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ON SOME OPTIMAL CONTROL PROBLEMS GOVERNED BY A STATE
EQUATION WITH MEMORY

Guillaume Carlier1 and Rabah Tahraoui1

Abstract. The aim of this paper is to study problems of the form:

inf
u∈V

J(u) with J(u) :=

∫ 1

0

L(s, yu(s), u(s))ds + g(yu(1))

where V is a set of admissible controls and yu is the solution of the Cauchy problem:{
ẋ(t) = 〈f(., x(.)), νt〉 + u(t), t ∈ (0, 1),
x(0) = x0,

and each νt is a nonnegative measure with support in [0, t]. After studying the Cauchy problem, we
establish existence of minimizers, optimality conditions (in particular in the form of a nonlocal version
of the Pontryagin principle) and prove some regularity results. We also consider the more general case
where the control also enters the dynamics in a nonlocal way.
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1. Introduction and examples

The aim of this paper is to study deterministic optimal control problems of the form

inf
u∈V

J(u) with J(u) :=
∫ 1

0

L(s, yu(s), u(s))ds + g(yu(1)). (1)

Here, u is the control variable and the state equation governing the dynamics of the state variable y = yu is an
integrodifferential equation modelling memory or delay effects. More precisely, yu is the solution of the Cauchy
problem ⎧⎨⎩ ẋ(t) =

∫
[0,t]

f(s, x(s))dνt(s) + u(t) = 〈f(., x(.)), νt〉 + u(t), t ∈ (0, 1),

x(0) = x0.
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In the state equation above, (νt)t denotes a given measurable family of nonnegative measures such that νt has
its support in [0, t] (i.e. only the past of the trajectory is taken into account). Let us remark that in the previous
equation, the control enters the dynamics only through its current value u(t) and not through its past values.
The case of a more general state equation of the form:

ẋ(t) = 〈f(., x(.)), νt〉 + 〈u(.), μt〉 (2)

((μt)t being a measurable family of nonnegative measures) may also be relevant in applications and will also be
treated in the paper. There are of course many variants of controlled dynamics of the form (2) like:

ẋ(t) = F (t, x(t), u(t), 〈f(t, ., x(.)), νt〉 , 〈g(t, ., u(.)), μt〉). (3)

For the sake of simplicity, we will restrict ourselves to (2) and claim that the main ideas of the paper can be
adapted to the more general case of (3).

Problems of the form above arise in different applied settings both in engineering and decision sciences. It
is typically the case when studying the optimal performances of a system in which the response to a given
input occurs not instantaneously but only after a certain elapse of time. Such problems have in general been
modelled by delayed or deviating arguments differential equations (see examples below). Let us remark that
such equations are particular cases of the equations dealt with in the present paper. Before going further, let
us consider some examples.

Example 1. Problems with lags or deviating arguments

The simplest case is the case of a delayed equation of the form

ẏ(t) =
{

u(t) if t < τ
f(y(t − τ)) + u(t) if t ≥ τ

where τ > 0 is a given delay. This corresponds of course to

νt =
{

0 if t < τ
δt−τ if t ≥ τ.

The study of delayed differential equations and their control may be traced back to the early 60’s (in particular
the book of Bellman and Cooke [2], see also Oguztöreli [13]) and there is nowadays a huge literature on the
subject.

A natural generalization of time delayed equations is the case of deviating argument equations of the form

ẏ(t) = f(y(θ(t))) + u(t)

where θ is a given deviation function (with 0 ≤ θ(t) ≤ t say). In this case νt = δθ(t). More generally, one can
consider the superposition of several (or even a continuum of) deviations, this corresponds to νt of the form:

νt :=
k∑

i=1

αi(t)δθi(t) or more generally νt :=
∫

A

α(t, a)δθ(t,a)dμ(a).

The study of general deviating arguments problems has started in the 60’s (see the book of El’sgol’ts [9]).
More recently, in a calculus of variations framework, Drakhlin and Stepanov [6] obtained lower semi-continuity
results for integral functionals with deviating arguments and Samassi and Tahraoui [16,17] obtained optimality
conditions for such functionals (see also Samassi’s thesis [15]). Let us also mention that problems with deviating
arguments where the deviation is unknown a priori and determined by optimizing some functional give rise to
additional difficulties (see Jouini, Koehl and Touzi [11,12] for a problem of this type arising in economics).
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Example 2. A deterministic advertising model

Arguing that there is a time lag between advertising expenditure and the corresponding effect on the goodwill
level, Gozzi and Marinelli proposed in [10] a stochastic optimal control advertising model with delay. The state
variable y is the stock of advertising goodwill and the control variable u models the intensity of advertising
spending. The dynamics of y is assumed to be governed by a stochastic delay differential equation of the form⎧⎨⎩ dyt =

[
a0y(t) + b0u(t) +

∫ r

0

(a1(s)y(t − s) + b1(s)u(t − s))ds

]
dt + σdWt

(y, u) prescribed on [−r, 0]

where Wt stands for the standard one-dimensional Brownian motion, a0 ≤ 0, b0 ≥ 0 are given constants, a1 and
b1 are given L2 functions on [−r, 0] with b1 ≥ 0. In the deterministic case, σ = 0, and we are left with a special
case of the dynamics (2).

Example 3. Variants of Ramsey’s economic growth model

In [14], Ramsey proposed a celebrated model of economic growth. In finite horizon, it reads as:

sup
∫ T

0

e−δtU(c(t))dt + g(k(T )) : k̇(t) = f(t, k(t)) − c(t), k(0) = k0.

The state variable k is the capital, the control c is the consumption rate, and f is the production function. In
the original model i(s) := f(s, k(s))−c(s) represents the investment at time t and writing k̇(t) = f(t, k(t))−c(t)
amounts to assuming that saving instantaneously converts into capital. This is a strong assumption and it is
more realistic to assume that the capital growth depends on past investments according to a relation of the
form

k̇(t) =
∫ t

0

i(s)dνt(s) =
∫ t

0

(f(s, k(s)) − c(s))dνt(s).

We refer to Boucekkine et al. [3] for a variant of Ramsey’s model with delays. There are actually many related
problems in economics, management of natural resources and finance (optimal harvesting, models with age-
structured populations...). For extensions to the stochastic control framework and more applications, we refer
for instance to Elsanosi, Øksendal and Sulem [8].

