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1. Introduction

Let us consider the following one–dimensional heat equation with variable coefficients⎧⎪⎨
⎪⎩

∂x (a(x)∂xz) + b(x)∂xz + c(x)z − ρ(x)∂tz = fχω, 0 < x < 1 , 0 < t < T,

z(0, t) = z(1, t) = 0, 0 ≤ t ≤ T,

z(x, 0) = z0, 0 ≤ x ≤ 1.

(1.1)

Here, z(x, t) is the state and f(x, t) is an interior control that acts on the system over the open set ω ⊂ (0, 1).
The coefficients a, b, c and ρ are assumed to be measurable, bounded and for some K ≥ 1,

K−1 ≤ ρ(x) ≤ K, K−1 ≤ a(x) ≤ K, |b(x)| + |c(x)| ≤ K, a.e. in [0, 1]. (1.2)

For any given z0 in L2(0, 1) and f in L2(ω × [0, T ]), there is only one solution z to (1.1) in C([0, T ]; L2(0, 1)) ∩
L2(0, T ; H1

0(0, 1)). The goal of this paper is to analyze the interior null-controllability of (1.1). Specifically, we
want to solve the following problem:

Given T > 0 and z0 in L2(0, 1), to find f in L2(ω × [0, T ]) such that the solution z to (1.1) satisfies,
z( · , T ) ≡ 0 in (0, 1).

In [11], it is shown that the system (1.1) is null-controllable at any positive time, when the coefficients a
and ρ are Lipschitz in [0, 1]. In this reference, the proof of null-controllability is based on an appropriate
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observability inequality for the adjoint system and it is implied by a global Carleman estimate. When the
coefficients are smooth, the observability inequality can be proved introducing Fourier series and using high
frequency asymptotic formulae for the eigenvalues of the corresponding Stürm-Liouville problem and classical
results on the sums of real exponentials, see [16]. In [8] adopting the approach introduced by D.L. Russel in [18]
(the null controllability of the wave operator at large times implies the null controllability of the heat equation
at all times) it is shown that the system (1.1) is null controllable, when a and ρ have bounded variation in [0, 1].

The main result in this paper is the following.

Theorem 1. Assume that the coefficients a, b, c and ρ are bounded measurable and satisfy (1.2). Then, (1.1)
is null-controllable at time T , for all T > 0 and with controls f in L2(0, T ; H1

0 (ω)).

Let us briefly digress on some relevant consequences of this theorem. The interior null-controllability of (1.1)
is known to imply the boundary null-controllability:

Given T > 0 and z0 in L2(0, 1) there is α in C∞
0 ((0, T ]) such that, the solution to

⎧⎪⎨
⎪⎩

∂x (a(x)∂xz) + b(x)∂xz + c(x)z − ρ(x)∂tz = 0, 0 < x < 1 , 0 < t < T,

z(0, t) = α(t), z(1, t) = 0, 0 ≤ t ≤ T,

z(x, 0) = z0, 0 ≤ x ≤ 1,

verifies z(T ) ≡ 0.
In fact, first we can let the system evolve freely until time T/2 and replace [0, 1]× (0, T ) by [− 1

2 , 1]× (T/2, T )
in (1.1). Next, by Theorem 1, we can find an interior control of the new system over the region (− 1

4 ,− 1
8 ) ×

(T/2, T ) and take as boundary control the restriction of the controlled solution to {0} × [0, T ]. We can also
infer results of observability. In fact, the C∞-interior regularity in the time-variable of solutions of parabolic
equations with time-independent coefficients shows that the boundary control is in C∞

0 ((0, T ]). The latter
and [13] show that the operators mapping the initial data into the interior and boundary control are bounded
from L2[0, 1] into L2(ω × [0, T ]) and into L∞(0, T ) respectively. As is well known, these boundedness results,
combined with standard duality arguments, imply two observability inequalities for the adjoint system:

There is C = C(T, K) such that the inequalities

‖ϕ( · , 0)‖L2(0,1) ≤ C‖ϕ‖L2(ω×(0,T )), ‖ϕ( · , 0)‖L2(0,1) ≤ C‖∂xϕ(0, · )‖L1(0,T )

hold, when ϕ is a solution of the adjoint system

{
∂x (a(x)∂xϕ) − ∂x (b(x)ϕ) + c(x)ϕ + ρ(x)∂tϕ = 0, 0 < x < 1, 0 ≤ t < T,

ϕ(0, t) = ϕ(1, t) = 0, 0 ≤ t ≤ T.

