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ON SOME GENERAL ALMOST PERIODIC OPTIMAL CONTROL PROBLEMS:
LINKS WITH PERIODIC PROBLEMS AND NECESSARY CONDITIONS ∗

Denis Pennequin
1

Abstract. In this paper, we are concerned with periodic, quasi-periodic (q.p.) and almost periodic
(a.p.) Optimal Control problems. After defining these problems and setting them in an abstract setting
by using Abstract Harmonic Analysis, we give some structure results of the set of solutions, and study
the relations between periodic and a.p. problems. We prove for instance that for an autonomous
concave problem, the a.p. problem has a solution if and only if all problems (periodic with fixed or
variable period, q.p. or a.p.) have a constant solution. After that, we give some first order necessary
conditions (weak Pontryagin) in the space of Harmonic Synthesis and we also give in this space an
existence result.
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Introduction

Periodic Optimal Control problems are motivated by a lot of applications (see for instance [9,14,18,21] and
their references). It is for instance known in industry that a periodic control can give a better production process
than a static one [17,26]. But for these problems, even if the period is chosen, the class of periodic controls
is too restrictive. For instance, the sum or the convex combinaison of two periodic functions is generally not
periodic but quasi-periodic (q.p.). The natural class to study this problem is in fact the class of almost periodic
(a.p.) functions which, roughly speaking, allows linear combinations and limits (in a adequate sense).

Almost periodic problems have been first studied by Da Prato and Ichikawa [11], in the particular case of
stochastic linear-quadratic problems. In our paper, we just consider deterministic problems, but one of the
aims is to obtain necessary conditions theorems with less restrictive assumptions on the state equation and the
integrand of the functional (Sect. 4). We will also give some structure results and the conditions which ensure
the fact that the values of periodic, quasi-periodic and almost periodic problems have the same value. This will
be the aim of Section 3. Section 5 is devoted to an existence result. Before that, in Section 1, we introduce
the different problems and we precise the assumptions in Section 2. With the language of Abstract Harmonic
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Analysis, it is possible to set all our different problems in a common formalism. But first, we recall some facts
on a.p. and q.p. functions (see for instance [2,5,8,10,13,20]).

AP0(R,Kn) (K = R or C) is the space of (Bohr)-almost periodic functions. One of the definition consists in
saying that f ∈ AP0(R,Kn) if and only if, for any ε > 0, we can find an integer k ≥ 1 and continuous periodic
functions f1, ..., fk such that:

sup
x∈R

∣∣∣∣∣f(x) −
k∑

i=1

fi(x)

∣∣∣∣∣ < ε.

This space, endowed with the uniform-norm, is a Banach space. We recall that each f ∈ AP0(R,Kn) admits a
mean value:

M{f} := lim
T→+∞

1
T

∫ T

0

f(t)dt

and that we can develop them as a Fourier-Bohr expansion:

f ∼
∑
λ∈R

aλeλ

where eλ := [t �→ eiλt]. When the Z-module generated by {λ ∈ R, aλ �= 0} admits a finite basis ω1, ..., ωm, we say
that f is quasi-periodic with frequencies ω := (ω1, ..., ωm) and we write f ∈ QP0

ω(R,Kn). Next, we introduce by
induction the spaces APk(R,Kn) (resp. QPk

ω(R,Kn)): f is in APk(R,Kn) (resp. QPk
ω(R,Kn)) if f is of class Ck

and if f ′ is in APk−1(R,Kn) (resp. QPk−1
ω (R,Kn)). The completion of AP0(R,Kn) (resp. QP0

ω(R,Kn)) with
respect to the following scalar product:

〈f, g〉 := M{f.g}

is denoted B2(R,Kn) (resp. B2
ω(R,Kn)) and is the Besicovitch space. Blot (cf. [4]) has introduced an as-

Sobolev weak notion of derivation on these spaces. The resulting Hilbert spaces are denoted B1,2(R,Kn)
(resp. B1,2

ω (R,Kn)).

When the module of frequencies is fixed, ω = (ω1, ..., ωm), we can speak of ω-quasi-periodicity by using the
Percival formalism [23,24] which is made precise in [6]. The mapping:

Qω := [u �−→ [t �→ u(tω)]]

maps functions from Tm (i.e. function from Rm which are 2π-periodic in each variable) to quasi-periodic
functions with module of frequencies ω, it satisfies (when the derivatives exist): Qω ◦ ∂ω = d

dt ◦ Qω where
∂ωu :=

∑m
i=1 ωi

∂u
∂xi

. Moreover, this mapping is a linear isomorphism of Banach (or Hilbert) spaces in these
cases:

• C0(Tm,Rn) −→ QP0
ω(R,Rn).