In Section 2, the Cauchy problem is studied in details. Section 3 deals with the existence of optimal controls,
the material of these sections is rather standard but is included for the sake of completeness. The main novelty
consists of the derivation of optimality conditions obtained in Section 4. In the case of an unconstrained control,
we first establish the Euler-Lagrange equations of the problem, then apply the optimality conditions to obtain
some regularity results. We then consider the case of (convex) constraints on the control and prove that in this
case, the optimality conditions can be written in the form of a Pontryagin principle with a nonlocal Hamiltonian.
Finally, Section 5 extends the previous result to the more general state equation (2).

2. On the Cauchy problem

Our first aim is to solve the Cauchy problem:{
ẋ(t) = 〈f(., x(.)), νt〉 + v, t ∈ (0, 1),
x(0) = x0.

(4)

Let us consider the following assumptions:
• (H1) f ∈ C0([0, 1] × R

d, Rd), and there exists (a, b) ∈ R
2
+ such that |f(t, x)| ≤ a|x| + b, for all (t, x) ∈

[0, 1]× R
d;
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• (H’1) for every r > 0, there exists k such that for all (t, x, y) ∈ [0, 1] × R
d × R

d such that |x| ≤ r and
|y| ≤ r, |f(t, x) − f(t, y)| ≤ k|x − y|;

• (H2) for each t ∈ [0, 1], νt is a nonnegative finite measure such that νt((t, 1]) = 0 and t �→ νt is
measurable in the sense that t �→ 〈g, νt〉 is measurable for every g ∈ C0([0, 1], R);

• (H3) defining α(t) := νt([0, 1]) = νt([0, t]), we assume α ∈ L1(0, 1).
In the sequel, we shall simply write C0, Lp, W 1,p, BV instead respectively of C0([0, 1], Rd), Lp((0, 1), Rd),

W 1,p((0, 1), Rd), BV((0, 1), Rd). For x and y in R
d, the usual inner product of x and y will be denoted x · y.

2.1. Existence, uniqueness

Before we go further, under assumption (H3), we have the following lemma:

Lemma 1. Let λ > 0 and define for every t ∈ [0, 1],

ϕλ(t) :=
∫ t

0

eλ(s−t)α(s)ds

then ϕλ converges uniformly to 0 on [0, 1] as λ → +∞.

Proof. Let ε > 0, and let δ > 0 be such that
∫

A
α ≤ ε for every Borel set A with Lebesgue measure less than δ.

Then for every t ∈ [0, δ], ϕλ(t) ≤ ε and for t ∈ [δ, 1], one has:

0 ≤ ϕλ(t) =
∫ t−δ

0

eλ(s−t)α(s)ds +
∫ t

t−δ

eλ(s−t)α(s)ds ≤ e−λδ‖α‖L1 + ε.

The desired conclusion follows. �

Proposition 1. Let us assume that v ∈ L1, that (H1), (H2) and (H3) hold and let us denote by Sv the set
of W 1,1 solutions of (4). We then have:

1. Sv �= ∅, and for all x ∈ Sv, ‖x‖∞ ≤ M for some constant M = M(|x0|, a, b, ‖α‖L1, ‖v‖L1);
2. Sv is compact for both C0 and W 1,1 topologies;
3. if, in addition (H’1) is satisfied then Sv consists of a single point yv and the map v ∈ L1 �→ yv ∈ W 1,1

is locally Lipschitz.

Proof. 1. For v ∈ L1 and x ∈ C0, define for all t ∈ [0, 1]:

Tvx(t) := x0 +
∫ t

0

(〈f(., x(.)), νs〉 + v(s))ds.

It is obvious under our assumptions that Tv(C0) ⊂ W 1,1 ⊂ C0. Let x and y be in C0, we have:

‖Tvx − Tvy‖∞ ≤ ‖α‖L1‖f(., x(.)) − f(., y(.))‖∞

which proves that Tv is continuous (for the uniform topology of C0).
Let λ > 0 and define for every x ∈ C0:

‖x‖λ := sup
t∈[0,1]

e−λt|x(t)|. (5)

Of course, (C0, ‖.‖λ) is a Banach space. Let x ∈ C0, we have:

〈|f(., x(.))|, νs〉 ≤ 〈a|x| + b, νs〉 ≤ (a|x0| + a‖x − x0‖λeλs + b)α(s)
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defining C := ‖v‖L1 + (a|x0| + b)‖α‖L1, we then get:

|Tvx(t) − x0| ≤ C + a‖x − x0‖λ

∫ t

0

eλsα(s)ds

this yields:
‖Tvx − x0‖λ ≤ C + a‖x − x0‖λ max

t∈[0,1]
ϕλ(t). (6)

Let us denote by Bλ(x0, r) the closed ball of C0 with center x0 and radius r for the norm ‖.‖λ. It then follows
from (6) and Lemma 1 that for any r > C, Tv(Bλ(x0, r)) ⊂ Bλ(x0, r) when λ is chosen sufficiently large. Now,
let x ∈ Bλ(x0, r) and t2 > t1 be in [0, 1], we have for some nonnegative constant C′:

|Tvx(t2) − Tvx(t1)| ≤
∫ t2

t1

(C′α(s) + |v(s)|)ds.

This proves that Tv(Bλ(x0, r)) is uniformly equicontinuous, we thus deduce from Ascoli’s theorem that
Tv(Bλ(x0, r)) is relatively compact in C0. From Schauder’s fixed point theorem we deduce that Tv admits
at least one fixed point in Bλ(x0, r) which proves that Sv is nonempty. Sv is obviously closed in C0 since Tv is
continuous. Choosing λ such that maxt∈[0,1] ϕλ(t) ≤ 1/(2a), we deduce from (6) that Sv ⊂ Bλ(x0, 2C) which
establishes the first claim of the proposition.

2. Since Sv = Tv(Sv) and Tv(Bλ(x0, 2C)) is relatively compact in C0, we can conclude that Sv is compact
in C0. We claim that Sv is also compact in W 1,1, indeed let (xn)n be a sequence of elements of Sv, up to some
subsequence we may assume that xn converges uniformly to some x ∈ Sv. Since, one has:

|ẋ − ẋn| ≤ α‖f(., x(.)) − f(., xn(.))‖∞

it thus follows that xn converges uniformly to x in W 1,1.
3. Finally, let us assume that f satisfies the local Lipschitz condition and let x1 and x2 belong to Sv. We

already know that Sv ⊂ C0([0, 1], BM ) for some constant M ; let us denote by k the Lipschitz constant of f
with respect to its second argument on [0, 1] × BM . For each t ∈ [0, 1], we then have:

|Tvx1(t) − Tvx2(t)| ≤
∫ t

0

k 〈|x1 − x2|, νs〉ds ≤ k‖x1 − x2‖λ

∫ t

0

eλsα(s)ds

hence:
‖Tvx1 − Tvx2‖λ = ‖x1 − x2‖λ ≤ ‖x1 − x2‖λk max ϕλ

again choosing λ large enough and using Lemma 1, we get x1 = x2.
Let ρ > 0 and v1, v2 be in the centered ball of L1 of radius ρ and set yi := yui for i = 1, 2. Since

y2(t) − y1(t) =
∫ t

0

(〈f(., y2(.)) − f(., y1(.), νs〉)ds +
∫ t

0

(u2 − u1),

we deduce from 1. and (H’1), that there exists k = k(ρ) such that for every λ > 0 and every t ∈ [0, 1], one has:

|y1(t) − y2(t)|e−λt ≤ k‖y1 − y2‖λϕλ(t) + ‖u1 − u2‖L1.