It also implies the uniform null-controllability of 1 − d parabolic equations with rapidly oscillating periodic
coefficients in a bounded interval (homogenization). Thus, extending previous results in [14], which needed
more regular coefficients.

Returning to Theorem 1, in order to prove it, we proceed as follows. First, a change of variables shows that
the internal controllability of the system (1.1) is equivalent to the same question for a system

⎧⎪⎨
⎪⎩

∂2
xz − ρ(x)∂tz = fχω, 0 < x < 1 , 0 < t < T,

z(0, t) = z(1, t) = 0, 0 ≤ t ≤ T,

z(x, 0) = z0, 0 ≤ x ≤ 1,

(1.3)

where ρ is a new measurable function satisfying (1.2), for some new constant only depending on K, which we
shall continue to denote by K.
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Then, if we denote by δ the inradius of the open set ω, that is

δ = sup{r > 0| ∃ξ ∈ ω , (ξ − r, ξ + r) ⊂ ω}, (1.4)

and if e1, e2, . . . , en, . . . and 0 < λ2
1 < λ2

2 < . . . < λ2
m . . . are respectively the eigenfunctions and eigenvalues of

the Stürm-Liouville problem {
e′′ + ρ(x)λ2e = 0, 0 < x < 1,

e(0) = e(1) = 0,
(1.5)

we prove the following:

Theorem 2. Assume that the coefficient ρ satisfies (1.2). Then, there is a constant N , which depends on K
and on δ such that the inequality

∑
λk≤µ

a2
k ≤ NeNµ

∫
ω

|
∑

λk≤µ

akek|2 dx, (1.6)

holds for all µ ≥ 1 and all sequences {ak}.
The analog of this inequality for the eigenfunctions of the Laplace-Beltrami operator on a compact and

smooth Riemannian manifold with a possibly nonempty boundary was proved in [13]. There, G. Lebeau and
L. Robbiano showed that it implies the interior null-controllability of the heat equation over the manifold by
giving an explicit construction of the control function f (see [14], Sect. 5, for a more simplified presentation).

The arguments in [13] show that the same iterative method of construction of the control function f given
in [13] works for the system (1.3), when Theorem 2 holds. Thus, Theorem 1 follows from Theorem 2.

For any given z0 in L2(0, 1) and f in L2(ω× [0, T ]), there is only one solution z to (1.1) in C([0, T ]; L2(0, 1))∩
L2(0, T ; H1

0(0, 1)). The goal of this paper is to analyze the interior null-controllability of (1.1). Specifically, we
want to solve the following problem:

Given T > 0 and z0 in L2(0, 1), to find f in L2(ω × [0, T ]) such that the corresponding solution z to (1.1)
satisfies, z( · , T ) ≡ 0 in (0, 1).

To prove Theorem 2 we start by following the arguments in [13]. In particular, given µ ≥ 1 and a sequence
of real numbers a1, a2, . . . , an, . . . , we set

u(x, y) =
∑

λk≤µ

akek(x) cosh (λky).