• L2(Tm,Rn) −→ B2
ω(R,Rn).

• {u ∈ C0(Tm,Rn), ∃∂ωu ∈ C0(Tm,Rn)} =: C1
ω(Tm,Rn) −→ QP1

ω(R,Rn).
• {u ∈ L2(Tm,Rn), ∃∂ωu ∈ L2(Tm,Rn)} =: H1

ω(Tm,Rn) −→ QP1
ω(R,Rn).
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1. On some problems

1.1. Periodic problem with a fixed period

Assuming that the function f0(., x, u) is τ -periodic for all (x, u) ∈ RN × RM , one of the first problems we
can consider is: ⎧⎨

⎩
Maximize 1

τ

∫ τ

0
f0(t, x(t), u(t))dt

(x, u) τ -periodic
ẋ(t) = f(t, x(t), u(t)).

Introducing the mean operator M, this problem can be written in the following form:⎧⎨
⎩

Maximize M{f0(t, x(t), u(t))}t

(x, u) τ -periodic
ẋ(t) = f(t, x(t), u(t))

which we be called later (FPPP(τ)) (for fixed-period periodic problem with period τ). This problem can also
be considered when f0(., x, u) is non necessarily periodic, but such that the mean exists for any (x, u) varying
in an appropriate space of periodic functions.

1.2. Periodic problem with a variable period

Assuming that the function f0 is autonomous (i.e. does not depend on t), the second problem we can consider
is: ⎧⎨

⎩
Maximize 1

τ

∫ τ

0
f0(t, x(t), u(t))dt

(x, u) τ -periodic
ẋ(t) = f(t, x(t), u(t))

where in fact f0(t, x(t), u(t)) = f0(x(t), u(t)). Introducing the mean operator M, this problem can be written
in the following form: ⎧⎨

⎩
Maximize M{f0(t, x(t), u(t))}t

τ > 0, (x, u) τ -periodic
ẋ(t) = f(t, x(t), u(t))

which we be called later (VPPP) (for variable period periodic problem). This second form will also be
considered when f0 is non autonomous.

1.3. Quasi periodic problem with a fixed module frequencies

Here, we are concerned with the problem, where ω is fixed and for suitable f0:⎧⎨
⎩

Maximize M{f0(t, x(t), u(t))}t

(x, u) ω-quasi periodic
ẋ(t) = f(t, x(t), u(t)).

By using Percival’s formalism, this problem can be transformed on the torus. It can be written as:⎧⎨
⎩

Maximize
∫

Tm F0(x,X(x), U(x))dx
(X,U) 2π-periodic in each variable
∂ωX(x) = F (x,X(x), U(x))

where F0 (resp. F ) is deduced from f0 (resp. f) applying the Percival formalism at f0(., x, u) for all (x, u),
i.e. F0(., x, u) = Q−1

ω (f0(., x, u)) for each (x, u). This problem will be named (QPP) in the sequel.
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1.4. Almost periodic problems

The form of a.p. problem that we can consider on R is, with suitable f0:⎧⎨
⎩

Maximize M{f0(t, x(t), u(t))}t

(x, u) almost periodic
ẋ(t) = f(t, x(t), u(t))

which we be called later (APP) (for almost periodic problem).

1.5. Problems in discrete time

We could also consider discrete time problems, in the case of periodic or almost periodic problems. We re-
call [7,22] that almost periodicity for sequences can be viewed in different equivalent ways (via formal definition,
extension to the Bohr compactification of Z, or sequence which can be interpolated by a.p. functions). One of
the specific features of discrete time problems is that the periodicity is necessarily with period in N∗. We do
not stay more on these problems because we will include them in an abstract setting.

1.6. Abstract almost periodic problems

We can treat the quasi-periodic and almost periodic cases, with respect to either discrete or continuous time,
in a unified approach by means of Commutative Harmonic Analysis [15,16,19,25,27,28].

So, we consider in what follows a locally compact abelian group G whose Haar measure will be denoted μG;
its Bohr compactification will be denoted BG. We recall that BG is a compact abelian group and that there
exists an injection ι : G → BG such that ι(G) is dense in BG. The Haar measure of BG will de denoted μBG.
Almost periodicity on the group G can be translated on functions on BG: a function f : G → RN is a.p. if
it can be extended to a function f̂ ∈ C0(BG,RN ). Such a function is necessarily unique, and we will write it
also f .

