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CONTROLLABLITY OF A QUANTUM PARTICLE
IN A 1D VARIABLE DOMAIN

Karine Beauchard
1

Abstract. We consider a quantum particle in a 1D infinite square potential well with variable length.
It is a nonlinear control system in which the state is the wave function φ of the particle and the control
is the length l(t) of the potential well. We prove the following controllability result : given φ0 close
enough to an eigenstate corresponding to the length l = 1 and φf close enough to another eigenstate
corresponding to the length l = 1, there exists a continuous function l : [0, T ] → R

∗
+ with T > 0, such

that l(0) = 1 and l(T ) = 1, and which moves the wave function from φ0 to φf in time T . In particular,
we can move the wave function from one eigenstate to another one by acting on the length of the
potential well in a suitable way. Our proof relies on local controllability results proved with moment
theory, a Nash-Moser implicit function theorem and expansions to the second order.
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1. Introduction

1.1. Main result

We consider a quantum particle in a potential well with variable length l(τ), where

l : [0,+∞) → (0,+∞)

τ �→ l(τ)

is a continuous function of the time variable τ . At any time τ , the particle is represented by a wave function
φ(τ, z),

φ : [0,+∞) × (0, l(τ)) → C

(τ , z) �→ φ(τ, z)

where z is the space variable. The physical meaning of |φ(τ, z)|2 dz is the probability of the particle to be in
an elementary volume dz surrounding the position z at time τ , thus, at any time τ , the wave function defines
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a point on the L2((0, l(τ)),C)-sphere ∫ l(τ)
0

|φ(τ, z)|2dz = 1. (1.1)

This wave function is solution of the following Schrödinger equation

(Σ̃)

{
i∂φ∂τ (τ, z) = −∂2φ

∂z2 (τ, z), τ ∈ R∗
+, z ∈ (0, l(τ)),

φ(τ, 0) = φ(τ, l(τ)) = 0, τ ∈ R∗
+.

The system (Σ̃) is a control system in which
• the state is the wave function φ, with (1.1) for every τ ;
• the control is the function l, with l(0) = l(τf ) = 1, where τf is the final time.

In order to work on a more convenient control system, we perform changes of space variable z → x, time
variable τ → t, wave function φ(τ, z) → ψ(t, x), and control l → u which are presented in Section 1.3. They
lead to the equivalent nonlinear control system

(Σ)

{
i∂ψ∂t (t, x) = −∂2ψ

∂x2 (t, x) + [u̇(t) − 4u2(t)]x2ψ(t, x), t ∈ R∗
+, x ∈ (0, 1),

ψ(t, 0) = ψ(t, 1) = 0, t ∈ R
∗
+

in which
• the state variable is the wave function ψ, with

∫ 1
0
|ψ(t, x)|2dx = 1 for every t;

• the control is the real valued time depending function u, with u(0) = u(tf ) = 0,
∫ tf
0
u(s)ds = 0 where

tf is the final time.

The system (Σ) is easier to deal with than (Σ̃) because it is posed on a fixed space domain.

Definition 1. Let T1 < T2 be two real numbers and u ∈ C1([T1, T2],R). A function ψ is a solution of (Σ) if
ψ belongs to C0([T1, T2], H2 ∩H1

0 ((0, 1),C)) ∩C1([T1, T2], L2((0, 1),C)) and satisfies the first equality of (Σ) in
L2((0, 1),R), for every t ∈ (T1, T2). Then, we say that (ψ, u) is a trajectory of the control system (Σ).

We give a sense to the solution of the initial problem (Σ̃), posed on a variable domain, by using this definition
of solution for the new system (Σ) posed on a fixed domain : given a regular function l : [0,+∞) → (0,+∞)
(regular enough so that the corresponding function u is C1), a function φ(τ, z) is said to be a solution of (Σ̃) if
the corresponding function ψ(t, x) through the changes z → x, τ → t, l → u is a solution of (Σ) in the sense of
the previous definition.

Let us introduce the unitary L2((0, 1),C)-sphere S and the operator A defined by

D(A) := H2 ∩H1
0 ((0, 1),C), Aϕ := −ϕ′′.

For every n ∈ N∗,
ϕn(x) :=

√
2 sin(nπx) (1.2)

is an eigenvector of A associated to the eigenvalue λn := (nπ)2 and the family (ϕn)n∈N∗ is orthonormal in
L2((0, 1),C). For every n ∈ N∗, the function

ψn(t, x) := ϕn(x)e−iλnt

is a solution of (Σ) with u ≡ 0. For s > 0, we introduce the space

Hs
(0)((0, 1),C) := D

(
As/2
)
.
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Since we will work with control functions u with zero mean value, we introduce, for s � 0, the spaces

Hs
0((0, T ),R) :=

{
u ∈ Hs

0((0, T ),R);
∫ T

0

u(t) dt = 0

}
.

We write L2((0, T ),R) instead of H0((0, T ),R). The main result of this article is the following one.

Theorem 1. Let ε > 0. For every n ∈ N∗, there exists ηn > 0 such that, for every n0, nf ∈ N∗, for every
ψ0, ψf ∈ H5+ε

(0) ((0, 1),R) ∩ S with

‖ψ0 − ϕn0‖H5+ε < ηn0 , ‖ψf − ϕnf
‖H5+ε < ηnf

,

there exists a time T and a trajectory (ψ, u) of (Σ) on [0, T ] which satisfies ψ(0) = ψ0, ψ(T ) = ψf , and
u ∈ H2

0 ((0, T ),R).

Thus, we also have the following important corollary.

Corollary 1. For every n0, nf ∈ N∗, there exists a time T and a trajectory (ψ, u) of (Σ) on [0, T ] which satisfies
ψ(0) = ϕn0 , ψ(T ) = ϕnf

and u ∈ H2
0 ((0, T ),R).

Using the changes of variables presented in Section 1.3 this corresponds to the following controllability result
for the initial system.

Theorem 2. For every n0, nf ∈ N∗, there exists T > 0 and a trajectory (φ, l) of (Σ̃) on [0, T ] such that
l ∈ C2([0, T ],R∗

+), l(0) = l(T ) = 1, φ(0) = ϕn0 , φ(T ) = ϕnf
.

In Section 1.2, one mentions some other works about the controllability of Schrödinger equations using other
methods.

In Section 1.3, one details the changes of variables and functions that transform (Σ̃) into (Σ).
In Section 1.4, one presents a previous non controllability result for (Σ) and explain why this negative result

can hold at the same time as the affirmative controllability result (Th. 1).
In Section 1.5, one gives a sketch of the proof: the global strategy is a compactness argument that needs

local controllability results around many periodic trajectories. All those local results are proved thanks to the
linearization principle for control problems. However the controllability of the linearized systems does not hold
in suitable functional spaces, because of a loss of regularity, so, one cannot conclude with the inverse mapping
theorem, and we use a Nash-Moser theorem. For some of those trajectories, the linearized system misses certain
directions (it is controllable ‘up to codimension one’) and we exploit second order terms.

Sections 2–6 are dedicated to the different steps of the proof, announced in Section 1.5.
Finally, Section 7 gives some remarks and conjectures about this work.

1.2. A brief literature review

An good introduction to control questions for Schrödinger equations is [38].
First, the controllability of finite dimensional quantum systems (i.e. modeled by an ordinary differential

equation) is well understood. Let us consider the quantum system

i
dX
dt

= H0X + u(t)H1X, (1.3)

where X ∈ Cn is the state, H0, H1 are n ∗ n hermitian matrices, and t �→ u(t) ∈ R is the control. The
controllability of (1.3) is linked to the rank of the Lie algebra spanned by H0 and H1 (see for instance [1,3,11]).
Another interpretation of the controllability of (1.3) is the connectivity graph criterion [37].

In infinite dimension, there are cases where the iterated Lie brackets provide the right intuition. For instance,
it holds for the harmonic oscillator [35]. However, the Lie brackets are often less powerful in infinite dimension
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than in finite dimension, thus, the exact controllability of an infinite dimensional bilinear system (i.e. modeled
by a partial differential equation) is a more difficult problem.

Results on distributed and boundary exact controllability for linear Schrödinger equations are the subjects
of [31–34].

Optimal control techniques have been investigated for Schrödinger equations with a non linearity of Hartee
type in [5, 12] and [7]. An algorithm for the calculus of such optimal control is studied in [6].

Finally, non controllability results are proved in [37] and [28] for some particular linear and non linear
Schrödinger equations. The result of [37] is discussed in Section 1.4.

1.3. Changes of time variable, space variable and wave function

In order to get a problem posed on a fixed domain, we consider the change of space variable and function

x := 1
l(t)z,

ζ(τ, x) := φ(τ, z).

We get the following system{
i ∂ζ∂τ (τ, x) = − 1

l(τ)2
∂2ζ
∂x2 (τ, x) + i l̇(τ)l(τ)x

∂ζ
∂x(τ, x), τ ∈ R+, x ∈ (0, 1),

ζ(τ, 0) = ζ(τ, 1) = 0.

In order to make disappear the term before the Laplacian, we consider the change of time variable defined by

t :=
∫ τ
0

1
l(σ)2 dσ,

ξ(t, x) := ζ(τ, x),

which gives {
i∂ξ∂t (t, x) = − ∂2ξ

∂x2 (t, x) + i4u(t)x ∂ξ∂x(t, x), t ∈ R+, x ∈ (0, 1),

ξ(t, 0) = ξ(t, 1) = 0,

where u(t) := 1
4 l̇(τ)l(τ), which is equivalent to

l(τ) = exp
(

4
∫ t

0

u(s)ds
)
. (1.4)

Now the change of wave function
ψ(t, x) := ξ(t, x)e−iu(t)x2+2

∫ t
0 u(s)ds

leads to the system (Σ). In order to justify that the controllability of (Σ) gives the controllability of (Σ̃), we
need to prove that the map l �→ u is surjective. For the control problem on (Σ̃) to have a sense, we look for
l : [0, τf ] → R∗

+ continuous with l(0) = l(τf ) = 1, which, together with (1.4) implies
∫ tf
0
u(s)ds = 0, where τf

and tf are linked through the relation

tf =
∫ τf

0

1
l(τ)2

dτ.

In order to have ψ(0) = φ(0) and ψ(tf ) = φ(τf ), we look for u such that u(0) = u(tf ) = 0. In the proof of
Theorem 1, we will get the time T and the control u ∈ H2

0 ((0, T ),R) in the following way

T = mT

u(t) = uk(t− kT ) for every t ∈ [kT, (k + 1)T ] and for every k ∈ {0, ...,m− 1},
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where m is a positive integer, T := 2/π, uk ∈ H2
0 ((0, T ),R) is small. Thus, the following proposition is sufficient.

Proposition 1. Let T > 0 and ε ∈ (0, 1). Let u ∈ C0([0, T ],R) be such that

u(0) = u(T ) =
∫ T

0

u(s)ds = 0, (1.5)

small in the following sense
4‖u‖L1(0,T ) exp(4‖u‖L1(0,T )) < ε (1.6)

8T (1 + ε)
(1 − ε)4

‖u‖L∞(0,T ) exp(4‖u‖L1(0,T )) < 1. (1.7)

We define u on R+ by u ≡ 0 on [T,+∞]. Then, there exists a unique l ∈ C0(R+, [1 − ε, 1 + ε]) solution of

l(τ) = exp

(
4
∫ t(τ)

0

u(s) ds

)
where t(τ) :=

∫ τ
0

1
l(σ)2

dσ.

Proof. The space

Vε := {l ∈ C0(R+, [1 − ε, 1 + ε]); l(0) = 1 and l ≡ 1 on [T (1 + ε)2,+∞)}

is complete for the L∞(R+,R)-norm. For l ∈ Vε, we define Φ(l) : R+ → R, Φ(l)(τ) := exp(4
∫ t(τ)
0

u(s)ds).
Assumption (1.6) justifies that Φ maps Vε into itself, and assumption (1.7) justifies that Φ is a contraction. We
conclude thanks to the Banach fixed point theorem. �

1.4. A previous non controllability result

In [4], Ball, Marsden and Slemrod discuss the controllability of infinite dimensional bilinear control systems
of the form

ẇ(t) = Aw(t) + p(t)B(w(t)), (1.8)
where the state is w and the control is p. Thanks to Baire lemma, they prove the following non controllability
result.

Theorem 3. Let X be a Banach space with dim(X) = +∞. Let A generate a C0-semi group of bounded
linear operators on X and B : X → X be a bounded linear operator. Let w0 ∈ X be fixed and let w(t; p, w0)
denote the unique solution of (1.8) for p ∈ L1

loc((0,+∞),R) with w(0) = w0. The set of states accessible from
w0 defined by

S(w0) := {w(t; p, w0); t � 0, p ∈ Lrloc((0,∞),R), r > 1}
is contained in a countable union of compact subsets of X and, in particular, has dense complement.

As noticed by Turinici in [37], Theorem 3 shows that, for the bilinear control system{
iψ̇ = −ψ′′ + p(t)x2ψ, x ∈ (0, 1),

ψ(t, 0) = ψ(t, 1) = 0
(1.9)

given ψ0 ∈ X := S ∩ H2
(0)((0, 1),C), the set of ψ(t) in X accessible from the initial condition ψ0, by using

controls in p ∈ Lrloc((0,∞),R), r > 1, has dense complement in X . Thus, the system (Σ) is not controllable in
S ∩H2

(0)((0, 1),C), with control functions u in H1
0 ((0, T ),R), T > 0.

However, there is no obstruction for having controllability in other spaces. For example, Theorem 3 does not
apply with

X̃ := H3
(0)((0, 1),C)
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instead of X because the operator B, defined by Bϕ := x2ϕ, does not map X̃ into X̃ .

In this article, we prove local controllability results in H5+ε
(0) ((0, 1),C), with ε > 0 and with control functions

u in H2
0 ((0, T ),R) with T = 2/π. Thus, the negative result proved by G. Turinici relies on a choice of functional

spaces which does not allow controllability. In order to state affirmative controllability results, one must

• either control ψ in H2
(0)((0, 1),C) but with a control functions set larger than H1

0 ((0, T ),R), for example

L2((0, T ),R);
• or control ψ using the control functions set H1

0 ((0, T ),R), but in a smaller space than H2
(0)((0, 1),C),

for example H3
(0)((0, 1),C).

In the regularity assumption H5+ε((0, 1),R), the term +ε is probably only technical. We conjecture that (Σ) is
controllable

• in H3
(0)((0, 1),C) with control functions u in H1

0 ((0, T ),R);

• in H5
(0)((0, 1),C) with control functions u in H2

0 ((0, T ),R);

• in H7
(0)((0, 1),C) with control functions u in H3

0 ((0, T ),R), etc.

Because it is the case for the linearized systems studied in Section 2. This conjectures are open problems.

1.5. Sketch of the proof

The technic used in this proof are very close to the one used in [10]. We extend the use of the Nash-Moser
theorem to a nonlinear control system which is not bilinear.

1.5.1. Global strategy: compactness argument

Thanks to the reversibility of the control system (Σ), in order to get Theorem 1, it is sufficient to prove it
with nf = n0 + 1. We prove it with n0 = 1 and nf = 2 to simplify.

First, we prove the local controllability of (Σ) in H5+ε((0, 1),C), in time T = 2/π or 4/π around the
trajectories (√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3, u ≡ 0

)
,

for every (θ2, θ3) ∈ D := {(x, y) ∈ (0, 1)2, 0 < x+y < 1}∪{(0, 0), (1, 0)}. Then, we know that, for every (θ2, θ3) ∈
D, there exists a nonempty open H5+ε((0, 1),C)-ball B(θ2,θ3) centered at (

√
1 − θ2 − θ3ψ1 +

√
θ2ψ2 +

√
θ3ψ3)(0)

such that (Σ) can be moved in finite time between any two points in B(θ2,θ3).
We conclude thanks to a compactness argument. Let f ∈ C0([0, 1],R) be such that

f(0) = f(1) = 0, 0 � f(x) and 0 � x+ f(x) � 1 for every x ∈ [0, 1].

The curve
[ϕ1, ϕ2] :=

{√
1 − θ − f(θ)ϕ1 +

√
θϕ2 +
√
f(θ)ϕ3; θ ∈ [0, 1]

}
, (1.10)

is compact in H5+ε((0, 1),R) and covered by ∪0�θ�1B(θ,f(θ)) thus, there exists an increasing finite family
(θn)0�n�N such that [ϕ1, ϕ2] is covered by ∪0�n�NBn with Bn := B(θn,f(θn)). We can assume Bn ∩Bn+1 �= ∅
for n = 0, ..., N − 1, B0 = B(0,0) and BN = B(1,0). Given ψ0 ∈ B0 and ψf ∈ BN we can move (Σ) from ψ0 to
ψf in finite time in the following way:

• we move from ψ0 to some point ξ1 ∈ B0 ∩B1 in finite time;
• we move from ξ1 to some point ξ2 ∈ B1 ∩B2, etc.