Hence for λ large enough (λ ≥ λ(ρ) say), one has:

‖y1 − y2‖λ ≤ 2‖u1 − u2‖L1.
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Thus, there exists C = C(ρ) such that ‖y1 − y2‖∞ ≤ C(ρ)‖u1 − u2‖L1 . We deduce the desired result by
remarking that

|ẏ1(t) − ẏ2(t)| ≤ |u1(t) − u2(t)| + kα(t)‖y1 − y2‖∞. �
Remark. When d = 1 and f is sublinear and nondecreasing (but not locally Lipschitz) with respect to its
second argument, it is possible (by suitably regularizing f from above of from below) to show that the Cauchy
problem admits a unique largest and a unique smallest solution.

2.2. Continuous dependence and linearization

In this paragraph, we always assume (H1), (H’1), (H2) and (H3).

Lemma 2. If a sequence vn converges weakly in L1 to some v then yvn converges uniformly to yv on [0, 1].

Proof. Let us set yn := yvn and let us prove that yn is uniformly equicontinuous (we already know that it is
bounded in L∞ by Prop. 1). On the one hand, we know from Proposition 1 that there exists a constant C such
that for all n and all t, h such that [t, t + h], one has:

|yn(t + h) − yn(t)| ≤
∫ t+h

t

(Cα + |vn|).

On the other hand, vn satisfies Dunford-Pettis criterion hence is uniformly integrable. We therefore deduce
from Ascoli’s theorem that (yn) is precompact in C0. Let z be some limit point of (yn) for the C0 norm, if we
establish that z = yv, the proof will be complete. To prove that z = yv it is enough to pass to the limit in:

yn(t) = x0 +
∫ t

0

(〈f(., yn(.)), νs〉 + vn(s))ds

and to invoke the uniqueness result of Proposition 1. �
For the following result, we further assume that for every t ∈ [0, 1], f(t, .) is of class C1 on R

d, we denote by
Dxf(t, y) the Jacobian matrix of f(t, .) at the point y and assume that Dxf is a continuous function of both
variables t and x. We then have:

Proposition 2. Let (u, v) ∈ L1 × L1 and ε > 0. Define y := yu and yε := yu+εv, then:

yε − y

ε
→ h in W 1,1 as ε → 0+

where h is the solution of the linearized state equation:{
ḣ(t) = 〈Dxf(., y(.))h(.), νt〉 + v(t), t ∈ (0, 1),
h(0) = 0.

(7)

Proof. For ε > 0, let us set hε := (yε − y)/ε. We know from Proposition 1 that hε is bounded in W 1,1 hence
in C0, hence there is a constant k such that for every ε > 0 and t ∈ (0, 1):

|ḣε(t)| ≤ kα(t) + |v(t)|.

Since the rightmost member of this inequality is L1, the family (hε) is precompact in C0. Let η be some limit
point for the C0 norm of (hε), η = limj hεj and let us prove that η = h. For all t and j, we have:

hεj (t) =
∫ t

0

(〈
f(., y(.) + εjhεj (.)) − f(., y(.))

εj
, νs

〉
+ v(s)

)
ds
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letting j tend to ∞ we get:

η(t) =
∫ t

0

(〈Dxf(., y(.))η(.), νs〉 + v(s))ds.

Since h is the unique solution of the linearized equation (7), this proves that h = η and that the whole hε

converges to h in C0 as ε tends to 0. To prove that there is also convergence in W 1,1 we remark that:

‖ḣε − ḣ‖L1 ≤ ‖α‖L1δε

where

δε =
∥∥∥∥f(., y(.) + εhε(.)) − f(., y(.))

ε
− Dxf(., y(.))h(.)

∥∥∥∥
∞

which tends to 0 as ε → 0+. �

3. Existence of optimal controls

From now on, we will always assume (H1), (H’1), (H2) and (H3). In addition we assume the following:
• (H4) g is l.s.c., L is a normal integrand from [0, 1] × R

d × R
d to R ∪ +∞ (i.e. L is Borel and for

a.e. t ∈ [0, 1], L(t, ., .) is l.s.c.) and L(t, x, .) is convex for every (t, x) ∈ [0, 1] × R
d;

• (H5) there exists a convex l.s.c. function Ψ: R
+ → R

+ such that lim+∞ Ψ(ξ)/ξ = +∞ and G ∈
L1((0, 1), R) such that:

L(t, x, v) ≥ Ψ(|v|) + G(t), ∀(t, x, v) ∈ [0, 1] × R
d × R

d;

• (H6) V is a closed convex subset of L1 and there exists u0 ∈ V such that J(u0) < +∞.
Under assumptions (H1), (H’1), (H2), (H3), (H4), (H5) and (H6), one easily obtains existence of a

solution to (1):

Proposition 3. There exists u ∈ V such that J(u) ≤ J(u) for all u ∈ V .