This function satisfies ⎧⎪⎨
⎪⎩

∂2
xu + ∂y (ρ(x)∂yu) = 0, 0 < x < 1 , y ∈ R,

u(0, y) = u(1, y) = 0, y ∈ R,

∂yu(x, 0) = 0, 0 < x < 1,

(1.7)

and the proof of Theorem 2 is a consequence of a quantification of the following qualitative result of unique
continuation from the boundary:

Assume that u satisfies (1.7) and u(x, 0) ≡ 0, when x is in ω ⊂ (0, 1).Then, u ≡ 0 in [0, 1]× R.
In [13], the one dimensional interval [0, 1] is replaced by a compact and smooth manifold M , ∂2

x by the corre-
sponding Laplace-Beltrami operator on M and the authors work out the quantification of a similar qualitative
property of boundary unique continuation for the elliptic operator, 	 + ∂2

y , where 	 is the Laplace-Beltrami
operator on M . To carry out this quantification they use two Carleman inequalities. Those methods require
that the elliptic operator involved has Lipschitz second order coefficients and so, they can not be applied to the
elliptic operator in (1.7), which has measurable coefficients.
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On the other hand, if σ is a 2 × 2 symmetric and measurable matrix in the plane verifying the ellipticity
condition

K−1|ξ|2 ≤ σ(x, y)ξ · ξ ≤ K|ξ|2, when (x, y) and ξ ∈ R
2, (1.8)

the weak solutions of the equation
∇ · (σ(x, y)∇u) = 0, (1.9)

satisfy the strong unique continuation property:
If a W 1,2

loc -solution of (1.9) on a connected open set Ω has a zero of infinite order at an interior point, then
it must be zero.

See [2]. This qualitative result of strong unique continuation for uniformly elliptic equations in two indepen-
dent variables is based on the connection between the solutions of these equations and the theory of quasiregular
mappings [4] and on the so-called Ahlfors-Bers representation [1] of such mappings. Here, we describe some
quantifications of this qualitative result and apply them to prove the null-controllability property. In particular,
a “Hadamard’s three circle theorem”, Proposition 1, and a “doubling” type property, Proposition 2, adapted to
the solutions of (1.9).

In Section 2 we recall the results we need from the theory of quasiregular mappings and prove the adapted
Hadamard’s three circle theorem and doubling property. In Section 3 we show how to apply them to prove
Theorem 2, also using an estimate of continuation from Cauchy data for solutions of (1.9) Lemma 1, which
we adapt from [3]. It may be worth noting that the approach used for the proof of Lemma 1, is based on a
variation on the classical principle of majorization by harmonic measure [19], Chapter VIII, Section 1, p. 301,
which in turn has its roots in arguments due to Carleman [6], pp. 3–4.

2. Quantitative estimates of unique continuation
with discontinuous coefficients

Throughout the paper, z = x + iy, Ω is a simply connected open set in the plane, Br a circle of radius r
centered at the origin, and

∂zf = 1
2 (∂xf + i∂yf) , ∂zf = 1

2 (∂xf − i∂yf) .

We shall denote by C constants only depending on K, whereas by N we shall denote constants only depending
on K and δ.

When u ∈ W 1,2
loc (Ω) is a weak solution to (1.9), and σ satisfies (1.8) we can associate in a natural fashion,

which generalizes the harmonic conjugate, a new function, the so called stream function v, which satisfies

∇v = Jσ∇u (2.1)

almost everywhere in Ω and is a weak solution to

∇ · ( σ
detσ∇v

)
= 0, in Ω. (2.2)

Here J denotes the matrix representing a 90◦ rotation in the plane

J =
(

0 −1
1 0

)
.

Moreover, letting f = u + iv, we have f ∈ W 1,2
loc and satisfies

∂zf = µ∂zf + ν∂zf, almost everywhere in Ω, (2.3)

where the complex valued functions µ and ν can be explicitly expressed in terms of σ, see [2], and verify

|µ| + |ν| ≤ K−1
K+1 < 1, almost everywhere in Ω. (2.4)
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That is, f is a K-quasiregular mapping.
To give an idea of why these results hold, observe that the vector field

Jσ∇u

is, in the weak sense, curl-free in Ω. To verify that v is a W 1,2
loc -solution of (2.2), observe that, from (2.1), one

obtains that the vector field
σ

detσ∇v = Jσ−1J t∇v

is, in the weak sense, divergence-free in Ω.
By the Ahlfors-Bers representation [1] (see also [4] and [5], Chap. II.6, pp. 258–259), any K-quasiregular

mapping f in B1 can be written as
f = F ◦ χ,

where F is holomorphic in B1 and ζ = χ(z) is a K-quasiconformal homeomorphism from B1 onto B1, which
verifies, χ(0) = 0, χ(1) = 1,

C−1|z1 − z2| 1
α ≤ |χ(z1) − χ(z2)| ≤ C|z1 − z2|α, when z1, z2 ∈ B1 (2.5)

for some 0 < α < 1 and C ≥ 1 depending only on K.
We now recall the Hadamard’s three-circle theorem [17].

