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ON THE DYNAMIC BEHAVIOR AND STABILITY OF CONTROLLED
CONNECTED RAYLEIGH BEAMS UNDER POINTWISE OUTPUT FEEDBACK ∗

Bao-Zhu Guo1, 2, Jun-Min Wang3 and Cui-Lian Zhou4

Abstract. We study the dynamic behavior and stability of two connected Rayleigh beams that are
subject to, in addition to two sensors and two actuators applied at the joint point, one of the actuators
also specially distributed along the beams. We show that with the distributed control employed, there is
a set of generalized eigenfunctions of the closed-loop system, which forms a Riesz basis with parenthesis
for the state space. Then both the spectrum-determined growth condition and exponential stability
are concluded for the system. Moreover, we show that the exponential stability is independent of the
location of the joint. The range of the feedback gains that guarantee the system to be exponentially
stable is identified.
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1. Introduction

Pointwise stabilization of flexible structures has been studied extensively in the context of infinite-dimensional
systems control over the past two decades due to wide applications in space technology and
robotics [1,2,5–10,14,15,28–30]. Two fundamental issues, namely exponential stability and Riesz basis prop-
erty, are investigated in these studies. We recall that Riesz basis property holds for a system if there exists a
sequence of generalized eigenfunctions of the system, which forms a Riesz basis for the state space. The Riesz
basis property is useful to deal with one dimensional vibrating systems that not only does it lead to results on
stabilization, it also offers a deep insight into the dynamics of the system in terms of eigenfrequencies. Once
the Riesz basis property is established, the exponential stability can be concluded directly and the growth rate
can be determined in terms of the spectral abscissa. And one can often easily obtain the spectrum-determined
growth condition (the earlier works for one-dimensional damping wave equation can be found in [11]); note that
the latter does not hold for any partial differential equation systems [25] and its verification is known to be
generally difficult.
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In this paper we are concerned with the following controlled two connected Rayleigh beams proposed in
Weiss and Curtain [28]:

⎧⎨⎩ ytt(x, t) − αyxxtt(x, t) + yxxxx(x, t) = −u0(t)
d
dx
δξ − u̇1(t)[αδξ + b(x)], x ∈ (0, 1),

y(0, t) = yxx(0, t) = y(1, t) = yxx(1, t) = 0,
(1.1)

where

b(x) :=
{

(1 − ξ)x, 0 ≤ x ≤ ξ,
ξ(1 − x), ξ < x ≤ 1, (1.2)

δξ,
dδξ

dx are Dirac delta functions and the derivative at x = ξ in the sense of distribution, y(x, t) represents
the transverse displacement of the beam at position x ∈ [0, 1] and time t ≥ 0, α > 0 is a constant (which is
proportional to the moment of inertia of the cross section of the beam), and u0, u1 are control inputs. Weiss
and Curtain [28] designed the following feedback controls (with k = k0):

u0(t) = −k0yxt(ξ, t), u1(t) = −k[(1 − γ)yxx(ξ−, t) + γyxx(ξ+, t)], (1.3)

where γ and the feedback gains k, k0 are positive constants.
It is known (see e.g., [2] and also [6–8,24] for connected beams) that the system (1.1) is equivalent to the

following Rayleigh beam equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ytt(x, t) − αyxxtt(x, t) + yxxxx(x, t) = −u̇1(t)b(x), x ∈ (0, 1), x �= ξ,
y(0, t) = yxx(0, t) = y(1, t) = yxx(1, t) = 0,
y(ξ−, t) = y(ξ+, t), yx(ξ−, t) = yx(ξ+, t),
yxx(ξ−, t) − yxx(ξ+, t) = u0(t),
yxxx(ξ−, t) − yxxx(ξ+, t) = αu̇1(t).

(1.4)

It is easy to see that there are two actuators involved in the system (1.4). One is imposed at the joint point and
another is also imposed at the joint point but specially distributed along the entire beam at the same time. Due
to the increasing application of smart materials, the distributed measurement and distributed control becomes
feasible [20,21].

Using the newly developed result on collocated static output feedback in [13], Weiss and Curtain [28] showed
that this distributed control u̇1(t)b(x) in (1.1) together with the pointwise controls at the joint does exponentially
stabilize the system (1.1), (1.3) and that the control (1.3) is robust to the position of the joint point. They
obtained this result under the condition that the static output feedback gains lie in a suitable finite range.
Precisely, the system (1.1) under (1.3) is exponentially stable if k = k0 ∈ (0, 2/|γ − ξ|). It is not clear what
would happen when the feedback gains are out of this range for both well-posedness and stability.

Let us look at the energy of the system (1.1) that is given by

E(t) =
1
2

∫ 1

0

{
y2

xx(x, t) + [yt(x, t) + u1(t)b(x)]2 + α[yxt(x, t) + u1(t)b′(x)]2
}

dx. (1.5)
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Formally, differentiate E(t) with respect to time t along the trajectory of (1.4), to give

Ė(t) =
∫ 1

0

{yxxyxxt + [αyxxtt − yxxxx][yt + u1b] + α[yxtt + u̇1b
′][yxt + u1b

′]}dx

=
∫ 1

0

{yxxyxxt + αyxxttyt + αyxttyxt − yxxxxyt

+ αu1yxttb
′ + αyxtu̇1b

′ + αu1u̇1b
′2 + αu1yxxttb− u1yxxxxb

}
dx

= −αu̇1yt(ξ, t) − k0y
2
xt(ξ, t)

+
∫ 1

0

{
αu1yxttb

′ + αyxtu̇1b
′ + αu1u̇1b

′2 + αu1yxxttb− u1yxxxxb
}

dx

= −αu̇1yt(ξ, t) − k0y
2
xt(ξ, t)

+αu1ytt(ξ, t) + αu̇1yt(ξ, t) + αξ(1 − ξ)u1u̇1 − αu1ytt(ξ, t) − αξ(1 − ξ)u1u̇1

+ u1yxx(ξ−, t) + k0ξu1yxt(ξ, t)

= − k0y
2
xt(ξ, t) + u1yxx(ξ−, t) + k0ξu1yxt(ξ, t)

= − k0(1 + k0kγξ)y2
xt(ξ, t) − ky2

xx(ξ−, t) − kk0(γ + ξ)yxx(ξ−, t)yxt(ξ, t)

≤ − k0

(
1 + kk0ξγ − k(ξ + γ)

2δ

)
y2

xt(ξ, t) − k

(
1 − δk0(ξ + γ)

2

)
y2

xx(ξ−, t)

(1.6)

for any δ > 0. It is seen that Ė(t) ≤ 0 provided that

k(ξ + γ)
2δ

≤ 1 + kk0ξγ,
δk0(ξ + γ)

2
≤ 1.

The dissipativity of the closed-loop system (1.1) and (1.3) under the condition: kk0(ξ − γ)2 ≤ 4 will be proven
rigorously as Lemma 3.2 in Section 4.

The main objective of this paper is to establish the Riesz basis property for the closed-loop Rayleigh beam
described (1.1) under the feedback (1.3). We then conclude for the system (a) the spectrum-determined growth
condition, (b) the exponential stability, and (c) the robustness to the position of joint point. To answer the
question about the range of feedback gains, we show that if k = k0 = 2/|γ − ξ|, then there always exists a joint
point ξ ∈ (0, 1) such that the system (1.1) under (1.3) is not exponentially stable. This sets up a constraint on
the feedback gains. The earlier similar result for one dimensional nonhomogeneous wave equation can be found
in [12].

Using results on the sharp trace regularity, Ammari and Tucsnak [1] proved the exponential stability for
an Euler-Bernoulli beam under some conditions. Guo and Chan [15] established the Riesz basis property for
Euler-Bernoulli beams with various boundary conditions. Xu and Yung [30] considered a Timoshenko beam
with pointwise feedback control. It is pointed out that only one point control is implemented in these studies,
and that the exponential stability is shown to be not robust to the location of the joint [2]; in other words, the
stability results are dependent on the exact location of the joint point.

In order to achieve robust control, Ammari, Liu and Tucsnak [2] proposed to place two sensors and to use two
actuators at the joint point (x = ξ) in their study of stabilization of connected Rayleigh beams (Euler-Bernoulli
beam as well):⎧⎨⎩ ytt(x, t) − yxxtt(x, t) + yxxxx(x, t) + yt(ξ, t)δξ − yxt(x, t)

dδξ
dx

= 0, 0 < ξ < π, x ∈ (0, π),

y(0, t) = yxx(0, t) = y(π, t) = yxx(π, t) = 0.
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By the energy multiplier technique and frequency domain method, they showed that the exponential stability
holds for the Euler-Bernoulli beam and is robust to the position of the joint. Unfortunately, the exponential
stability for the Rayleigh beam holds only when the joint point belongs to a special subset of the beam occupation
that is either countable or dense. As a result, the stability of the closed-loop system under output feedback
control for two connected Rayleigh beams with two sensors and two actuators at one joint point is not robust
to the location of the joint. In order to solve this problem, Weiss and Curtain [28] introduced an additional
specially distributed control in (1.1).

We proceed as follows. In Section 2, the system is formulated into an evolution equation in the energy state
space. The main results are stated in Section 3. Finally, in Section 4, we give the proofs of the main results.