Proof. Let un ∈ V N be a minimizing sequence of J over V . It follows from (H5) and Dunford-Pettis theorem
that un admits a (not relabeled) subsequence that converges weakly in L1 to some u, by convexity u ∈ V . It
then follows from Lemma 2 that yn := yun converges uniformly to y := yu. It then follows from our assumptions
and Theorem 2.1, p. 243 of Ekeland and Temam [7], that:

J(u) ≤ lim J(un)

which proves the result. �

4. Optimality conditions

4.1. Euler-Lagrange equations

In this paragraph, we assume the following:
• (H7) for every t ∈ [0, 1], f(t, .) is of class C1 and Dxf is continuous;
• (H8) g is of class C1, L is continuous and for every t ∈ [0, 1], (x, v) �→ L(t, x, v) is of class C1 and ∇xL

and ∇vL are continuous;
• (H9) there exists p > 1 and c > 0 such that L satisfies (H5) with Ψ(ξ) = cξp, α ∈ Lp, there exists

G1 ∈ Lp′
((0, 1), R) (p′ being the conjugate exponent of p), G2 ∈ L1((0, 1), R), and for each r > 0 there

exists βr ≥ 0 such that for all (t, x, v) ∈ [0, 1]× Br × R
d:

|∇vL(t, x, v)| ≤ G1(t) + βr(1 + |u|p−1), |∇xL(t, x, v)| ≤ G2(t) + βr(1 + |u|p).
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We then consider the following problem

inf
u∈Lp

J(u) with J(u) :=
∫ 1

0

L(s, yu(s), u(s))ds + g(yu(1)). (8)

Under our assumptions, let us remark that for every v ∈ Lp, yv ∈ W 1,p and that, if L is convex in v, then
(8) admits at least one solution in Lp. Under the previous assumptions, we also have, as a direct consequence
of Proposition 2:

Lemma 3. J is Gâteaux-differentiable on Lp, and for all (u, v) ∈ Lp × Lp one has:

〈J ′(u), v〉 =
∫ 1

0

(∇xL(t, yu(t), u(t))hv(t) + ∇vL(t, yu(t), u(t)) · v(t)) dt + ∇g(yu(1)) · hv(1)

where hv ∈ W 1,p is the solution of the linearized state equation:{
ḣ(t) = 〈Dxf(., yu(.))h(.), νt〉 + v(t), t ∈ (0, 1),
h(0) = 0.

(9)

Let us denote by L1 the Lebesgue measure on [0, 1] and let us define the nonnegative measure γ := νt ⊗ L1

on [0, 1]2, and define ν as the second marginal of γ. Using test-functions, γ and ν are then defined by:∫
φ(t, s)dγ(t, s) =

∫ 1

0

(∫ 1

0

φ(t, s)dνt(s)
)

dt, ∀φ ∈ C0([0, 1]2, R),∫
φ(s)dν(s) =

∫ 1

0

(∫ 1

0

φ(s)dνt(s)
)

dt, ∀φ ∈ C0([0, 1], R).

Using the disintegration theorem (see for instance the book of Dellacherie and Meyer [5] or the appendix in the
lecture notes of Ambrosio [1]) we may also write γ = ν ⊗ ν∗

s where ν∗
s is a measurable family of probability

measures on [0, 1]. We recall that φ ∈ L1(γ) if and only if:
• for L1-a.e. t ∈ [0, 1], φ(t, .) ∈ L1(νt), and
• t �→ 〈φ(t, .), νt〉 ∈ L1(L1)

which is also equivalent to
• for ν-a.e. s ∈ [0, 1], φ(., s) ∈ L1(ν∗

s ), and
• s �→ 〈φ(., s), ν∗

s 〉 ∈ L1(ν).
Moreover, if φ ∈ L1(γ), then:∫

[0,1]2
φ(t, s)dγ(t, s) :=

∫ 1

0

〈φ(t, .), νt〉dt =
∫ 1

0

〈φ(., s), ν∗
s 〉dν(s).

Let us finally remark that since νt is supported by [0, t], ν∗
s is supported by [s, 1]. For every matrix A, we shall

denote by AT the transpose of A. The Euler-Lagrange equation of (8) then reads as:

Theorem 1. Let u be a solution of (8) and y := yu be the corresponding trajectory. Slightly abusing notations,
let us simply denote

Dxf(., y(.))T 〈∇vL(y, u), ν∗
. 〉 : t ∈ [0, 1] �→ Dxf(t, y(t))T 〈∇vL(., y(.), u(.)), ν∗

t 〉 .

Then the following Euler-Lagrange equation:

d
dt

(∇vL(., y(.), u(.))) = ∇xL(., y(.), u(.)) − (Dxf(., y(.))T 〈∇vL(y, u), ν∗
. 〉)ν (10)
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and the transversality condition:
∇vL(1, y(1), u(1)) = −∇g(y(1)) (11)

are satisfied in the (W 1,p)′ sense, which means that for every x ∈ W 1,p such that x(0) = 0, one has:

0 = ∇g(y(1)) · x(1) +
∫ 1

0

(∇xL(t, y(t), u(t)) · x(t) + ∇vL(t, y(t), u(t)) · ẋ(t)) dt

−
∫ 1

0

((Dxf(s, y(s)))x(s) · 〈∇vL(., y(.), u(.)), ν∗
s 〉) dν(s).

Proof. To shorten notations, let us set:

Π(t) := ∇vL(t, y(t), u(t)), A(t) := Dxf(t, y(t)),
Θ(t) := ∇xL(t, y(t), u(t)). (12)

Since u ∈ Lp, our assumptions imply that Π ∈ Lp′
, Θ ∈ L1 and A ∈ C0.

Let x ∈ W 1,p be such that x(0) = 0 and define:

v(t) := ẋ(t) − 〈A(.)x(.), νt〉

so that v ∈ Lp and x = hv. By Lemma 3 and since 〈J ′(u), v〉 = 0, we get:∫ 1

0

(Θ · x + Π · (ẋ − 〈A(.)x(.), νt〉))dt + ∇g(y(1)) · x(1) = 0. (13)

Let us define for all (i, j) ∈ {1, ..., d}2, and all (t, s) ∈ [0, 1]2, φij(t, s) := Πi(t)Aij(s)xj(s). Since both A and x
are continuous on [0, 1], φij(t, .) ∈ L1(νt) for a.e. t and

| 〈φij(t, .), νt〉 | ≤ ‖Aij‖∞‖xj‖∞α(t)|Πi(t)|

since Π ∈ Lp′
and α ∈ Lp, the right-hand side member is L1, we deduce that φij ∈ L1(γ). Hence φij(., s) ∈

L1(ν∗
s ) for ν-a.e. s , 〈φij(., s), ν∗

s 〉 ∈ L1(ν), and:∫ 1

0

(Π(t) · 〈A(.)x(.), νt〉)dt =
∑

1≤i,j≤d

∫
[0,1]2

φij(t, s)dγ(t, s)

=
∑

1≤i,j≤d

∫ 1

0

〈φij(., s), ν∗
s 〉dν(s)

=
∑

1≤i,j≤d

∫ 1

0

(Aij(s)xj(s) 〈Πi, ν
∗
s 〉)dν(s)

=
∫ 1

0

x(s) · (A(s)T 〈Π, ν∗
s 〉)dν(s).