Remark 1. It would be more natural to use the path

[ϕ1, ϕ2] :=
{√

1 − θϕ1 +
√
θϕ2; θ ∈ [0, 1]

}
(1.11)
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in the compactness argument, as in [10]. We chose the path (1.10) because the local controllability of (Σ) is easier
to be proved around

√
1 − θ2 − θ3ψ1 +

√
θ2ψ2 +

√
θ3ψ3 for (θ2, θ3) ∈ Int(D), than around

√
1 − θψ1 +

√
θ2ψ2

for θ ∈ (0, 1). We detail this additional difficulty in Remark 3 However, the path (1.11) could also be used to
prove Theorem 1, one proposes an adaptation of the present proof in Remark 3 in order to do so.

Now, let us explain the proof of the local controllability of (Σ) around√
1 − θ2 − θ3ψ1 +

√
θ2ψ2 +

√
θ3ψ3

for (θ2, θ3) ∈ D. We explain in the next section that the strategy can be the same for every (θ2, θ3) ∈ Int(D)
but has to be different for (θ2, θ3) ∈ {(0, 0), (1, 0)}.

1.5.2. Different behaviors for the linearized systems

In order to get the local controllability of a nonlinear control system around some trajectory, a classical
approach is the following one :

• first, we prove the controllability of the linearized system around this trajectory;
• then we conclude applying the inverse mapping theorem to the end-point map Θ defined by

Θ : (ψ0, u) �→ (ψ(0), ψ(T )),

where ψ is the solution of (Σ) with control u and initial condition ψ(0) = ψ0.
Thus, it is natural to start with the study of the linearized system of (Σ) around the trajectories(√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3, u ≡ 0

)
for (θ2, θ3) ∈ D, which is

(Σθ2,θ3)

{
i∂Ψ
∂t (t, x) = −∂2Ψ

∂x2 (t, x) + v̇(t)x2
(√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3

)
(t, x), t ∈ R+, x ∈ (0, 1),

Ψ(t, 0) = Ψ(t, 1) = 0.

For z ∈ C, 
(z) (resp. �(z)) denotes the real (resp. imaginary) part of z. For every point ξ in the L2((0, 1),C)-
sphere S, TS(ξ) denotes the tangent space to S at the point ξ,

TS(ξ) :=
{
ϕ ∈ L2((0, 1),C);


(∫ 1

0

ξ(x)ϕ(x)dx
)

= 0
}
.

The system (Σθ2,θ3) is a control system in which
• the state is the function Ψ, with Ψ(t) ∈ TS [(

√
1 − θ2 − θ3ψ1 +

√
θ2ψ2 +

√
θ3ψ3)(t)], for every t;

• the control is the real valued time depending function v, with v(0) = v(T ) =
∫ tf
0
v(s)ds = 0.

In Section 2, we prove the following result.

Theorem 4. Let (θ2, θ3) ∈ Int(D) and T > 2/(3π). The system (Σθ2,θ3) is controllable in time T : for
every Ψ0,Ψf ∈ H3

(0)((0, 1),C) with

Ψ0 ∈ TS
[
(
√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3)(0)

]
,

Ψf ∈ TS
[
(
√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3)(T )

]
,

there exists a trajectory (Ψ, v) of (Σθ2,θ3) with Ψ(0) = Ψ0, Ψ(T ) = Ψf , v ∈ H1
0 ((0, T ),R).
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The system (Σ0,0) is not controllable : for every T > 0 and for every v ∈ H1
0 ((0, T ),R), the solution Ψ of

(Σ0,0) satisfies
〈Ψ(T ), ϕ1〉 = 〈Ψ(0), ϕ1〉e−iλ1T .

Let T > 0, Ψ0,Ψf ∈ H3
(0)((0, 1),C) with

Ψ0 ∈ TS(ψ1(0)), Ψf ∈ TS(ψ1(T )) and �(〈Ψf , ϕ1〉) = �(〈Ψ0, ϕ1〉e−iλ1T ).

There exists a trajectory (Ψ, v) of (Σ0,0) with Ψ(0) = Ψ0, Ψ(T ) = Ψf , v ∈ H1
0 ((0, T ),R).

For the linear system (Σ0,0), we can control all the components 〈Ψ(t), ϕk〉 for k � 2 and we cannot control
�〈Ψ(t), ψ1(t)〉. We call this situation controllability up to codimension one, as in [10]. For the linearized system
(Σ1,0) around (ψ2, u ≡ 0), we can control all the components 〈ψ(t), ϕk〉 for k ∈ N∗, k �= 2, and we cannot control
�〈Ψ(t), ψ2(t)〉.

1.5.3. Local controllability around
√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3 for (θ2, θ3) ∈ Int(D).

The goal of Section 4, is the proof of the following result.

Theorem 5. Let (θ2, θ3) ∈ Int(D), T := 2/π and ε be an arbitrary positive real number. There exist C > 0
and a neighborhood V0 (resp. Vf ) of (

√
1 − θ2 − θ3ψ1 +

√
θ2ψ2 +

√
θ3ψ3)(0) (resp. (

√
1 − θ2 − θ3ψ1 +

√
θ2ψ2 +√

θ3ψ3)(T )) in S ∩H5+ε
(0) ((0, 1),C) such that, for every ψ0 ∈ V0, ψf ∈ Vf , there exists a trajectory (ψ, u) of (Σ)

with ψ(0) = ψ0, ψ(T ) = ψf , u ∈ H2
0 ((0, T ),R), moreover

‖u‖
H2

0((0,T ),R)
� C[‖ψ0 − (

√
1 − θ2 − θ3ψ1 +

√
θ2ψ2 +

√
θ3ψ3)(0)‖H5+ε

+‖ψf − (
√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3)(T )‖H5+ε ].

Remark 2. Theorem 5 is written with T = 2/π because, in this case, (
√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3)(0) =

(
√

1 − θ2 − θ3ψ1+
√
θ2ψ2+

√
θ3ψ3)(T ), and this condition is needed in the compactness argument (see Sect. 1.5.1).

However, this theorem may hold with other values of T . This is discussed in Section 7.2.

The first part of Theorem 4 is not sufficient to conclude the local controllability of (Σ) around
√

1 − θ2 − θ3ψ1+√
θ2ψ2 +

√
θ3ψ3 for (θ2, θ3) ∈ Int(D), by applying the classical inverse mapping theorem. Indeed, the end point

map Φ is well defined and of class C1 between the following spaces

Φ : [S ∩H2
(0)((0, 1),C)] ×H1

0 ((0, T ),R) → [S ∩H2
(0)((0, 1),C)] × [S ∩H2

(0)((0, 1),C)],

Φ : [S ∩H3
(0)((0, 1),C)] ×H2

0 ((0, T ),R) → [S ∩H3
(0)((0, 1),C)] × [S ∩H3

(0)((0, 1),C)].
In order to apply the inverse mapping theorem to the map Φ, we need to control the linearized system around
(
√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3, u ≡ 0)

• either in H2
(0)((0, 1),C) with control functions in H1

0 ((0, T ),R);

• or in H3
(0)((0, 1),C) with control functions in H2

0 ((0, T ),R),

but it is not possible (see Prop. 2). Theorem 4 provides a right inverse dΦ(
√

1 − θ2 − θ3ϕ1+
√
θ2ϕ2+

√
θ3ϕ3, 0)−1

defined between the following spaces

H3
(0)((0, 1),C) ×H3

(0)((0, 1),C) → H3
(0)((0, 1),C) ×H1

0 ((0, T ),R).

We lose regularity in the controllability of the linearized system: the control function cannot be regular enough
to apply the classical inverse mapping theorem.

We prove Theorem 5 by applying a Nash-Moser theorem stated in Section 3, and inspired from [26]. A similar
version of this theorem is used in [8–10]. In Section 4.1, we give the context for the application of this theorem.
In Sections 4.2, 4.3 and 4.4, we check its assumptions.
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1.5.4. Local controllability around ψ1: expansion to the second order

The goal of Section 5 is the proof of the following result.

Theorem 6. Let T := 2/π and ε > 0. There exist C > 0 and a neighborhood V0 (resp. Vf ) of ψ1(0) (resp.
ψ1(2T )) in S ∩H5+ε

(0) ((0, 1),C) such that, for every ψ0 ∈ V0, ψf ∈ Vf , there exists a trajectory (ψ, u) of (Σ) with

ψ(0) = ψ0, ψ(2T ) = ψf , u ∈ H2
0 ((0, 2T ),R), moreover

‖u‖
H2

0((0,2T ),R)
� C[‖ψ0 − ψ1(0)‖H5+ε + ‖ψf − ψ1(2T )‖H5+ε ].

Again, for T = 2/π, we have ψ1(0) = ψ1(2T ) = ϕ1, but this theorem is written in this way in order to discuss
its generalization with T �= 2/π in Section 7.2. The same result holds with everywhere ψ2 instead of ψ1.

Our strategy is in two steps. First, in Section 5.1, we state a local controllability up to codimension one result
of (Σ) around ψ1. Then, in Section 5.2, we justify that the second order term d2Φ(ϕ1, 0) allows to move in the
two directions ±iψ1(T ) which are missed by the linearized system. Finally, in Section 5.3 we prove Theorem 6,
thanks to the intermediate value theorem.

These techniques have already been used by Coron and Crépeau in [18]. In their situation, the second order
term was not sufficient to conclude, they used the third order term.

The local controllability up to codimension one of (Σ) stated in Section 5.1 is proved in Section 6 by applying
a Nash-Moser theorem stated in Section 3.

Remark 3. It would be more natural to use the path

[ϕ1, ϕ2] :=
{√

1 − θϕ1 +
√
θϕ2, θ ∈ [0, 1]

}
in the compactness argument presented in Section 1.5.1. However, for θ ∈ (0, 1), the linearized system of
(Σ) around (

√
1 − θψ1 +

√
θψ2, u ≡ 0) is not controllable: as in the case θ ∈ {0, 1}, it misses two directions.

Expansions to the second order would probably also give the local controllability inH5+ε((0, 1),C) of (Σ) around√
1 − θψ1 +

√
θψ2 for θ ∈ (0, 1), with control functions u ∈ H2

0 ((0, 4/π),R).

2. Controllability of the linear system (Σθ2,θ3)

The goal of this section is the proof of Theorem 4.

Let (θ2, θ3) ∈ D, T > 0 and Ψ be a solution of (Σθ2,θ3) for some v ∈ H1
0 ((0, T ),R) with Ψ(0) = 0. For every

t ∈ [0, T ], we have
Ψ(t) =

∑∞
k=1 yk(t)ϕk where yk(t) := 〈Ψ(t), ϕk〉

and 〈., .〉 denotes the scalar product on L2((0, 1),C). The partial differential equation satisfied by Ψ provides,
for every k ∈ N∗, the following expression

yk(t) = −i
∫ t

0

v̇(τ)
(√

1 − θ2 − θ3akei(λk−λ1)τ +
√
θ2bkei(λk−λ2)τ +

√
θ3ckei(λk−λ3)τ

)
dτe−iλkt,

where
ak :=
〈
x2ϕ1, ϕk

〉
, bk :=

〈
x2ϕ2, ϕk

〉
, ck :=

〈
x2ϕ3, ϕk

〉
. (2.1)

Let Ψf ∈ H2
(0)((0, 1),C) be such that

Ψf ∈ TS
[(√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3

)
(T )
]
. (2.2)
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The equality Ψ(T ) = Ψf is equivalent to: for every k ∈ N∗,

√
1 − θ2 − θ3ak

∫ T
0 v̇(τ)ei(λk−λ1)τdτ +

√
θ2bk
∫ T
0 v̇(τ)ei(λk−λ2)τdτ +

√
θ3ck
∫ T
0 v̇(τ)ei(λk−λ3)τdτ

= i 〈Ψf , ϕk〉 eiλkT .
(2.3)

The explicit expression (1.2) provides, for every k, j ∈ N∗,

〈
x2ϕj , ϕk

〉
=

⎧⎨⎩
(−1)k+j8kj

π2(k+j)2(k−j)2 , when k �= j,

1
3 − 1

2(kπ)2 , when k = j.
(2.4)

In particular, for every k, j ∈ N∗, 〈x2ϕj , ϕk〉 �= 0.
Let (θ2, θ3) = (0, 0). The relation (2.3) gives the following trigonometric moment problem∫ T

0

v̇(t)ei(λk−λ1)t dt =
i

〈x2ϕ1, ϕk〉
〈Ψf , ϕk〉eiλkT , for every k ∈ N

∗. (2.5)

A necessary condition for the existence of a solution v ∈ H1
0 ((0, T ),R) is 〈Ψf , ϕ1〉 = 0. Under this assumption,

this moment problem has a solution v ∈ H1
0 ((0, T ),R) for every T > 0, as soon as the right hand side of (2.5)

belongs to l2(N∗,C) (see [30], Th. 1.2.18), which is the case when Ψf ∈ H3
(0)((0, 1),C).

The case (θ2, θ3) = (1, 0) can be treated in the same way.

Now, let us assume (θ2, θ3) ∈ Int(D). The relation (2.3) is satisfied, for instance, when⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T
0 v̇(t)ei(λ2−λ1)t dt = 1

a2
√

1−θ2−θ3 (i〈Ψf , ψ2(T )〉 −
√
θ3b3C)∫ T

0
v̇(t)ei(λ3−λ1)t dt = 1

a3
√

1−θ2−θ3 (i〈Ψf , ψ3(T )〉 −
√
θ2b3C)∫ T

0
v̇(t)ei(λ3−λ2)t dt = C∫ T

0
v̇(t)ei(λk−λ1)t dt = i

√
1−θ2−θ3
ak

〈Ψf , ψk(T )〉, ∀k � 4,∫ T
0 v̇(t)ei(λk−λ2)t dt = i

√
θ2
bk

〈Ψf , ψk(T )〉, ∀k � 4,∫ T
0 v̇(t)ei(λk−λ3)t dt = i

√
θ3
ck

〈Ψf , ψk(T )〉, ∀k � 4,

(2.6)

where C is a complex number with


(C) :=
1

2b3
√
θ2θ3

�
(〈

Ψf ,
(√

1 − θ2 − θ3ψ1 −
√
θ2ψ2 −

√
θ3ψ3

)
(T )
〉)

.

This trigonometric moment problem has a solution v ∈ H1
0 ((0, T ),R), as soon as the right hand side belongs

to l2 and T > 2/(3π) (see [30], Th. 1.2.18), which is the case when Ψf ∈ H3
(0)((0, 1),C). The assumption

T > 2/(3π) corresponds to

T >
2π
D

where D := lim inf
j→+∞

(ωj+1 − ωj) = λ2 − λ1 = 3π2

and (ωj)j∈N is the increasing sequence of the frequencies in the trigonometric moment problem (2.6).
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Remark 4. The minimal time for the controllability of the linear system (Σθ2,θ3), with (θ2, θ3) ∈ Int(D),
may not be 2/(3π). We conjecture that (Σθ2,θ3) is controllable in any positive time T > 0. The proof of this
conjecture could rely on an Ingham inequality of the form : let T > 0, there exists C > 0 such that, for every
N ∈ N∗ and for every (αj)4�|j|�N ⊂ C,

C

N∑
j=−N

|αj |2 � 1
2T

∫ T
−T

∣∣∣∣∣∣
∑

4�|j|�N
αjzj(t)

∣∣∣∣∣∣
2

dt

with
zj(t) := j3aj

√
1 − θ2 − θ3e−i(λj−λ1)t + j3bj

√
θ2e−i(λj−λ2)t + j3cj

√
θ3e−i(λj−λ3)t, ∀j � 4,

zj(t) := z−j(t), ∀j � −4.
The validity of such an inequality is an open problem.

Remark 5. At this step, we can justify the non controllability of the linearized system around
√

1 − θψ1+
√
θψ2

stated in Remark 3. Let Ψ be a solution of (Σθ,0) with 0 < θ < 1, with some v ∈ H1
0 ((0, T ),R) and such that

Ψ(0) = 0. Let ξθ :=
√

1 − θψ1 −
√
θψ2. Then

〈Ψ(T ), ξθ(T )〉 = 2
√
θ(1 − θ)〈x2ϕ1, ϕ2〉

∫ T
0

v̇(t) sin[(λ2 − λ1)t] dt ∈ R.

This condition is not implied by Ψ(T ) ∈ TS(
√

1 − θψ1 +
√
θψ2)(T )).

Proposition 2. Let T > 0 and (θ2, θ3) ∈ Int(D). The system (Σθ2,θ3) (resp. (Σ0,0)) is not controllable (resp.
controllable up to codimension one) in H3

(0)((0, 1),C) with control functions in H1
0 ∩H2((0, T ),R).