2. Problem formulation

Motivated by the energy function (1.5) of the system (1.4), we define the state Hilbert space H for the
system (1.1) as follows:

H := (H2(0, 1) ∩H1
0 (0, 1)) ×H1

0 (0, 1), (2.1)

which is equipped with the inner product induced norm:

‖(f, g)‖2 =
∫ 1

0

[|f ′′(x)|2 + |g(x)|2 + α|g′(x)|2]dx, ∀ (f, g) ∈ H.

Now, define the operator R : L2(0, 1) → H2(0, 1) ∩H1
0 (0, 1):

R :=
(
I − α

d2

dx2

)−1

. (2.2)

It is well-known that R is an isomorphism from L2(0, 1) to H2(0, 1) ∩H1
0 (0, 1) [13,27,28] and⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rf = c sinh
x√
α
− 1√

α

∫ x

0

sinh
x− s√
α
f(s)ds,

c =
(√

α sinh
1√
α

)−1 ∫ 1

0

sinh
1 − s√
α
f(s)ds, ∀ f ∈ L2(0, 1).

(2.3)

A simple computation shows that⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
R d4

dx4

)
f(x) = d sinh

x√
α
− 1
α
f ′′(x) − 1

α
√
α

∫ x

0

sinh
x− s√
α
f ′′(s)ds,

d =
(
α sinh

1√
α

)−1 ∫ 1

0

cosh
1 − s√
α
f ′′′(s)ds.

(2.4)

Next, apply R to both sides of (1.1) to obtain (see (5.3) of [28]):⎧⎪⎨⎪⎩ ytt(x, t) +
(
R d4

dx4

)
y(x, t) = − u0(t)R

(
d
dx
δξ

)
− u̇1(t)b(x),

y(0, t) = yxx(0, t) = y(1, t) = yxx(1, t) = 0,
(2.5)
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where R
(

d
dx
δξ

)
, by extending R as R ∈ L((H2(0, 1)∩H1

0 (0, 1))′, L2(0, 1)) (see e.g. [13], p. 294), is computed

to be (see e.g., (3.15) of [2]):

R
(

d
dx
δξ

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
α sinh

1√
α

)−1

cosh
1 − ξ√
α

sinh
x√
α
, x ∈ (0, ξ),(

α sinh
1√
α

)−1

cosh
1 − ξ√
α

sinh
x√
α
− 1
α

cosh
x− ξ√
α
, x ∈ (ξ, 1).

(2.6)

Thus, (2.5) can be rewritten as⎧⎪⎪⎨⎪⎪⎩
d
dt

[
yt(x, t) + u1(t)b(x)

]
+

(
R d4

dx4

)
y(x, t) = −u0(t)R

(
d
dx
δξ

)
,

y(0, t) = yxx(0, t) = y(1, t) = yxx(1, t) = 0,
(2.7)

or equivalently ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

[
y(x, t)

yt(x, t) + u1(t)b(x)

]
+

⎡⎣ 0 −I(
R d4

dx4

)
0

⎤⎦[
y(x, t)

yt(x, t) + u1(t)b(x)

]

+

⎡⎣ 0 b(x)

R
(

d
dx
δξ

)
0

⎤⎦[
u0(t)
u1(t)

]
= 0,

y(0, t) = yxx(0, t) = y(1, t) = yxx(1, t) = 0.

(2.8)

Substitute (1.3) into (2.8), we get naturally the system operator A : D(A)(⊂ H) → H of (1.1), (1.3) as

D(A) =
{
(f, g)

∣∣ A(f, g) ∈ H, f ∈ H3(0, ξ) ∪H3(ξ, 1), f ′′(0) = f ′′(1) = 0
}
, (2.9)

A
[
f
g

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣ g + bf̃(ξ)

−
(
R d4

dx4

)
f + k0R

(
d
dx
δξ

)
[g′(ξ−) + (1 − ξ)f̃(ξ)]

⎤⎦ , 0 ≤ x < ξ,

⎡⎣ g + bf̃(ξ)

−
(
R d4

dx4

)
f + k0R

(
d
dx
δξ

)
[g′(ξ+) − ξf̃(ξ)]

⎤⎦ , ξ ≤ x ≤ 1,

f̃(ξ) := k[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)].

(2.10)

The above expression can be further simplified. Actually, by A(f, g) ∈ H, one has

g′(ξ−) + k(1 − ξ)[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)] = g′(ξ+) − kξ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)]

or
g′(ξ+) − g′(ξ−) = k[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)], (2.11)

and
1
α
f ′′(ξ−) + k0R

(
d
dx
δξ

)
(ξ−)[g′(ξ−) + k(1 − ξ)[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)]]

=
1
α
f ′′(ξ+) + k0R

(
d
dx
δξ

)
(ξ+)[g′(ξ+) − kξ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)]],
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where

R
(

d
dx
δξ

)
(ξ+) = L− 1

α
with L = R

(
d
dx
δξ

)
(ξ−) =

(
α sinh

1√
α

)−1

cosh
1 − ξ√
α

sinh
ξ√
α
·

Thus ⎧⎪⎨⎪⎩
g′(ξ+) = kξ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)] − 1

k0
[f ′′(ξ−) − f ′′(ξ+)],

g′(ξ−) = −k(1 − ξ)[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)] − 1
k0

[f ′′(ξ−) − f ′′(ξ+)].
(2.12)

Therefore⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
[
f
g

]
=

⎡⎣ g + b[g′]ξ

−
(
R d4

dx4

)
f + R

(
d
dx
δξ

)
[f ′′]ξ

⎤⎦ , 0 ≤ x < ξ, ξ ≤ x ≤ 1,

D(A) =
{

(f, g) ∈ H|f ∈ H3(0, ξ) ∪H3(ξ, 1), g ∈ H2(0, ξ) ∪H2(ξ, 1),

[f ′′]ξ := f ′′(ξ+) − f ′′(ξ−), [g′]ξ := g′(ξ+) − g′(ξ−), f ′′(0) = f ′′(1) = 0,

g′(ξ+) = kξ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)] − 1
k0

[f ′′(ξ−) − f ′′(ξ+)],

g′(ξ−) = −k(1 − ξ)[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)] − 1
k0

[f ′′(ξ−) − f ′′(ξ+)]
}
.

(2.13)

With the operator A at hand, the closed-loop system (1.1) under the feedback controls (1.3) can be formulated
into the following abstract evolution equation in H:{

Ẏ (t) = AY (t),

Y (0) = Y0,
(2.14)

where Y (t) :=
(
y(·, t), yt(·, t) + u1(t)b(·)

)
and Y0 is the initial datum.

3. Main results

In this section, we state the main results as well as some main preliminary lemmas to be used for the proofs
of the main results of this paper. All these proofs are given in Section 4.

To begin with, let us recall that for an (unbounded) operator A defined in H, W = (f, g) ∈ D(A) is said
to be a generalized eigenvector of A associated with an eigenvalue λ if there is an integer � ≥ 1 such that
(λ − A)�W = 0. The root subspace of A that is denoted by Sp(A), is the closed subspace of H spanned by
all generalized eigenfunctions of A. The root subspace is said to be complete in H if Sp(A) = H. The integer
m(a)(λ) = dim{W | (λ − A)�W = 0 for some integer �} is called the algebraic multiplicity of λ. λ is said to
be algebraically simple if m(a)(λ) = 1. It is well-known that each eigenvalue of a discrete operator (that is,
there is a λ ∈ σ(A), the spectrum set of A, such that (λ − A)−1 is compact on H) must have finite algebraic
multiplicity. The algebraic multiplicity can be represented through eigen-projection. Let Γ be a circle and let
λ ∈ σp(A), the point spectrum set of A, be the unique spectrum of A inside of Γ. Then the eigen-projection IPλ

is defined as
IPλ =

1
2πi

∫
Γ

(s− A)−1ds,

and m(a)(λ) = dim IPλH. A nonzero W ∈ D(A) is called an eigenvector of A corresponding to the eigenvalue
λ if (λ − A)W = 0. The number m(g)(λ) = dim{W |(λ − A)W = 0} is called the geometric multiplicity of λ.
λ is said to be geometrically simple if m(g)(λ) = 1.
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Lemma 3.1. Let A be defined by (2.13). Then A−1 exists and is compact on H and hence A is a discrete
operator in H. Therefore, σ(A) consists of isolated eigenvalues with finite algebraic multiplicities only.

Lemma 3.2. If k and k0 satisfy the following condition

kk0(ξ − γ)2 ≤ 4, (3.1)

then A is dissipative and hence A generates a C0-semigroup of contractions on H. If in addition

kk0(ξ − γ)2 < 4, (3.2)

then Re(λ) < 0 for any λ ∈ σ(A).

Remark 3.3. When k = k0, (3.2) is reduced to be

k ∈ (0, k̃), k̃ =
2

|γ − ξ| · (3.3)

This is just the condition in Theorem 1.1 of [28].

Now we formulate the eigenvalue problem for A. Let λ ∈ σ(A) and (f, g) be its corresponding eigenfunction:
A(f, g) = λ(f, g). Then

g = λf − kb[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)], (3.4)
and f solves the following eigenvalue problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ2f(x) − αλ2f ′′(x) + f (4)(x) = kλb[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)], x ∈ (0, 1), x �= ξ,

f(0) = f ′′(0) = f(1) = f ′′(1) = 0,
f(ξ−) = f(ξ+), f ′(ξ−) = f ′(ξ+),
f ′′(ξ−) − f ′′(ξ+) = −k0λf

′(ξ),
f ′′′(ξ−) − f ′′′(ξ+) = −αkλ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)].