With (13), we thus get, for all x ∈ W 1,p such that x(0) = 0

∇g(y(1)) · x(1) +
∫ 1

0

(Θ · x + Π · ẋ) dt −
∫ 1

0

(A(s)x(s) · 〈Π, ν∗
s 〉) dν(s) = 0.
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This exactly means that Π satisfies in the (W 1,p)′ sense:

Π̇ = Θ − (A(.)T 〈Π(.), ν∗
. 〉)ν, (14)

Π(1) = −∇g(y(1)). (15)

�

Example. We aim to illustrate the previous optimality conditions by a simple example of Ramsey type. Let
us consider the following problem:

sup
{∫ 1

0

e−δtU(c(t))dt + g(k(1)) : k(0) = k0, k̇(t) = α

∫ t

0

k(s)dνt(s) − c(s)
}

.

In this problem, c is the consumption (control variable), k is the stock of capital (state variable), U is a utility
function, δ > 0 a discount rate and for the sake of simplicity, we have taken a linear production function
f(k) = αk.

In the classical no-memory case (i.e. νt = δt), setting

v(t) := e−δtU ′(c(t)), ∀t ∈ [0, 1] (16)

the Euler-Lagrange equation simply reads as v̇ = −αv hence:

U ′(c(t)) = e(δ−α)tU ′(c(0)). (17)

In the general case, defining v by (16), the Euler-Lagrange equation becomes:

v̇(s) = −α

(∫ 1

0

v(t)dν∗
s (t)

)
ν(s).

If we specify to the case where dνt(s) := g(t, s)χ[0,t](s)ds (with χ[0,t] the characteristic function of [0, t]) then
ν∗

s (t) = g(t, s)χ[s,1](t)dt and dν(s) = ds. Thus, we get the following linear integrodifferential equation for v:

v̇(s) = −α

∫ 1

s

v(t)g(t, s)dt.

For instance, taking g ≡ 1 leads to v̈ = αv and v̇(1) = 0 so that:

U ′(c(t)) =
U ′(c(0))
1 + e2

√
α

(
e(δ+

√
α)t + e2

√
α+(δ−√

α)t
)

.

4.2. Regularity of optimal controls

Assuming as previously that u is a solution of (8), y := yu and defining Π, Θ and A by (12), let us denote
by ν̃Π the vector-valued measure:

dν̃Π := FΠdν where FΠ(s) := A(s)T 〈Π(.), ν∗
s 〉 . (18)

We recall that Θ ∈ Lp′
, FΠ ∈ L1(ν) and that the optimality conditions equation of (8), (14) and (15), can be

written as:
Π̇ = Θ − ν̃Π, Π(1) = −∇g(y(1)).
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This implies that Π ∈ BV((0, 1), Rd) and that for all t ∈ [0, 1]

Π(t) = −∇g(y(1)) −
∫ 1

t

Θ(s)ds + ν̃Π([t, 1]). (19)

We immediately deduce from (19) and (18) that Π is continuous except possibly on the set of atoms of ν, in
particular Π is continuous as soon as ν has no atoms.

Lemma 4. Let u be a solution of (8), y := yu, and Π be defined by (12). For all t ∈ [0, 1] such that ν({t}) = 0,
Π is continuous at t, hence Π has at most countably many discontinuity points. In particular, if ν({t}) = 0 for
all t ∈ [0, 1] then Π is continuous on [0, 1].

To deduce the continuity of an optimal control, let us use standard Fenchel duality:

L∗(t, x, p) := sup
v∈Rd

{p · v − L(t, x, v)}, ∀p ∈ R
d.

Assuming that L∗ is differentiable with respect to p (which is the case if L is strictly convex and superlinear
in v), we then have:

u(t) = ∇pL
∗(t, y(t), Π(t)).

We thus deduce the following:

Proposition 4. Let us further assume that L(t, x, .) is strictly convex for all (t, x) ∈ [0, 1]×R
d and that ∇pL

∗

is continuous on [0, 1]×R
d ×R

d and let u be any solution of (8). For every t ∈ (0, 1) such that ν({t}) = 0 then
u is continuous at t. In particular, if ν has finitely many atoms then u is piecewise continuous.

Proposition 4 states that optimal controls are continuous except possibly on the set of atoms of ν. Remarking
that, for every τ ∈ [0, 1],

ν({τ}) =
∫ 1

0

νt({τ})dt,

we thus deduce that optimal controls are continuous at each point τ such that L1({t ∈ [0, 1] : νt({τ}) > 0}) = 0.
As a consequence, if for Lebesgue-a.e. t, νt is atomless then any optimal control is continuous. In the case of
a deviating argument (i.e. νt = δθ(t)), ν is the image of the Lebesgue measure by the deviation function θ and
optimal controls are continuous at each point τ such that L1(θ−1({τ})) = 0. If ν has no atoms, optimal controls
are continuous so that, if, in addition, we assume that t �→ 〈g, νt〉 is continuous for every continuous g then the
corresponding state is of class C1. Under stronger regularity assumptions on ν, f , L and L∗, one can obtain
higher regularity (C1 or even C∞). When ν has finitely many atoms, one can also obtain higher piecewise
regularity (piecewise C1 or even piecewise C∞).

Example. To illustrate the previous results, let us consider the linear-quadratic case, namely:

L(t, x, v) =
1
2
(|x|2 + |u|2), g = 0, f(t, x) = A(t)x,

where A is a continuous d× d-matrix-valued function. In this case, J is strictly convex and (8) admits a unique
solution u. If we denote by y the corresponding trajectory, the pair (u, y) is then characterized by the following
linear system {

ẏ(t) = 〈A(.)y(.), νt〉 + u(t), y(0) = x0,

u̇ = y − (A(.)T 〈u, ν∗
. 〉)ν, u(1) = 0.

It immediately follows that if ν is atomless (i.e. ν({s}) = 0 for all s ∈ [0, 1]) and t �→ 〈g, νt〉 is continuous for
every continuous g, then u is continuous and y is of class C1.
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4.3. A nonlocal version of Pontryagin principle

In this section, we consider the case of a convex constraint on the control and prove that the optimality
conditions take the form of a nonlocal version of the Pontryagin principle. More precisely, we consider the
problem:

inf
u∈V

J(u) with J(u) :=
∫ 1

0

L(s, yu(s), u(s))ds + g(yu(1)). (20)

For the sake of simplicity we assume that the set of admissible controls V is defined by:

V := {u ∈ Lp : u(t) ∈ K for a.e. t} (21)

where K := {v ∈ R
d : Φ(v) ≤ 0} and Φ is a differentiable convex function such that infRd Φ < 0. In the

remainder, we assume (H1), (H’1), (H2), (H3), (H7), (H8) and (H9) and, in addition, that L(t, x, .) is
strictly convex on K for all (t, x) ∈ [0, 1]×R

d. This implies in particular that (20) possesses solutions and that
the differentiability result of Lemma 3 holds. Under our assumptions, the optimality conditions of (20) may be
expressed by the following multiplier rule:

Lemma 5. Let u be a solution of (20) then there exists a nonnegative function β such that

β(.)∇Φ(u(.)) ∈ Lp′
, β(t)Φ(u(t)) = 0 a.e., and (22)

〈J ′(u), v〉 = −
∫ 1

0

β(t)∇Φ(u(t)) · v(t)dt, ∀v ∈ Lp. (23)

Proof. Let F ∈ Lp′
be such that 〈J ′(u), v〉 =

∫ 1

0
F · v, ∀v ∈ Lp. The variational inequalities of (20) read as:

∫ 1

0

F · v ≥ 0, ∀v ∈ R+(V − u) (24)

where R+(V − u) denotes the Lp closure of the convex cone R+(V − u). By Lusin’s theorem, for all n ∈ N
∗,

there exists a compact subset Kn of [0, 1] whose complement has Lebesgue measure less than n−1 and u is
continuous on Kn. Let us define then for all δ > 0 and n ∈ N

∗:

I0 := {t : Φ(u(t)) = 0}, Iδ := {t : Φ(u(t)) ≤ −δ}, In
δ = Iδ ∩ Kn, In

0 = I0 ∩ Kn.

In what follows, for A ⊂ [0, 1], 1A will denote the characteristic function of A. Let v ∈ L∞, there exists ε > 0
such that u + ε1In

δ
v and u− ε1In

δ
v both belong to V . Hence, by (24), we deduce that

∫ 1

0 1In
δ
F · v = 0. Since v,

δ > 0 and n are arbitrary we get F = 0 a.e. on [0, 1] \ I0.
Now let v ∈ L∞ be such that:

∇Φ(u(t)) · v(t) ≤ 0 for a.e. t ∈ I0. (25)

It can be checked easily that for all n ∈ N
∗ and η > 0 there exists ε > 0 such that u + ε1In

0
(v − η∇Φ(u)) ∈ V .

Using (24) again, we get: ∫ 1

0

1In
0
F · (v − η∇Φ(u)) ≥ 0

since n and η are arbitrary, we deduce that
∫ 1

0
1I0F ·v ≥ 0 for every v ∈ L∞ that satisfies (25). Since F ∈ Lp′

, we
deduce from Lebesgue’s dominated convergence theorem that

∫ 1

0 1I0F ·v ≥ 0 for every v ∈ Lp that satisfies (25).
By a standard separation argument, we deduce that 1I0F = −1I0β∇Φ(u) for some nonnegative function β.
Together with F = 0 a.e. on [0, 1] \ I0, this completes the proof. �
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Combining the previous lemma, with the arguments of the proof of Theorem 1, we get:

Proposition 5. Let u be a solution of (20), β be as in Lemma 5, Π, Θ and A be defined by (12) and set

p(t) := −Π(t) − β(t)∇Φ(u(t)), ∀t ∈ (0, 1), (26)

then p ∈ Lp′ ∩ BV((0, 1), Rd), satisfies in the (W 1,p)′ sense:

ṗ = −Θ − (A(.)T 〈p(.), ν∗
. 〉)ν, (27)

with the boundary condition p(1) = ∇g(y(1)).

Proof. Let x ∈ W 1,p be such that x(0) = 0 and define:

v(t) := ẋ(t) − 〈A(.)x(.), νt〉 .

By Lemmas 3 and 5, we get:∫ 1

0

(Θ · x − p · (ẋ − 〈A(.)x(.), νt〉)dt + ∇g(y(1)) · x(1) = 0. (28)

Arguing exactly as in the proof of Theorem 1, we get the desired result. �
We may actually interpret p as a co-state variable and rewrite the previous conditions as a nonlocal version

of the Pontryagin principle. To that end, let us first define:

H(t, x, p) := min
v∈K

{L(t, x, v) + p · v}, ∀(t, x, p) ∈ [0, 1]× R
d × R

d. (29)

Our assumptions guarantee that for each (t, x, p) ∈ [0, 1] × R
d × R

d, there exists a unique U(t, x, p) ∈ K such
that

H(t, x, p) := L(t, x, U(t, x, p)) + p · U(t, x, p).
It is well-known (see for instance Cannarsa and Sinestrari [4]), under our assumptions, that U is continuous
and the partial gradients ∇xH and ∇pH exist, are continuous and are given by:

∇xH(t, x, p) = ∇xL(t, x, U(t, x, p)), ∇pH(t, x, p) = U(t, x, p). (30)

Let v ∈ V , by convexity of Φ, we have:

0 ≥ β(t)(Φ(v) − Φ(u(t))) ≥ ∇Φ(u(t)) · (v − u(t)). (31)

Using the convexity of L(t, y(t), .) and the definition (26) of the co-state, we also have:

L(t, y(t), v) ≥ L(t, y(t), u(t)) − (β(t)∇Φ(u(t)) + p(t)) · (v − u(t)). (32)

Using (31) and the arbitrarity of v in (32), we then get:

L(t, y(t), u(t)) + p(t) · u(t) = H(t, y(t), p(t))

or, equivalently:
u(t) = U(t, y(t), p(t)) a.e. on (0, 1). (33)

Let us then define for all x ∈ W 1,p and p ∈ Lp′
the (functional or nonlocal) Hamiltonian of problem (20) by:

H̃(x, p)(t) := H(t, x(t), p(t)) + p(t) · 〈f(., x(.)), νt〉 , t ∈ (0, 1). (34)
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We then have the following result whose elementary proof is left to the reader:

Lemma 6. Let x ∈ W 1,p and p ∈ Lp′
.

(1) For every ϕ ∈ C0, the following limit

〈
DxH̃(x, p), ϕ

〉
:= lim

ε→0

1
ε

∫ 1

0

(
H̃(x + εϕ, p)(t) − H̃(x, p)(t)

)
dt

exists and is equal to∫ 1

0

(∇xH(t, x(t), p(t)) · ϕ(t) + p(t) · 〈Dxf(., x(.))ϕ(.), νt〉) dt =∫ 1

0

∇xH(t, x(t), p(t)) · ϕ(t)dt +
∫ 1

0

ϕ(s) · [Dxf(s, x(s))T 〈p(.), ν∗
s 〉

]
dν(s).