Proof. Let us assume that this is not the case for some (θ2, θ3) ∈ D. Then, for every Ψf ∈ H3
(0)((0, 1),R), there

exists v ∈ H1
0 ∩H2((0, T ),R) which solves (2.3) for every k � 3. However, an integration by parts shows that,

for w ∈ H1((0, T ),R), ∣∣∣∣∣
∫ T

0

w(t)eiλktdt

∣∣∣∣∣ � C

k2
‖w‖H1((0,T ),R).

Thus, there exists a constant C = C(θ) > 0 such that, for every Ψf ∈ H3
(0)((0, 1),R),

|〈Ψf , ϕk〉| � C

k5
·

We get a contradiction by considering, for instance, the function Ψf ∈ H4
(0)((0, 1),C) with Ψ(4)

f = f and
f ∈ L2((0, 1),C) is defined by

f :=
∑
k∈Q

1√
k
ϕk, where Q := {m2;m ∈ N

∗}. �

3. The Nash-Moser theorem used

In order to get local controllability for the nonlinear system (Σ) around
√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3,

we use a Nash-Moser theorem inspired from Hörmander’s one in [26]. The introduction of a projection P in this
statement introduces changes in the proof, so, we repeat it completely. Similar statements has already been
used in [8–10]. We refer to [2] for another presentation and other applications of this theorem, the authors also
explain how to detect the “Nash-Moser symptom”.
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We consider a family of Hilbert spaces (Ea)a∈[2,8] with continuous injections Eb → Ea of norm � 1 when
b � a. We suppose that we have linear operators Sθ : E2 → E8 for θ � 1. We also assume there exists a
constant K > 0 such that, for every a, b ∈ [2, 8] and for every u ∈ Ea,

‖Sθu‖b � K‖u‖a when b � a, (3.1)

‖Sθu‖b � Kθb−a‖u‖a when b > a, (3.2)
‖u− Sθu‖b � Kθb−a‖u‖a when b < a, (3.3)∥∥∥∥ d

dθ
Sθu

∥∥∥∥
b

� Kθb−a−1‖u‖a. (3.4)

We fix a sequence (θj)j∈N of the form θj := (j + 1)δ where 0 < δ and we set, for every j ∈ N, ∆j := θj+1 − θj .
For every u ∈ Ea, we have a decomposition

u =
∞∑
j=0

∆jRju

with convergence in Eb when b < a, moreover there exists a constant K ′ such that, for every b ∈ [2, 8],

‖Rju‖b � K ′θb−a−1
j ‖u‖a.

We also have the convexity of the norms: there exists a constant c � 1 such that, for every a, b ∈ [2, 8] with
a < b, λ ∈ [0, 1], and u ∈ Eb,

‖u‖λa+(1−λ)b � c‖u‖λa‖u‖1−λ
b . (3.5)

We refer to [26] for the proof of the two previous properties.

We have another family (Fa)a∈[2,8] with the same properties as above, we use the same notations for the
smoothing operators. Moreover, we assume that the injection Fb → Fa is compact when b > a.

Theorem 7. Let P be a continuous linear operator from Fb to Fb of norm � 1 for b = 2, ..., 8, such that
PSθ = SθP for every θ. Let β be a real number such that

5 < β < 6.

Let V be a E4-neighborhood of zero and Φ a map from V to F4 which is twice differentiable and satisfies

‖Φ′′(u; v, w)‖6 � C
∑

(1 + ‖u‖m)‖v‖m′‖w‖m′′ (3.6)

where the sum is taken over the following values

m m′ m′′

6 2 2

4 4 4

4 6 2

4 2 6

(3.7)

We assume that Φ : E4 → F4 is continuous for every a ∈ [2, 8]. We assume that, for every v ∈ V ∩ E8, Φ′(v)
has a right inverse ψ(v) : F7 → E6, that (v, g) �→ ψ(v, g) is continuous from (V ∩E6)×F7 → E6 and that there
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exists a constant C such that, for every (v, g) ∈ (V ∩ E6) × F7,

‖ψ(v)g‖2 � C[‖Pg‖3 + ‖v‖4‖g‖3] (3.8)

‖ψ(v)g‖6 � C[‖Pg‖7 + ‖v‖4‖g‖7 + ‖v‖8‖g‖3]. (3.9)
Then, there exists C > 0 and ε > 0 such that for every f ∈ Fβ with ‖f‖β < ε, there exists u ∈ E4 such that
Φ(u) = Φ(0) + f and ‖u‖4 � C‖Pf‖β.

The inequalities (3.8) and (3.9) are called “tame estimates”.

Proof. Let g ∈ Fβ . There exists a decomposition

g =
∞∑
j=0

∆jgj with ‖gj‖b � K ′‖g‖βθb−β−1
j , ∀b ∈ [2, 8]. (3.10)

Since PSθ = SθP , we also have

Pg =
∞∑
j=0

∆jPgj with ‖Pgj‖b � K ′‖Pg‖βθb−β−1
j , ∀b ∈ [2, 8]. (3.11)

We claim that, when ‖g‖β is small enough, we can define a sequence (uj)j∈N with u0 = 0 and the recursive
formula

uj+1 := uj + ∆j u̇j, u̇j := ψ(vj)gj , vj := Sθjuj.

We also claim that there exist constants C1, C2, C3, C4 such that, for every j ∈ N∗,

‖u̇j‖a � C1‖Pg‖βθa−βj , ∀a ∈ {2, 4, 6}, (3.12)

‖uj‖4 � C2‖Pg‖β and ‖uj‖6 � C2‖Pg‖βθ7−βj , (3.13)

‖vj‖4 � C3‖Pg‖β , ‖vj‖a � C3‖Pg‖βθa−β+1
j ∀a ∈ {6, 8}, (3.14)

‖uj − vj‖a � C4‖Pg‖βθa−β+1
j , ∀a ∈ {2, 4, 6}. (3.15)

More precisely, we prove by induction on k ∈ N the following property

Pk : uj is well defined for j = 0, ..., k + 1,

(3.12) is satisfied for j = 0, ..., k,

(3.13), (3.14) and (3.15) are satisfied for j = 0, ..., k + 1.

We introduce r > 0 such that, for every u ∈ E4, ‖u‖α < r implies u ∈ V .
Property P0 is obvious. Let k ∈ N∗. We assume property Pk−1 is satisfied. Let us prove Pk.
The vector uk+1 is well defined if and only if vk ∈ V , which is true as soon as ‖Pg‖β < r/C3 thanks to (3.14)

with j = k.
Let us prove (3.12) for j = k. Using (3.8) and (3.10), we get

‖u̇k‖2 � CK ′‖Pg‖βθ2−βk (1 + C3‖g‖β) � 2CK ′‖Pg‖βθ2−βk ,

when ‖g‖β < 1/C3. Using (3.9), (3.14), (3.10), we get

‖u̇k‖6 � CK ′‖Pg‖β[θ6−βk + C3‖g‖βθ6−βk + C3‖g‖βθ9−βk θ2−βk ] � 3CK ′‖Pg‖βθ6−βk ,
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when ‖g‖β < 1/C3. Then, the convexity of the norm (3.5) provides

‖u̇k‖4 � c3CK ′‖Pg‖βθ4−βk .

Therefore, we have (3.12) for j = k, when ‖g‖β < 1/C3 for C1 = 3cCK ′.
Let us prove (3.13) for j = k + 1. Thanks to (3.12), we have

‖uk+1‖4 � C1‖Pg‖β
k∑
j=0

∆jθ
4−β
j � C1‖Pg‖βS,

where S :=
∑∞

j=0 ∆jθ
4−β
j is finite because β > 5. Thanks to (3.12), we have

‖uk+1‖6 � C1‖Pg‖β
k∑
j=0

∆jθ
6−β
j � C1‖Pg‖β

θ7−βk+1

7 − β
·

Thus, we get (3.13) for j = k with

C2 := C1 max
{
S,

1
7 − β

}
.

We get (3.14) for j = k + 1 thanks to (3.1) and (3.2), with C3 := KC2. We get (3.15) for j = k + 1 thanks
to (3.13) and (3.14) for a = 6 and thanks to (3.3) and (3.13) for a ∈ {2, 4}, with C4 := max{C2 + C3;KC2}.

Inequality (3.12) proves that (uk) converges in E4 toward

u :=
∞∑
j=0

∆j u̇j, which satisfies ‖u‖4 � C2‖Pg‖β.

The continuity of the map Φ : E4 → F4 implies that Φ(uk) converges to Φ(u) in F4.

Let us study the limit of the sequence (Φ(uk))k∈N in a different way. We have

Φ(uj+1) − Φ(uj) = ∆j(e′j + e′′j + gj)

where

e′j :=
1

∆j
(Φ(uj + ∆j u̇j) − Φ(uj) − Φ′(uj)∆j u̇j) = ∆j

∫ 1

0

(1 − t)Φ′′(uj + t∆j u̇j ; u̇j, u̇j)dt,

e′′j := (Φ′(uj) − Φ′(vj))u̇j =
∫ 1

0

φ′′(vj + t(uj − vj);uj − vj , u̇j).

Thanks to (3.6), we have

‖e′j‖6 � C
∑

(1 + ‖uj‖m + ∆j‖u̇j‖m)‖u̇j‖m′‖u̇j‖m′′

� C[(1 + (C1 + C2)‖Pg‖βθ7−βj )C2
1‖Pg‖2

βθ
4−2β
j + 3(1 + (C1 + C2)‖Pg‖β)C2

1‖Pg‖2
βθ

8−2β
j ]

� C‖Pg‖2
βθ

8−2β
j ,

‖e′′j ‖6 � C
∑

(1 + ‖vj‖m + ‖uj − vj‖m)‖uj − vj‖m′‖u̇j‖m′′

� C[(1 + (C3 + C4)‖Pg‖βθ7−βj )C1C4‖Pg‖2
βθ

5−2β
j + 3(1 + (C3 + C4)‖Pg‖β)C1C4‖Pg‖2

βθ
9−2β
j ]

� C‖Pg‖2
βθ

9−2β
j .
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Since 9 − 2β < −1, then
∑

∆j(e′j + e′′j ) converges in F6 and∥∥∥∥∥∥
∞∑
j=0

∆j(e′j + e′′j )

∥∥∥∥∥∥
6

� C‖Pg‖2
β.

The uniqueness of the limit of the sequence (Φ(uk))k∈N gives the following equality in F4

Φ(u) = g + T (g)

where T (g) ∈ F6 and
‖T (g)‖6 � C‖Pg‖2

β. (3.16)
Let 0 < ρ < min{1/(2C), r/C3, 1/C3} where C is given by (3.16). Let f ∈ Fβ , be such that ‖f‖β < ρ/2.
Then the map Θ(g) := f − T (g) maps the ball B := {g ∈ Fβ ; ‖g‖β � ρ} into itself. The Leray-Schauder
fixed point theorem justifies that Θ has a fix point g ∈ B. The equality g = f + T (g) and the choice of
ρ gives ‖Pg‖β � 2‖Pf‖β. The vector u built in the first part of this proof gives the solution and satisfies
‖u‖4 � 2C2‖Pf‖β. �

Remark 6. The proof can be done thanks to the Banach fixed point theorem, instead of the Leray-Schauder
fixed point theorem, provided one add new assumptions (see next proposition). In this situation, one does not
need any longer the compactness of the injections Fb → Fa for b > a. The interest of this approach is that it
provides the continuity of the local inverse f �→ u of the map Φ. This continuity is important for the use of the
intermediate values theorem in Section 5.3.

Theorem 8. Let us consider the same assumptions as in the previous theorem. We assume moreover that, for
every u, ũ ∈ V ∩ E6,

‖Φ′′(u; v, w) − Φ′′(ũ; v, w)‖6 � C
∑

(1 + ‖u− ũ‖m) ‖v‖m′‖w‖m′′ (3.17)

where the sum is taken over the values given in (3.7). We also assume that, for every v, ṽ ∈ V ∩ E8,

‖[ψ(v) − ψ(ṽ)]g‖2 � C‖v − ṽ‖4‖g‖3, (3.18)

‖[ψ(v) − ψ(ṽ)]g‖6 � C[‖v − ṽ‖4‖g‖7 + ‖v − ṽ‖8‖g‖3]. (3.19)
Then, there exists C > 0, η > 0 and a continuous map

Π : V → E4 where V := {f ∈ Fβ ; ‖f‖β < η}
f �→ u

such that, for every f ∈ V,

Φ(Π(f)) = Φ(0) + f and ‖Π(f)‖4 � C‖Pf‖β. (3.20)

Proof. The map Π is the composition of the two following maps

Fβ → Fβ → E4

f �→ g �→ u
(3.21)

where f = g + T (g) and u is the limit built in the previous proof. First, we prove the continuity of the second
map g �→ u. Let g, g̃ ∈ Fβ and (uj), (u̇j), (vj), (ũj), (˜̇uj), (ṽj) be the sequences built in the proof of Theorem 7.
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In the same way as we proved (3.12), (3.13), (3.14) (3.15) thanks to (3.8) and (3.9), we prove the existence of
C1, C2, C3, C4 > 0 such that, for every j ∈ N,

‖u̇j − ˜̇uj‖a � C1‖g − g̃‖βθa−βj , ∀a ∈ {2, 4, 6}, (3.22)

‖uj − ũj‖4 � C2‖g − g̃‖β and ‖uj − ũj‖6 � C2‖g − g̃‖βθ7−βj , (3.23)

‖vj − ṽj‖4 � C3‖g − g̃‖β , ‖vj − ṽj‖a � C3‖g − g̃‖βθa−β+1
j ∀a ∈ {6, 8}, (3.24)

‖(uj − vj) − (ũj − ṽj)‖a � C4‖g − g̃‖βθa−β+1
j , ∀a ∈ {2, 4, 6}. (3.25)

In particular, we get

‖u− ũ‖4 � C2‖g − g̃‖β
which gives the continuity of the second map of (3.21). Now, we prove the continuity of the first map f �→ g
of (3.21). It is sufficient to prove that the map T : Fβ → Fβ is a contraction, indeed, the inequality

‖T (g) − T (g̃)‖β � δ‖g − g̃‖β

with δ ∈ (0, 1) gives

‖g − g̃‖β � 1
1 − δ

‖f − f̃‖β .

We have

T (g) − T (g̃) =
∞∑
j=0

∆j [(e′j − ẽ′j) + (e′′j − ẽ′′j )].

Let us prove the existence of C5, C6 > 0 such that, for every j ∈ N,

‖e′j − ẽ′j‖6 � C5 max{‖g‖β, ‖g̃‖β}‖g − g̃‖β ,
‖e′′j − ẽ′′j ‖6 � C6 max{‖g‖β, ‖g̃‖β}‖g − g̃‖β ,

(3.26)

which shows that T is a contraction of a small neighborhood of zero in Fβ . In order to prove the first bound
of (3.26), we use (3.17) and the decomposition

ej − ẽj = ∆j

∫ 1
0
(1 − t)[Φ′′(uj + t∆j u̇j ; u̇j, u̇j) − Φ′′(ũj + t∆j

˜̇uj ; u̇j, u̇j)] dt +

∆j

∫ 1
0
(1 − t)Φ′′(ũj + t∆j

˜̇uj ; u̇j − ˜̇uj, u̇j) dt +

∆j

∫ 1
0
(1 − t)Φ′′(ũj + t∆j

˜̇uj ; u̇j − ˜̇uj, u̇j − ˜̇uj) dt.

The second bound of (3.26) can be proved in the same way. We know that

‖Π(f)‖4 � C2‖Pg‖β.

Thanks to (3.16), we have

‖Pg‖β � ‖Pf‖β + ‖PTg‖β � ‖Pf‖β + C‖Pg‖2
β

which gives (3.20). �
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4. Local controllability around

√
1 − θ2 − θ3ψ1 +

√
θ2ψ2 +

√
θ3ψ3

with (θ2, θ3) ∈ Int(D)

The aim of this section is the proof of Theorem 5 by applying Theorem 7. In all this section, (θ2, θ3) ∈ Int(D)
is fixed and we use the notations (Σref ) for (Σθ2,θ3) and

ψref :=
√

1 − θ2 − θ3ψ1 +
√
θ2ψ2 +

√
θ3ψ3.

