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CONTROLLABLITY OF A QUANTUM PARTICLE
IN A 1D VARIABLE DOMAIN

KARINE BEAUCHARD!

Abstract. We consider a quantum particle in a 1D infinite square potential well with variable length.
It is a nonlinear control system in which the state is the wave function ¢ of the particle and the control
is the length I(t) of the potential well. We prove the following controllability result : given ¢o close
enough to an eigenstate corresponding to the length [ = 1 and ¢ close enough to another eigenstate
corresponding to the length I = 1, there exists a continuous function ! : [0,7] — R} with 7" > 0, such
that [(0) = 1 and I(T") = 1, and which moves the wave function from ¢o to ¢ in time 7T". In particular,
we can move the wave function from one eigenstate to another one by acting on the length of the
potential well in a suitable way. Our proof relies on local controllability results proved with moment
theory, a Nash-Moser implicit function theorem and expansions to the second order.
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1. INTRODUCTION

1.1. Main result

We consider a quantum particle in a potential well with variable length I(7), where

l: [0,400) — (0,+00)

T — ()

is a continuous function of the time variable 7. At any time 7, the particle is represented by a wave function
¢(T7 Z)?
¢: [0,+00) x (0,i(r)) — C
(r , z) e 9(12)

where z is the space variable. The physical meaning of |¢(7, 2)|? dz is the probability of the particle to be in
an elementary volume dz surrounding the position z at time 7, thus, at any time 7, the wave function defines
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106 K. BEAUCHARD
a point on the L2((0,1(7)), C)-sphere
()
/ 6(r, 2)Pdz = 1. (1.1)
0

This wave function is solution of the following Schrodinger equation

5] B = 52T Rz € (0,U0)
¢(1,0) = ¢(7,U(7)) = 0,7 € RY.
The system (ENJ) is a control system in which

e the state is the wave function ¢, with (1.1) for every ;
e the control is the function [, with [(0) = (1) = 1, where 7 is the final time.
In order to work on a more convenient control system, we perform changes of space variable z — x, time
variable 7 — ¢, wave function ¢(7,z) — 9(t,z), and control [ — w which are presented in Section 1.3. They
lead to the equivalent nonlinear control system

» { i%_f(tw) = _327%(75730) + [a(t) — 4u?(t)]2y(t, ), t € R* .z € (0,1),
(t,0) = ¥(t,1) = 0, € R}

in which
e the state variable is the wave function v, with fol [Y(t, 2)|?dz = 1 for every t;

e the control is the real valued time depending function u, with «(0) = u(ts) =0, fotf u(s)ds = 0 where
ty is the final time.

The system (X)) is easier to deal with than (X) because it is posed on a fixed space domain.

Definition 1. Let T} < T5 be two real numbers and u € C([T, T3], R). A function ¢ is a solution of (%) if
1) belongs to CO([Ty, T»], H?> N H((0,1),C)) N CH([T1, Tz], L?((0,1),C)) and satisfies the first equality of () in
L?((0,1),R), for every t € (T1,T2). Then, we say that (¢, u) is a trajectory of the control system ().

We give a sense to the solution of the initial problem (X), posed on a variable domain, by using this definition
of solution for the new system () posed on a fixed domain : given a regular function [ : [0, +00) — (0, 4+00)
(regular enough so that the corresponding function  is C'!), a function ¢(r, z) is said to be a solution of () if
the corresponding function (¢, ) through the changes z — x, 7 — ¢, | — w is a solution of (X) in the sense of
the previous definition.

Let us introduce the unitary L2((0, 1), C)-sphere S and the operator A defined by

D(A) := H?>N H}((0,1),C), Agp:=—¢".

For every n € N*,

on(z) == V2 sin(nmz) (1.2)
is an eigenvector of A associated to the eigenvalue )\, := (n7)? and the family (¢, )nen+ is orthonormal in
L2((0,1),C). For every n € N*, the function

Y (t, ) := pp(x)e 0t
is a solution of (¥) with u = 0. For s > 0, we introduce the space

H{, ((0,1),C) := D (AS/Q) .
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Since we will work with control functions v with zero mean value, we introduce, for s > 0, the spaces

H3((0,7),R) := {u € HS((O,T),R);/T u(t)dt = 0} .

We write L2((0,T),R) instead of HO((0,T'),R). The main result of this article is the following one.