(2) For every ϕ ∈ Lp′
, the following limit

〈
DpH̃(x, p), ϕ

〉
:= lim

ε→0

1
ε

∫ 1

0

(
H̃(x, p + εϕ)(t) − H̃(x, p)(t)

)
dt

exists and is equal to

〈
DpH̃(x, p), ϕ

〉
=

∫ 1

0

(〈f(., x(.)), νt〉 + U(t, x(t), p(t))) · ϕ(t)dt.

Let us remark that if x ∈ W 1,p and p ∈ Lp′
, then DpH̃(x, p) ∈ Lp and DxH̃(x, p) is a finite vector-valued

measure. Slightly abusing notations, we may rewrite Lemma 6 in the more concise form:{
DxH̃(x, p) = ∇xL(., x(.), U(., x(.), p(.))) + Dxf(., x(.))T 〈p, ν∗

. 〉 ν,

DpH̃(x, p)(t) = 〈f(., x(.)), νt〉 + U(t, x(t), p(t)).

Finally, we get the following version of the Pontryagin principle:

Theorem 2. Let u be a solution of (8) and y := yu be the corresponding trajectory, then there exists p ∈
Lp′ ∩ BV((0, 1), Rd) such that:

(1) For a.e. t ∈ (0, 1),

L(t, y(t), u(t)) + p(t) · u(t) = min
v∈K

{L(t, y(t), v) + p(t) · v} ;

(2) (y, p) solves the nonlocal Hamiltonian system:{
ẏ = DpH̃(y, p),
ṗ = −DxH̃(y, p)

together with the boundary conditions

y(0) = x0, p(1) = ∇g(y(1)).
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Proof. Let us define p as in Proposition 5, then by construction u(t) = U(t, y(t), p(t)) for a.e. t ∈ (0, 1), which
means that

L(t, y(t), u(t)) + p(t) · u(t) = min
v∈K

{L(t, y(t), v) + p(t) · v} .

Using Lemma 6, the optimality condition (27) can be rewritten as:

ṗ = −DxH̃(y, p), p(1) = ∇g(y(1)).

Finally, again using Lemma 6, the state equation (4) can be rewritten as

ẏ(t) = 〈f(., y(.), νt)〉 + U(t, y(t), p(t)) = DpH̃(y, p)(t). �

Remark. For the sake of simplicity, we have assumed here that the set of controls K is convex. It is actually
unnecessary for a Pontryagin principle to hold but is a sufficient condition for the existence of an optimal control.
For a nonconvex K, if u is a solution of (8) and y := yu is the corresponding trajectory, then u also solves
the relaxation of (8) which consists in minimizing J(u) subject to the relaxed constraint u ∈ co(K). In this
case, (y, u) satisfies the optimality conditions of the relaxed problem for which the set of admissible controls is
convex.

5. The case of a state equation with memory in the control

This final section is devoted to optimality conditions in the case of a state equation of the form (2) where
the control also enters the dynamics in a nonlocal way.

5.1. Assumptions and preliminaries

In addition to f and the family (νt)t (that, throughout are assumed to satisfy (H1), (H’1), (H2) and (H3)),
we are now also given a measurable family of nonnegative measures (μt)t such that t �→ μt([0, 1]) belongs to L1.
For u ∈ Lp and x0 ∈ R

d, let us consider the Cauchy problem:{
ẋ(t) = 〈f(., x(.)), νt〉 + 〈u, μt〉 , t ∈ (0, 1),
x(0) = x0.

(35)

In order to be able to apply the results of Section 2 (with t �→ 〈u, μt〉 as new control), it is enough that the
linear map u �→ (t �→ 〈u, μt〉) is well-defined and continuous from Lp to L1. Let us define η := μt ⊗ L1 and
define μ as the second marginal of η, i.e.:∫ 1

0

φ(s)dμ(s) =
∫ 1

0

〈φ, μt〉dt, ∀φ ∈ C0([0, 1], R).

By the disintegration theorem (see [5] or [1]), we may also write η = μ ⊗ μ∗
s for some measurable family of

probability measures (μ∗
s)s on [0, 1]. Again, this means:∫ 1

0

φ(t, s)dη(t, s) =
∫ 1

0

〈φ(t, .), μt〉dt

=
∫ 1

0

〈φ(., s), μ∗
s〉dμ(s), ∀φ ∈ C0([0, 1]2, R).

Now let p ∈ (1, +∞) and let p′ be its conjugate exponent and let us assume that μ ∈ Lp′
then for every

u ∈ C0 one has: ∫ 1

0

| 〈u, μt〉 |dt ≤
∫ 1

0

|u|dμ ≤ ‖μ‖Lp′‖u‖Lp.
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Thus, if μ ∈ Lp′
, u �→ (t �→ 〈u, μt〉) is a well-defined and continuous mapping from Lp to L1. In the sequel

we will always assume μ ∈ Lp′
and, slightly abusing notations, we will also denote by μ the density of μ with

respect to L1. In particular this implies that the Cauchy problem (35) admits a unique solution that will be
denoted zu ∈ W 1,1 in the sequel.

The next paragraphs then deal with the optimal control problem

inf
u∈V

I(u) with I(u) :=
∫ 1

0

L(s, zu(s), u(s))ds + g(zu(1)). (36)

To derive optimality conditions, we further assume that f , L and g satisfy assumptions (H7), (H8) and (H9)
and that V is a closed convex subset of Lp.

Finally, for the sake of simplicity, we further assume that ν is atomless (i.e. ν({t}) = 0 for every t ∈ [0, 1])
where we recall that ν is the second marginal of γ := νt ⊗L1 as defined in Section 4.1. Still using the notations
of Section 4.1, we shall also write γ = ν ⊗ ν∗

s .

5.2. Euler-Lagrange equations

In this paragraph, we consider the unconstrained case, i.e. problem (36) when V = Lp. Let us assume that
u solves (36) and let us set z := zu, and define:

Π(t) := ∇vL(t, z(t), u(t)), A(t) := Dxf(t, z(t)),
Θ(t) := ∇xL(t, z(t), u(t)), β := ∇g(z(1)). (37)

Using the continuity of u �→ (t �→ 〈u, μt〉) and Proposition 2, we easily obtain:∫ 1

0

(Θ · kv + Π · v) + β · kv(1) = 0, ∀v ∈ Lp (38)

where kv ∈ W 1,1 denotes the solution of the linearized equation:{
k̇(t) = 〈A(.)k(.), νt〉 + 〈v(.), μt〉 , t ∈ (0, 1),
k(0) = 0.

(39)

Now, let us consider the adjoint equation:{
ṗ = −AT (.) 〈p, ν∗

. 〉 ν − Θ,
p(1) = β

(40)

which can equivalently be rewritten as:

p(t) = β +
∫ 1

t

Θ +
∫ 1

t

AT (s) 〈p, ν∗
s 〉dν(s).