4.1. Context for the Nash-Moser theorem

We apply Theorem 7 to the map Φ defined in Section 1.5.2, with T := 2/π, in a neighborhood of ψref (0),
with P = Id and with the spaces

Ea := [S ∩Ha
(0)((0, 1),C)] ×H

a
2
0 ((0, T ),R), ∀a ∈ {2, 4, 6, 8},

Fa := [S ∩Ha
(0)((0, 1),C)] × [S ∩Ha

(0)((0, 1),R)], ∀a ∈ {2, 3, 4, 5, 6, 7},
where T := 2/π. We work on the manifold S instead of a whole space. It does not matter because, as in [9]
and [10], we can move the system to an hyperplane of L2((0, 1),R) by studying

Φ̃ := q ◦ Φ ◦ r

where r(ψ0, u) = (p−1(ψ0), u), q(ψ0, ψf ) = (p(ψ0), p(ψf )), and p is a suitable local diffeomorphism from a
neighborhood of {ψref(t); t ∈ [0, 2/π)}, in the sphere S to an hyperplane H of L2((0, 1),C), which does not
change too much the Hs((0, 1),C)-norm. For example, one can use the following one.

Proposition 3. Let (θ2, θ3) ∈ Int(D), ε > 0 be small enough so that(√
1 − θ2 − θ3 − ε

)2
(1 − ε) − ε(1 + ε)2 > 0, (4.1)

(1 − ε)[(1 − θ2 − θ3)2 − ε2 − ε] > 0, (4.2)

U := {ψ ∈ S; ∃t ∈ [0, 2/π), ‖ψ − ψref (t)‖L2((0,1),C) < ε},

H := {ψ ∈ L2((0, 1),C);
 < ψ,ϕ4 >= 0}
and p : L2((0, 1),C) → H be defined by

p(ψ) := ψ −
(〈ψ, ϕ4〉)ϕ4 + 
(〈ψ, ϕ4〉)〈ψ, ϕ1〉ϕ1.

The map p is a C1 diffeomorphism from U to an open subset of H. Moreover, the norm of dp(ψ) as a linear
operator from (TS , ‖.‖Hs((0,1),C)) to (H, ‖.‖Hs((0,1),C)) is uniformly bounded on U , for every integer s ∈ [2, 9].

Proof. Let us introduce the orthogonal projection P : L2((0, 1),C) → (Cϕ1 + Rϕ4)⊥. First, we prove that p is
injective on U . Let ψ, ψ̃ ∈ U be such that p(ψ) = p(ψ̃). Then P (ψ) = P (ψ̃) and

(1 + 
〈ψ, ϕ4〉)〈ψ, ϕ1〉 =
(
1 + 

〈
ψ̃, ϕ4

〉)〈
ψ̃, ϕ1

〉
. (4.3)

The equality ‖ψ‖L2 = ‖ψ̃‖L2 gives

(
〈ψ, ϕ4〉)2 + |〈ψ, ϕ1〉|2 =
(


〈
ψ̃, ϕ4

〉)2
+
∣∣∣〈ψ̃, ϕ1

〉∣∣∣2 . (4.4)
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The relations (4.3) and (4.4) lead to

|〈ψ, ϕ1〉|2
((

1 + 

〈
ψ̃, ϕ4

〉)2
− (1 + 
〈ψ, ϕ4〉)2

)
=
(
1 + 

〈
ψ̃, ϕ4

〉)2 [(


〈
ψ̃, ϕ4

〉)2
− (
〈ψ, ϕ4〉)2 .

We assume that ψ �= ψ̃. Then 
〈ψ̃, ϕ4〉 �= 
〈ψ, ϕ4〉, otherwise (4.3) gives 〈ψ̃, ϕ1〉 = 〈ψ, ϕ1〉 thus ψ̃ = ψ.
Therefore, y := 
〈ψ̃, ϕ4〉 is a solution in [−ε, ε] of f(y) = 0 where

f(y) := (1 + y)2(b+ y) − a(2 + b+ y), a := |〈ψ, ϕ1〉|, b := 
〈ψ, ϕ4〉.

The assumption (4.1) justifies that f(y) < 0 for every y ∈ [−ε, ε], which is a contradiction.
Now, we prove that, for every ψ ∈ U , dp(ψ) is an isomorphism from TS(ψ) to H. Let ψ ∈ U and ξ ∈ H. For

h ∈ L2((0, 1),C), the statement (h ∈ TSψ and dp(ψ)h = ξ) is equivalent to Ph = Pξ and AX = b where

A :=

⎛⎜⎜⎝

〈ψ, ϕ1〉 �〈ψ, ϕ1〉 
〈ψ, ϕ4〉

1 + 
〈ψ, ϕ4〉 0 
〈ψ, ϕ1〉
0 1 + 
〈ψ, ϕ4〉 �〈ψ, ϕ1〉

⎞⎟⎟⎠

X :=

⎛⎜⎜⎝

〈h, ϕ1〉
�〈h, ϕ1〉

〈h, ϕ4〉

⎞⎟⎟⎠ , b :=

⎛⎜⎜⎝
−
〈Pξ, Pψ〉

〈ξ, ϕ1〉
�〈ξ, ϕ1〉

⎞⎟⎟⎠ .
Thanks to (4.2), we have det(A) < 0. We conclude thanks to the inverse mapping theorem.

It is clear that ‖dp(ψ)‖Hs→Hs � 1 + ‖ϕ1‖Hs + ‖ϕ4‖Hs . Since ‖Pξ‖Hs � ‖ξ‖Hs and ‖A−1‖ is uniformly
bounded with respect to ψ ∈ U , then ‖dp(ψ)−1‖Hs→Hs also. �

For the construction of smoothing operators for the controls u ∈ H1
0 ((0, T ),R), we can use the same strategy

as in [9], Section 3.3, which is inspired from [24]. For smoothing operators on the wave functions, we propose

Sθϕ :=
∞∑
k=1

s

(
k

θ

)
〈ϕ,ϕk〉ϕk

where s ∈ C∞(R+, [0, 1]), s ≡ 1 on [0, 1] and s ≡ 0 on [2,+∞]. The proof of (3.1), (3.2), (3.3), (3.4) is the same
as in [9], Section 3.3. Note that Sθ preserves the hyperplane H of Proposition 3.

4.2. Bound on Φ′′

The aim of this section is the proof of the bound (3.6) on the map Φ defined in Section 1.5.2.

Proposition 4. The map Φ : E6 → F6 is twice differentiable and for every (ψ0, u) ∈ E6, (φ0, ν), (ξ0, µ) ∈ E6,
we have

Φ′′(ψ0, u).((φ0, ν), (ξ0, µ)) = (0, h(T ))

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
iψ̇ = −ψ′′ + (u̇ − 4u2)x2ψ,

ψ(t, 0) = ψ(t, 1) = 0,

ψ(0) = ψ0,
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iξ̇ = −ξ′′ + (u̇ − 4u2)x2ξ + (µ̇− 8uµ)x2ψ,

ξ(t, 0) = ξ(t, 1) = 0,

ξ(0) = ξ0,

⎧⎪⎪⎨⎪⎪⎩
iφ̇ = −φ′′ + (u̇− 4u2)x2φ+ (ν̇ − 8uν)x2ψ,

φ(t, 0) = φ(t, 1) = 0,

φ(0) = φ0,⎧⎪⎪⎨⎪⎪⎩
iḣ = −h′′ + (u̇− 4u2)x2h+ (µ̇− 8uµ)x2φ+ (ν̇ − 8uν)x2ξ − 4νµx2ψ,

ξ(t, 0) = ξ(t, 1) = 0,

ξ(0) = ξ0.

For every r > 0 there exists a constant C(r) > 0 such that, for every (ψ0, u) ∈ E6, (φ0, ν), (ξ0, µ) ∈ E6 with
‖(ψ0, u)‖4 < r, we have

‖Φ′′(ψ0, u).((φ0, ν), (ξ0, µ))‖6 � C(r)
∑

(1 + ‖(ψ0, u)‖m)‖(φ0, ν)‖m′‖(ξ0, µ)‖m′′ (4.5)

where the sum is taken over the values given in (3.7).

Proof. We only justify the bound (4.5). Thanks to Proposition 21, we have

‖h(T )‖H6
(0)

� C[‖f‖W 2,1((0,T ),H2
(0))

+ ‖f‖C0([0,T ],H4) + ‖u‖H3‖f‖L1((0,T ),H2
(0))

].

where f := f1 + f2 + f3, f1 := (µ̇−8uµ)x2φ, f2 := (ν̇−8uν)x2ξ and f3 := −4νµx2ψ. Using Propositions 19–21,
we get

‖f1‖L1((0,T ),H2) � C‖µ‖H1A2,

‖f1‖C0((0,T ),H4) � C‖µ‖H2A4,

‖f1‖W 2,1((0,T ),H2) � C[‖µ‖H3A2 + ‖µ‖H2A4 + ‖µ‖H1A6],

with
A2 := ‖φ0‖H2 + ‖ν‖H1a2,

A4 := ‖φ0‖H4 + ‖ν‖H2a2 + ‖ν‖H1a4,

A6 := ‖φ0‖H6 + ‖u‖H3‖φ0‖H2 + ‖ν‖H3a2 + ‖ν‖H2a4 + ‖ν‖H1a6,

and aj := ‖(ψ0, u)‖Ej for j = 2, 4, 6. We have

‖f3‖L1((0,T ),H2) � C‖µν‖L1a2 � C‖µ‖H1‖ν‖H1a2,

‖f3‖C0((0,T ),H4) � C‖µν‖C0a4 � C‖µ‖H1‖ν‖H1a4,

‖f3‖W 2,1((0,T ),H2) � C[‖µν‖H2a2 + ‖µν‖H1a4 + ‖µν‖L2a6]

� C[(‖µ‖H2‖ν‖H1 + ‖µ‖H1‖ν‖H2)a2 + ‖µ‖H1‖ν‖H1a6]. �

4.3. Controllability of the linearized system around (ψref , u ≡ 0) with tame estimates

The goal of this section is the proof of the following proposition, which corresponds to the bounds (3.8)
and (3.9) for v = 0. We introduce, for s > 0 the spaces

hs(N∗,C) :=
{
d = (dk)k∈N∗ ∈ l2(N∗,C); (ksdk)k∈N∗ ∈ l2(N∗,C)

}
equipped with the norm ‖d‖hs(N∗,C) := ‖ksdk‖l2(N∗,C).
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Proposition 5. Let T := 2/π. There exists a constant C > 0 such that, for every Ψf ∈ H7
(0)((0, 1),C) ∩

TS(ψref (T )), there exists a trajectory (Ψ, v) of (Σref ) with v ∈ H3
0 ((0, T ),R), Ψ(0) = 0 and Ψ(T ) = Ψf ,

moreover

‖v‖H1
0((0,T ),R) � C‖Ψf‖H3

(0)((0,1),C) and ‖v‖H3
0((0,T ),R) � C‖Ψf‖H7

(0)((0,1),C).

Proof. Thanks to Section 2, it is sufficient to prove the existence of a constant C > 0 such that, for every
d = (dk)k∈N ∈ h4(N,C) there exists v̇ ∈ H2

0 ((0, T ),R) with the following prescribed Fourier coefficients⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T
0 v̇(t) dt = 0,∫ T
0 tv̇(t) dt = 0,∫ T
0
v̇(t)ei(λ2−λ1)t dt = d0∫ T

0
v̇(t)ei(λ3−λ1)t dt = d1∫ T

0
v̇(t)ei(λ3−λ2)t dt = d2∫ T

0 v̇(t)ei(λk−λ1)t dt = d3(k−2), ∀k � 3,∫ T
0 v̇(t)ei(λk−λ2)t dt = d3(k−2)+1, ∀k � 3,∫ T
0
v̇(t)ei(λk−λ3)t dt = d3(k−2)+2, ∀k � 3,

and which satisfies

‖v̇‖L2((0,T ),R) � C‖d‖l2(N,C) and ‖v̇‖H2
0 ((0,T ),R) � C‖d‖h4(N∗,C).

A candidate is

v̇(t) :=
{
d0e−i(λ2−λ1)t + d1e−i(λ3−λ1)t + d2e−i(λ3−λ2)t +

∞∑
k=3

[
d3(k−2)e−i(λk−λ1)t

+ d3(k−2)+1e−i(λk−λ2)t + d3(k−2)+2 e−i(λk−λ3)t
]
+ c.c.

}
(1 − cos(π2t)),

where “+ c.c.” means that we sum the complex conjugate number of the expression before. �

Remark 7. In the same way as in Remark 4, the previous proposition probably holds for any T > 0.

4.4. Controllability of the linearized system around (ψ, u), close to (ψref , 0) in E4, with
tame estimates

The aim of this section is the proof of the existence of a right inverse to the differential map dΦ(ψ0, u) when
(ψ0, u) is close enough to (ψref (0), 0) in E4, which satisfies (3.8) and (3.9).

Let (ψ0, u) ∈ E8, and ψ be the solution of the Cauchy problem⎧⎪⎪⎨⎪⎪⎩
iψ̇ = −ψ′′ + (u̇− 4u2)(t)x2ψ, x ∈ (0, 1), t ∈ (0, T ),

ψ(t, 0) = ψ(t, 1) = 0,

ψ(0) = ψ0.
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The linearized system around (ψ, u) is

(Σl)

{
iΨ̇ = −Ψ′′ + (u̇− 4u2)(t)x2Ψ + (v̇ − 8uv)(t)x2ψ, x ∈ (0, 1), t ∈ (0, T ),

Ψ(t, 0) = Ψ(t, 1) = 0.

Let us introduce the distances, for s = 2, 4, 6, 8,

δs := ‖(ψ0, u) − (ψref (0), 0)‖Es .

We want to prove that, there exists a constant C such that, when δ4 is small enough, then, for every Ψf ∈
H7

(0)((0, 1),C) there exists a trajectory (Ψ, v) of (Σl) with Ψ(0) = 0, Ψ(T ) = Ψf , v ∈ H3
0 ((0, T ),C),

‖v‖H1
0 ((0,T ),R) � C‖Ψf‖H3 , and ‖v‖H3

0((0,T ),R) � C[‖Ψf‖H7 + δ8‖Ψf‖H3 ].

In order to solve this problem, one transforms the controllability condition Ψ(T ) = Ψf into a moment problem
on the control v. For technical reasons explained in Remark 8, we don’t decompose the solution Ψ of (Σl) on
the fixed basis (ϕk)k∈N∗ as in Section 2 but on a moving basis.

For γ ∈ R, we introduce the operator Aγ defined by

D(Aγ) := H2
(0)((0, 1),C), Aγϕ := −ϕ′′ + γx2ϕ.

Let (λk,γ)k∈N∗ be the non decreasing sequence of its eigenvalues (written as many times as their multiplicity)
and (ϕk,γ)k∈N∗ associated eigenvectors, which form an orthonormal basis of L2((0, 1),C). The maps γ �→ λk,γ
and γ �→ ϕk,γ are analytic, which gives a sense to the notations

λ′k,γ1 and dϕk,γ

dγ

]
γ1
.

Let µ := u̇− 4u2. We consider the decomposition

Ψ(t) =
∞∑
k=1

yk(t)ξk(t)

where
ξ1(t) := ψ(t), ξk(t) := ϕk,µ(t) − 〈ϕk,µ(t), ψ(t)〉ψ(t), when k � 2,

y1(t) := 〈Ψ(t), ψ(t)〉, yk(t) := 〈Ψ(t), ϕk,µ(t)〉 −
〈Ψ(t),ϕ1,µ(t)〉
〈ψ(t),ϕ1,µ(t)〉 〈ψ(t), ϕk,µ(t)〉, when k � 2.

The partial differential equation satisfied by Ψ provides an ordinary differential equation for each components
yk(t), that can be solved. Then the equality Ψ(T ) = Ψf is equivalent to the equality M(ψ0,u)(v) = d where
d = (dk)k∈N∗ , M(ψ0,u)(v) = (M(ψ0,u)(v)k)k∈N∗ and

M(ψ0,u)(v)1 := −i
∫ T

0

(v̇ − 8uv)
〈
x2ψ, ψ
〉
dt,

M(ψ0,u)(v)k :=
∫ T
0

[
−i(v̇ − 8uv)

〈
x2ψ, ϕk,µ

〉
− α̇ 〈ψ, ϕk,µ〉 + µ̇

(〈
Ψ, dϕk,γ

dγ

]
µ

〉
−α
〈
ψ,

ϕk,γ

dγ

]
µ

〉)]
ei
∫

t
0 λk,µ(s)dsdt, for every k � 2,
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where

α(t) :=

〈
Ψ(t), ϕ1,µ(t)

〉〈
ψ(t), ϕ1,µ(t)

〉 ,
and

d1 := 〈Ψf , ψ(T )〉 ,

dk :=
(
〈Ψf , ϕk〉 −

〈Ψf , ϕ1〉
〈ψ(T ), ϕ1〉

〈ψ(T ), ϕk〉
)

ei
∫

T
0 λk,µ(s)ds, for every k � 2.

In order to prove the surjectivity of M(ψ0,u) when δ4 is small, we use the surjectivity of M(ψref (0),0) thanks to
the following proposition.