Theorem 1. Let € > 0. For every n € N*, there exists n, > 0 such that, for every ng,ny € N*, for every
o, ¥ € Higi“((0,1),R) NS with

Hw(chpnoHH{’*‘/ < Mng» wafcpnf”er‘ <nnf7

there ezists a time T and a trajectory (Y,u) of (X) on [0,7] which satisfies ¥(0) = o, Y(T) = ¢y, and
u € HZ((0,7),R).

Thus, we also have the following important corollary.

Corollary 1. For every ng,ny € N*, there exists a time T and a trajectory (v, w) of (£) on [0, T] which satisfies
P(0) = pn,, Y(T) = Pny and u € Hg((O,T),R).

Using the changes of variables presented in Section 1.3 this corresponds to the following controllability result
for the initial system.

Theorem 2. For every ng,ny € N*, there exists T > 0 and a trajectory (¢,1) of (i) on [0,7] such that
le 02([();7-];1&1); l(O) = Z(T) =1, (15(0) = ¥Png> ¢(T) = Pny-

In Section 1.2, one mentions some other works about the controllability of Schrodinger equations using other
methods. _

In Section 1.3, one details the changes of variables and functions that transform (X) into (X).

In Section 1.4, one presents a previous non controllability result for (X) and explain why this negative result
can hold at the same time as the affirmative controllability result (Th. 1).

In Section 1.5, one gives a sketch of the proof: the global strategy is a compactness argument that needs
local controllability results around many periodic trajectories. All those local results are proved thanks to the
linearization principle for control problems. However the controllability of the linearized systems does not hold
in suitable functional spaces, because of a loss of regularity, so, one cannot conclude with the inverse mapping
theorem, and we use a Nash-Moser theorem. For some of those trajectories, the linearized system misses certain
directions (it is controllable ‘up to codimension one’) and we exploit second order terms.

Sections 2-6 are dedicated to the different steps of the proof, announced in Section 1.5.

Finally, Section 7 gives some remarks and conjectures about this work.

1.2. A brief literature review

An good introduction to control questions for Schréodinger equations is [38].
First, the controllability of finite dimensional quantum systems (i.e. modeled by an ordinary differential
equation) is well understood. Let us consider the quantum system

where X € C™ is the state, Hy, H; are n * n hermitian matrices, and ¢t — wu(t) € R is the control. The
controllability of (1.3) is linked to the rank of the Lie algebra spanned by Hy and H; (see for instance [1,3,11]).
Another interpretation of the controllability of (1.3) is the connectivity graph criterion [37].

In infinite dimension, there are cases where the iterated Lie brackets provide the right intuition. For instance,
it holds for the harmonic oscillator [35]. However, the Lie brackets are often less powerful in infinite dimension
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than in finite dimension, thus, the exact controllability of an infinite dimensional bilinear system (i.e. modeled
by a partial differential equation) is a more difficult problem.

Results on distributed and boundary exact controllability for linear Schrodinger equations are the subjects
of [31-34].

Optimal control techniques have been investigated for Schrodinger equations with a non linearity of Hartee
type in [5,12] and [7]. An algorithm for the calculus of such optimal control is studied in [6].

Finally, non controllability results are proved in [37] and [28] for some particular linear and non linear
Schrodinger equations. The result of [37] is discussed in Section 1.4.

1.3. Changes of time variable, space variable and wave function

In order to get a problem posed on a fixed domain, we consider the change of space variable and function

T = ﬁz,
C(r,x) == (T, 2).

We get the following system

()

{ i%(r,x) =— 1 2%(7’,3&) +i%x%(r,x),r eR4,z €(0,1),
C(Tv 0) = C(Ta 1) =0.

In order to make disappear the term before the Laplacian, we consider the change of time variable defined by

t= [, # do,
(t z) = ((, @),
which gives
{ %t x) = —Z5(t,2) + idu(t)r X (t, 2),t € Ry, z € (0,1),
£(t,0) =¢(t,1) =0,

where u(t) := ii(’l’)l(’r), which is equivalent to

I(r) = exp <4 /O tu(s)ds) . (1.4)

(b, ) 1= £(t, a)o= O 2 [ u(e)as
leads to the system (X). In order to justify that the controllability of (X) gives the controllability of (i), we
need to prove that the map [ — u is surjective. For the control problem on (X) to have a sense, we look for
1:]0,77] — R% continuous with [(0) = I(7y) = 1, which, together with (1.4) implies fotf u(s)ds = 0, where 7¢
and ¢y are linked through the relation
Tf 1
ty = ——dr
! / I(r)?