Theorem 3. Let F be a holomorphic function of a complex variable in the ball Br2 and M(r) = maxBr |F |.
Then, the following is valid for 0 < r1 ≤ r ≤ r2,

log M(r) ≤ log r2
r

log r2
r1

log M(r1) +
log r

r1

log r2
r1

log M(r2).

The meaning of this inequality is that log M(r) is a convex function of the variable log r.
Let u ∈ W 1,2

loc (BR) be a weak solution to (1.9) and let f : BR −→ C be the associated K-quasiregular
mapping. Rescaling (2.5) we have that f = F ◦ χ, where F is holomorphic in BR and χ : BR −→ BR is a
K-quasiconformal homeomorphism, which verifies

RC−1| z
R | 1

α ≤ |χ(z)| ≤ RC| z
R |α (2.6)

where C is the same as in (2.5).
Define

Br = {z ∈ BR : |χ(z)| < r} (2.7)
and

m(r) = max
Br

|f(z)|, when r < R. (2.8)

Then, through the change of coordinates, ζ = χ(z), the Hadamard’s three circle theorem takes the form: the
function log m(r) is a convex function of log r,

log m(r) ≤ log r2
r

log r2
r1

log m(r1) +
log r

r1

log r2
r1

log m(r2), when 0 < r1 ≤ r ≤ r2 < R, (2.9)

and the sets Br, almost look like balls. In particular,

BR = BR, B
R( r

CR)
1
α
⊂ Br ⊂ BR(Cr

R )α , when r < R, (2.10)

and C is the same constant appearing in (2.6). Note incidentally that (2.9) implies a weak unique continuation
property, that is, if m(r1) = 0 for some small r1, then m(r) = 0 for all r < R.
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On the other hand, the difference quotients of convex functions are nondecreasing functions of their argu-
ments. This implies that, if f is not identically zero,

log m( r
2 ) − log m( r

4 )
log r

2 − log r
4

≤ log m(R
2 ) − log m(R

4 )
log R

2 − log R
4

, when r ≤ R,

and thus,
m( r

2 )
m( r

4 )
≤ m(R

2 )
m(R

4 )
, when r < R. (2.11)

We may prescribe that the the stream function v of u satisfies v(0) = 0. We have that F = u+ iv is holomorphic
in the ζ = ξ + iη coordinates in BR, hence, solving the Cauchy-Riemann equations,

v(ξ, η) =
∫ η

0

uξ(ξ, s) ds −
∫ ξ

0

uη(t, 0) dt, in BR.

This formula and interior estimates for harmonic functions [10] show that in the ζ-coordinates we have,

‖u‖L∞(Br) ≤ max
Br

|F (ζ)| ≤ C‖u‖L∞(B2r), when r ≤ R

2
,

where C > 0 is an absolute constant. In the z-coordinates, the last inequality reads as

‖u‖L∞(Br) ≤ max
Br

|f(z)| ≤ C‖u‖L∞(B2r), when r ≤ R

2
, (2.12)

and from (2.12), (2.9) we obtain:

Proposition 1. Let u ∈ W 1,2
loc (BR) be a weak solution to (1.9) and let Br, 0 < r ≤ R be the open sets introduced

in (2.7), then we have

‖u‖L∞(B r
2
) ≤ C‖u‖θ

L∞(Br1)‖u‖1−θ
L∞(Br2), when r1 ≤ r ≤ r2 < R , θ =

log r2
r

log r2
r1

· (2.13)

And also, from (2.11):

Proposition 2. Let u and Br be as above. If u is not identically zero, then we have

‖u‖L∞(Br)

‖u‖L∞(B r
2
)
≤ C

‖u‖L∞(BR)

‖u‖L∞(BR
4

)
, when r ≤ R. (2.14)

These are respectively a Hadamard’s three circle theorem and a doubling property adapted to the solution
u through the family of “balls” Br.