Proposition 6. Let M and M̃ be continuous linear maps from H1
0 ((0, T ),R) to h3(N∗,C), from H2

0 ((0, T ),R)
to h5(N∗,C) and from H3

0 ((0, T ),R) to h7(N∗,C). We assume that there exists a positive constant C0, such that
M̃ has a right inverse

M̃−1 : h7(N∗,C) → H3
0 ((0, T ),R)

which satisfies, for every d ∈ h7(N∗,C),

‖M̃−1(d)‖E � C0‖d‖F ,

for every (E,F ) ∈ {(H1
0 , h

3), (H2
0 , h

5), (H3
0 , h

7)}. We also assume that there exist C0, C1, C2 > 0, such that, for
every v ∈ H2

0 ((0, T ),R),

‖(M̃ −M)(v)‖h3(N∗,C) � C0‖v‖H1
0((0,T ),R),

‖(M̃ −M)(v)‖h5(N∗,C) � C0‖v‖H2
0((0,T ),R) + C1‖v‖H1

0 ((0,T ),R),

‖(M̃ −M)(v)‖h7(N∗,C) � C0‖v‖H3
0((0,T ),R) + C1‖v‖H2

0 ((0,T ),R) + C2‖v‖H1
0((0,T ),R).

We assume C0C0 < 1. Then M has a right inverse

M−1 : h7(N∗,C) → H3
0 ((0, T ),R),

which satisfies, for every d ∈ h7(N,C),

‖M−1(d)‖H1
0 ((0,T ),R) � X‖d‖h3(N∗,C),

‖M−1(d)‖H2
0 ((0,T ),R) � X‖d‖h5(N∗,C) + Y ‖d‖h3(N∗,C),

‖M−1(d)‖H3
0 ((0,T ),R) � X‖d‖h7(N∗,C) + Y ‖d‖h5(N∗,C) + Z‖d‖h3(N∗,C),

where

X :=
C0

1 − C0C0
, Y :=

C2
0C1

(1 − C0C0)2
, Z :=

C2
0C2

1

(1 − C0C0)3
+

C2
0C2

(1 − C0C0)2
·

Proof. Let d ∈ h7(N∗,C). We define by induction the sequence (wn)n∈N in H3
0 ((0, T ),R) by{

w0 := M̃−1(d),

wn+1 := M̃−1[(M̃ −M)(wn)].

The function w :=
∑∞

n=0 wn gives a suitable candidate for M−1(d). �
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Remark 8. If we had decomposed Ψ on the fixed basis (ϕk), Ψ(t) =
∑∞
k=1 yk(t)ϕk, we would have got

yk(T ) =

(∫ T
0

−i
[
µ(t)
〈
x2Ψ(t), ϕk

〉
+ (v̇ − 8uv)(t)

〈
x2ψ(t), ϕk

〉]
eiλktdt

)
e−iλkT

and the sequence (∫ T
0

µ(t)
〈
x2Ψ(t), ϕk

〉
eiλkt

)
k∈N∗

does not belong to h3(N∗,C) when v is only in H1
0 ((0, T ),R). By decomposing Ψ on a moving basis, Ψ(t) =∑∞

k=1 zk(t)ϕk,u(t), we make this term disappear, indeed

zk(T ) =

(∫ T
0

[
−i(v̇ − 8uv)(t)〈x2ψ(t), ϕk,µ(t)〉 + µ̇(t)

〈
Ψ(t),

dϕk,γ
dγ

]
µ(t)

〉]
ei
∫

t
0 λk,u(s)dsdt

)
e−i
∫

T
0 λk,u(s)ds.

and the new term belongs to h3(N∗,C) when v is only H1((0, T ),C). Since we want to use differences of
linear maps the type M(ψ0,u) −M(ψref (0),0) (each one corresponds to the control of a linearized system), as in
Proposition 6, we need to use linear maps with images in the same space. This is why we use the basis (ξk(t))
instead of (ϕk,u(t)): the condition Ψf ∈ TS(ψ(T )) corresponds to 〈Ψ(t), ξ1(t)〉 ∈ iR.

In Section 4.4.2, we prove the following proposition

Proposition 7. There exists a constant C > 0 such that, when δ4 is small enough, for every v ∈ H3
0 ((0, T ),R),

we have
‖(M(ψ0,u) −M(ψref (0),0))(v)‖h3(N∗,C) � Cδ4‖v‖H1 ,

‖(M(ψ0,u) −M(ψref (0),0))(v)‖h5(N∗,C) � C[δ4‖v‖H2 + δ6‖v‖H1 ],

‖(M(ψ0,u) −M(ψref (0),0))(v)‖h7(N∗,C) � C[δ4‖v‖H3 + δ6‖v‖H2 + δ8‖v‖H1 ].

For the proof of this proposition, we need few technical results stated in the next section.

4.4.1. Preliminaries

In this section, we use the bounds proved in Appendix A. The constants γ∗ and C∗ are such that all the
propositions of Appendix A are true. Let T > 0. For µ ∈ C0((0, T ), (−γ∗, γ∗)), w ∈ L2((0, T ),R) and
f ∈ C0([0, T ], L2((0, 1),R)), we consider the sequences

S0 :=

(∫ T
0

w(t)
〈
f(t), ϕk,µ(t)

〉
ei
∫

t
0 λk,µ(s)dsdt

)
k∈N∗

,

S1 :=

(∫ T
0

w(t)

〈
f(t),

dϕk,γ
dγ

]
µ(t)

〉
ei
∫ t
0 λk,µ(s)dsdt

)
k∈N∗

.

Lemma 1. There exists γ∗ > 0, C∗ > 0 such that, for every γ1 ∈ (−γ∗, γ∗), for every f ∈ L2((0, 1),R),

∞∑
k=1

∣∣∣∣∣k
〈
f,

dϕk,γ
dγ

]
γ1

〉∣∣∣∣∣
2

� C‖f‖2
L2,

and for every f ∈ H2 ∩H1
0 ((0, 1),R),

∞∑
k=1

∣∣∣∣∣k3

〈
f,

dϕk,γ
dγ

]
γ1

〉∣∣∣∣∣
2

� C‖f‖2
H2 .
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Proof. Thanks to (A.1), we have, for f ∈ L2((0, 1),R),

∞∑
k=1

∣∣∣∣k〈f, dϕk,γ
dγ

]
0

〉∣∣∣∣2 =
∞∑
k=1

∣∣∣∣∣∣
∞∑
j=1

ak,j 〈f, ϕj〉

∣∣∣∣∣∣
2

where ak,j := kxk,j when k �= j and ak,k = 0. We check the existence of C > 0 such that,

∀j ∈ N∗,
∑∞
k=1 |ak,j | � C and ∀k ∈ N∗,

∑∞
j=1 |ak,j | � C.

Thus, the Cauchy-Schwarz inequality justifies that,

∀(xj)j∈N∗ ∈ l2(N∗,C),
∑∞
k=1 |
∑∞

j=1 ak,jxj |2 � C2
∑∞
j=1 |xj |2,

which gives the conclusion for γ1 = 0. For γ1 �= 0, we conclude thanks to the result for γ1 = 0 and (A.8). For
f ∈ H2 ∩H1

0 ((0, 1),C), we use integrations by parts and the equation (A.7). �
Proposition 8. Let T > 0. There exists C > 0 such that, for every µ ∈ H1((0, T ),R) with ‖µ‖H1((0,T ),R) � 1,

• when w ∈ L2((0, T ),R) and f ∈ C0([0, T ], H3 ∩H1
0 ((0, 1),R)), then S0 ∈ h3(N∗,C) and

‖S0‖h3(N∗,C) � C‖w‖L2‖f‖C0([0,T ],H3),

more precisely,

S0 =
(

1
λk

∫ T
0 w(t)〈Af(t), ϕk〉eiλktdt

)
k∈N∗

+ terms with an h3norm bounded by C‖µ‖H1‖w‖L2‖f‖C0([0,T ],H3);

• when w ∈ H1
0 ((0, T ),R) and f ∈ C1([0, T ], H3 ∩H1

0 ((0, 1),R) then S0 ∈ h5(N∗,C) and

‖S0‖h5((N∗,C) � C[‖w‖H1
0
‖f‖C0([0,T ],H3) + ‖w‖L2‖f‖C1([0,T ],H3)],

more precisely

S0 =
(
− 1
iλk

∫ T
0

(ẇ(t)〈f(t), ϕk〉 + w(t)〈ḟ , ϕk〉)eiλktdt
)
k∈N∗

+ terms with an h5norm bounded by C‖µ‖H1 [‖w‖H1‖f‖C0([0,T ],H3) + ‖w‖L2‖f‖C1([0,T ],H3)] ;

• when µ ∈ H2((0, T ),R), w ∈ H2
0 ((0, T ),R) and f ∈ C3([0, T ], H3 ∩H1

0 ((0, 1),R) then S0 ∈ h7(N∗,C)
and

‖S0‖h7((N∗,C) � C{‖w‖H2
0
‖f‖C0([0,T ],H3) + ‖w‖H1 [‖f‖C1([0,T ],H3) + ‖µ‖H2‖f‖C0([0,T ],H2)]

+ ‖w‖L2‖f‖C2([0,T ],H3)},

more precisely,

S0 =
(
− 1
iλk

∫ T
0

(ẅ(t)〈f(t), ϕk〉 + 2ẇ(t)〈ḟ , ϕk〉 + w(t)〈f̈ , ϕk〉)eiλktdt
)
k∈N∗

+ terms with an h7norm bounded by

C{‖µ‖H1 [‖w‖H2‖f‖C0([0,T ],H3) + ‖w‖H1‖f‖C1([0,T ],H3) + ‖w‖L2‖f‖C2([0,T ],H3)]

+ |µ‖H2‖w‖H1‖f‖C0([0,T ],H2)}.
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Proposition 9. Let T > 0. There exists C > 0 such that, for every µ ∈ H1((0, T ),R) with ‖µ‖H1((0,T ),R) � 1,
• when w ∈ L2((0, T ),R) and f ∈ C0([0, T ], H2 ∩H1

0 ((0, 1),R)), then S1 ∈ h3(N∗,C) and

‖S1‖h3(N∗,C) � C‖w‖L2‖f‖C0([0,T ],H2);

• when w ∈ H1
0 ((0, T ),R) and f ∈ C1([0, T ], H2 ∩H1

0 ((0, 1),R) then S1 ∈ h5(N∗,C) and

‖S1‖h5((N∗,C) � C[‖w‖H1‖f‖C0([0,T ],H2) + ‖w‖L2‖f‖C1([0,T ],H2)];

• when µ ∈ H2((0, T ),R), w ∈ H2
0 ((0, T ),R) and f ∈ C3([0, T ], H2 ∩H1

0 ((0, 1),R) then S1 ∈ h7(N∗,C)
and

‖S1‖h7((N∗,C) � C[‖w‖H2
0
‖f‖C0([0,T ],H2) + ‖w‖H1‖f‖C1([0,T ],H2) + ‖w‖L2‖f‖C2([0,T ],H2)].

In the end of this section, we justify the h3-bound on S1 and all the bounds on S0. The other bounds can be
proved in the same way.

Remark 9. Propositions 8 and 9 hold in any positive time T . Thus, if the linearized system around (ψref , u ≡ 0)
is controllable in time T with the bounds (3.8) and (3.9) (corresponding to v = 0), then, the nonlinear system
is locally controllable in the same time T , whatever the value of T is.

Proof of the h3-bounds of Proposition 9. Thanks to Cauchy-Schwarz inequality and Lemma 1, we have

‖S1‖2
h3 �
∫ T

0

∣∣∣∣∣w(t)

∣∣∣∣∣2 dt
∫ T

0

∞∑
k=1

∣∣∣∣∣ k3

〈
f(t),

dϕk,γ
dγ

]
µ(t)

〉∣∣∣∣∣
2

dt � C‖w‖2
L2‖f‖2

C0([0,T ],H2 .

�

Proof. of the h3-bounds of Proposition 8. First, we prove that, when f ∈ C0([0, T ], H1) and µ ≡ 0 then
S0 ∈ h1(N∗,C). Indeed, we have

S0,k =
∫ T

0

w(t)〈g(t), ϕk〉eiλktdt+
√

2
kπ

(
(−1)k+1

∫ T
0

w(t)f(t, 1)eiλktdt+
∫ T

0

w(t)f(t, 0)eiλktdt

)
,

where g(t, x) := f(t, x) − f(t, 1)x − f(t, 0)(1 − x). Since g ∈ C0([0, T ], H1
0 ((0, 1),C)), then, for every t,

(〈g(t), ϕk〉)k∈N∗ belongs to h1(N∗,C). When T ∈ (2/π)N, we can conclude thanks to the Bessel Parseval
inequality in L2((0, T ),C). When T /∈ (2/π)N, we use the following consequence of the Ingham inequality. �
Lemma 2. Let T > 0. There exists C > 0 such that, for every g ∈ L2((0, T ),C),( ∞∑

k=1

|ck|2
)1/2

� C‖g‖L2(0,T ) where ck :=
∫ T

0

g(t)eiλktdt.

Proof of Lemma 2. We know that there exists a constant C > 0 such that, for every N ∈ N, and for every
(ak)1�k�N ⊂ C, ∥∥∥∥∥

N∑
k=1

ake−iλkt

∥∥∥∥∥
2

L2(0,T )

� C
N∑
k=1

|ak|2

(see [25], Th. 4). Let us introduce the following closed subspace of L2((0, T ),C), V := Span{e−iλkt, k ∈ N}. The
family (e−iλkt)k∈N∗ is minimal in L2((0, T ),C) because it satisfies an Ingham inequality (see [30], Lem. 1.2.7).
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Thus, there exists a biorthonormal family (zk)k∈N∗ ⊂ V (see [30], Th. 1.2.5): 〈e−iλkt, zj〉 = δj,k. Let g ∈
L2((0, T ),C) and g1 be the orthogonal projection in L2((0, T ),C) of g on V , g1 =

∑∞
k=1 ckzk. We have

‖ck‖l2 = sup{|
∞∑
k=1

ckak|; a = (ak)k∈N ∈ l2(N,C), ‖a‖l2 � 1}

= sup{|
N∑
k=1

ckak|;N ∈ N
∗, (ak)1�k�N ⊂ C,

N∑
k=1

|ak|2 � 1}

= sup{|
∫ T

0

g1(t)h(t)dt|;N ∈ N
∗, h =

N∑
k=1

ake−iλkt, (ak)1�k�N ⊂ C,

N∑
k=1

|ak|2 � 1}

� C‖g1‖L2 � C‖g‖L2. �

Now, let f ∈ C0([0, T ], H3 ∩H1
0 ((0, 1),C)). Let us consider the decomposition

S0,k =
∫ T
0
w(t)
(

1
λk,µ(t)

− 1
λk

)
〈Aµ(t)f(t), ϕk,µ(t)〉ei

∫ t
0 λk,µ(s)dsdt

+ 1
λk

∫ T
0
w(t)〈Aµ(t)f(t), ϕk,µ(t) − ϕk − µ(t)ϕ(1)

k 〉ei
∫

t
0 λk,µ(s)dsdt

+ 1
λk

∫ T
0 w(t)µ(t)〈Aµ(t)f(t), ϕ(1)

k 〉ei
∫

t
0 λk,µ(s)dsdt

+ 1
λk

∫ T
0
w(t)〈Aµ(t)f(t), ϕk〉(ei

∫
t
0 λk,µ(s)ds − eiλkt)dt

+ 1
λk

∫ T
0
w(t)〈Aµ(t)f(t), ϕk〉eiλktdt

called

S0 = S0,a + S0,b + S0,c + S0,d + S0,e.

The first part of this proof justifies that

‖S0,e‖h3 � C‖w‖L2‖f‖C0([0,T ],H3).

Thanks to (A.4) and the Cauchy-Schwarz inequality in L2((0, T ),R), we get

‖S0,a‖h3 � C‖µ‖H1‖w‖L2‖Aµf‖C0([0,T ],L2) � C‖µ‖H1‖w‖L2‖f‖C0([0,T ],H2).

Thanks to (A.10), we get,

‖S0,b‖h3 � C‖µ‖2
H1‖w‖L2‖Aµf‖C0([0,T ],L2) � C‖µ‖H1‖w‖L2‖f‖C0([0,T ],H2).

In the same way and thanks to Lemma 1, we get

‖S0,c‖h3 � C‖wµ‖L2‖Aµf‖C0([0,T ],L2) � C‖µ‖H1‖w‖L2‖f‖C0([0,T ],H2).