In order to have ¥(0) = ¢(0) and ¥(tf) = ¢(75), we look for u such that u(0) = u(tf) = 0. In the proof of
Theorem 1, we will get the time 7" and the control u € HZ((0,7),R) in the following way

Now the change of wave function

T=mTl
u(t) = ug(t — kT) for every t€ [kT,(k+1)T] and for every k€ {0,...,m —1},
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where m is a positive integer, T := 2/7, uy € H_g(((), T),R) is small. Thus, the following proposition is sufficient.

Proposition 1. Let T > 0 and € € (0,1). Let u € C°([0,T],R) be such that

u(0) =u(T) = /0 u(s)ds =0, (1.5)

small in the following sense

Alull 10,1y exp(dllull Lro,1)) < € (1.6)
8T (1+ ¢
ﬁ“&hx(om exp(4]|ullz10,1)) < 1. (1.7)

We define u on Ry by u =0 on [T, +oc]. Then, there exists a unique | € C°(R,,[1 — €, 1+ €]) solution of

t(7) T
I(1) = exp <4/0 u(s) ds) where t(1) := /0 l(ch)Q do

Vo={le CO(Ry,[1—€6,1+¢));1(0)=1 and =1 on [T(1+¢)? +o0)}

Proof. The space

is complete for the L°(R4,R)-norm. For | € V., we define ®(l) : Ry — R, ®(I)(7) := exp(4 fOt(T)u(s)ds).
Assumption (1.6) justifies that ® maps V. into itself, and assumption (1.7) justifies that ® is a contraction. We
conclude thanks to the Banach fixed point theorem. O

1.4. A previous non controllability result

In [4], Ball, Marsden and Slemrod discuss the controllability of infinite dimensional bilinear control systems
of the form
w(t) = Aw(t) + p(t)B(w(t)), (1.8)
where the state is w and the control is p. Thanks to Baire lemma, they prove the following non controllability
result.

Theorem 3. Let X be a Banach space with dim(X) = +o00. Let A generate a C%-semi group of bounded
linear operators on X and B : X — X be a bounded linear operator. Let wy € X be fixed and let w(¢; p, wp)
denote the unique solution of (1.8) for p € L}, ((0,+00),R) with w(0) = wq. The set of states accessible from
wq defined by

S(wo) = {w(t;p,wo);t > 0,p € Lj,.((0,00),R),r > 1}

is contained in a countable union of compact subsets of X and, in particular, has dense complement.

As noticed by Turinici in [37], Theorem 3 shows that, for the bilinear control system

i = —" 220,
{ ¥ =—y" +p(t)z*y,x € (0,1), 19)

P(t,0) =1(t,1) =0

given ¢y € X := SN H(QO)((O, 1),C), the set of ¥(t) in X accessible from the initial condition ¢y, by using
controls in p € L, ((0,00),R), > 1, has dense complement in X. Thus, the system (X) is not controllable in
SN HE ((0,1),C), with control functions u in Hg((0,7),R), T > 0.
However, there is no obstruction for having controllability in other spaces. For example, Theorem 3 does not
apply with B
X = H(30)((07 1); (C)
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instead of X because the operator B, defined by By := 2%, does not map X into X.

In this article, we prove local controllability results in H, (E’OJ)F‘((O7 1),C), with € > 0 and with control functions
win H2((0,T),R) with T' = 2/x. Thus, the negative result proved by G. Turinici relies on a choice of functional
spaces which does not allow controllability. In order to state affirmative controllability results, one must

e cither control ¢ in H(QO)((O, 1),C) but with a control functions set larger than HZ ((0,T),R), for example
L2((0,7),R); _
e or control ¢ using the control functions set H}((0,7),R), but in a smaller space than H(QO)((O, 1),0C),
for example H(30)((0, 1),C).
In the regularity assumption H>*¢((0,1),R), the term +e¢ is probably only technical. We conjecture that () is
controllable
e in H{)((0,1),C) with control functions u in H_&((O, T),R);
e in H, ((0,1),C) with control functions u in H_g(((), T),R);
e in H(70)((0, 1),C) with control functions u in HZ((0,7),R), etc.
Because it is the case for the linearized systems studied in Section 2. This conjectures are open problems.