3. Proof of Theorem 2

First let us note that replacing z in (1.1) by z1 = e−K2tz, we have

∂x (a(x)∂xz1) + b(x)∂xz1 +
(
c(x) − K2ρ(x)

)
z1 − ρ(x)∂tz1 = e−K2tfχω. (3.1)

Introducing

B(x) =
∫ x

0

b(s)
a(s)

ds,
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we observe that (3.1) can be rewritten as

e−B(x)∂x

(
a(x)eB(x)∂xz1

)
+

(
c(x) − K2ρ(x)

)
z1 − ρ(x)∂tz1 = e−K2tfχω.

Because c − K2ρ is nonpositive in [0, 1], the solution w to

{
e−B(x) d

dx

(
a(x)eB(x) dw

dx

)
+

(
c(x) − K2ρ(x)

)
w = 0,

w(0) = w(1) = 1,

verifies 0 < w(x) ≤ 1 in [0, 1] and replacing z1 with the new dependent variable z2 = z1/w, we have

e−B(x)∂x

(
a(x)w2(x)eB(x)∂xz2

)
− ρ(x)w2(x)∂tz2 = w(x)fe−K2tχω.

Setting

L =
∫ 1

0

a−1(s)w−2(s)e−B(s) ds, y = 1
L

∫ x

0

a−1(s)w−2(s)e−B(s) ds,

ρ̃(y) = L2a(x)w4(x)e2B(x)ρ(x), f̃(y, t) = L2a(x)w3(x)e2B(x)f(x, t),

and writing
z̃(y, t) = z2(x, t), χω̃(y) = χω(x),

the new function z̃, is a solution of the system⎧⎪⎨
⎪⎩

∂2
y z̃ − ρ̃(y)∂tz̃ = f̃(y, t)χω̃(y), 0 < y < 1 , 0 < t < T,

z̃(0, t) = z̃(1, t) = 0, 0 ≤ t ≤ T,

z̃(y, 0) = z0(x)/w(x), 0 ≤ y ≤ 1.

All together,
z̃(y, t) = e−K2tz(x, t)/w(x)

and if we rename the new variables, sets or functions z̃, y, ω̃, ρ̃, f̃ and z0/w as z, x, ω, ρ, f and z0 respectively,
the new function z is a solution to a system of the form (1.3).

Considering the associated Stürm-Liouville problem (1.5), we extend the eigenfunctions ej, j ≥ 1, to [−1, 1]
by an odd reflection in 0, similarly we extend ρ by an even reflection in 0. Next, we continue these new functions
to all of R as periodic functions of period 2. The extended ρ verifies (1.2), ej ∈ C1,1(R) and e′′j + ρ(x)λ2

jej = 0,
almost everywhere in R.

Being the change of variable y = y(x) bi–Lipschitz, with Lipschitz constants which only depend on K, the
open set ω is transformed into a new open subset of (0, 1) whose inradius is comparable to δ. We continue to
denote the transformed set and its inradius by ω and δ, respectively. Also we can assume, up to a translation
along the real line, (−δ, δ) ⊂ ω ⊂ (−1, 1).

Given µ ≥ 1 and a sequence of real numbers a1, a2, . . . an, . . . , the function

u(x, y) =
∑

λk≤µ

akek(x) cosh (λky),

verifies {
∂2

xu + ∂y (ρ(x)∂yu) = 0, in R2,

∂yu(x, 0) = 0, in R
(3.2)
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and its stream function v can be chosen so that, v ∈ W 1,2
loc (R2),

{
∂xv = −ρ(x)∂yu,

∂yv = ∂xu,
and

{
∂x

(
1

ρ(x)∂xv
)

+ ∂2
yv = 0, in R2,

v(x, 0) = 0, in R.