(3.5)

Differentiate (3.5) twice, to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (6)(x) − αλ2f (4)(x) + λ2f ′′(x) = 0, x ∈ (0, 1), x �= ξ,

f(0) = f ′′(0) = f (4)(0) = f(1) = f ′′(1) = f (4)(1) = 0,

f(ξ−) = f(ξ+), f ′(ξ−) = f ′(ξ+),

f ′′(ξ−) − f ′′(ξ+) = −k0λf
′(ξ),

f ′′′(ξ−) − f ′′′(ξ+) = −αkλ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)],

f (4)(ξ−) − f (4)(ξ+) = −k0αλ
3f ′(ξ),

f (5)(ξ−) − f (5)(ξ+) = (kλ− kα2λ3)[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)].

(3.6)

Suppose λ2 �= 4/α2 and λ �= 0. Let

τ1(λ) =

√
αλ2 +

√
α2λ4 − 4λ2

2
, τ2(λ) =

√
αλ2 −√

α2λ4 − 4λ2

2
· (3.7)

Then
{1, x, sinh τ1x, cosh τ1x, sinh τ2x, cosh τ2x} (3.8)

is a set of fundamental solutions for the equation f (6)(x) − αλ2f (4)(x) + λ2f ′′(x) = 0.
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Theorem 3.4. There is a characteristic determinant det(Δ(λ)) for the eigenvalue problem (3.6) (that is to say,
if λ2 �= 4/α2, λ �= 0, then λ ∈ σ(A) if and only if det(Δ(λ)) = 0) such that the following asymptotic expansion
holds:

det(Δ(λ)) = −λ4τ4
1 sinh

1√
α

[
Δ1(λ) + O(λ−1)

]
as |λ| → ∞, (3.9)

where τ1 is given in (3.7), and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1(λ) = K1 sinh(
√
αλ) + K2 cosh(

√
αλ)

+K3 cosh(
√
αλ(1 − 2ξ)) +K4 sinh(

√
αλ(1 − 2ξ)),

K1 = 1 +
k0kξγ

2
+
k(1 − γ)k0(1 − ξ)

2
, K2 =

√
αk

2
+

k0

2
√
α
,

K3 =
k0

2
√
α
−

√
αk

2
, K4 =

k0kξγ

2
− k(1 − γ)k0(1 − ξ)

2
·

(3.10)

Corollary 3.5. If K1 �= ±K2, then the zeros of det(Δ(λ)) are located in a vertical strip parallel to the imaginary
axis in the complex plane. In other words, there is a positive constant C0 such that

|Re(λ)| ≤ C0 for any λ satisfying det(Δ(λ)) = 0.

Theorem 3.6. Suppose condition (3.1) is fulfilled. Let A be defined by (2.13) and K1,K2 be given in (3.10).
If K1 �= K2, then the root subspace of A is complete in H: Sp(A) = H.

In what follows, we denote by J some set of integers, which may be different in different cases although they
are denoted with the same symbol.

Recall that the sequence {Wi}i∈J is called a basis for H if to each element W ∈ H corresponds a unique
sequence of scalars {ci} such that the series

W =
∑
i∈J

ciWi, (3.11)

is convergent with respect to the norm of H. {Wi}i∈J is called a Riesz basis for H if
(a) span{Wi} = H;
(b) there exist some positive constants m1 and m2 such that for any numbers ci, i ∈ I, where I is any finite

subset of J , it has
m1

∑
i∈I

|ci|2 ≤ ‖
∑
i∈I

ciWi‖2 ≤ m2

∑
i∈I

|ci|2.

A basis {Wi}i∈J for H is called a Riesz basis with parentheses [26] if (3.11) converges in H after putting some
of its terms in parentheses the arrangement of which does not depend on W . We refer to [31] for more details
on Riesz basis.

The following Theorem 3.7 is the main result of this paper.

Theorem 3.7. Suppose condition (3.1) is fulfilled. Let K1,K2 be given in (3.10). If K1 �= K2, then the following
assertions hold.

(a) There exists a ε > 0 such that
σ(A) =

⋃
p∈J

{λp
i }Np

i=1,

where λp
i �= λp

j whenever i �= j, Np are integers satisfying supp N
p <∞, and

inf
p�=q,p,q∈J

|λp
i − λq

j | ≥ ε, ∀ 1 ≤ i ≤ Np, 1 ≤ j ≤ N q.
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(b) There is a set of generalized eigenfunctions of A, which forms a Riesz basis with parentheses for H. More
precisely,

W =
∑
p∈J

Np∑
i=1

IPλp
i
W, ∀W ∈ H, (3.12)

and there are constants M1,M2 > 0 such that

M1

∑
p∈J

∥∥∥∥∥
Np∑
i=1

IPλp
i
W

∥∥∥∥∥
2

≤ ‖W‖2 ≤M2

∑
p∈J

∥∥∥∥∥
Np∑
i=1

IPλp
i
W

∥∥∥∥∥
2

, ∀W ∈ H. (3.13)

(c) The spectrum-determined growth condition holds true [22]: S(A) = ω(A), where

S(A) := sup
λ∈σ(A)

Reλ

is the spectral bound of A, and

ω(A) := inf
{
ω | ∃M > 0 such that

∥∥eAt
∥∥ ≤Meωt

}
is the growth order of eAt.

Theorem 3.8. Let K1,K2 be given in (3.10). If K1 �= K2, then under the condition (3.2), the imaginary axis
is not the asymptote of eigenvalues of A. Therefore, the system (2.14) is exponentially stable in the sense of

‖Y (t)‖ ≤Me−ωt‖Y (0)‖

for some positive numbers M,ω.

Remark 3.9. For the completeness of root subspace and Riesz basis generation, we always assume that
K1 �= K2, where K1,K2 are given in (3.10). This is standard for wave equation with same order feedback [16]
since otherwise, σ(A) may be empty (see (3.9) and (4.17)). For instance, when K1 = K2, ξ = 1/2, Δ1(λ) given
in (3.10) becomes

Δ1(λ) = K3 +K1e
√

αλ.

Thus when K3 = 0, (3.9) becomes

det(Δ(λ)) = −λ4τ4
1 sinh

1√
α

[
K1e

√
αλ + O(λ−1)

]
as |λ| → ∞.

We could not get information about the distribution of spectrum of A although we do not know whether σ(A)
is empty or not.

Theorem 3.8 is the main result of [28]. Finally, we answer the question proposed by Curtain and Weiss [28],
which is a special case of kk0(ξ − γ)2 = 4 in (3.1) with k = k0. This sets up a constraint on the feedback gains.

Theorem 3.10. Suppose kk0(ξ − γ)2 = 4 and γ = 2− ξ. Then there is a ξ ∈ (0, 1) such that the system (2.14)
is not exponentially stable.

4. Proofs of the main results

Consider the following Volterra integral equation

F0(x) +
1√
α

∫ x

0

sinh
x− s√
α
F0(s)ds = G(x), x ∈ [0, 1]. (4.1)
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It is well-known that for any G ∈ L2(0, 1), there exists a unique continuous solution F0 to the equation (4.1),
which is denoted by

F0(x) = [(I +K)−1G](x), x ∈ [0, 1], (4.2)

where K is a compact operator on L2(0, 1) defined in an obvious way from (4.1).

Lemma 4.1. Let F0, G be defined in (4.2). Then⎧⎪⎨⎪⎩
(I +K)−1 sinh

x√
α

=
1√
α
x,

F0 ∈ H1(0, 1) whenever G ∈ H1(0, 1).
(4.3)

Proof. A straightforward computation gives the required result. We omit the details here. �

Proof of Lemma 3.1. For any given (φ, ψ) ∈ H, A(f, g) = (φ, ψ) means that⎧⎪⎨⎪⎩
g + kb[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)] = φ,

−
(
R d4

dx4

)
f −R

(
d
dx
δξ

)
[f ′′(ξ−) − f ′′(ξ+)] = ψ, x ∈ (0, 1), x �= ξ.

(4.4)

Since (f, g) ∈ D(A), it follows from the first equation of (4.4) that

f ′′(ξ−) − f ′′(ξ+) = −k0φ
′(ξ),

by which the second equation of (4.4) becomes(
R d4

dx4

)
f = k0φ

′(ξ)R
(

d
dx
δξ

)
− ψ, x ∈ (0, 1), x �= ξ.

By (2.4), the above can be written as

dα sinh
x√
α
− f ′′(x) − 1√

α

∫ x

0

sinh
x− s√
α
f ′′(s)ds = k0αφ

′(ξ)R
(

d
dx
δξ

)
− αψ (4.5)

for any x ∈ [0, 1], x �= ξ. Since ψ(0) = 0, (4.5) together with (2.6) gives f ′′(0) = 0. By (4.1), (4.2) and
Lemma 4.1, it has

f ′′(x) = −α(I +K)−1

[
k0φ

′(ξ)R
(

d
dx
δξ

)
− ψ

]
(x) + dα(I +K)−1 sinh

x√
α

= −α(I +K)−1

[
k0φ

′(ξ)R
(

d
dx
δξ

)
− ψ

]
(x) + d

√
αx, x ∈ (0, 1), x �= ξ.