Now, we consider an unbounded continuous linear operator Θ defined from D0 ⊂ C0(BG,RN ) → C0(BG,RN )
and from D2 ⊂ L2(BG,RN ) → L2(BG,RN ) such that, if x ∈ D0∩D2, the two definitions of Θ(x) are equivalent.
If D0 (resp. D2) is a strict subset of C0(BG,RN ) (resp. L2(BG,RN )), we set:

‖x‖D0 = ‖x‖∞ + ‖Θ(x)‖∞ (resp. ‖x‖D2 =
√
‖x‖2

L2(BG,RN )
+ ‖Θ(x)‖2

L2(BG,RN )
)

and if D0 = C0(BG,RN ) (resp. D2 = L2(BG,RN )) we set ‖x‖D0 = ‖x‖∞ (resp. ‖x‖D2 = ‖x‖L2(BG,RN )). The
adjoint operator Θ∗ will always be the adjoint with respect to the L2 duality.

We can consider the abstract problem, which will be denoted by (AAPP):⎧⎨
⎩

Maximize
∫

BG
f0(γ, x(γ), u(γ))dμBG(γ)

(x, u) ∈ D0 × C0(BG,RN ) (or D2 × L2(BG,RN ))
Θ(x)(γ) = f(γ, x(γ), u(γ)).

Now, we explain why the preceding problems are particular cases of this one.

1. The almost periodic problem in continuous time. Here, G = R and the operator Θ is the derivative:
Θ(x) = ẋ. D0 = AP1(R,RN ) and D2 = B1,2(R,RN ). Here, we have Θ∗(x) = −ẋ.
2. The almost periodic problem in discrete time. Here, G = Z and the operator Θ is the right shift:
(Θ(x))(t) = xt+1 (and (Θ∗(x))(t) = xt−1). Here, D0 = C0(BG,RN ) and D2 = L2(BG,RN ).

3. The quasi periodic problem with fixed frequencies. Here, G = Tm and the operator Θ is the partial
derivative: Θ(X) = ∂ωX (and Θ∗(X) = −∂ωX). Here, D0 = QP1

ω(R,RN ) and D2 = H1
ω(Tm,Rn).
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In all cases 1–3, the mean operator M satisfies the following identity:

∀ϕ ∈ AP (G,RN ), M{ϕ} =
∫

BG

ϕ(γ) dμBG(γ).

2. The settings

We will in what follows consider two cases: the regular case, and the weak case. The second one corresponds
to Hilbert spaces where the Harmonic synthesis is valid.

Let us now give some details about assumptions underlying our analysis. We explain the settings for periodic
problems and for abstract almost periodic problems. The cases of quasi-periodic problems and almost periodic
problems will be seen as particular cases of the abstract almost periodic problem.

2.1. Periodic problems

Regular case. We assume that f0 ∈ C0(BR × RN × RM ,R) and that f ∈ C0(BR × RN × RM ,RN ). The
constraints sets are in this case:

C(PPFP(τ)) := {(x, u) ∈ C1
τ (R,RN ) × C0

τ (R,RM ), ẋ = f(., x, u)}

and
C(PPVP) := ∪τ>0C(PPFP(τ)).

Remark 2.1. Here, we do not assume that f0(., x, u) is periodic, but we do the assumption that f0 ∈ C0(BR×
RN ×RM ,R). It is equivalent to say that f0 is a.p. uniformly with respect to its second and third argument. It
permits us to deduce the fact that, if (x, u) is a.p. (and consequently if it is periodic), then t �→ f0(t, x(t), u(t))
is a.p., and so the mean in the functional exists.

Weak case. The functions f and f0 are Caratheodory, f(t, ., .) is Gâteaux-differentiable for any t, the Gâteaux
differentials DG

x f and DG
u f are Caratheodory, and these functions satisfy for all (t, x, u) ∈ R × RN × RM :

|f0(t, x, u)| ≤ c(|x|2 + |u|2) + d(t)

∀ϕ ∈ {f,DG
x f,D

G
u f}, |ϕ(t, x, u)| ≤ c(|x| + |u|) + d(t)

with c > 0 and d ∈ L1(BR,R+).
The constraints sets are in this case:

C(PPFP(τ)) := {(x, u) ∈ H1
τ (R,RN ) × L2

τ (R,RM ), ẋ = f(., x, u)}

and
C(PPVP) := ∪τ>0C(PPFP(τ))

where H1
τ (R,RN ) (resp. L2

τ (R,RM )) is the space of functions in H1
loc(R,R

N ) (resp. L2
loc(R,R

M )) which are
τ -periodic.