Let f = u+iv, consider the family of “balls” Br associated to f in Section 2 at scale R and choose R = 2 (4C)
1
α ,

where α and C are the constants in (2.6) and (2.10). With this choice, BR
4

⊃ B2. The interior bounds for
subsolutions of elliptic equations [10] give

‖u‖L∞(BR) ≤ C
R‖u‖L2(B2R).

These and the orthogonality of the eigenfunctions ej, j ≥ 1, imply that

‖u‖L∞(BR)

‖u‖L∞(BR
4

)
≤ eCµ. (3.3)

An iteration of (2.14) and (3.3) give

‖u‖L∞(BR) ≤ eCkµ‖u‖L∞(B R
2k

), when k ≥ 1,

and from (2.10), there is k = k(δ, K) such that, B R

2k
⊂ B δ

2
. Thus,

‖u‖L∞(B1) ≤ eNµ‖u‖L∞(B δ
2
). (3.4)

The following inequality, which is an estimate on the continuation from Cauchy data, holds.

Lemma 1. There are constants 0 < θ < 1 and C > 0, only depending on K, such that the inequality

‖u‖L∞(B r
2
) ≤ Cr−

θ
2 ‖u( · , 0)‖θ

L2(−r,r)‖u‖1−θ
L∞(B4r)

holds, when r ≤ 1.

The Lemma and (3.4) give
‖u‖L∞(B1) ≤ NeNµ‖u( · , 0)‖L2(−δ,δ),

which proves Theorem 2.

Proof of Lemma 1. The proof is essentially contained in [3], Theorem 4.5. For the sake of completeness we
summarize here the argument.

Recalling that f = u + iv is analytic in the ζ-variable, we have that log |f(ζ)| is subharmonic in BR and
consequently one can verify that log |f(z)| is a subsolution for an elliptic operator in divergence form E with a
matrix of coefficients verifying (1.8). For r > 0, let w be the solution to

⎧⎪⎨
⎪⎩

Ew = 0, in B+
r ,

w = 1, in (−r, r),
w = 0, in ∂B+

r \ (−r, r).
(3.5)
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On ∂B+
r we have

log |f | ≤ w log ‖u( · , 0)‖L∞(−r,r) + (1 − w) log ‖f‖L∞(Br)

and the maximum principle implies that the same inequality also holds in B+
r . The Hölder continuity at the

boundary of w and the Harnack’s inequality [10] show that there is η ∈ (0, 1), which only depends on K, such
that w(z) ≥ η in B+

r
2
.

Using v(0) = 0, (2.1) and interior bounds for elliptic equations [10], we have

‖v‖L∞(Br) ≤ C‖∇v‖L2(B2r) ≤ C‖∇u‖L2(B2r) ≤ C‖u‖L∞(B4r).

These imply
‖u‖L∞(B r

2
) ≤ C‖u( · , 0)‖η

L∞(−r,r)‖u‖1−η
L∞(B4r). (3.6)

For every α ∈ (0, 1], we have the interpolation inequality

‖ϕ‖L∞(−r,r) ≤ C
(
‖ϕ‖β

L2(−r.r)|ϕ|1−β
Cα(−r,r) + r−

1
2 ‖ϕ‖L2(−r.r)

)
, (3.7)

where β = 2α
1+2α , C > 0 only depends on α and |ϕ|Cα(−r,r) denotes the standard Cα seminorm. Next, we use

the interior Hölder bound for u, [10],

|u|Cα(Br) ≤ Cr−α‖u‖L∞(B4r), (3.8)

with C > 0 and α ∈ (0, 1] only depending on K. Combining (3.6) with (3.7) and (3.8), we obtain the thesis
with θ = βη.

The interpolation inequality (3.7) can be proved essentially along the same lines as the interpolation inequal-
ities in [10], Section 6.8. �
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[16] A. López and E. Zuazua, Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic

density. Ann. I.H.P. - Analyse non linéaire 19 (2002) 543–580.
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