Since f ′′(1) = 0, the above implies that⎧⎪⎪⎪⎨⎪⎪⎪⎩
d =

√
α(I +K)−1

[
k0φ

′(ξ)R
(

d
dx
δξ

)
− ψ

]
(1),

f ′′(ξ−) = −α(I +K)−1

[
k0φ

′(ξ)R
(

d
dx
δξ

)
− ψ

]
(ξ−) + d

√
αξ.

(4.6)
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Hence ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f(x) =
∫ x

1

(x− s)f ′′(s)ds+ (x − 1)
∫ 1

0

sf ′′(s)ds,

f ′′(x) = −α(I +K)−1

[
k0φ

′(ξ)R
(

d
dx
δξ

)
− ψ

]
(x) + d

√
αx,

g(x) = −kb(x)f ′′(ξ−) − kk0γφ
′(ξ)b(x) + φ(x),

x ∈ (0, 1), x �= ξ. (4.7)

where d, f ′′(ξ−) are given by (4.6). Now we claim that (f, g) ∈ D(A). Indeed, due to the fact that

R
(

d
dx
δξ

)
∈ H1

0 (0, 1)\{ξ}, φ ∈ H2(0, 1) ∩H1
0 (0, 1),

it has
f ′′(x) ∈ H1

0 (0, 1)\{ξ}, f ∈ H3(0, 1)\{ξ}, g ∈ H2(0, 1)\{ξ}.
Moreover,

f(0) = f(1) = g(0) = g(1) = f ′′(0) = f ′′(1) = 0,
and f ′′(ξ−), f ′′(ξ+), g′(ξ−) and g′(ξ+) satisfy the conditions given in (2.13). Therefore, (f, g) ∈ D(A) and
A−1(φ, ψ) = (f, g) identified by (4.7). Finally, by the Sobolev embedding theorem, (4.7) implies that A−1 is
compact, proving the required result. �

Proof of Lemma 3.2. First, suppose condition (3.1) is fulfilled. Let (f, g) ∈ D(A). Compute directly from (2.4)
and (2.6) to obtain 〈(

R d4

dx4

)
f, g

〉
H1

0 (0,1)

= −
∫ 1

0

f ′′′g′dx,
〈(

d
dx
δξ

)
, g

〉
H1

0 (0,1)

= 0.

Hence

〈
A

[
f
g

]
,

[
f
g

]〉
=

〈⎡⎣ g + b[g′]ξ

−
(
R d4

dx4

)
f + R

(
d
dx
δξ

)
[f ′′]ξ

⎤⎦ , [ f
g

]〉

=
∫ 1

0

[g′′f ′′ + f ′′′g′]dx = f ′′g′
∣∣∣ξ
0

+ f ′′g′
∣∣∣1
ξ

+
∫ 1

0

[g′′f ′′ − f ′′g′′]dx

= f ′′(ξ−)g′(ξ−) − f ′′(ξ+)g′(ξ+) +
∫ 1

0

[g′′f ′′ − f ′′g′′]dx

=
∫ 1

0

[g′′f ′′ − f ′′g′′]dx+ f ′′(ξ−)
{
−k(1 − ξ)[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)] − 1

k0
[f ′′(ξ−) − f ′′(ξ+)]

}

− f ′′(ξ+)
{
kξ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+)] − 1

k0
[f ′′(ξ−) − f ′′(ξ+)]

}

=
∫ 1

0

[g′′f ′′ − f ′′g′′]dx−
[
k(1 − ξ)(1 − γ) +

1
k0

]
|f ′′(ξ−)|2 −

[
kξγ +

1
k0

]
|f ′′(ξ+)|2

−
[
k(1 − ξ)γ − 1

k0

]
f ′′(ξ−)f ′′(ξ+) −

[
kξ(1 − γ) − 1

k0

]
f ′′(ξ+)f ′′(ξ−),
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so

Re
〈
A

[
f
g

]
,

[
f
g

]〉
= −

[
k(1 − ξ)(1 − γ) +

1
k0

]
|f ′′(ξ−)|2 −

[
kξγ +

1
k0

]
|f ′′(ξ+)|2

−
[
k(1 − ξ)γ + kξ(1 − γ) − 2

k0

]
Re

(
f ′′(ξ−)f ′′(ξ+)

)
≤ −

[
k(1 − ξ)(1 − γ) +

1
k0

]
|f ′′(ξ−)|2 −

[
kξγ +

1
k0

]
|f ′′(ξ+)|2

+
∣∣∣∣k(1 − ξ)γ + kξ(1 − γ) − 2

k0

∣∣∣∣ |f ′′(ξ−)||f ′′(ξ+)|

= − 1
k0

〈
A

[ |f ′′(ξ−)|
|f ′′(ξ+)|

]
,

[ |f ′′(ξ−)|
|f ′′(ξ+)|

]〉
R2

,

where A is a 2 × 2 symmetric real matrix:

A =
[

kk0(1 − ξ)(1 − γ) + 1 − ∣∣1
2kk0(ξ + γ − 2ξγ) − 1

∣∣
− ∣∣1

2kk0(ξ + γ − 2ξγ) − 1
∣∣ kk0ξγ + 1

]
.

Therefore,

Re
〈
A

[
f
g

]
,

[
f
g

]〉
≤ − 1

k0

〈
A

[
f ′′(ξ−)
f ′′(ξ+)

]
,

[
f ′′(ξ−)
f ′′(ξ+)

]〉
R2

. (4.8)

Now, we show that A is nonnegative definite. This is equivalent to saying that both the trace and determinant
of A are nonnegative. Indeed, since kk0(ξ − γ)2 ≤ 4 and

(1 − ξ)(γ − 1) ≤ (1 − ξ + γ − 1)2

4
=

(γ − ξ)2

4
≤ 1
kk0

,

or
1 + kk0(1 − ξ)(1 − γ) ≥ 0, (4.9)

it follows that the trace of A is positive. Furthermore, it is computed that

det(A) =
(
kk0(1 − ξ)(1 − γ) + 1

)(
kk0ξγ + 1

)
−

(1
2
kk0(ξ + γ − 2ξγ) − 1

)2

= 1 + kk0(1 − ξ)(1 − γ) + kk0ξγ + k2k2
0ξγ(1 − ξ)(1 − γ)

−1 + kk0(ξ + γ − 2ξγ) − 1
4
k2k2

0(ξ + γ − 2ξγ)2

= kk0 + k2k2
0γξ(1 − ξ)(1 − γ) − 1

4
k2k2

0(ξ + γ − 2ξγ)2

= kk0 +
1
4
k2k2

0

(
4γξ(1 − ξ)(1 − γ) − (

(1 − ξ)γ + (1 − γ)ξ
)2
)

= kk0 − 1
4
k2k2

0

(
(1 − ξ)γ − (1 − γ)ξ

)2

=
1
4
kk0

(
4 − kk0(ξ − γ)2

)
≥ 0.

Hence A is nonnegative definite. This fact together with (4.8) shows that A is dissipative:

Re
〈
A

[
f
g

]
,

[
f
g

]〉
≤ 0, ∀ (f, g) ∈ D(A).
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Since by Lemma 3.1, A−1 exists and is bounded, it follows from the Lumer-Phillips theorem ([23], Th. 4.3,
p. 14) that A generates a C0-semigroup of contractions on H.

Next, suppose (3.2) is fulfilled. We show that there is no eigenvalue of A on the imaginary axis. Actually,
since A is positive definite that is just justified, we may assume that λ = iτ2, τ > 0 is an eigenvalue of A such
that A(f, g) = iτ2(f, g). It then follows from (4.8) that

f ′′(ξ−) = f ′′(ξ+) = 0.

In this case, (3.5) becomes ⎧⎨⎩ f (4)(x) + ατ4f ′′(x) − τ4f(x) = 0, x ∈ (0, 1),
f(0) = f ′′(0) = f(1) = f ′′(1) = 0,
f ′′(ξ) = 0, f ′(ξ) = 0.

(4.10)

Let

τ̃1 =

√
−ατ4 +

√
α2τ8 + 4τ4

2
, τ̃2 =

√
ατ4 +

√
α2τ8 + 4τ4

2
·

Both τ̃1 and τ̃2 are positive. By the condition f(0) = f ′′(0) = 0, the solution of (4.10) can be represented as

f(x) = c1 sinh τ̃1x+ c2 sin τ̃2x

for some constants c1, c2. By f(1) = f ′′(1) = 0, we obtain

sin τ̃2 = 0 or τ̃2 = nπ, n = 0,±1,±2, . . . ,

and hence
f(x) = c2 sinnπx.