2.2. Abstract almost periodic problems

Regular case. We assume that f0 ∈ C0(BG × RN × RM ,R) and that f ∈ C0(BG × RN × RM ,RN ). The
constraint set is in this case:

C(AAPP) := {(x, u) ∈ D0 × C0(BG,RM ), Θ(x) = f(., x, u)}.
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Weak case. The functions f and f0 are Caratheodory, f(γ, ., .) is Gâteaux-differentiable for any γ, the Gâteaux
differentials DG

x f and DG
u f are Caratheodory, and these functions satisfy for all (γ, x, u) ∈ BG × RN × RM :

|f0(γ, x, u)| ≤ c(|x|2 + |u|2) + d(γ)

∀ϕ ∈ {f,DG
x f,D

G
u f}, |ϕ(γ, x, u)| ≤ c(|x| + |u|) + d(γ)

with c > 0 and d ∈ L1(BG,R+).
The constraint set is in this case:

C(AAPP) := {(x, u) ∈ D2 × L2(BG,RM ), Θ(x) = f(., x, u)}.

3. Links between the periodic problems and the almost periodic problem

in continuous time

The aim of this section is to study, in a case of linear-concave problems, the link between the problems
(FPPP(τ)), (VPPP), (APP), and to obtain some structure results.

We first, as an introduction, give an explicit example. Let us consider the q.p. (but not periodic) function g
defined by:

g(t) := cos(t) + cos(πt).
We consider the following control problem:{

Maximize J(x, u) := M{−(u− g)2}
ẋ = u.

It is straightforward to identify the solutions of periodic problems with fixed period τ by using the Fourier-Bohr
expansions:

(1) when τ/(2π) ∈ N
∗, the solution is (x0, ẋ0) with x0(t) := sin(t) and the value of the problem is −1/2;

(2) when τ/2 ∈ N∗, the solution is (x1, ẋ1) with x1(t) := sin(πt)/π and the value of the problem is −1/2;
(3) in other cases, the solution is (0, 0) and the value of the problem is −1.

From that, we deduce that the value of the variable-period problem is −1/2. Now, if we consider the q.p.
problems, we can take the convex combinaison of x0 and x1: by putting xα := (1 − α)x0 + αx1, we see by a
simple calculation that:

J(xα, ẋα) = −α
2 + (1 − α)2

2
which is maximal with α = 1/2 and J(x1/2, ẋ1/2) = −1/4 > −1/2 which is better than the value of periodic
problems (in fact, the q.p. with variable module of frequencies and a.p. problems have the only solution (g, ġ)
which gives 0).

Before assuming the criterium to be concave, let us give a first result. In all this section, we set:

J(x, u) := M{f0(., x, u)}.
Remark 3.1. Denoting by Val(P) the value of a problem (P), we have:

∀τ > 0, Val(APP) ≥ Val(VPPP) ≥ Val(FPPP(τ)).

Proof. Indeed, we have for any τ > 0:

C(APP) ⊃ C(VPPP) ⊃ C(FPPP(τ)).

Since the criteria are the same, the result is immediate. �



596 D. PENNEQUIN

In all what follows in this section, we assume the two following conditions are satisfied:

• for all t ∈ R, the function f0(t, ., .) defined on RN × RM is concave;
• for all t ∈ R, the function f(t, ., .) is affine, i.e. there exists three matrix functions A, B and b such

that:

∀(t, x, u) ∈ R × R
N × R

M , f(t, x, u) = A(t)x +B(t)u+ b(t).

Proposition 3.2. The set S(APP) of solutions of (APP) is (strong and weak) closed and convex.

Proof. First, consider (x1, u1), (x2, u2) admissible, and λ ∈ [0; 1]. Since f0(t, ., .) is concave, we have for all t:

f0(t, λx1(t) + (1 − λ)x2(t), λu1(t) + (1 − λ)u2(t)) ≥ λf0(t, x1(t), u1(t)) + (1 − λ)f(t, x2(t), u2(t))

and so by taking the mean, we have:

J(λx1 + (1 − λ)x2, λu1 + (1 − λ)u2) ≥ λJ(x1, u1) + (1 − λ)J(x2, u2),

so J is concave, and since the state equation is affine, (λx1 + (1 − λ)x2, λu1 + (1 − λ)u2) also satisfies this
equation. So, we can say that the set S(APP) is concave.

Now, consider a sequence (xn, un)n of elements of S(APP) converging strongly or weakly to (x̄, ū). Since
the state equation is affine, it is a weak and strong continuous function and so (x̄, ū) satisfies this equation.
J is continuous and concave, so it is also weakly usc. If convergence of (xn, un)n is strong, we have immediately
by continuity:

J(x̄, ū) = lim
n→+∞J(xn, un) = supJ

and if the convergence is weak, we use the w-usc:

J(x̄, ū) ≥ lim
n→+∞J(xn, un) = supJ.