Thanks to (A.12), we can write∫ t
0

λk,µ(s)ds = λkt+
1
3

∫ t
0

µ(s)ds+ ck(t) where |ck(t)| � C‖µ‖H1

k2
· (4.6)
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Thus, we have the decomposition

S0,d,k = 1
λk

∫ T
0 w(t)〈Aµ(t)f(t), ϕk〉(ei

∫
t
0 λk,µ(s)ds − ei(λkt+

1
3

∫
t
0 µ(s)ds))dt

+ 1
λk

∫ T
0
w(t)(ei

1
3

∫
t
0 µ(s)ds − 1)〈Aµ(t)f(t), ϕk〉eiλktdt.

The bound (4.6) justifies that the h3-norm of the first term of this decomposition is bounded by
C‖µ‖H1‖w‖L2‖f‖C0([0,T ],H2). Using the first par of this proof, we get the following bound for the h3-norm
of the second term of this decomposition

C‖w(t)(1 − ei
1
3

∫ t
0 µ(s)ds)‖L2‖Aµf‖C0([0,T ],H1) � C‖µ‖H1‖w‖L2‖f‖C0([0,T ],H3).

Proof of the h5-bound of Proposition 8. Thanks to and integration by parts, we get

S0,k =
∫ T
0
µ̇
λ′

k,µ

iλ3
k,µ
w 〈Aµf, ϕk,µ〉 ei

∫ t
0 λk,µdt

−
∫ T
0 ẇ 1

iλk,µ
〈f, ϕk,µ〉 ei

∫ t
0 λk,µdt

−
∫ T
0
w 1
iλk,µ

〈
ḟ , ϕk,µ

〉
ei
∫

t
0 λk,µdt

−
∫ T
0 µ̇w 1

iλk,µ

〈
f,

dϕk,γ

dγ

]
µ

〉
ei
∫ t
0 λk,µdt.

Let us call this decomposition
S0 = S0,a′ + S0,b′ + S0,c′ + S0,d′ .

Using the following bound ∣∣∣∣∣λ′k,µλ3
k,µ

∣∣∣∣∣ � C

k6
,

which is a consequence of (A.1) and (A.11), we get

‖S0,a′‖h5 � C‖µ̇w‖L2‖Aµf‖C0([0,T ],L2) � C‖µ‖H1‖w‖H1‖f‖C0([0,T ],H2).

Using Lemma 1, we get

‖S0,d′‖h5 � C‖µ̇w‖L2‖f‖C0([0,T ],H2) � C‖µ‖H1‖w‖H1‖f‖C0([0,T ],H2).

We have

S0,b′ = i

∫ T
0

ẇ

(
1
λk,µ

− 1
λk

)
1
λk,µ

〈Aµf, ϕk,µ〉 ei
∫

t
0 λk,µ dt+

i

λk

∫ T
0

ẇ〈f, ϕk,µ〉ei
∫

t
0 λk,µ dt.

Thanks to (A.4), the h5-norm of the first term in this sum is bounded by C‖µ‖H1‖w‖H1‖f‖C0([0,T ],H2). The
decomposition of S0 in h3 gives

S0,b′ =

(
−1
iλk

∫ T
0

ẇ 〈f, ϕk〉 eiλktdt

)
k∈N∗

+ terms with an h5norm � C‖µ‖H1‖w‖H1‖f‖C0([0,T ],H3).

Doing the same thing on S0,c′ , we get

S0,c′ =

(
−1
iλk

∫ T
0

w
〈
ḟ , ϕk,µ

〉
ei
∫

t
0 λk,µdt

)
k∈N∗

+ terms with an h5norm � C‖µ‖H1‖w‖L2‖f‖C1([0,T ],H3). �



132 K. BEAUCHARD

Proof of the h7-bound of Proposition 8. First, one notice that S0,a′ and S0,d′ belong to h7. Indeed,

S0,a′ =
λ′k
λ2
k

∫ T
0

µ̇w〈f, ϕk,µ〉ei
∫ t
0 λk,µdt+

∫ T
0

(
λ′k,µ
λ2
k,µ

− λ′k
λ2
k

)
1
λk,µ

µ̇w〈Aµf, ϕk,µ〉ei
∫ t
0 λk,µdt.

Using the Cauchy Schwarz inequality in L2((0, T ),C), the orthonormality of the family (ϕk,µ) and the inequality∣∣∣∣∣λ′k,µλ2
k,µ

− λ′k
λ2
k

∣∣∣∣∣ � C‖µ‖H1

k5

which is a consequence of (A.3) and (A.11), we get the following bound for h7-norm of the second term in S0,a′

C‖µ‖H1‖µ̇w‖L2‖Aµf‖C0([0,T ],H2) � C‖µ‖H1‖w‖H1‖f‖C0([0,T ],H2).

Thanks to (A.1) and the h3-bound on S0, we get the following bound for the h7-norm of the first term in S0,a′

C‖µ̇w‖L2‖f‖C0([0,T ],H3) � C‖µ‖H1‖w‖H1‖f‖C0([0,T ],H3).

We also have

S0,d′ =
−1
iλk

∫ T
0

µ̇w

〈
f,

dϕk,γ
dγ

]
µ(t)

〉
ei
∫ t
0 λk,µdt+

∫ T
0

(
1
iλk

− 1
iλk,µ

)
µ̇w

〈
f,

dϕk,γ
dγ

]
µ(t)

〉
ei
∫ t
0 λk,µdt.

Thanks to (A.4) and Lemma 1, we get the following bound for the h7-bound of the second term in S0,d′

C‖µ‖H1‖µ̇w‖L2‖f‖C0([0,T ],H2) � C‖µ‖H1‖w‖H1‖f‖C0([0,T ],H2).

For the first term, applying the bound we know on the h5-norm of S1, we get the following bound

C[‖µ̇w‖L2‖f‖C1([0,T ],H2) + ‖µ̇w‖H1‖f‖C0([0,T ],H2)]

� C[‖µ‖H1‖w‖H1‖f‖C1([0,T ],H2) + ‖µ‖H2‖w‖H1‖f‖C0([0,T ],H2)].

Now, we have to study S0,b′ and S0,c′ in h7. Using (A.12), we get

1
λk

− 1
λk,µ

=
µ

3λ2
k

+ dk(µ) where |dk(µ)| � C‖µ‖H1

k6
· (4.7)

Thus,

S0,b′ =
−1
iλk

∫ T
0

ẇ〈f, ϕk,µ〉ei
∫ t
0 λk,µdt+

1
3λ2

k

∫ T
0

µẇ〈f, ϕk,µ〉ei
∫ t
0 λk,µdt

+
∫ T

0

dk(µ)ẇ
1
λk,µ

〈Aµf, ϕk,µ〉ei
∫

t
0 λk,µdt. (4.8)

Let us call this decomposition
S0,b′ = S0,b′,1 + S0,b′,2 + S0,b′,3.

Thanks to (4.7), we get
‖S0,b′,3‖h7 � C‖µ‖H1‖w‖H1‖f‖C0([0,T ],H2).
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Using the bound on the h3-norm of S0, we get

‖S0,b′,2‖h7 � C‖µẇ‖L2‖f‖C0([0,T ],H3) � C‖µ‖H1‖w‖H1‖f‖C0([0,T ],H3).

Thanks to the decomposition of S0 in h5, we get

S0,b′ = −1
λ2

k

∫ T
0 (ẅ〈f, ϕk〉 + ẇ〈ḟ , ϕk〉)eiλktdt

+ terms with an h7norm � C‖µ‖H1 [‖w‖H2‖f‖C0([0,T ],H3) + ‖w‖H1‖f‖C1([0,T ],H3)].

Working in the same way on S0,c′ , we get

S0,c′ =
−1
λ2
k

∫ T
0

(ẇ〈ḟ , ϕk〉 + w〈f̈ , ϕk〉)eiλktdt

+ terms with an h7 norm � C‖µ‖H1 [‖w‖H1‖f‖C1([0,T ],H3) + ‖w‖L2‖f‖C2([0,T ],H3)]. �

4.4.2. Study of M(ψ0,u) −M(ψref (0),0)

In order to prove Proposition 7, we cut [M(ψ0,u) −M(ψref (0),0)](v) in several pieces on which we prove the
bounds of Proposition 7 one by one. We introduce the sequences dMj(v) := (dMj(v)k)k∈N∗ , for j = 1, 2, 3, 4, 5,

dM1(v)1 :=
∫ T
0 v̇(〈x2ψ, ψ〉 − 〈x2ψref , ψref 〉) dt,

dM1(v)k :=
∫ T
0 v̇(〈x2ψ, ϕk,µ〉ei

∫
t
0 λk,µ(s) ds − 〈x2ψref , ϕk〉eiλkt) dt, for every k � 2,

dM2(v)1 :=
∫ T
0
uv(
〈
x2ψ, ψ
〉
−
〈
x2ψref , ψref

〉
) dt,

dM2(v)k :=
∫ T
0
uv(
〈
x2ψ, ϕk,µ

〉
ei
∫ t
0 λk,µ(s)ds −

〈
x2ψref , ϕk

〉
eiλkt) dt, for every k � 2,

dM3(v)1 := 0,

dM3(v)k :=
∫ T
0 (α̇〈ψ, ϕk,µ〉ei

∫
t
0 λk,µ(s)ds − α̇0〈ψref , ϕk〉eiλkt) dt, ∀k � 2

where

α0 :=
〈Ψ0, ϕ1〉
〈ψref , ϕ1〉

and

⎧⎪⎪⎨⎪⎪⎩
iΨ̇0 = −Ψ′′

0 + v̇x2ψref ,

Ψ0(t, 0) = Ψ0(t, 1) = 0,

Ψ0(0) = 0,

dM4(v)1 := 0,

dM4(v)k :=
∫ T
0
µ̇

〈
Ψ, dϕk,γ

dγ

]
µ

〉
ei
∫ t
0 λk,µ(s)dsdt, ∀k � 2,

dM5(v)1 := 0,

dM5(v)k :=
∫ T
0 µ̇α

〈
ψ,

ϕk,γ

dγ

]
µ

〉
ei
∫

t
0 λk,µ(s)dsdt, ∀k � 2.

First, let us remark that, when δ4 � 1 then (see App. B)

‖ψ‖C0([0,T ],H2) � C,

‖ψ̇‖C0([0,T ],H2), ‖ψ‖C0([0,T ],H4) � C,

‖ψ̈‖C0([0,T ],H2), ‖ψ̇‖C0([0,T ],H4), ‖ψ‖C0([0,T ],H6) � C(1 + δ6).
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Study of dM1. We have

|dM1(v)1| � C‖v‖H1‖ψ − ψref‖C0([0,T ],L2) � δ4‖v‖H1 .

Thanks to Proposition 8, we have, for k � 2,

dM1(v)k = 1
λk

∫ T
0 v̇
〈
A
[
x2(ψ − ψref )

]
, ϕk
〉
eiλktdt

+ terms with an h3 norm bounded by

C‖µ‖H1‖v‖H1‖ψ‖C0([0,T ],H3) � Cδ4‖v‖H1 .

Applying again Proposition 8, we get

‖dM1‖h3 � C[‖v‖H1‖ψ − ψref‖C0([0,T ],H3) + δ4‖v‖H1 � Cδ4‖v‖H1 .

Thanks to Proposition 8, we have, for k � 2,

dM1(v)k = −1
iλk

∫ T
0

(v̈〈x2(ψ − ψref ), ϕk〉 + v̇〈x2(ψ̇ − ψ̇ref ), ϕk〉)eiλktdt

+ terms with an h5 norm bounded by

C‖µ‖H1 [‖v‖H2‖ψ‖C0([0,T ],H3) + ‖v‖H1‖ψ‖C1([0,T ],H3)] � C[δ4‖v‖H2 + δ6‖v‖H1 ].

Applying again Proposition 8, we get

‖dM1‖h5 � C[‖v̈‖L2‖ψ − ψref‖C0([0,T ],H3) + ‖v̇‖L2‖ψ̇ − ψ̇ref‖C0([0,T ],H3 + δ4‖v‖H2 + δ6‖v‖H1 ]

� C[δ4‖v‖H2 + δ6‖v‖H1 ].

We study dM1 in h7 in the same way.
Study of dM2. For the study of dM2, we apply Proposition 8. We have

‖dM2‖h3 � C‖uv‖L2(1 + ‖ψ − ψref‖C0([0,T ],H3))

� C‖v‖H1δ4,

‖dM2‖h5 � C[‖uv‖H1(1 + ‖ψ − ψref‖C0([0,T ],H3)) + ‖uv‖L2(1 + ‖ψ − ψref‖C0([0,T ],H5))]

� C[‖v‖H2δ4 + ‖v‖H1δ6],

‖dM2‖h7 � C[‖uv‖H2(1 + ‖ψ − ψref‖C0([0,T ],H3)) + ‖uv‖H1(1 + ‖ψ − ψref‖C0([0,T ],H5))

+ ‖uv‖L2(1 + ‖ψ − ψref‖C0([0,T ],H7)) + ‖µ‖H2‖uv‖H1(1 + ‖ψ − ψref‖C0([0,T ],H2)]

� C[‖v‖H3δ4 + ‖v‖H2δ6 + ‖v‖H1δ8].

Study of dM3. We detail the study of dM3 in h3, the study in h5 and h7 can be done in the same way. Using
the same arguments as for S0 in h3, and the bound

‖α̇‖L2 � C‖v‖H1 ,

we get

dM3(v) =
∫ T

0

(α̇− α̇0)
〈
x2ψ, ϕk

〉
eiλktdt+

∫ T
0

α̇0

〈
x2(ψ − ψref ), ϕk

〉
eiλktdt

+ terms with an h3norm bounded by Cδ4‖v‖H1 .
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One can prove that
‖α̇− α̇0‖L2 � Cδ4‖v‖H1

which, with Proposition 8, gives the conclusion.
Study of dM4. Thanks to Proposition 9, we have

‖dM4(v)‖h3 � C‖µ‖H1‖Ψ‖C0([0,T ],H2),

‖dM4(v)‖h5 � C[‖µ‖H2‖Ψ‖C0([0,T ],H2) + ‖µ‖H1‖Ψ‖C1([0,T ],H2)],

‖dM4(v)‖h7 � C[‖µ‖H3‖Ψ‖C0([0,T ],H2) + ‖µ‖H2‖Ψ‖C1([0,T ],H2) + ‖µ‖H1‖Ψ‖C2([0,T ],H2)

+ ‖µ‖H2‖µ‖H1‖Ψ‖C0([0,T ],H2)].

Using Appendix B, we get, when δ4 � 1,

‖Ψ‖C0([0,T ],H2) � C‖v‖H1 ,

‖Ψ‖C1([0,T ],H2) � C‖v‖H2 ,

‖Ψ‖C2([0,T ],H2) � C[‖v‖H3 + δ6‖v‖H1 ],

which gives the conclusion.
Study of dM5. Thanks to Proposition 9, we have

‖dM5(v)‖h3 � C‖µ̇α‖L2‖ψ‖C0([0,T ],H2),

‖dM5(v)‖h5 � C[‖µ̇α‖H1‖ψ‖C0([0,T ],H2) + ‖µ̇α‖L2‖ψ‖C1([0,T ],H2)],

‖dM5(v)‖h7 � C[‖µ̇α‖H2‖ψ‖C0([0,T ],H2) + ‖µ̇α‖H1‖ψ‖C1([0,T ],H2) + ‖µ̇α‖L2‖ψ‖C2([0,T ],H2)].

Thanks to Appendix B, we have

‖α‖H1 � C‖v‖H1 and ‖α‖H1 � C‖v‖H2 .

Thus
‖µ̇α‖L2 � Cδ4‖v‖H1 , ‖µ̇α‖H1 � Cδ6‖v‖H1 , ‖µ̇α‖H2 � C[δ8‖v‖H1 + δ6‖v‖H2 ],

which gives the conclusion.

5. Local controllability around ψ1

5.1. Local controllability up to codimension one around ψ1

Let us introduce the following closed subspace of L2((0, 1),C),

V := Span{ϕk; k � 2}

and the orthogonal projection P : L2((0, 1),C) → V . We admit the following result, that will be proved in
Section 6.

Theorem 9. Let T := 2/π and ε > 0. There exists C > 0, δ > 0 and a continuous map

Γ : N × Ñ → H2
0 ((0, T ),R)

(ψ0 , ψ̃f ) �→ u
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where
N := {ψ ∈ S ∩H5+ε

(0) ((0, 1),C); ‖ψ − ϕ1‖H5+ε〈δ},

Ñ := {ψ̃ ∈ V ∩H5+ε
(0) ((0, 1),C); ‖ψ̃‖L2 � 1 and ‖ψ̃‖H5+ε〈δ},

such that, for every (ψ0, ψ̃f ) ∈ N × Ñ

‖Γ(ψ0, ψ̃f )‖H2
0

� C[‖Pψ0‖H5+ε + ‖ψ̃f‖H5+ε ]

and the trajectory of (Σ) with ψ(0) = ψ0 and control u = Γ(ψ0, ψ̃f ) satisfies Pψ(T ) = ψ̃f .

