W (A) : R
m×n × R

m×n −→ R

induced by the quadratic form

D2W (A)[B,B] =
d2

dt2
W (A+ tB)

∣∣∣∣
t=0

, B ∈ R
m×n.

We say that D2W (A) is positive definite if for every non-zero B ∈ R
m×n it holds that

D2W (A)[B,B] > 0. (3.2)

It is not difficult to verify the validity of the following remark.

Remark 3.1. A smooth function W : R
m×n −→ R is convex if the second derivative D2W (A) is positive definite

for every A ∈ R
m×n.

The result of the next lemma is an application of the Stone-Weierstraß theorem to simultaneous approximation
of derivatives.

Lemma 3.2. Let m,n ≥ 1, k ≥ 0 be fixed integers.
Every smooth function W : R

m×n −→ R can be approximated by polynomials with respect to locally uniform
convergence of all partial derivatives up to order k.

Proof. See for example Sauvigny [12], pp. 6–7. �



798 S. HEINZ

4. Density of smooth functions

The next lemma is well known. Nevertheless, we give the argument, since we want to stress an additional
feature of the approximation procedure.

Lemma 4.1. Let m,n ≥ 1 be fixed positive integers.
Every quasiconvex function W : R

m×n −→ R can be approximated locally uniformly by quasiconvex smooth
functions.

Proof. The proof is by a mollifier argument.
Fix an arbitrary quasiconvex function W ∈ C(Rm×n) and choose a non-negative smooth function ψ ∈

C∞(Rm×n) with compact support so that ∫
Rm×n

ψ(A)dA = 1.

For every s = 1, 2, . . . set ψs(A) = sm·nψ(sA), A ∈ R
m×n, and consider the sequence W1,W2, . . . of functions

defined by the convolution

Ws(A) =
∫

Rm×n

W (A+ T )ψs(T )dT, A ∈ R
m×n. (4.3)

Since W is uniformly continuous on the closed ball Br, we have uniform convergence on Br, r = 1, 2, . . ., and
we deduce that the functions W1,W2, . . . converge locally uniformly to W . Moreover, we get that every Ws is
smooth by iteration of the formula

∂Ws

∂Aij
(A) =

∫
Rm×n

W (T )
∂ψs

∂Aij
(T −A)dT, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (4.4)

It remains to show that everyWs is quasiconvex. In order to prove that, we apply the definition of quasiconvexity
to Ws. After changing the order of integration, the right-hand side of (3.1) reads

∫
Rm×n

⎡
⎣ ∫

Rn

[W (A+ T + Dφ(x)) −W (A+ T )] dx

⎤
⎦ψs(T )dT .

Quasiconvexity of W implies that the inner integral is non-negative. In addition, we know that ψs is a non-
negative function. Hence, the function Ws is quasiconvex for every s = 1, 2, . . . �

We say that a function W ∈ C(Rm×n) has polynomial growth if there exists a polynomial P ∈ P(Rm×n) so
that for all A ∈ R

m×n it holds that
|W (A)| ≤ P (A).

Remark 4.2. Assume that the function W : R
m×n −→ R in the preceding lemma has polynomial growth.

Then (4.3) and (4.4) imply that Ws and every partial derivative of Ws have polynomial growth for every s =
1, 2, . . .

5. Polynomial growth

The proof of the next lemma makes heavily use of techniques applied by Müller [10]. In order to simplify a
comparison, we take the same notation as in [10].

Lemma 5.1. Let m,n ≥ 1 be fixed positive integers.
Every quasiconvex function W : R

m×n −→ R can be approximated locally uniformly by quasiconvex functions
of polynomial growth.
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Proof. Fix a positive integer r ≥ 1 and set K = Br.
We define f : R

m×n −→ R ∪ {+∞} by

f(F ) =
{
W (F ) for F ∈ K
+∞ for F ∈ R

m×n \K.

The function f is quasiconvex, i.e. f fulfills the generalized definition of quasiconvexity where the function
value +∞ is allowed.

Consider the monotonously increasing sequence h0, h1, . . . ∈ C(Rm×n) defined by

hk(F ) = f(PF ) + k dist(F,K), F ∈ R
m×n,

where P denotes the nearest neighbor projection onto the convex set K and dist(F,K) = min(|F −A| | A ∈ K)
the distance function.

Let gk = hqc
k , k = 0, 1, . . ., be the quasiconvex envelopes. Every function gk is continuous, quasiconvex and

has polynomial growth, since hk has polynomial growth. In addition, we conclude that the functions g0, g1, . . .
yield a monotonously increasing sequence which is bounded from above by f . See [3] for properties of the
quasiconvex envelope.

In order to prove the lemma, we are going to show that the functions g0, g1, . . . converge uniformly to f on
the set K. Applying Dini’s theorem, it is sufficient to show that g0, g1, . . . converge pointwise to f on K.