In both cases, we see that (x̄, ū) is a solution of the problem. �

Remark 3.3. We can remark that:

(1) The fact that S(APP) is strongly closed is dependent on the concavity of f0(t, ., .).
(2) The set of solutions of (VPPP) is not generally convex (for instance, when there exists two solutions

whose ratio of periods is not rational). Here, we obtain a structure result which is not true for periodic
problems with a variable period.

We now recall that if x ∈ AP0(R,RN ) (resp. B2(R,RN )), and if T > 0, we have the Besicovitch theorem: by
denoting for all α ∈ R, ταx := x(.+ α), the sequence

⎛
⎝ 1
n

n−1∑
j=0

τjTx

⎞
⎠

n
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converges in AP0(R,RN ) (resp. B2(R,RN )) to the T -periodification of x, xT , which corresponds to the T -
periodic part of the Fourier-Bohr expansion of x:

x ∼
∑
λ∈R

aλeλ =⇒ xT ∼
∑

λ∈ 2π
T Z

aλeλ.

The main lemma for all what follows is:

Lemma 3.4. Assume that for all (x, u) ∈ RN × RM , the function f0(., x, u) is T -periodic. Then we have:
J(xT , uT ) ≥ J(x, u).

Proof. Because of the T -periodicity of the function f0 with respect to T , we have for any j ∈ Z, J(τjTx, τjT u) =
J(x, u). We have by concavity of J :

J

⎛
⎝ 1
n

n−1∑
j=0

τjTx,
1
n

n−1∑
j=0

τjTu

⎞
⎠ ≥ 1

n

n−1∑
j=0

J(τjTx, τjT u) = J(x, u).

Now, by taking the limit as n→ +∞ and by using the continuity of J , the preceding inequality shows that:

J(xT , uT ) ≥ J(x, u).

�

Theorem 3.5. Assume that for all (x, u) ∈ RN × RM , the function f0(., x, u) is T -periodic. Then we have:

(1) Val(APP) = Val(VPPP) = Val(FPPP(T)).
(2) Any solution of (FPPP(T)) is solution of the problems (VPPP), (APP).
(3) If S(APP) is nonempty, it contains a T -periodic function (perhaps trivial), which is solution of the

problems (VPPP), (FPPP(T)).

Proof. Take arbitrary (x, u). Since (xT , uT ) is T -periodic and since J(xT , uT ) ≥ J(x, u) in view of the preceding
lemma, we have:

Val(FPPP(T)) ≥ Val(APP).

Using Result 3.1, we deduce assertion (1). Now, if (x, u) is a solution of (FPPP(T)), because of asser-
tion (1), it is also a solution of problems (VPPP), (APP), so assertion (2) is justified. Assuming that
S(APP) is non empty, if (x, u) ∈ S(APP), we have: J(xT , uT ) ≥ J(x, u) so in fact J(xT , uT ) = J(x, u)
and (xT , uT ) is a T -periodic solution of (APP) and it is so necessarily a solution to (VPPP), (FPPP(T)).
This is assertion (3). �

We study now the case when f0 is autonomous. In this case, we can apply Theorem 3.5 with any T . It is
here convenient to introduce a static optimization problem (SP):

⎧⎨
⎩

Maximize f0(x̄, ū)
(x̄, ū) ∈ RN × RM

∀t ∈ R, A(t)x̄+B(t)ū + b(t) = 0.
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We obtain:

Theorem 3.6. We assume that f0 is autonomous. Then we have for all τ > 0:
(1) Val(APP) = Val(VPPP) = Val(FPPP(τ)) = Val(SP).
(2) Any solution of one of the problems (APP), (VPPP), (FPPP(τ)), (SP) is solution of all the problems

for which it is admissible.
(3) If S(APP) is nonempty, it contains a constant function, which is solution of all the problems (VPPP),

(FPPP(τ)), (SP).

Proof. The main fact to use is that for any (x, u) a.p., we can find T > 0 such that TZ ∩ Mod(x, u) = {0}.
For such a T , we have (xT , uT ) = (M{x},M{u}) and by Lemma 3.4, we have J(M{x},M{u}) ≥ J(x, u).
So, Val(SP) ≥ Val(APP), and this implies the equalities of assertion (1). We deduce immediately as in
Theorem 3.5 the second and the third assertions. �

Remark 3.7. As a consequence, we see that if there exists t0 ∈ R such that:

−b(t0) /∈ A(t0)RN +B(t0)RM

then no problem has a solution.