Since f ′(ξ) = f ′′(ξ) = 0, it must have c2 = 0. That is, there is only the zero solution to the equation (4.10).
Therefore Re (λ) < 0 for any λ ∈ σ(A). The proof is complete. �
Proof of Theorem 3.4. From (3.6), (3.7) and (3.8), the general solutions of{

f (6)(x) − αλ2f (4)(x) + λ2f ′′(x) = 0,

f(0) = f ′′(0) = f (4)(0) = f(1) = f ′′(1) = f (4)(1) = 0
(4.11)

are of the form

f(x) =

{
c1x+ c2 sinh τ1x+ c3 sinh τ2x, x ∈ (0, ξ],

d1(1 − x) + d2 sinh τ1(1 − x) + d3 sinh τ2(1 − x), x ∈ (ξ, 1),
(4.12)

where ci, i = 1, 2, dj , j = 1, 2, 3 are constants. Substitute other conditions of (3.6) into (4.12), to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1ξ + c2a1 + c3a2 − d1(1 − ξ) − d2a3 − d3a4 = 0,

c1 + c2τ1â1 + c3τ2â2 + d1 + d2τ1â3 + d3τ2â4 = 0,

c1k0λ+ c2(τ2
1 a1 + k0λτ1â1) + c3(τ2

2 a2 + k0λτ2â2) − d2τ
2
1 a3 − d3τ

2
2 a4 = 0,

c2(τ3
1 â1 + αkλ(1 − γ)τ2

1a1) + c3(τ3
2 â2 + αkλ(1 − γ)τ2

2 a2)

+ d2(τ3
1 â3 + αkλγτ2

1 a3) + d3(τ3
2 â4 + αkλγτ2

2 a4) = 0,

c1k0αλ
3 + c2(τ4

1 a1 + k0αλ
3τ1â1) + c3(τ4

2 a2 + k0αλ
3τ2â2) − d2τ

4
1 a3 − d3τ

4
2 a4 = 0,

c2(τ5
1 â1 − (kλ− kα2λ3)(1 − γ)τ2

1 a1) + c3(τ5
2 â2 − (kλ− kα2λ3)(1 − γ)τ2

2 a2)

+ d2(τ5
1 â3 − (kλ− kα2λ3)γτ2

1 a3) + d3(τ5
2 â4 − (kλ− kα2λ3)γτ2

2 a4) = 0,

(4.13)
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where
a1 = sinh τ1ξ, â1 = cosh τ1ξ, a2 = sinh τ2ξ, â2 = cosh τ2ξ,
a3 = sinh τ1(1 − ξ), â3 = cosh τ1(1 − ξ), a4 = sinh τ2(1 − ξ), â4 = cosh τ2(1 − ξ).

Write (4.13) to be
Δ(λ)(c1, c2, c3, d1, d2, d3)� = 0,

where
Δ(λ) =

[
Δ1(λ), Δ2(λ)

]
(4.14)

with

Δ1(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
ξ a1 a2

1 τ1â1 τ2â2

k0λ τ2
1 a1 + k0λτ1â1 τ2

2 a2 + k0λτ2â2

0 τ3
1 â1 + αkλ(1 − γ)τ2

1 a1 τ3
2 â2 + αkλ(1 − γ)τ2

2 a2

k0αλ
3 τ4

1 a1 + k0αλ
3τ1â1 τ4

2 a2 + k0αλ
3τ2â2

0 τ5
1 â1 − (kλ− kα2λ3)(1 − γ)τ2

1 a1 τ5
2 â2 − (kλ− kα2λ3)(1 − γ)τ2

2a2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Δ2(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 + ξ −a3 −a4

1 τ1â3 τ2â4

0 −τ2
1 a3 −τ2

2a4

0 τ3
1 â3 + αkλγτ2

1 a3 τ3
2 â4 + αkλγτ2

2 a4

0 −τ4
1 a3 −τ4

2a4

0 τ5
1 â3 − (kλ− kα2λ3)γτ2

1 a3 τ5
2 â4 − (kλ− kα2λ3)γτ2

2 a4

⎤⎥⎥⎥⎥⎥⎥⎦ .
Let τ1, τ2 be defined by (3.7). Then it is easy to show that as |λ| → ∞,

τ1(λ) =
√
αλ√
2

√
1 +

√
1 − 4

α2λ2
=

√
αλ

(
1 − 1

2α2λ2
+ O(λ−4)

)
, (4.15)

τ2(λ) =

√√√√αλ2 − αλ2
√

1 − 4
α2λ2

2

=

√
αλ2 − αλ2

(
1 − 2

α2λ2 − 2
α4λ4 + O(λ−6

)
2

=

√
1
α

+
1

α3λ2
+ O(λ−4) =

1√
α

(
1 +

1
2α2λ2

+ O(λ−4)
)
.

(4.16)

Therefore

a1 = sinh τ1ξ = sinh(
√
αλξ)

(
1 + O(λ−2)

)
, â1 = cosh τ1ξ = cosh(

√
αλξ)

(
1 + O(λ−2)

)
,

a2 = sinh τ2ξ = sinh
ξ√
α

+ O(λ−2), â2 = cosh τ2ξ = cosh
ξ√
α

+ O(λ−2),

a3 = sinh τ1(1 − ξ) = sinh(
√
αλ(1 − ξ))

(
1 + O(λ−2)

)
,

â3 = cosh τ1(1 − ξ) = cosh(
√
αλ(1 − ξ))

(
1 + O(λ−2)

)
,

a4 = sinh τ2(1 − ξ) = sinh
1 − ξ√
α

+ O(λ−2), â4 = cosh τ2(1 − ξ) = cosh
1 − ξ√
α

+ O(λ−2).

Furthermore, a direct computation shows that

det(Δ(λ)) = det
[
Δ11(λ), Δ12(λ)

]
,
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where

Δ11(λ) :=

⎡⎢⎢⎣
τ2
1 a1 + k0λτ1â1ξ − k0λa1 τ2

2 a2 + k0λτ2â2ξ − k0λa2

τ3
1 â1 + αkλ(1 − γ)τ2

1 a1 τ3
2 â2 + αkλ(1 − γ)τ2

2 a2

τ4
1 a1 − αλ2τ2

1 a1 τ4
2 a2 − αλ2τ2

2 a2

τ5
1 â1 − αλ2τ3

1 â1 − kλ(1 − γ)τ2
1 a1 τ5

2 â2 − αλ2τ3
2 â2 − kλ(1 − γ)τ2

2 a2

⎤⎥⎥⎦ ,

Δ12(λ) :=

⎡⎢⎢⎣
k0λa3 − τ2

1 a3 − k0λτ1â3(1 − ξ) k0λa4 − τ2
2a4 − k0λτ2â4(1 − ξ)

τ3
1 â3 + αkλγτ2

1 a3 τ3
2 â4 + αkλγτ2

2 a4

αλ2τ2
1 a3 − τ4

1 a3 αλ2τ2
2 a4 − τ4

2 a4

τ5
1 â3 − αλ2τ3

1 â3 − kλγτ2
1 a3 τ5

2 â4 − αλ2τ3
2 â4 − kλγτ2

2 a4

⎤⎥⎥⎦ .
Since

τ2
1 − αλ2 = − 1

α
+ O(λ−2), τ2

2 − 1
α

= O(λ−2),

it follows that

det(Δ(λ)) = −λ4τ4
1

∣∣∣∣ a1 + k0√
α
â1ξ + O(λ−1) −a3 − k0√

α
â3(1 − ξ) + O(λ−1)√

αâ1 + αk(1 − γ)a1 + O(λ−2)
√
αâ3 + αkγa3 + O(λ−2)

∣∣∣∣
×

∣∣∣∣ −ατ2
2 a2 + O(λ−2) ατ2

2 a4 + O(λ−2)
−ατ3

2 â2 + O(λ−1) −ατ3
2 â4 + O(λ−1)

∣∣∣∣ ,
and hence

−λ−4τ−4
1 det(Δ(λ)) = O(λ−1) +

∣∣∣∣∣ − sinh ξ√
α

sinh 1−ξ√
α

− 1√
α

cosh ξ√
α

− 1√
α

cosh 1−ξ√
α

∣∣∣∣∣
×

∣∣∣∣∣ sinh(
√
αλξ) + k0ξ√

α
cosh(

√
αλξ) − sinh(

√
αλ(1 − ξ)) − k0(1−ξ)√

α
cosh(

√
αλ(1 − ξ))√

α cosh(
√
αλξ) + αk(1 − γ) sinh(

√
αλξ)

√
α cosh(

√
αλ(1 − ξ)) + αkγ sinh(

√
αλ(1 − ξ))

∣∣∣∣∣ .
Finally, since

sinh
(

ξ√
α

+
1 − ξ√
α

)
= sinh

ξ√
α

cosh
1 − ξ√
α

+ cosh
ξ√
α

sinh
1 − ξ√
α
,

we obtain that

−λ−4τ−4
1

sinh 1√
α

det(Δ(λ)) = O(λ−1)

+

∣∣∣∣∣ sinh(
√
αλξ) + k0ξ√

α
cosh(

√
αλξ) − sinh(

√
αλ(1 − ξ)) − k0(1−ξ)√

α
cosh(

√
αλ(1 − ξ))

cosh(
√
αλξ) +

√
αk(1 − γ) sinh(

√
αλξ) cosh(

√
αλ(1 − ξ)) +

√
αkγ sinh(

√
αλ(1 − ξ))

∣∣∣∣∣ .
A further simplification gives∣∣∣∣∣ sinh(

√
αλξ) + k0ξ√

α
cosh(

√
αλξ) − sinh(

√
αλ(1 − ξ)) − k0(1−ξ)√

α
cosh(

√
αλ(1 − ξ))

cosh(
√
αλξ) +

√
αk(1 − γ) sinh(

√
αλξ) cosh(

√
αλ(1 − ξ)) +

√
αkγ sinh(

√
αλ(1 − ξ))

∣∣∣∣∣
=

(
1 +

k0kξγ

2
+
k(1 − γ)k0(1 − ξ)

2

)
sinh(

√
αλ) +

(√
αk

2
+

k0

2
√
α

)
cosh(

√
αλ)

+
(

k0

2
√
α
−

√
αk

2

)
cosh(

√
αλ(1 − 2ξ)) +

(
k0kξγ

2
− k(1 − γ)k0(1 − ξ)

2

)
sinh(

√
αλ(1 − 2ξ)).