Remark 10. This theorem probably holds with any T > 0. Indeed, the linearized system around (ψ1, u ≡ 0) is
controllable in any positive time (see Th. 4) and the application of the Nash-Moser theorem does not introduce
a positive minimal time for the controllability that is not needed for the linearized system (see Rem. 9). The
only point which misses to get theorem with any T > 0 is the controllability of the linearized system around
(ψ1, u ≡ 0) WITH the bounds (3.8) and (3.9) (corresponding to v = 0) in any time T > 0. Theses bounds are
easier to prove with T = 2/π.

5.2. Second order term

The goal of this section is the proof of the following result.

Proposition 10. Let T := 2/π. There exist v± ∈ H4 ∩ H3
0 ((0, T ),R) and ν± ∈ H3

0 ((0, T ),R) such that the
solutions of the following systems⎧⎪⎪⎨⎪⎪⎩

iΨ̇± = −Ψ′′± + v̇±(t)x2ψ1(t),

Ψ±(t, 0) = Ψ±(t, 1) = 0,

Ψ±(0) = 0,

⎧⎪⎪⎨⎪⎪⎩
iξ̇± = −ξ′′± + v̇±(t)x2Ψ± + [ν̇± − 4v2

±](t)x2ψ1(t),

ξ±(t, 0) = ξ±(t, 1) = 0,

ξ±(0) = 0,

satisfy Ψ±(T ) = 0 and ξ±(T ) = ± iψ1(T ).

Let us introduce the following subspace of L2((0, 2/π),C)

X := Span{ei(λk−λ1)t; k ∈ N
∗}.

We denote by X⊥ the orthogonal subspace to X in L2((0, 2/π),C).

Proposition 11. Let T := 2/π. There exists v ∈ H
4 ∩H3

0 ((0, T ),R) such that v̇ ∈ X⊥ and∫ T
0

v̇(t)
〈
x2Ψ(t), ϕ1

〉
eiλ1tdt− 4〈x2ϕ1, ϕ1〉

∫ T
0

v(t)2dt ∈ (0,+∞)(resp. ∈ (−∞, 0)) (5.1)

where Ψ is the solution of ⎧⎪⎪⎨⎪⎪⎩
iΨ̇ = −Ψ′′ + v̇(t)x2ψ1(t),

Ψ(t, 0) = Ψ(t, 1) = 0,

Ψ(0) = 0.

Remark 11. When v̇ ∈ X⊥ the left hand side of (5.1) belongs to R. Indeed, we have

Ψ(t) =
∞∑
k=1

yk(t)ϕk where yk(t) = −i
〈
x2ϕ1, ϕk

〉 ∫ t
0

v̇(τ)ei(λk−λ1)τdτ e−iλkt,
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thus ∫ T
0

v̇(t)
〈
x2Ψ(t), ϕ1

〉
eiλ1tdt = −i

∞∑
k=1

〈
x2ϕ1, ϕk

〉2
fk(v)

where

fk(v) :=
∫ T

0

v̇(t)ei(λk−λ1)t

∫ t
0

v̇(τ)ei(λ1−λk)τdτdt.

Thanks to an integration by parts, the assumption v̇ ∈ X⊥ gives, for every k ∈ N∗, fk(v) ∈ iR.

Proof. We consider the candidate

v̇(t) := cos
(
n1π

2t
)
− cos
(
n2π

2t
)

where n1, n2 ∈ N∗, n1 �= n2 and n1, n2 /∈ {k2 − 1; k ∈ N∗}. Then v̇ ∈ X⊥, and v(t) :=
∫ t
0 v̇(τ)dτ belongs to

H4 ∩H3
0 ((0, T ),R). Explicit computations give f1(v) = 0 and, for k � 2,

fk(v) =
1

2iπ3

(
1

−n1 + k2 − 1
+

1
n1 + k2 − 1

+
1

−n2 + k2 − 1
+

1
n2 + k2 − 1

)
·

Thus, ∫ T
0

v̇(t)
〈
x2Ψ(t), ϕ1

〉
eiλ1tdt− 4

〈
x2ϕ1, ϕ1

〉 ∫ T
0

v(t)2dt = A(n1) +A(n2)

where

A(n) := − 4
n2π5

(
1
3
− 1

2π2

)
− 64
π7

∞∑
k=2

k2

(k + 1)3(k − 1)3(n+ k2 − 1)(−n+ k2 − 1)
·

With (n1, n2) = (1, 2), we get A(n1), A(n2) < 0 and with (n1, n2) = (4, 5), we get A(n1), A(n2) > 0. �

Proof of Proposition 10. Let v ∈ H4 ∩H3
0 ((0, T ),R) be such that

∫ T
0

v̇(t)
〈
x2Ψ(t), ϕ1

〉
eiλ1tdt− 4

〈
x2ϕ1, ϕ1

〉 ∫ T
0

v(t)2dt = −1 (resp. + 1), (5.2)

such a v exists thanks to Proposition 11. The assumption v̇ ∈ X⊥ gives Ψ(T ) = 0. For ν ∈ H1
0 ((0, T ),R), we

have ξ(T ) =
∑∞
k=1 zk(T )ϕk where

zk(T ) := −i
∫ T

0

(
v̇(t)
〈
x2Ψ(t), ϕk

〉
+ (ν̇ − 4v2)(t)

〈
x2ϕ1, ϕk

〉
e−iλ1t
)
eiλktdt e−iλkT .

Thus, the equality ξ(T ) = iψ1(T ) (resp. ξ(T ) = −iψ1(T )) is equivalent to (5.2) and for every k � 2

∫ T
0

ν̇(t)ei(λk−λ1)tdt = 4
∫ T

0

v2(t)ei(λk−λ1)tdt− 1
〈x2ϕ1, ϕk〉

∫ T
0

v̇(t)
〈
x2Ψ(t), ϕk

〉
eiλktdt. (5.3)

There exists ν ∈ H3
0 ((0, T ),R) with these prescribed Fourier coefficients if and only if the right hand side of (5.3)

belongs to h4(N∗,C). This condition is satisfied when v ∈ H4 ∩H3
0 ((0, T ),R). �



138 K. BEAUCHARD

5.3. Proof of Theorem 6

In all this section T := 2/π, ε ∈ (0, 1). Let ρ ∈ R, ψ0, ψf ∈ H5+ε((0, 1),C). Let us consider, for t ∈ [0, T ],

u(t) :=
√
|ρ|v + |ρ|ν

where v := v+, ν := ν+ if ρ � 0, v := v−, ν := ν− if ρ � 0 and v±, ν± are defined in Proposition 10. Let
ψ be the solution of (Σ) on [0, T ] with control u and such that ψ(0) = ψ0. Since u ∈ H3

0 ((0, T ),R), we have
ψ(T ) ∈ H5+ε((0, 1),C).

Proposition 12. There exists a constant C such that, for every ρ ∈ (−1, 1), we have

‖ψ(T )− (1 + iρ)ϕ1‖H5+ε � C[‖ψ0 − ϕ1‖H5+ε + |ρ|3/2]. (5.4)

Proof. We have ψ(T ) − (1 + iρ)ϕ1 = (ψ − Z)(T ) where Z := ψ1 + Ψ + ξ and⎧⎪⎪⎨⎪⎪⎩
iΨ̇ = −Ψ′′ +

√
|ρ|v̇x2ψ1,

Ψ(t, 0) = Ψ(t, 1) = 0,

Ψ(0) = 0,

⎧⎪⎪⎨⎪⎪⎩
iξ̇ = −ξ′′ +

√
|ρ|v̇x2Ψ1 + |ρ|(ν̇ − 4v2)x2ψ1,

ξ(t, 0) = ξ(t, 1) = 0,

ξ(0) = 0.

The function ∆ := ψ − Z solves{
i∆̇ = −∆′′ + [u̇− 4u2]∆ −

√
|ρ|v̇x2ξ − |ρ|ν̇x2(Ψ + ξ) + 4[2|ρ|3/2vν + |ρ|2ν2]ψ1 + 4u2(Ψ + ξ),

∆(0) = ψ0 − ϕ1.

We get (5.4) thanks to Propositions 20 and 21 in Appendix B and an interpolation inequality. �

Now, we use the local controllability up to codimension one around ϕ1. Let δ > 0 be as in Theorem 10. We
assume

‖ψ0 − ϕ1‖H5+ε〈 δ3C , ‖ψf − ϕ1‖H5+ε〈δ,

|ρ|〈η := min

{
δ

3‖ϕ1‖H5+ε

,

(
δ

3C

)2/3
}
.

Then, we have
‖ψ(T )− ϕ1‖H5+ε < δ and ‖Pψf‖H5+ε < δ

so there exists u ∈ H2
0 ((T, 2T ),R) such that P(ψ(2T )) = Pψf and

‖u‖H2
0((T,2T ),R) � C[‖P(ψ(T ) − ϕ1)‖H5+ε + ‖Pψf‖H5+ε ]

� C0[‖ψ0 − ϕ1‖H5+ε + |ρ|3/2 + ‖ψf − ϕ1‖H5+ε ].

Moreover, we have

〈ψ(2T ), ϕ1〉 = 1 + iρ− i

∫ 2T

T

[u̇− 4u2](t)〈x2ψ(t), ϕ1〉eiλ1tdt

thus
|�(〈ψ(2T ), ϕ1〉) − ρ| � C1‖u‖H1

0((T,2T ),R).

We define the map
F : (−η, η) → R

ρ �→ �〈ψ(2T ), ϕ1〉



CONTROLLABLITY OF A QUANTUM PARTICLE IN A 1D VARIABLE DOMAIN 139

Let τ := min{η, 1
(4C0C1)2

} and let us assume also that

‖ψ0 − ϕ1‖H5+ε + ‖ψf − ϕ1‖H5+ε � τ

4C0C1
,

then F (τ) > τ/2 > 0 and F (−τ) < −τ/2 < 0 thus, F is surjective on a neighborhood of zero. This ends the
Proof of Theorem 6.

6. Local controllability up to codimension one around ψ1

6.1. Context for the Nash-Moser theorem

In this section, we prove Theorem 10 by applying Theorems 7 and 8 with the maps

Φ(ψ0, u) := (ψ0,Pψ(T )) and P(ψ0, ψ̃f ) := (Pψ0, ψ̃f ),

for any ψ0 ∈ L2, ψ̃f ∈ V and the spaces

Ea := [S ∩Ha
(0)((0, 1),C)] ×H

a/2
0 ((0, T ),R),

Fa := [S ∩Ha
(0)((0, 1),C)] × [B ∩ V ∩Ha

(0)((0, 1),C)],

where B := {ϕ ∈ L2((0, 1),C); ‖ϕ‖L2 < 1}.

6.2. Controllability up to codimension one of the linearized system around (ψ1, u ≡ 0) with
tame estimates

Proposition 13. Let T := 2/π. There exists C > 0 such that, for every Ψ0 ∈ H7
(0)((0, 1),C) ∩ TS(ϕ1), Ψ̃f ∈

H7
(0) ∩ V ∩ TS(ϕ1), there exists a trajectory (Ψ, v) of (Σ0,0) with Ψ(0) = Ψ0, PΨ(T ) = Ψ̃f , v ∈ H3

0 ((0, T ),R),
moreover

‖v‖H1
0((0,T ),R) � C‖(PΨ0, Ψ̃f )‖H3×H3 and ‖v‖H3

0((0,T ),R) � C‖(PΨ0, Ψ̃f)‖H7×H7 .

Proof. Thanks to Section 2, it is sufficient to prove the existence of a constant C > 0 such that, for every
d = (dk)k�2 ∈ h4, there exists v ∈ H3

0 ((0, T ),R) with the following prescribed Fourier coefficients⎧⎨⎩
∫ T
0
v̇(t)dt = 0,∫ T

0
v̇(t)ei(λk−λ1)dt = dk, ∀k � 2

and which satisfies
‖v̇‖L2((0,T ),R) � C‖d‖l2 and ‖v̇‖H2

0 ((0,T ),R) � C‖d‖h4 .

A suitable candidate is

v(t) :=

( ∞∑
k=2

dke−i(λk−λ1)t + c.c.

)
(1 − cos(π2t)). �

Remark 12. This proposition probably holds with any T > 0.
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6.3. Controllability up to codimension one of the linearized system around (ψ, u), close
to (ψ1, 0) in E4, with tame estimates

The aim of this section is the proof of the existence of a right inverse to the differential map dΦ(ψ0, u) when
(ψ0, u) is close enough to (ψ1(0), 0) in E4, which satisfies (3.8) and (3.9).

Let (ψ0, u) ∈ E8, and ψ be the solution of the Cauchy problem⎧⎪⎪⎨⎪⎪⎩
iψ̇ = −ψ′′ + (u̇− 4u2)(t)x2ψ, x ∈ (0, 1), t ∈ (0, T ),

ψ(t, 0) = ψ(t, 1) = 0,

ψ(0) = ψ0.

The linearized system around (ψ, u) is

(Σl)

{
iΨ̇ = −Ψ′′ + (u̇− 4u2)(t)x2Ψ + (v̇ − 8uv)(t)x2ψ, x ∈ (0, 1), t ∈ (0, T ),

Ψ(t, 0) = Ψ(t, 1) = 0.

Again, we use the distances, for s = 2, 4, 6, 8,

δs := ‖(ψ0, u) − (ϕ1, 0)‖Es .

We want to prove the following proposition.

Proposition 14. Let T := 2/π. There exists a constant C such that, when δ4 is small enough, for every
ψ0 ∈ H7

(0)((0, 1),C) ∩ TS(ϕ1), for every Ψ̃f ∈ H7
(0)((0, 1),C) ∩ V , there exists a trajectory (Ψ, v) of (Σl) with

Ψ(0) = Ψ0, PΨ(T ) = Ψ̃f , v ∈ H3
0 ((0, T ),C) and

‖v‖H1
0((0,T ),R) � C[‖(PΨ0, Ψ̃f)‖H3×H3 + δ4‖(Ψ0, Ψ̃f )‖H3×H3 ],

‖v‖H3
0((0,T ),R) � C[‖(PΨ0, Ψ̃f)‖H7×H7 + δ8‖(Ψ0, Ψ̃f )‖H3×H3 ].

(6.1)

Note that it is sufficient to prove the following proposition.

Proposition 15. Let T := 2/π. There exists a constant C such that, for every Ψ̃f ∈ H7
(0)((0, 1),C) ∩ V , there

exists a trajectory (Ψ, v) of (Σl) with Ψ(0) = 0, PΨ(T ) = Ψ̃f , v ∈ H3
0 ((0, T ),C) and

‖v‖H1
0((0,T ),R) � C‖Ψ̃f‖H3 ,

‖v‖H3
0((0,T ),R) � C[‖Ψ̃f‖H7 + δ8‖Ψ̃f‖H3×H3 ].

(6.2)

Proof of Proposition 14 thanks to Proposition 15. We consider the decomposition Ψ = Ψ1 + Ψ2 where µ :=
u̇− 4u2 and ⎧⎪⎪⎨⎪⎪⎩

iΨ̇1 = −Ψ′′
1 + µ(t)x2Ψ1,

Ψ(t, 0) = Ψ(t, 1) = 0,

Ψ(0) = Ψ0,

⎧⎪⎪⎨⎪⎪⎩
iΨ̇2 = −Ψ′′

2 + µ(t)x2Ψ2 + (v̇ − 8uv)(t)x2ψ,

Ψ2(t, 0) = Ψ2(t, 1) = 0,

Ψ2(0) = 0.
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There exist v ∈ H3
0 ((0, T ),R) such that PΨ2(T ) = Ψ̃f − PΨ1(T ) and

‖v‖H1
0((0,T ),R) � C

∥∥∥Ψ̃f − PΨ1(T )
∥∥∥
H3

,

‖v‖H3
0((0,T ),R) � C

[∥∥∥Ψ̃f − PΨ1(T )
∥∥∥
H7

+ δ8

∥∥∥Ψ̃f − PΨ1(T )
∥∥∥
H3×H3

]
.

In order to get the bounds (6.1), let us prove that

‖PΨ1(T )‖H3 � C[‖PΨ0‖H3 + δ4‖Ψ0‖H3 ],

‖PΨ1(T )‖H7 � C[‖PΨ0‖H7 + δ8‖Ψ0‖H3 ].

We consider the decomposition

Ψ1(t) =
∑∞

k=1 xk(t)ϕk,µ where xk(t) := 〈Ψ1(t), ϕk,µ(t)〉.

We have

xk(T ) = 〈Ψ0, ϕk〉 +
∫ T

0

µ̇(t)

〈
Ψ1(t),

dϕk,γ
dγ

]
µ(t)

〉
ei
∫ t
0 λk,µ(s)dsdt.