1.5. Sketch of the proof

The technic used in this proof are very close to the one used in [10]. We extend the use of the Nash-Moser
theorem to a nonlinear control system which is not bilinear.

1.5.1. Global strategy: compactness argument

Thanks to the reversibility of the control system (X), in order to get Theorem 1, it is sufficient to prove it
with ny = ng + 1. We prove it with ng =1 and ny = 2 to simplify.
First, we prove the local controllability of (3) in H®*¢((0,1),C), in time T = 2/7 or 4/m around the

trajectories
(\/1 — 0y — 031 + V022 + /O3, u = 0) ;

for every (02,03) € D := {(z,y) € (0,1)%,0 < z+y < 1}U{(0,0), (1,0)}. Then, we know that, for every (62, 03) €
D, there exists a nonempty open H>™¢((0,1), C)-ball Byg, ¢, centered at (v/1 — 0 — 0311 4+ /2102 + v/O313)(0)
such that (X) can be moved in finite time between any two points in By, g,)-

We conclude thanks to a compactness argument. Let f € C°([0,1],R) be such that

f(0)=f(1)=0,0< f(z) and 0 < z + f(z) < 1for every z € [0,1].

The curve
[p1,pa] = {\/1 —0— f(0)p1 + Vs + /F(0)ps;0 € [0, 1]} : (1.10)

is compact in H°t¢((0,1),R) and covered by Uo<o<1B(,7(0)) thus, there exists an increasing finite family
(0n)o<n<n such that [p1, @o] is covered by UpcngnBn with By, := By, 5(s,))- We can assume By, N By 1 # 0
forn =0,..,N —1, By = B, and By = B(,p). Given ¢y € By and ¢y € By we can move (X) from 1o to
1¢ in finite time in the following way:

e we move from 1)y to some point &5 € By N Bj in finite time;

e we move from & to some point & € By N Bay, etc.

Remark 1. It would be more natural to use the path

(o1, 2] == {\/1—9(,014—\/5(,02;96 0, 1]} (1.11)
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in the compactness argument, as in [10]. We chose the path (1.10) because the local controllability of (X) is easier

to be proved around /1 — 0y — 0311 + /021b2 + /B31p3 for (02,05) € Int(D), than around /1 — i1 + /Ba1bo
for 6 € (0,1). We detail this additional difficulty in Remark 3 However, the path (1.11) could also be used to
prove Theorem 1, one proposes an adaptation of the present proof in Remark 3 in order to do so.

Now, let us explain the proof of the local controllability of (X) around

1 — 0y — 0301 + /02102 4+ /Os1)s

for (02,03) € D. We explain in the next section that the strategy can be the same for every (62,63) € Int(D)
but has to be different for (62, 65) € {(0,0),(1,0)}.

1.5.2. Different behaviors for the linearized systems

In order to get the local controllability of a nonlinear control system around some trajectory, a classical
approach is the following one :

e first, we prove the controllability of the linearized system around this trajectory;
e then we conclude applying the inverse mapping theorem to the end-point map © defined by

O : (Yo, u) — (¥(0),9(T)),

where v is the solution of (3) with control w and initial condition ¥(0) = .
Thus, it is natural to start with the study of the linearized system of (X) around the trajectories

(VI=02= 0501 + V/Bava + Osts, u = 0)
for (62,03) € D, which is

(% 0){ 28 (t,x) = —L2(t,x) + 5(t)22 (VI — O — Ost1 + VOaths + VO33) (t, @), t € Ry, € (0,1),
L w0y = w1 =0,

For z € C, R(z) (resp. J(z)) denotes the real (resp. imaginary) part of z. For every point ¢ in the L2((0,1),C)-
sphere S, Ts(§) denotes the tangent space to S at the point &,
i) =0}

16(0) = {200,010 [ e
e the state is the function ¥, with ¥(¢) € Ts[(v/1 — 02 — O5¢1 + \/_wg + \/_wg )(t ] for every t;

The system (3¢, 9,) is a control system in which
e the control is the real valued time depending function v, with v(0) = fo s)ds = 0.

In Section 2, we prove the following result.