Therefore, det(Δ(λ)) is represented as (3.9)–(3.10). The proof is complete. �
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Proof of Corollary 3.5. Due to (3.9), it needs only to show that all zeros of Δ1(λ) are located in some vertical
strip paralleling to the imaginary axis in the complex plane. This is obvious because when Reλ→ +∞,

Δ1(λ) =
K1 +K2

2
e
√

αλ
[
1 + o(1)

] → ∞,

while Reλ→ −∞,

Δ1(λ) = e−
√

αλ

(
K2 −K1

2
+ o(1)

)
. (4.17)

�
Let A0 be the operator A with k = k0 = 0 in (2.10). Then A0 is skew-adjoint in H: A∗

0 = −A0. Hence A0

generates a unitary-group on H and so

‖R(λ,A0)‖ ≤ 1
|λ| , ∀ λ ∈ C, Reλ �= 0. (4.18)

Lemma 4.2. For any λ ∈ ρ(A0) and (p, q) ∈ H, (φ, ψ) = R(λ,A0)(p, q) is given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ = λφ− p,

φ =
q1 − τ2

2 p1

(τ2
1 − τ2

2 ) sinh τ1
sinh τ1x+

p1τ
2
1 − q1

(τ2
1 − τ2

2 ) sinh τ2
sinh τ2x

+
1

τ1τ2(τ2
1 − τ2

2 )

∫ x

0

[τ2 sinh τ1(x− s) + τ1 sinh τ2(s− x)] [λp+ q − α(λp′′ + q′′)] ds,

(4.19)

where τ1 and τ2 are given by (3.7), and⎧⎪⎪⎪⎨⎪⎪⎪⎩
p1 :=

−1
τ1τ2(τ2

1 − τ2
2 )

∫ 1

0

[τ2 sinh τ1(1 − s) + τ1 sinh τ2(s− 1)] [λp+ q − α(λp′′ + q′′)] ds,

q1 :=
−1

(τ2
1 − τ2

2 )

∫ 1

0

[τ1 sinh τ1(1 − s) + τ2 sinh τ2(s− 1)] [λp+ q − α(λp′′ + q′′)] ds.

(4.20)

Proof. Let λ ∈ σ(A0) and (p, q) ∈ H. (λ−A0)(φ, ψ) = (p, q) means that⎧⎪⎨⎪⎩ λφ− ψ = p, λψ +
(
R d4

dx4

)
φ = q,

φ(0) = φ(1) = φ′′(0) = φ′′(1) = 0.

Hence ψ = λφ − p and φ satisfies{
φ(4) + λ2φ− αλ2φ′′ = λp+ q − α(λp′′ + q′′),

φ(0) = φ(1) = φ′′(0) = φ′′(1) = 0.

Solve the first equation above with φ(0) = φ′′(0) = 0 to give

φ(x) = c1 sinh τ1x+ c2 sinh τ2x+
1

τ1τ2(τ2
1 − τ2

2 )

×
∫ x

0

[τ2 sinh τ1(x− s) + τ1 sinh τ2(s− x)] [λp+ q − α(λp′′ + q′′)] ds,
(4.21)
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where c1, c2 are constants to be determined so that φ′′(0) = φ′′(1) = 0. This gives rise to{
c1 sinh τ1 + c2 sinh τ2 = p1,

c1τ
2
1 sinh τ1 + c2τ

2
2 sinh τ2 = q1,

where p1 and q1 are given by (4.20). So

c1 =
q1 − τ2

2 p1

(τ2
1 − τ2

2 ) sinh τ1
, c2 =

p1τ
2
1 − q1

(τ2
1 − τ2

2 ) sinh τ2
·

Substitute above into (4.21) to give (4.19). The proof is complete. �

In order to prove the completeness of the root subspace, we need the following Theorem 4.3 [29].

Theorem 4.3. Let A be the generator of a C0-semigroup in a Hilbert space H. Assume that A is a discrete
operator and for λ ∈ ρ(A), R(λ,A) is of the form

R(λ,A)Y =
G(λ)Y
F1(λ)

, ∀ Y ∈ H,

where for each Y ∈ H, G(λ)Y is an H-valued entire function with order less than or equal to ρ1 and F1(λ) is a
scalar entire function of order ρ2. Let ρ := max{ρ1, ρ2} < ∞ and an integer n so that n− 1 ≤ ρ < n. If there
are n+ 1 rays γj , j = 0, 1, 2, . . . , n, on the complex plane

arg γ0 =
π

2
< arg γ1 < arg γ2 < · · · < arg γn =

3π
2

with
arg γj+1 − arg γj ≤ π

n
, 0 ≤ j ≤ n− 1,

so that for any Y ∈ H, R(λ,A)Y is bounded on all rays γj , 0 < j < n, as |λ| → ∞, then Sp(A) = H.

Proof of Theorem 3.6. For any (p, q) ∈ H, λ ∈ ρ(A) ∩ ρ(A0), let

(φ, ψ) = R(λ,A0)(p, q), (f, g) = R(λ,A)(p, q) − (φ, ψ). (4.22)

Then
(λ−A0)(φ, ψ) = (λ−A)[(f, g) + (φ, ψ)] = (p, q).

So ⎧⎪⎨⎪⎩
λf − g − b[g′]ξ − b[ψ′]ξ = 0,

λg +
(
R d4

dx4

)
f −R

(
d
dx
δξ

)
[f ′′]ξ −R

(
d
dx
δξ

)
[φ′′]ξ = 0.

Since
[ψ′]ξ = [φ′′]ξ = 0, [g′]ξ = k[(1 − γ)f ′′(ξ−) + γf ′′(ξ+) + φ′′(ξ)],

it follows that⎧⎪⎨⎪⎩
g = λf − kb[(1 − γ)f ′′(ξ−) + γf ′′(ξ+) + φ′′(ξ)],(
R d4

dx4

)
f −R

(
d
dx
δξ

)
[f ′′]ξ + λ2f − kbλ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+) + φ′′(ξ)] = 0.



STABILITY OF CONNECTED RAYLEIGH BEAMS 649

By (4.19)

φ′′(ξ) =
τ2
1 (q1 − τ2

2 p1)
(τ2

1 − τ2
2 ) sinh τ1

sinh τ1ξ +
τ2
2 (p1τ

2
1 − q1)

(τ2
1 − τ2

2 ) sinh τ2
sinh τ2ξ

+
1

(τ2
1 − τ2

2 )

∫ ξ

0

[τ1 sinh τ1(ξ − s) + τ2 sinh τ2(s− ξ)] [λp+ q − α(λp′′ + q′′)] ds. (4.23)

This together with (4.15), (4.16) and (4.20) gives

φ′′(ξ) = − sinh τ1ξ√
α sinh τ1

∫ 1

0

sinh τ1(1 − s)(p− αp′′)ds

+
1√
α

∫ ξ

0

sinh τ1(ξ − s)(p− αp′′)ds+ O(λ−1) as |λ| → ∞. (4.24)

Furthermore, f satisfies the following equation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (4)(x) + λ2f(x) − αλ2f ′′(x) = kb(x)λ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+) + φ′′(ξ)],

f(0) = f(1) = f ′′(0) = f ′′(1) = 0, f(ξ−) = f(ξ+), f ′(ξ−) = f ′(ξ+),

f ′′(ξ−) − f ′′(ξ+) = −λk0f
′(ξ),

f ′′′(ξ−) − f ′′′(ξ+) = −αkλ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+) + φ′′(ξ)],

(4.25)

which is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (6)(x) + λ2f ′′(x) − αλ2f (4)(x) = 0, x ∈ (0, 1), x �= ξ,

f(0) = f(1) = f ′′(0) = f ′′(1) = f (4)(0) = f (4)(1) = 0,

f(ξ−) = f(ξ+), f ′(ξ−) = f ′(ξ+),

f ′′(ξ−) − f ′′(ξ+) = −λk0f
′(ξ),

f ′′′(ξ−) − f ′′′(ξ+) = −αkλ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+) + φ′′(ξ)],

f (4)(ξ−) − f (4)(ξ+) = −αk0λ
3f ′(ξ),

f (5)(ξ−) − f (5)(ξ+) = (kλ− kα2λ3)[(1 − γ)f ′′(ξ−) + γf ′′(ξ+) + φ′′(ξ)].