Thus, using Proposition 9, we get, when δ4 is small enough,

‖PΨ1(T )‖H3 � C
(∑∞

k=2 |k3xk(T )|2
)1/2 � C[‖PΨ0‖H3 + δ4‖Ψ0‖H3 ],

‖PΨ1(T )‖H7 � C
(∑∞

k=2 |k7xk(T )|2
)1/2 � C[‖PΨ0‖H7 + δ4‖Ψ0‖H3 + δ6‖Ψ0‖H5 + δ8‖Ψ0‖H3 ].

We conclude thanks to the convexity of the norms. �

Proof of Proposition 15. Thanks to the decomposition

Ψ(t) =
∑∞
k=1 yk(t)ϕk,µ where yk(t) := 〈Ψ(t), ϕk,µ(t)〉,

the equality PΨ(T ) = Ψ̃f is equivalent to M(v) = d where M(v) = (M(v)k)k�2, d = (dk)k�2 and, for every
k � 2,

M(v)k :=
∫ T

0

(
−i(v̇ − 8uv)

〈
x2ψ(t), ϕk,µ(t)

〉
+ µ̇(t)

〈
Ψ(t),

dϕk,γ
dγ

]
µ(t)

〉)
ei
∫

t
0 λk,µ(s)dsdt,

dk :=
〈
Ψ̃f , ϕk

〉
.

We conclude applying Proposition 6 exactly in the same way as in Section 4.4. �
The assumptions of Theorem 8 can be checked in the same way.

7. Remarks, conjectures

7.1. Regularity

In Theorems 5 and 10, the assumption ψ0, ψf ∈ H5+ε
(0) ((0, 1),C) is only technical, one conjectures that these

local controllability results hold in
• H3

(0)((0, 1),C) with control functions in L2;
• H5

(0)((0, 1),C) with control functions in H1
0 ;

• H7
(0)((0, 1),C) with control functions in H2

0 , etc.
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7.2. Minimal time for controllability

For the compactness argument explained in Section 1.5.1, one need local controllability results around ψref :=√
1 − θ2 − θ3ψ1+

√
θ2ψ2+

√
θ3ψ3 in time T such that ψref (0) = ψref (T ), for instance T = 2/π or 4/π. However,

the minimal time for local controllability is another interesting problem.
One conjectures that the local controllability around ψref , with (θ2, θ3) ∈ Int(D), (i.e. Th. 5) holds in any

positive time T . Indeed, the linearized system around (ψref , u ≡ 0) is probably controllable in any time T > 0
(see Rem. 4). Thus, it is also probably controllable with the bounds (3.8) and (3.9) (corresponding to v = 0) in
any time T > 0. Moreover, the application of the Nash-Moser theorem does not introduce a positive minimal
time (see Rem. 9).

One conjectures that the local controllability up to codimension one around ψ1 (i.e. Th. 10) holds in any
time T > 0. Indeed, the linearized system around (ψ1, u ≡ 0) is controllable up to codimension one in any
T > 0 (see Th. 4). Thus, Proposition 13 probably holds with any time T > 0. Moreover, the application of the
Nash-Moser theorem does not introduce a positive minimal time (see Rem. 9).

We think the following assertions are equivalent
• there exists a positive minimal time for the local controllability around ψ1;
• there exists of a positive minimal time for the Proposition 11 to hold.

Some computations justify that the condition of Proposition 11 can be written

∞∑
k=2

a2
k(λk − λ1)3�

(∫ T
0

v(t)ei(λ1−λk)t

∫ t
0

v(τ)ei(λk−λ1)τdτdt

)
∈ (0,+∞)(resp. ∈ (−∞, 0)). (7.1)

It is probably possible to move the second order term instantaneously in one of the two directions ±iψ1(T ),
which means realize ∈ (0,+∞) or ∈ (−∞, 0) in (7.1) with arbitrarily small T . Perhaps the motion in the other
direction needs a positive minimal time. A proof by contradiction could also be tried, as in [18].

The existence of a minimal time for moving from ϕ1 to ϕ2 is also an open problem. The compactness
argument used to prove Theorem 1 does not give any clue.

The existence of a minimal time for particular motions on the nonlinear system could be studied directly, for
instance by adapting the proof of [17]. In the situation studied in [10], there exists a positive minimal time for
the local controllability around (ψ1, s ≡ 0, d ≡ 0) which has been proved in [17]. This situation is quite different
because the linearized system around (ψ1, s ≡ 0, d ≡ 0) misses an infinite number of directions.

7.3. Generalizations

The strategies of this papers can be generalized to Schrödinger equations of the form

iψ̇ = −ψ′′ + u(t)a(x)ψ, x ∈ (0, 1).

If the function a has some parity property on the space interval (0, 1), then the return method can be used, as
in [9, 10]. This method was introduced by Coron in [13] to solve a stabilization problem, it has also been used
for controllability problems by Coron in [14–16], by Coron et Fursikov in [19], by Fursikov et Yu. Imanuvilov
in [20], by Glass in [21–23], by Horsin in [27] and by Sontag in [36].

Acknowledgements. The author thanks Enrique Zuazua for having attracted her attention to this controllability problem
and Jean-Michel Coron for fruitful discussions and advice on this work.

Appendix A: Study of ϕk,γ and λk,γ

In this appendix, we state some useful results on the eigenvalues λk,γ and the orthonormal eigenfunctions ϕk,γ
of the operator

D(Aγ) := H2 ∩H1
0 ((0, 1),R), Aγϕ := ϕ′′ + γx2ϕ.
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When γ = 0, we write λk, ϕk instead of λk,0, ϕk,0, and we have

ϕk(x) :=
√

2 sin(nπx), λn := (nπ)2.

The functions γ �→ ϕk,γ and γ �→ λk,γ are analytic (see [29], Motzkin-Taussky theorem p. 85),

ϕk,γ = ϕk + γϕ
(1)
k + γ2ϕ

(2)
k + γ3ϕ

(3)
k + ..., λk,γ = λk + γλ

(1)
k + γ2λ

(2)
k + γ3λ

(3)
k + ...

Proposition 16. For every k ∈ N∗, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
− d2

dx2ϕ
(1)
k + x2ϕk = λkϕ

(1)
k + λ

(1)
k ϕk,

ϕ
(1)
k (0) = ϕ

(1)
k (1) = 0,∫ 1

0
ϕk(q)ϕ

(1)
k (q)dq = 0.

λ
(1)
k = 〈x2ϕk, ϕk〉 = 1

3 − 1
2(kπ)2 , ϕ

(1)
k =
∑∞

j=1,j 
=k xk,jϕj , xk,j := (−1)k+j8kj
π4(k+j)3(k−j)3 , ∀j �= k. (A.1)

There exists a constant C > 0 such that, for every k ∈ N
∗∥∥∥ϕ(1)

k

∥∥∥
L2

� C

k
·

Proof. Using (A.1), we get

∥∥∥ϕ(1)
k

∥∥∥
L2

=
8k
π4

⎛⎝ ∞∑
j=1,j 
=k

j2

(k + j)6(k − j)6

⎞⎠1/2

� C

k
· �

Corollary 2. There exists γ∗ > 0, C∗ > 0 such that, for every γ1 ∈ (−γ∗, γ∗), for every k ∈ N∗, we have

‖ϕk,γ1 − ϕk‖Hs((0,1),R) � C∗|γ1|ks−1, for every integers ∈ [0, 4], (A.2)

|λk,γ1 − λk| � C|γ1|. (A.3)∣∣∣∣ 1
λk,γ1

− 1
λk

∣∣∣∣ � C|γ1|
k4

· (A.4)

Proposition 17. For every k ∈ N∗, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
− d2

dx2ϕ
(2)
k + x2ϕ

(1)
k = λkϕ

(2)
k + λ

(1)
k ϕ

(1)
k + λ

(2)
k ϕk,

ϕ
(2)
k (0) = ϕ

(2)
k (1) = 0,∫ 1

0
(2ϕk(q)ϕ

(2)
k + ϕ

(1)
k ϕ

(1)
k )(q)dq = 0,

λ
(2)
k =
〈
x2ϕ

(1)
k , ϕk

〉
, ϕ

(2)
k =
∑∞

j=1 yk,jϕj , yk,k := − 1
2‖ϕ

(1)
k ‖2

L2, yk,j := 〈x2ϕ
(1)
k ,ϕj〉−λ(1)

k xk,j

λk−λj
, ∀j �= k.

(A.5)
There exists a constant C > 0 such that, for every k ∈ N∗∥∥∥ϕ(2)

k

∥∥∥
L2

� C

k
,

∣∣∣λ(2)
k

∣∣∣ � C

k2
· (A.6)



144 K. BEAUCHARD

Proof. Using (A.5), we get

∥∥∥ϕ(2)
k

∥∥∥
L2

� 1
2

∥∥∥ϕ(1)
k

∥∥∥2
L2

+
C

k

⎛⎝ ∞∑
j=1,j 
=k

1
(k − j)2(k + j)2

⎞⎠1/2

+ Ck

⎛⎝ ∞∑
j=1,j 
=k

j2

(k + j)8(k − j)8

⎞⎠1/2

� C

k2
·

The explicit expression of ϕ(1)
k gives

∣∣∣λ(2)
k

∣∣∣ = C

∣∣∣∣∣∣
∑
j 
=k

k2j2

(k + j)5(k − j)5

∣∣∣∣∣∣ � C

k2
· �

The quantities ϕk,γ , λk,γ are analytic functions of the parameter γ in a neighborhood of zero, thus, we can
consider their derivatives with respect to γ. We denote

djϕk,γ
dγj

]
γ1

the jth derivative of the map γ �→ ϕk,γ evaluated at the point γ = γ1 and

λk,γ′
1
, λ′′k,γ

the second and third derivatives of the function γ �→ λk,γ evaluated at the point γ = γ1.

Corollary 3. For every γ1 ∈ R, we have

Aγ1
dϕk,γ
dγ

]
γ1

+ x2ϕk,γ1 = λk,γ1
dϕk,γ
dγ

]
γ1

+ λ′k,γ1ϕk,γ1 . (A.7)

There exists γ∗ and C∗ > 0 such that, for every γ1 ∈ (−γ∗, γ∗), for every k ∈ N∗, we have∥∥∥∥∥ dϕk,γ
dγ

]
γ1

− dϕk,γ
dγ

]
0

∥∥∥∥∥
Hs((0,1),R

� C∗|γ1|ks−2 for every integer s ∈ [0, 4], (A.8)

∥∥∥∥∥ dϕk,γ
dγ

]
γ1

∥∥∥∥∥
Hs((0,1),R)

� C∗ks−1, (A.9)

∥∥∥ϕk,γ1 − ϕk − γ1ϕ
(1)
k

∥∥∥
L2((0,1),R)

� C∗|γ1|2
k2

, (A.10)

|λ′k,γ1 − λ′k| � C|γ1|
k

, (A.11)∣∣∣λk,γ1 − λk −
γ

3

∣∣∣ � C|γ|
k2

· (A.12)

Proof. Thanks to (A.6) and (A.1), we have∣∣∣∣λk,γ1 − λk − γ1

(
1
3
− 1

2(kπ)2

)∣∣∣∣ � C|γ1|2
k2

,

which gives (A.12). �
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Proposition 18. There exists C∗ > 0 such that, for every k ∈ N∗,∥∥∥ϕ(3)
k

∥∥∥
L2

� C∗

k2
·

Thus, there exists γ∗ > 0 such that, for every k ∈ N
∗, we have∥∥∥∥∥ d2ϕk,γ

dγ2

]
γ1

∥∥∥∥∥
L2

� C∗

k2
· (A.13)

Appendix B: Regularity and bounds on the solutions of the nonlinear system

This section is dedicated to the statement of existence and regularity results together with bounds on the
solution of the Cauchy problem⎧⎪⎪⎨⎪⎪⎩

iψ̇(t, x) = −ψ′′(t, x) + [u̇− 4u2](t)x2ψ(t, x) + f(t, x),

ψ(t, 0) = ψ(t, 1) = 0,

ψ(0, x) = ψ0(x).

(B.1)

We use the spaces Ea, a = 2, 4, 6 defined in Section 3, and the group of isometries of L2((0, 1),C) defined by

T (t)ϕ :=
∞∑
k=1

〈ϕ,ϕk〉e−iλktϕk.

Proposition 19. Let T > 0, ψ0 ∈ H2
(0)((0, 1),C), µ ∈ L1((0, T ),R) and f ∈ L1((0, T ), H2

(0)((0, 1),R)). There
exists a unique ψ ∈ C0([0, T ], H2

(0)((0, 1),C)) which satisfies the following equality in H2
(0)((0, 1),C) for every

t ∈ [0, T ],

ψ(t) := T (t)ψ0 +
∫ t

0

T (t− s)[−iµ(s)x2ψ(s) − if(s)]ds. (B.2)

Moreover, there exists a constant C > 0 such that

‖ψ‖C0([0,T ],H2
(0))

� [‖ψ0‖H2
(0)

+ ‖f‖L1((0,T ),H2
(0))

]eC‖µ‖L1 .

Proof. The existence come from a fixed point argument when ‖µ‖L1((0,T ),R) is small enough. Otherwise, we use
a partition [0, T ] = ∪Ij , 1 � j � N such that ‖p‖L1(Ij ,R is small enough so that the previous result holds. The
bound relies on Gronwall’s Lemma. �

Applying recursively this result, we get the following propositions

Proposition 20. Let T > 0, ψ0 ∈ H4
(0)((0, 1),C), u ∈ W 2,1((0, T ),R) and f ∈ W 1,1((0, T ), H2

(0)((0, 1),R)).
The solution ψ of (B.2), with µ := u̇− 4u2, belongs to C1([0, T ], H2

(0))∩C0([0, T ], H4
(0)), it is a solution of (B.1)

in the sense of Definition 1. Moreover, for every r > 0, there exists a constant C(r) > 0 such that, for every
(ψ0, u) ∈ E4 with ‖(ψ0, u)‖E4 � r and for every f ∈ W 1,1((0, T ), H2

(0)), the quantities ‖ψ‖C0([0,T ],H4
(0))

and

‖ψ̇‖C0([0,T ],H2
(0))

are bounded by
C(r)[‖ψ0‖H4

(0)
+ ‖f‖W 1,1((0,T ),H2

(0))
].

Proposition 21. Let T > 0, ψ0 ∈ H6
(0)((0, 1),C), u ∈W 3,1((0, T ),R) be such that (u̇− 4u2)(0) = 0 and

f ∈ W 2,1((0, T ), H2
(0)((0, 1),R)) ∩C0([0, T ], H4((0, 1),R))). (B.3)
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The solution ψ of (B.2), with µ := u̇−4u2 belongs to C2([0, T ], H2
(0))∩C1([0, T ], H4)∩C0([0, T ], H6) If µ(T ) = 0

and f(T ) ∈ H4
(0)((0, 1),C) then ψ(T ) ∈ H6

(0)((0, 1),C). Moreover, for every r > 0, there exists a constant
C(r) > 0 such that, for every (ψ0, u) ∈ E6 with ‖(ψ0, u)‖E4 � r and for every f with (B.3), the quantities
‖ψ‖C0([0,T ],H6), ‖ψ̇‖C0([0,T ],H4) and ‖ψ̈‖C0([0,T ],H2) are bounded by

C(r)[‖ψ0‖H6 + ‖u‖H3‖ψ0‖H2
(0)

+ ‖f‖W 2,1((0,T ),H2
(0))

+ ‖f‖C0([0,T ],H4) + ‖u‖H3‖f‖L1((0,T ),H2
(0))

].
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actuels (1991).

[3] C. Altafini, Controllability of quantum mechanical systems by root space decomposition of su(n). J. Math. Phys. 43 (2002)
2051–2062.

[4] J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982).
[5] L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical

nuclear dynamics. Portugaliae Matematica (N.S.) 63 (2006) 293–325.
[6] L. Baudouin and J. Salomon, Constructive solution of a bilinear control problem. C.R. Math. Acad. Sci. Paris 342 (2006)

119–124.
[7] L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to

bilinear optimal control. J. Differential Equations 216 (2005) 188–222.
[8] K. Beauchard, Local controllability of a 1-D beam equation. SIAM J. Control Optim. (to appear).
[9] K. Beauchard, Local Controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851–956.

[10] K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well. J. Functional Analysis 232
(2006) 328–389.

[11] R. Brockett, Lie theory and control systems defined on spheres. SIAM J. Appl. Math. 25 (1973) 213–225.
[12] E. Cancès, C. Le Bris and M. Pilot, Contrôle optimal bilinéaire d’une équation de Schrödinger. C.R. Acad. Sci. Paris, Série
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