Adaptation to locally compact abelian groups. In fact, the Besicovitch theorem on topological groups is
true (see [3], Th. 3): given γ0 ∈ G and x ∈ AP0(G,RN ) (resp. L2(BG,RN )), the sequence⎛

⎝ 1
n

n−1∑
j=0

τjγ0x

⎞
⎠

n

converges in AP0(G,RN) (resp. L2(BG,RN )) to a function xγ0 , which is γ0-periodic, i.e. τγ0x
γ0 = xγ0 . So, if

we suppose that the operator Θ commutes with translations (i.e. τγ ◦ Θ = Θ ◦ τγ), the results of this section
can be adapted to G.

4. Necessary conditions

Let us define the Hamiltonian H : BG × RN × RM × R × RM → R by the following formula:

H(γ, x, u, λ0, p) := λ0f0(γ, x, u) + p.f(γ, x, u).

We consider the problem (AAPP) only in the case when (x, u) is varying in the set D2 ×K, where K is a non
empty convex subset of L2(BG,RM ). In the first subsection, we study the case when K = L2(BG,RN ), and we
study the general case in the second one.

4.1. The case K = L2(BG, R
M)

We first give a weak Pontryagin principle with no qualification condition, and afterwards study the case when
such a condition is satisfied.

Theorem 4.1 (weak Pontryagin principle). Let (x̄, ū) be a solution of (AAPP). Then there exists (λ0, p) ∈
(R × D2) \ {0} such that:

(1) Θ(x̄) = Hp(., x̄, ū, λ0, p);
(2) Θ∗(p) = Hx(., x̄, ū, λ0, p) (Θ∗ is the adjoint operator);
(3) Hu(., x̄, ū, λ0, p) = 0.
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Proof. The first equation is in fact the state equation. Let us define the functionals G : D2 × L2(BG,RM ) →
L2(BG,RN ) and J : D2 × L2(BG,RM ) → R by the following formulae:

G(x, u) := f(., x, u) − Θ(x)

and

J(x, u) :=
∫

BG

f0(., x, u) dμBG.

We also define the following Nemytskii operators:

Nf0 : D2 × L2(BG,RM ) → L2(BG,R), Nf0(x, u) := f0(., x, u),

Nf : D2 × L2(BG,RM ) → L2(BG,RN ), Nf (x, u) := f(., x, u).

The results in [12] about continuity, Fréchet-differentiability and Gâteaux-differentiability of Nemytskii operators
(Ths. 2.3, 2.6 and part a of the proof of Th. 2.71) can also be adapted in the case when we are in Lp(BG, Y ).
So, from the assumptions on f , f0, we know immediately that:

• Nf0 is Fréchet-differentiable (written F-differentiable), and its F-differential is:

N ′
f0

(x, u).(h, k) = Dxf0(., x, u).h+Duf0(., x, u).k.

• Nf is Gâteaux-differentiable (written G-differentiable), and its G-differential is:

DGNf (x, u).(h, k) = DG
x f(., x, u).h+DG

u f(., x, u).k.

• When (h, k) is fixed, the operator:

(x, u) → DG
x f(., x, u).h+DG

u f(., x, u).k

is continuous (we will say that the functional is continuously G-differentiable as in [1], p. 88).
From that, we deduce by superposition that the functional G (resp. J) is well defined and F-differentiable (resp.
continuously G-differentiable) from D2 × L2(BG,RN ) to L2(BG,RN ) (resp. R). Moreover, the differentials are
given by:

J ′(x, u).(h, k) =
∫

BG

(Dxf0(., x, u).h+Duf0(., x, u).k) dμBG

DGG(x, u).(h, k) = DG
x f(., x, u).h+DG

u f(., x, u).k − Θ(h).

Our problem is to maximise J(x, u) under the constraint G(x, u) = 0. The Lagrange multiplier rule is also valid
since because of the continuity of G-differential of the constraint, the Clarke generalized gradient is reduced to
this G-differential and we can use the Clarke version of this theorem ([1], Props. 6.10 and 6.15). So, the first
order condition is:

∃(λ0,Λ) ∈ (R × L2(BG,RM )′) \ {0}, λ0J
′(x̄, ū) + Λ ◦G′(x̄, ū) = 0.

Since L2(BG,RM ) is a Hilbert space, we can identify it with its dual space. Namely, one can find p ∈ L2(BG,RM )
such that for any ζ ∈ L2(BG,RM ):

Λ(ζ) =
∫

BG

p(γ).ζ(γ) dμBG(γ).