Theorem 4. Let (02,03) € Ini(D) and T > 2/(3mw). The system (X9, 0,) is controllable in time T: for
every ¥o, Uy € H(O)((O, 1),C) with

Wy € Ts [(V1 = 02 — 03101 + VB2102 + VB3¢3)(0)]
Uy € Ts [(VI— 02— 051 + VB2 + VO313)(T)]

there exists a trajectory (¥,v) of (2e,,0,) with ¥(0) = Wo, U(T) =Tf, v e HI((0,T),R).
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The system (39,0) is not controllable : for every T > 0 and for every v € H_&((O,T),R), the solution ¥ of
(30,0) satisfies
(U(T), 1) = (¥(0), pr)e” 7.
Let T >0, ¥, ¥y € Hgo)((o, 1), C) with
Vo € Ts(¥1(0)), ¥y e Ts(yi(T)) and  S((Ty, 1) = (Yo, p1)e 7).

There exists a trajectory (U,v) of (Xo,0) with ¥(0) = ¥y, U(T) =Ty, v € H_Ol((O, T),R).

For the linear system (X¢,0), we can control all the components (U(t), o) for k& > 2 and we cannot control
S(W(t), 11(t)). We call this situation controllability up to codimension one, as in [10]. For the linearized system
(31,0) around (2, u = 0), we can control all the components ((t), pi) for k € N*, k # 2, and we cannot control
R

((t),92(t)).
1.5.3. Local controllability around /1 — 0y — 0311 + /Baths + /03103 for (02,03) € Int(D).
The goal of Section 4, is the proof of the following result.

Theorem 5. Let (02,0s) € Int(D), T := 2/7 and € be an arbitrary positive real number. There exist C > 0

and a neighborhood Vy (resp. Vi) of (v/1 — 02 — O3 + V021 +/0313)(0) (resp. (V1 — 0y — O031p1 + /O21h9 +

VO303)(T)) in SN H(E’OJ)“((O, 1),C) such that, for every o € Vo, ¥y € Vi, there exists a trajectory (¢, u) of (¥)

with Y (0) = o, Y(T) =y, u € H_OQ((O, T),R), moreover

HUHHig((O,T),R) < C[Hl/fo - (V 1—02— 031 + @1/& + \/%1/)3)(0)HH5+€
vy = (VT =02 — 0391 + /B2 + /O313) (T) || groe .

Remark 2. Theorem 5 is written with 7' = 2/7 because, in this case, (v/1 — 0y — 0311 + v/Ba1p2 + /B313)(0) =
(V1 = 03 — 03101 ++/021p2++/0313) (T), and this condition is needed in the compactness argument (see Sect. 1.5.1).
However, this theorem may hold with other values of T'. This is discussed in Section 7.2.

The first part of Theorem 4 is not sufficient to conclude the local controllability of () around /1 — 05 — 0311+
V021h5 + /31)3 for (02, 03) € Int(D), by applying the classical inverse mapping theorem. Indeed, the end point
map ® is well defined and of class C'' between the following spaces

P [8 N H(QO)((Ov 1)56)] x H_Ol((OaT)aR) - [S N H(20)((0a 1)7((:)] X [S N H(QO)((Oa 1)7((:)]7

In order to apply the inverse mapping theorem to the map ®, we need to control the linearized system around
(V1 =0y — 0391 + VO21py + /03103, u = 0)
e cither in H(QO)((O, 1),C) with control functionsE H(0,T),R);

e orin Hp, ((0,1),C) with control functions in Hg((0,T),R),
but it is not possible (see Prop. 2). Theorem 4 provides a right inverse d®(y/1 — 02 — 031+ /a2 +v/03¢03,0) 71
defined between the following spaces

H(SO)((Oa 1); (C) X H(30)((0a 1)7((:) - H(BO)((Oa 1); (C) X H_&((Oa T)aR)

We lose regularity in the controllability of the linearized system: the control function cannot be regular enough
to apply the classical inverse mapping theorem.

We prove Theorem 5 by applying a Nash-Moser theorem stated in Section 3, and inspired from [26]. A similar
version of this theorem is used in [8-10]. In Section 4.1, we give the context for the application of this theorem.
In Sections 4.2, 4.3 and 4.4, we check its assumptions.
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1.5.4. Local controllability around 11 : expansion to the second order
The goal of Section 5 is the proof of the following result.

Theorem 6. Let T := 2/m and € > 0. There exist C > 0 and o neighborhood Vy (resp. V) of ¥1(0) (resp.