(4.26)

The solution of (4.26) is of the form (4.12) in which the coefficients satisfy

Δ(λ)(c1, c2, c3, d1, d2, d3)� = Φ(λ), (4.27)

where Δ(λ) is defined by (4.14) and

Φ(λ) :=
(
0, 0, 0, −αkλφ′′(ξ), 0, (kλ− kα2λ3)φ′′(ξ)

)�
. (4.28)

Since λ ∈ ρ(A), det(Δ(λ)) �= 0 and (4.27) admits a unique solution:

ci =
det(Δ̃i(λ))
det(Δ(λ))

, di =
det(Δ̃i+3(λ))

det(Δ(λ))
, i = 1, 2, 3, (4.29)
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where Δ̃i(ρ), i = 1, 2, . . . , 6, are the matrices obtained by replacing the ith-column of Δ(λ) with Φ(λ). Straight-
forward computations give⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 =
k(1 − ξ)φ

′′
(ξ)√

αΔ1(λ)

[√
α sin(

√
αλ) + k0 cosh(

√
αλξ) cosh(

√
αλ(1 − ξ))

]
+ O(λ−1),

c2 = − kφ
′′
(ξ)√

αλΔ1(λ)

[
sinh(

√
αλ(1 − ξ)) +

k0(1 − ξ)√
α

cosh(
√
αλ(1 − ξ))

]
+ O(λ−2),

c3 = −
kk0 sinh 1−ξ√

α
φ

′′
(ξ)

αλΔ1(λ) sinh 1√
α

[
ξ cosh(

√
αλξ) sinh(

√
αλ(1 − ξ))

−(1 − ξ) sinh(
√
αλξ) cosh(

√
αλ(1 − ξ))

]
+ O(λ−2),

(4.30)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 =
kξφ

′′
(ξ)√

αΔ1(λ)

[√
α sinh(

√
αλ) + k0 cosh(

√
αλξ) cosh(

√
αλ(1 − ξ))

]
+ O(λ−1),

d2 = − kφ
′′
(ξ)√

αλΔ1(λ)

[
sinh(

√
αλξ) +

k0ξ√
α

cosh(
√
αλξ)

]
+ O(λ−2),

d3 =
kk0 cosh ξ√

α
φ

′′
(ξ)

αλΔ1(λ) sinh 1√
α

[
ξ cosh(

√
αλξ) sinh(

√
αλ(1 − ξ))

−(1 − ξ) sinh(
√
αλξ) cosh(

√
αλ(1 − ξ))

]
+ O(λ−2).

(4.31)

By (4.12),

f ′′(x) =

{
τ2
1 c2 sinh τ1x+ τ2

2 c3 sinh τ2x, x ∈ (0, ξ],

τ2
1 d2 sinh τ1(1 − x) + τ2

2 d3 sinh τ2(1 − x), x ∈ (ξ, 1),
(4.32)

and so

g′(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c1λ+ τ1λc2 cosh τ1x+ τ2λc3 cosh τ2x

−k(1 − ξ)[(1 − γ)f ′′(ξ−) + γf ′′(ξ+) + φ′′(ξ)], x ∈ (0, ξ],

−λd1 − τ1λd2 cosh τ1(1 − x) − τ2λd3 cosh τ2(1 − x),

+ kξ[(1 − γ)f ′′(ξ−) + γf ′′(ξ+) + φ′′(ξ)], x ∈ (ξ, 1).

(4.33)

Now, from (4.24) and (4.18), we have the following facts:
(a) there is a positive constant Mξ such that

|φ′′(ξ)| ≤Mξ‖p‖H2(0,1)∩H1
0 (0,1) ≤Mξ‖(p, q)‖ as Reλ→ −∞;

(b) Δ1(λ) = e−
√

αλ
(

K2−K1
2 + o(1)

)
as Reλ→ −∞ by (4.17) due to K1 �= K2;

(c) lim|λ|→∞ ‖R(λ,A0)(p, q)‖ = 0 and limRe λ→−∞ ‖λR(λ,A0)(p, q)‖ <∞.
By these facts and (4.24), (4.30), (4.31), (4.32), (4.33), we see that ‖(f, g)‖ = ‖(f ′′, g′)‖L2×L2 is uniformly

bounded as Reλ→ −∞. Since from (4.22),

‖R(λ,A)(p, q)‖ ≤ ‖(f, g)‖ + ‖R(λ,A0)(p, q)‖,
it concludes that ‖R(λ,A)(p, q)‖ is also uniformly bounded as Reλ→ −∞.

Finally, by (4.19) and (4.32)–(4.33),

R(λ,A)(p, q) = (f, g) + (φ, ψ) =
G(λ; p, q)
F2(λ)

, (4.34)
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where G(λ; p, q) is an H-valued entire function with order less than or equal to 1, and by (4.29), (4.32), (4.33),
F2(λ) = p(λ) det(Δ(λ)) is a scalar entire function of order 1 with polynomial p(λ). Since σ(A0) is a discrete set
and (4.34) can be expanded analytically to σ(A0) ∩ ρ(A). So all assumptions of Theorem 4.3 are satisfied with
ρ = 1, n = 2, γ1 = {λ| argλ = π}. Therefore Sp(A) = H. �

Let us recall that a set Π = {aα, α ∈ Υ} ⊂ R2 is called separated if infα,β∈Υ |aα − aβ | > 0. Let Ω = {νk}k∈J
be a sequence of C satisfying |Re νk| < ∞. Suppose each νk appears in Ω at most finite times and Ω has no
finite accumulation points. Then Ω can be ordered in such a way that {Im νk} form a nondecreasing sequence.
Suppose further that each νk is repeated in a number of time of its appearance in Ω, and Ω is a union of
M separable sets {Ω̃�}: Ω =

⋃M
�=1 Ω̃�. Define

D+(Ω) = lim
r→∞

n+(r)
r

,

where
n+(r) = sup

x∈R

{the number of Im(Ω) ∩ [x, x + r)}.
Then [17]

D+(Ω) <∞. (4.35)
An entire function F (·) is said to be of exponential type if the inequality

| F (z) |≤ CeL|z| (4.36)

holds for some positive constants C and L and all complex values of z [31]. A point z0 ∈ C such that F (z0) = 0
is called a zero of the entire function F . The integer � such that F (z0) = F ′(z0) = · · · = F (�)(z0) = 0 but
F (�+1)(z0) �= 0 is called the vanishing order of F . We say z0 is a simple zero of F if � = 0, otherwise, it is called
a multiple zero. An entire function of exponential type F is said to be of sine-type if (see Def. II.1.27 of [3]):

(a) the zeros of F lie in a strip {z ∈ C| |Rez| ≤ c} for some c > 0;
(b) there exist constants c1, c2 > 0 and x0 ∈ R such that c1 ≤ |F (x0 + iy)| ≤ c2 for all y ∈ R.

The class of sine-type functions was first introduced in [19] to deal with problems of interpolation by entire
functions and Riesz basis property of the sets of complex exponentials in L2 space. The distribution of the zeros
of sine-type function is characterized by the following remarkable Proposition 4.4 (see Prop. II.1.28 of [3]).

Proposition 4.4. Let F be a sine-type function. Then the set of its zeros (a multiple zero is repeated in a
number of times of its vanishing order) is a finite union of separable sets, that is, there exists an integer M > 0
such that

zeros of F =
M⋃
i=1

Λ̃i, inf
p�=q,νi

p,νi
q∈Λ̃i

|νi
p − νi

q| > 0.

Consequently, the vanishing orders of a sine-type function at its zeros must be uniformly bounded.

Proof of Theorem 3.7. Let Δ1(λ) be defined by (3.10), which is obviously an entire function of exponential type.
First, it is seen by (4.9) that K1 > 0,K2 > 0 in (3.10). Secondly, from the proof of Corollary 3.5,

Δ1(λ) =
K1 +K2

2
e
√

αλ
[
1 + o(1)

] → ∞ as Reλ→ +∞.

This together with Corollary 3.5 shows that Δ1(λ) is a sine-type function. On the other hand, it follows
from (3.9) that the zeros of det(Δ(λ)) approach those of Δ1(λ). By the Rouché’s theorem, we can say that

zeros of det(Δ(λ)) =
K0⋃
i=1

Ωi, inf
p�=q,λp

i ,λq
i ∈Ωi

|λp
i − λq

i | > 0, (4.37)
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where K0 > 0 is an integer and a multiple zero is repeated in a number of times of its vanishing order. This
implies particularly that all vanishing orders of zeros of det(Δ(λ)) are uniformly bounded.

Now from (3.6), (4.12), for each eigenvalue λ of A, its geometrical multiplicity is less than 6. On the other
hand, it follows from a general formula of [22], p. 148, that

m(a)(λ) ≤ pλ ·m(g)(λ),

where pλ is the order of pole of R(λ,A) at λ. The expression (4.34) asserts that pλ does not exceed the vanishing
order of det(Δ(λ)) at λ. Therefore

sup
λ∈σ(A)

m(a)(λ) <∞. (4.38)

Denote σ(A) = {λn}n∈J . Since each λn is of algebraic multiplicity ma(λn), we have a set of complex exponen-
tials in terms of the eigenvalues of A:

En(t) = {eλnt, teλnt, . . . , tma(λn)−1eλnt}, n ∈ J .