1The part a of the proof show that the Nemytskii operator is Gâteaux-differentiable in this case.
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Moreover, (λ0,Λ) �= 0 implies (λ0, p) �= 0. We recall that the differentials of J and G are given by:

J ′(x, u).(h, k) = M{Dxf0(., x, u).h+Duf0(., x, u)k}

G′(x, u).(h, k) = Dxf(., x, u).h+Duf(., x, u).k − Θ(h).
Replacing this in the necessary condition, and we obtain for all (h, k) ∈ D2 × L2(BG,RM ):∫

BG

[(λ0Dxf0(., x̄, ū) + p.(Dxf(., x̄, ū))).h + (λ0Duf0(., x̄, ū) + p.(Duf(., x̄, ū))).k − p.Θ(h)] dμBG = 0.

By definition of the adjoint operator, we have:∫
BG

p.Θ(h)dμBG = 〈p; Θ(h)〉L2(BG,RM ) = 〈Θ∗(p);h〉L2(BG,RM ) =
∫

BG

Θ∗(p).h dμBG.

By replacing this on the necessary condition, we obtain for all (h, k) ∈ D2 × L2(BG,RM ):∫
BG

[(λ0Dxf0(., x̄, ū) + p.(Dxf(., x̄, ū) − Θ∗(p))).h+ (λ0Duf0(., x̄, ū) + p.(Duf(., x̄, ū))).k] dμBG = 0

which gives:
Θ∗(p) = λ0Dxf0(., x̄, ū) + p.(Dxf(., x̄, ū))

and
λ0Duf0(., x̄, ū) + p.(Duf(., x̄, ū)) = 0

i.e.:
Θ∗(p) = Hx(., x̄, ū, λ0, p), and Hu(., x̄, ū, λ0, p) = 0. �

We next give some conditions which allow us to take λ0 = 1. To state the condition (C3) below, we
introduce some notations. We say that the operator Θ diagonalize the Fourier transform if there exists a
function ψ : (BG)′ → C such that:

∀u ∈ D2, ∀χ ∈ (BG)′, Θ̂u(χ) = ψ(χ)û(χ).

This is the case for our three particular operators on R (resp. Tm, resp. Z), where we have ψ(λ) := iλ for
any λ ∈ R (resp. ψ(ν) := iν.ω for any ν ∈ Zm, resp. ψ(λ) := exp(iλ) for any λ ∈ [0; 1)).

Proposition 4.2. Moreover, if one of these conditions is satisfied, we can take λ0 = 1 in the preceding theorem.
(C1) The mapping (h, k) �→ A(.)h+B(.)k − Θ(h) is onto from D2 × L2(BG,RM ) to L2(BG,RN ).
(C2) For all ζ ∈ L2(BG,RN ), there exists h ∈ D2 such that:

−Θ(h) +A(.)h = ζ.

(C3) Θ diagonalize the Fourier transform, A is constant (with set of eigenvalues denoted by Sp(A)) and:

inf
(σ,χ)∈Sp(A)×(BG)′

|σ − ψ(χ)| > 0.

Proof. Since G′(x̄, ū).(h, k) = A(.).h+B(.).k −∇h, condition (C1) is the standard one. Let us show that:

(C3) ⇒ (C2) ⇒ (C1).

This will give the result.
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(C3) ⇒ (C2). By taking a trigonal form of A, we see that it is sufficient to make the proof when N = 1. We
wish to solve:

−Θ(h) + αh ∼2 ζ.

We take the Fourier transform of this expression. This gives:

∀χ ∈ (BG)′, (α− ψ(χ))ĥ(χ) = ζ(χ).

Since α−ψ(χ) is never 0, this defines uniquely the Fourier transform of h. This expression is a Fourier transform
of a function in D2 if and only if: ∫

(BG)′

(
1 + |ψ(χ)|2) |ĥ(χ)|2 dμ(χ) < +∞.

But this integral can be written: ∫
(BG)′

Ψ(ψ(χ))|ζ̂(χ)|2 dμ(χ)

where the function Ψ : C → R is defined by: Ψ(z) := 1+|z|2
|α−z|2 . The function Ψ is clearly bounded on C, and so

our integral is less or equal to:
‖Ψ‖2

∞‖ζ‖2
2 < +∞

and this gives (C2).

(C2) ⇒ (C1). It is sufficient to take (h, 0). �

Remark 4.3. When G = R or T
m, the last assumption of (C3) is equivalent to the fact that A has no pure

imaginary eigenvalue and when G = Z, this is equivalent to the fact that A has no eigenvalue of modulus 1.

4.2. Case when K is convex

In all this subsection, we assume that the qualification condition (C1) is satisfied, and we also suppose that:

∃(x̂, û) ∈ D2 × IntK, A.x̂+B.û+ b = 0.