We denote by g∗ : K −→ R the pointwise limit so that

gk(F ) −→ g∗(F ), F ∈ K.

Now [10], Corollary 9, implies that for every F ∈ K it holds

f(F ) = sup
{
g(F ) | g : R

m×n −→ R, g ≤ f on K, g quasiconvex
}
. (5.5)

Fix a matrix F ∈ R
m×n and denote the right-hand side of (5.5) by G∞. Müller [10] proves that f(F ) = G∞.

An analysis of the proof shows that we can replace G∞ by g∗(F ). Hence, we conclude that f(F ) = g∗(F ). �

6. Density of polynomials

As the main result, we prove the following theorem.

Theorem 6.1. Let m,n ≥ 1 be fixed positive integers.
Every quasiconvex function W : R

m×n −→ R can be approximated locally uniformly by quasiconvex polyno-
mials.

Proof. As a consequence of Lemmas 4.1, 5.1 and Remark 4.2, we can assume that W is smooth and all its
partial derivatives have polynomial growth.

Fix a positive integer r ≥ 1 and consider the ball Br. In order to prove the theorem, we are going to show
that there exists a sequence of quasiconvex polynomials that converges uniformly to W on Br.

Consider the functions Ws ∈ C(Rm×n), s = 1, 2, . . ., defined by a convex perturbation of W

Ws(A) = W (A) +
1
s
|A|2, A ∈ R

m×n.

These functions converge locally uniformly to W as s −→ ∞.
Fix a positive integer s ≥ 1 and a real number ε > 0. We aim to construct a polynomial P ∈ P(Rm×n) that

fulfills the inequality
ε > ‖P −Ws‖Br .



800 S. HEINZ

In addition, we want to ensure that the difference P −W is a convex function. We wish to apply Remark 3.1.
In order to do so, we will show that the second derivative D2(P −W )(A) is positive definite for every A ∈ R

m×n.
By definition of Ws, the form D2(Ws −W )(A) is positive definite for every A in R

m×n. We apply Lemma 3.2
for k = 2 and conclude that we can find a polynomial Q ∈ P(Rm×n) so that

ε

2
> ‖Q−Ws‖B2r

and that for all 1 ≤ i1, i2 ≤ m and all 1 ≤ j1, j2 ≤ n it holds that

δ >

∥∥∥∥ ∂2

∂Ai1j1∂Ai2j2

(Q−Ws)
∥∥∥∥
B2r

,

where we choose δ = δ(r, s) > 0 sufficiently small so that D2(Q−W )(A) is positive definite for every A ∈ B2r.
Note that there exists such a number δ, since B2r is a compact subset of R

m×n and the left-hand side of (3.2)
is a continuous function in the partial derivatives of order two.

The polynomial Q is an appropriate approximation of the function Ws on B2r. However, the function Q−W
need not to be convex, since we do not control the second derivative D2(Q−W ) outside B2r. In the last step,
we show how to overcome this problem.

Therefore, we consider the convex polynomials Rt ∈ P(Rm×n), t = 2, 3, . . ., defined by

Rt(A) =
(

2
3r

)2t

|A|2t, A ∈ R
m×n.

They are designed to fulfill two requirements. On one hand, they converge uniformly to zero on Br as t −→ ∞.
On the other hand, the calculation of the second derivative shows that for every matrix B ∈ R

m×n it holds that

D2Rt(A)[B,B] =
(

2
3r

)2t (
4t(t− 1)|A|2t−4(A : B)2 + 2t|A|2t−2|B|2) .

If we skip one non-negative term of the right hand side, we end up with the inequality

D2Rt(A)[B,B] ≥ 2t
(

2
3r

)2t

|A|2t−2|B|2.

We conclude that, for large t, the second derivative of Rt “dominates” the second derivative of Q−W outside
the ball B2r, since the partial derivatives of the function Q −W have polynomial growth. In other words, the
second derivative D2(Q+Rt −W ) becomes positive definite on the set R

m×n \ B2r as long as the integer t ≥ 2
is sufficiently large.

In addition, we know that all polynomials Rt, t ≥ 2, are convex and that the form D2(Q−W )(A) is positive
definite for every A ∈ B2r. Together with Remark 3.1, this implies that the function Q+Rt −W is convex for
large t.

Now we can choose an integer t0 = t0(r, ε,Q) ≥ 2 in such a way that

Q+Rt0 −W is convex and ε > ‖Q+Rt0 −Ws‖Br .

In order to obtain the desired polynomial, we set

P = Q+Rt0 .

Let s tend to infinity and let ε tend to zero. By a diagonal argument, we get an approximating sequence of
polynomials that converges uniformly to W on the ball Br.
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It remains to prove that the polynomial P ∈ P(Rm×n) is quasiconvex for every r, s ≥ 1 and for every ε > 0.
However, this is clear, since we have shown that P can be written as the sum of a quasiconvex function and a
convex function: P = W + (Q+Rt0 −W ). �
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