By (4.37) and (4.38), the eigenvalues of A can decompose into a finite union of separable sets (a multiple
eigenvalue is repeated in a number of time of its algebraic multiplicity).

eigenvalues of A = Λ =
N⋃

n=1

Λn, inf
i�=j,λi,λj∈Λn

|λi − λj | > 0, ∀ 1 ≤ n ≤ N. (4.39)

Let δ = min1≤n≤N infi�=j,λi,λj∈Λn |λi − λj | > 0. Then for any r < r0 = δ/(2N), by the discussions in Section 3
of [18], there exist Λp = {λp

j}Np

j=1, N
p ≤ N, p ∈ J , the p-th connected component of intersection of Λ with⋃

n∈J Dλn(r), where Dλn(r) is a disk with center λn and radius r, such that

σ(A) =
⋃

p∈J
Λp. (4.40)

We may assume without loss of generality that {λn} are arranged for Imλn to be nondecreasing for each p ∈ J
and Reλp

1 ≥ Reλp
2 ≥ · · · ≥ ReλNp

p . Construct a family of the generalized divided difference (GDD) of the
following [4,18]:

Ep(Λ, r) = {[λp
1](t), [λ

p
1, λ

p
2](t), . . . , [λ

p
1, λ

p
2, . . . , λ

Np

p ](t)}, p ∈ J .
By (4.35), D+(Λ) < ∞. According to Proposition 3.2 of [18], for any T > 2πD+(Λ), the family of GDD
{Ep(Λ, r)}p∈J form a Riesz basis for the closed subspace spanned by itself in L2(0, T ). Since Np ≤ N , all
conditions of Theorem 3.1 of [18] are satisfied. This together with Sp(A) = H claimed by Theorem 3.6,
concludes the assertions. The proof is complete. �

Lemma 4.5. If 1 + kk0(1 − γ)(1 − ξ) > 0, then Δ1(iη) �= 0 for any η ∈ R.

Proof. Let λ = is with s ∈ R be a zero of Δ1(λ). Then

Δ1(s) = K2 cos(
√
αs) + iK1 sin(

√
αs) +K3 cos(

√
αs(1 − 2ξ)) + iK4 sin(

√
αs(1 − 2ξ)) = 0,

which can be decomposed into {
K2 cos(

√
αs) +K3 cos(

√
αs(1 − 2ξ)) = 0,

K1 sin(
√
αs) +K4 sin(

√
αs(1 − 2ξ)) = 0,

(4.41)
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or {
cos(

√
αs) (K2 +K3 cos(2sξ

√
α)) +K3 sin(

√
αs) sin(2sξ

√
α) = 0,

sin(
√
αs) (K1 +K4 cos(2sξ

√
α)) −K4 cos(

√
αs) sin(2sξ

√
α) = 0.

(4.42)

When sin(
√
αs) = 0, cos(

√
αs) = 1 or −1. There are two cases:

Case 1. K4 = 0. In this case, cos(
√
αs(1 − 2ξ)) = ±K2

K3
, which contradicts the fact that 0 ≤ |K3| < K2.

Case 2. sin(2sξ
√
α) = 0. In this case, cos(2sξ

√
α) = 1 or −1. Hence

K2 +K3 =
k0√
α

= 0 or K2 −K3 =
√
αk = 0,

which contradicts the fact that k0, k > 0. Thus, sin(
√
αs) �= 0.

When K1 +K4 cos(2sξ
√
α) = 0, there are also two cases:

Case 1. K4 = 0. In this case, K1 = 0. But this does not happen because K4 = 0 means that

k0kξγ

2
=
k(1 − γ)k0(1 − ξ)

2

and so K1 = 1 + kk0ξγ �= 0.
Case 2. K4 �= 0. In this case, cos(2sξ

√
α) = −K1/K4 and so |K1| ≤ |K4|, which contradicts the fact that

kk0(γ − 1)(1 − ξ) < 1.
Therefore, it always has K1 +K4 cos(2sξ

√
α) �= 0. Furthermore, from (4.42) and the fact that cos(

√
αs) �= 0,

we have

K2 +K3 cos(2sξ
√
α) +

K3K4 sin2(2sξ
√
α)

K1 +K4 cos(2sξ
√
α)

= 0

or
(K2 +K3 cos(2sξ

√
α))(K1 +K4 cos(2sξ

√
α)) +K3K4 sin2(2sξ

√
α) = 0.

So we only need to find the solutions of the following equation

K1K2 +K3K4 + (K1K3 +K2K4) cos(2sξ
√
α) = 0. (4.43)

To do this, we notice that

K1K3 +K2K4 =
(

1 +
k0kξγ

2
+
k(1 − γ)k0(1 − ξ)

2

)(
k0

2
√
α
−

√
αk

2

)
+

(√
αk

2
+

k0

2
√
α

)(
k0kξγ

2
− k(1 − γ)k0(1 − ξ)

2

)
=

k0

2
√
α
−

√
αk

2
+
k0kξγ

2
k0√
α
− k(1 − γ)k0(1 − ξ)

√
αk

2
,

K1K2 +K3K4 =
(

1 +
k0kξγ

2
+
k(1 − γ)k0(1 − ξ)

2

)(√
αk

2
+

k0

2
√
α

)
+

(
k0

2
√
α
−

√
αk

2

)(
k0kξγ

2
− k(1 − γ)k0(1 − ξ)

2

)
=

√
αk

2
+

k0

2
√
α

+
k0√
α

k0kξγ

2
+
√
αk

k(1 − γ)k0(1 − ξ)
2

·
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Since kk0(γ − 1)(1 − ξ) < 1, it follows that

K1K2 +K3K4 − (K1K3 +K2K4) =
√
αk

(
1 + kk0(1 − γ)(1 − ξ)

)
> 0, (4.44)

K1K2 +K3K4 + (K1K3 +K2K4) =
k0√
α

(1 + k0kξγ) > 0. (4.45)

Hence
|K1K3 +K2K4| < K1K2 +K3K4.

This shows that (4.43) has no solution. Therefore there is no zero for Δ1(λ) on the imaginary axis. The proof
is complete. �

Lemma 4.6. If 1 + kk0(1 − γ)(1− ξ) > 0, then the imaginary axis is not the asymptote of the zeros of Δ1(λ).

Proof. We only need to show that inf
s∈R

|Δ1(is)| > 0. This will be accomplished by arguments of contradiction.

Assume that
lim

n→∞ |G(isn)| = 0 as |sn| → ∞, sn ∈ R.

Then it follows from (4.41) that as n→ ∞{
en := K2 cos(

√
αsn) +K3 cos(

√
αsn(1 − 2ξ)) → 0,

fn := K1 sin(
√
αsn) +K4 sin(

√
αsn(1 − 2ξ)) → 0.

(4.46)

On the other hand, simple computations give

cos(
√
αsn) =

(
K1 +K4 cos(2snξ

√
α)

)
en −K3 sin(2snξ

√
α)fn

K1K2 +K3K4 + (K1K3 +K2K4) cos(2snξ
√
α)

, (4.47)

sin(
√
αsn) =

K4 sin(2snξ
√
α)en +

(
K2 +K3 cos(2snξ

√
α)

)
fn

K1K2 +K3K4 + (K1K3 +K2K4) cos(2snξ
√
α)

· (4.48)

In terms of (4.44) and (4.45), we have

0 < K5 ≤ K1K2 +K3K4 + (K1K3 +K2K4) cos(2snξ
√
α) ≤ K6,

where

K5 := min
{√

αk
(
1 + kk0(1 − γ)(1 − ξ)

)
,

k0√
α

(1 + k0kξγ)
}
,

K6 := max
{√

αk
(
1 + kk0(1 − γ)(1 − ξ)

)
,

k0√
α

(1 + k0kξγ)
}
.

By virtue of (4.47) and (4.48), cos(
√
αsn) → 0, sin(

√
αsn) → 0 as n → ∞, a contradiction. Therefore,

inf
s∈R

|Δ1(is)| > 0. �

Proof of Theorem 3.8. Looking back (4.9), we see that under the condition (3.2),

1 + kk0(1 − γ)(1 − ξ) > 0.

So, the required result is a direct consequence of Lemma 4.6 by applying the Rouché’s theorem and (3.9). �
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Proof of Theorem 3.10. Under the condition, it follows from Remark 3.9 that 1 + kk0(1− γ)(1− ξ) = 0. In this
case K1 = K4 in (3.10). Let λ = is, s ∈ R. If we assign

cos(2sξ
√
α) = −1, cos(s

√
α) = 0, (4.49)

then (4.41) has solution, that is, Δ1(is) = 0. Now the solutions of (4.49) are

sn1 =
n1π + π/2
ξ
√
α

, sn2 =
n2π + π/2√

α
, n1, n2 ∈ Z.

Set sn1 = sn2 to get ξ = n1+1/2
n2+1/2 . Take n2 = 2, n1 = 1. Then ξ = n1+1/2

n2+1/2 = 3
5 ∈ (0, 1). Solve the equation

n1 + 1/2
n2 + 1/2

=
3
5
,

to get
n1 = 3m+ 1, n2 = 2 + 5m

for all integers m > 0. That is, when ξ = 3
5 , all sm = (2+5m)π+π/2√

α
satisfy Δ1(ism) = 0. Since sm → ∞ as

m→ +∞, we see, from (3.9), that the imaginary axis is the asymptote of eigenvalues of A. So the system (2.14)
is not exponentially stable when ξ = 3

5 . �
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[14] R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures, Mathématiques et
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