Theorem 4.4 (weak Pontryagin principle). Under these assumptions, if (x̄, ū) is an optimal solution, then
there exists p ∈ D2 \ {0} such that:

(1) Θ(x̄) = Hp(., x̄, ū, 1, p);
(2) Θ∗(p) = −Hx(., x̄, ū, 1, p);
(3) Hu(., x̄, ū, 1, p) ∈ NK(ū),

where NK(ū) is the normal cone to K at ū.

Proof. We again take the notations of the proof of Theorem 4.1. Because of the new assumption, we know that

0 ∈ Int((B1,2 ×K) −G−1(0)).

Indeed, there exists r > 0 such that if ‖δu‖L2(BG,RM ) < r, we have û+ δu ∈ K and so, for any δx, we have:

(δx, δu) = (x̂+ δx, û+ δu) − (x̂, û) ∈ (B1,2 ×K) −G−1(0).

In view of [1] ((51), p. 72), we obtain:

N(B1,2×K)∩G−1(0) = N(B1,2×K) +NG−1(0).
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But:
N(B1,2×K) = NB1,2 ×NK = {0} ×NK

and with (C1) this gives:
NG−1(0)(x̄, ū) = Ker G′(x̄, ū).

The necessary first order condition for this problem is:

DJ(x̄, ū) ∈ N(B1,2×K)∩G−1(0)(x̄, ū)

from what we deduce:
DJ(x̄, ū) ∈ NB1,2×K(x̄, ū) +NG−1(0)(x̄, ū)

so there exists Λ ∈ (B2(R,RM ))′ such that:

DJ(x̄, ū) + Λ ◦DG(x̄, ū) ∈ {0} ×NK(ū)

and by reasoning as in the proof of Theorem 4.1, we obtain the result. �

Remark 4.5. The two theorems about first order necessary conditions, 4.1 and 4.4, assert the existence of an
adjoint variable p which is a.p. This property of the adjoint arc can be interpreted as a condition corresponding
to the transversality condition in the classical Pontryagin Maximum Principle.

5. An existence result

We will now give an existence result. We again look for (x, u) in D2 ×K, where K is now a weakly closed
subset of L2(BG,RM ).

Theorem 5.1. We assume that f0(t, ., .) is concave for all t ∈ BG and that there exists α ∈ L1(BG,R) and
β ∈ R

+
∗ such that:

∀(t, x, u) ∈ BG × R
N × R

M , f0(t, x, u) ≤ α(t) − β(|x|2 + |u|2).
The problem (AAPP) has at least a solution.

Proof. We set Γ = G−1(0). We have to maximize J on Γ which is strongly and weakly closed since G is affine and
continuous. We set S := sup(x,u)∈D2×L2(BG,RM) J(x, u). Clearly, S ∈ R since for all (x, u) ∈ D2 × L2(BG,RM ),
we have:

J(x, u) ≤
∫

BG

α dμBG.

Let (xn, un)n be a sequence which satisfies the two following conditions:
• ∀n, (xn, un) ∈ Γ ∩K;
• J(xn, un) ≥ S − 1/n.

Let us first show that the sequence (Nn)n with Nn := ‖xn‖2
D2 + ‖un‖2

L2(BG,RM ) is bounded. Indeed, since:

S − 1/n ≤ J(xn, un) ≤
∫

BG

α dμBG − β
(
‖xn‖2

L2(BG,RN ) + ‖un‖2
L2(BG,RM)

)

we obtain immediately:

‖xn‖2
L2(BG,RN ) + ‖un‖2

L2(BG,RM) ≤ C1 :=
1
β

[∫
BG

α dμBG − (S − 1)
]
.
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Moreover, from Θ(xn) = A.xn +B.un + b, we obtain:

‖Θ(xn)‖2 ≤ 4(‖A‖∞‖xn‖2
L2(BG,RN ) + ‖B‖∞‖un‖2

L2(BG,RM ) + ‖b‖2
L2(BG,R)) ≤

C2 := 4(‖b‖2
L2(BG,R) + C1 max{‖A‖∞; ‖B‖∞}).

So, finally we have: Nn ≤ C1 + C2. Since the sequence (xn, un)n is bounded, it has a subsequence weakly
convergent to (x̄, ū). Since G is affine, it is weakly continuous and so, for all n, (xn, un) ∈ G−1(0), we have
(x̄, ū) ∈ G−1(0). Since K is weakly closed, we also have (x̄, ū) ∈ G−1(0). Since J is concave, it is weakly u.s.c.
and so we obtain J(x̄, ū) ≥ S, and so J(x̄, ū) = S. �
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