Arguing as in Section 2, and using the fact that ν is atomless, the adjoint equation (40) admits a unique
solution p ∈ BV ∩C0. For every h ∈ W 1,1 such that h(0) = 0, let us also remark that the following integration
by parts formula holds: 〈

h, ṗ
〉

= −
∫ 1

0

ḣ · p + β · h(1). (41)

The Euler-Lagrange equations of (36) are then given by:
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Theorem 3. Let u be a solution of (36) and z := zu, then for a.e. t, one has:

∇vL(t, z(t), u(t)) = −〈p(.), μ∗
t 〉μ(t),

where p ∈ BV ∩ C0 is the solution of the adjoint equation:{
ṗ = −Λpν −∇xL(., z(.), u(.)),
p(1) = ∇g(z(1)) (42)

and Λp(t) := Dxf(t, z(t))T 〈p, ν∗
t 〉.

Proof. Let v ∈ Lp, and let us use the notations of (37). Using (39) and (40), we then have:

〈
kv, ṗ

〉
= −

∫ 1

0

(AT (s) 〈p, ν∗
s 〉) · kv(s)dν(s) −

∫ 1

0

Θ · kv

= −
∫ 1

0

(〈Akv, νt〉) · p(t)dt −
∫ 1

0

Θ · kv

= −
∫ 1

0

k̇v · p +
∫ 1

0

〈v, μt〉 · p(t)dt −
∫ 1

0

Θ · kv

= −
∫ 1

0

k̇v · p +
∫ 1

0

v(s) 〈p, μ∗
s〉μ(s)ds −

∫ 1

0

Θ · kv

with (41), we then get: ∫ 1

0

Θ · kv + β · kv(1) =
∫ 1

0

v(s) 〈p, μ∗
s〉μ(s)ds, ∀v ∈ Lp.

Finally, (38) exactly yields Π(t) = ∇vL(t, z(t), u(t)) = −〈p(.), μ∗
t 〉μ(t) for a.e. t. �

5.3. Pontryagin principle

In this paragraph, we consider the constrained case where V is defined by (21) as in Section 4.3. We recall
that K := {v ∈ R

d : Φ(v) ≤ 0} where Φ is a differentiable convex function such that infRd Φ < 0. As in
Section 4.3, in addition to the general assumptions of this section, we assume that L(t, x, .) is strictly convex
on K for every (t, x) ∈ [0, 1] × R

d.
Let (x, p) ∈ C0 × C0 and define

H(x, p) := inf
u∈V

∫ 1

0

(L(s, x(s), u(s)) + p(s) · 〈u, μs〉)ds

and let us remark that this Hamiltonian can also be written as:

H(x, p) = inf
u∈V

∫ 1

0

(L(t, x(t), u(t)) + u(t) · 〈p, μ∗
t 〉μ(t))dt

=
∫ 1

0

min
v∈K

{L(t, x(t), v) + v · 〈p, μ∗
t 〉μ(t)}dt

=
∫ 1

0

H(t, x(t), 〈p, μ∗
t 〉μ(t))dt

where H is defined by (29). Define also:

H̃(x, p) := H(x, p) +
∫ 1

0

p(t) · 〈f(., x(.)), νt〉dt. (43)
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For fixed (x, p) ∈ C0 × C0, our assumptions ensure that there exists a unique u = U(x, p) that solves the
minimization problem in the definition of H i.e. U(x, p)(t) ∈ K and:

L(t, x(t), U(x, p)(t)) + U(x, p)(t) · 〈p, μ∗
t 〉μ(t) = H(t, x(t), 〈p, μ∗

t 〉μ(t)) for a.e. t.

Moreover, H̃ is Gâteaux-differentiable over C0 × C0, and for every (x, p) ∈ C0 × C0 and (y, q) ∈ C0 × C0, one
can easily establish:〈

DxH̃(x, p), y
〉

=
∫ 1

0

∇xL(., x(.), U(x, p)(.)) · y +
∫ 1

0

p(t) · 〈Dxf(., x(.))y(.), νt〉dt, (44)

and 〈
DpH̃(x, p), q

〉
=

∫ 1

0

(〈f(., x(.)), νt〉 + 〈U(x, p), μt〉) · q(t)dt (45)

which, slightly abusing notations, can be rewritten in the more concise form:{
DxH̃(x, p) = ∇xL(., x(.), U(x, p)(.)) + Dxf(., x(.))T 〈p, ν∗

. 〉 ν,

DpH̃(x, p)(t) = 〈f(., x(.)), νt〉 + 〈U(x, p)(.), μt〉 .

Optimality conditions for (36) when V is defined by (21) are given by the following variant of the Pontryagin
principle.

Theorem 4. Let u be a solution of (36) and z := zu be the corresponding trajectory, then there exists p ∈ C0∩BV
such that:

(1) For a.e. t ∈ (0, 1),

L(t, z(t), u(t)) + (〈p, μ∗
t 〉μ(t)) · u(t) = min

v∈K
{L(t, z(t), v) + (〈p, μ∗

t 〉μ(t)) · v} ;

(2) (z, p) solves the nonlocal Hamiltonian system:{
ż = DpH̃(z, p),
ṗ = −DxH̃(z, p)

(with H̃ defined by (43)) together with the boundary conditions

z(0) = x0, p(1) = ∇g(z(1)).

Proof. Let us again use the notations (37). Arguing as in Lemma 5, there exists a nonnegative function β such
that, β(.)∇Φ(u(.)) ∈ Lp′

, β(.)Φ(u(.)) = 0 a.e. and∫ 1

0

(Θ · kv + Π · v) + β · kv(1) = −
∫ 1

0

β(t)∇Φ(u(t)) · v(t)dt, ∀v ∈ Lp (46)

where kv denotes the solutions of the linearized equation (39). Now let, p be the solution of the adjoint
equation (40). Arguing as in the proof of Theorem 3, we obtain:

Π(t) = ∇vL(t, z(t), u(t)) = −〈p, μ∗
t 〉μ(t) − β(t)∇Φ(u(t)), a.e. (47)

which by our convexity assumptions is equivalent to u(t) being for a.e. t, a solution of

min
v∈K

{L(t, z(t), v) + (〈p, μ∗
t 〉μ(t)) · v} .
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We thus have u = U(z, p), so that using (44) and (45), the state equation and the adjoint equations exactly
take the form of the Hamiltonian system: {

ż = DpH̃(z, p),
ṗ = −DxH̃(z, p).

�
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