¥1(2T)) in SﬂH(‘E’OJgE((O, 1), C) such that, for every 1o € Vo, ¢y € Vy, there exists a trajectory (1, u) of (X) with

¥(0) = 1o, Y(2T) =y, u € H_OQ((O7 2T),R), moreover
Jullgz 01y < Cllo — 1 (0) lrose + by — 1 (2T o).

Again, for T = 2/m, we have 11(0) = 11 (2T) = 1, but this theorem is written in this way in order to discuss
its generalization with T' # 2/7 in Section 7.2. The same result holds with everywhere 15 instead of 1);.

Our strategy is in two steps. First, in Section 5.1, we state a local controllability up to codimension one result
of () around ;. Then, in Section 5.2, we justify that the second order term d2®(¢1,0) allows to move in the
two directions i1 (T") which are missed by the linearized system. Finally, in Section 5.3 we prove Theorem 6,
thanks to the intermediate value theorem.

These techniques have already been used by Coron and Crépeau in [18]. In their situation, the second order
term was not sufficient to conclude, they used the third order term.

The local controllability up to codimension one of () stated in Section 5.1 is proved in Section 6 by applying
a Nash-Moser theorem stated in Section 3.

Remark 3. It would be more natural to use the path
[p1, 2] := {\/1 —Op1 + Vg2, 0 € [0, 1]}

in the compactness argument presented in Section 1.5.1. However, for § € (0,1), the linearized system of
(%) around (V1 — 0ty + vBiba,u = 0) is not controllable: as in the case 6 € {0,1}, it misses two directions.
Expansions to the second order would probably also give the local controllability in H5*<((0, 1), C) of () around

V1 = 01 4+ V0 for 6 € (0,1), with control functions u € HZ((0,4/7),R).

2. CONTROLLABILITY OF THE LINEAR SYSTEM (X, g,)

The goal of this section is the proof of Theorem 4.

Let (0,03) € D, T > 0 and ¥ be a solution of (g, g,) for some v € HL((0,T),R) with ¥(0) = 0. For every
t € [0,T], we have
U(t) =252, yk(t)pr  where  y(t) == (¥(t), k)
and (.,.) denotes the scalar product on L?((0,1),C). The partial differential equation satisfied by ¥ provides,
for every k € N*, the following expression

t
yi(t) = —i/ o(T) (\/ 1 — 0y — O5a5,e" =27 4\ /o b etPe—A2)T 4 \/93ckei()"‘_)‘3)7> dre= At
0

where
ar == (2201, 01), br = (2?02, 0k), cr:= (%P3, 0k). (2.1)
Let ¥y € H(QO)((O, 1), C) be such that

U, eTs [(\/1 "0y — 0501 + /Oty + \/@pg) (T)} . (2.2)
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The equality ¥(T') = U is equivalent to: for every k € N*,

VI = — By, fy 0(r)eiOx 07 dr 4+ \/Bob [ 6(r)e e AD7dr 4 Ve [ o(r)ei e dr

. (2.3)
=1 <\Ilfa ©k) SR
The explicit expression (1.2) provides, for every k,j € N*|
1 k+j8k‘j .
a7 When k # j,
(%05, 1) = . ( ﬂ) (=) (2.4)
35— Q(kﬂ)Q, when £k = j.
In particular, for every k,j € N*, (z2%p;, i) # 0.
Let (62,03) = (0,0). The relation (2.3) gives the following trigonometric moment problem
T (B k=) : '
o(t)e!Me A At = — (W, o )e™ T for every k € N*, (2.5)
/0 @2, 00)

A necessary condition for the existence of a solution v € HL((0,T),R) is (¥s, 1) = 0. Under this assumption,
this moment problem has a solution v € H}((0,7"),R) for every T' > 0, as soon as the right hand side of (2.5)

belongs to 1?(N*, C) (see [30], Th. 1.2.18), which is the case when ¥ € H(O)((O, 1),C).
The case (02,03) = (1,0) can be treated in the same way.

Now, let us assume (6o, 63) € Int(D). The relation (2.3) is satisfied, for instance, when

Jo B(#)eiCa=rtdt = v (T, Ua(T)) — VO3b3C)

Jo 9()eCam At = — L (i(W s, 5 (T)) — /Bab3C)

S o(t)ePs =)t dr = C 26
Jy b et dt = SIEBET (4, (T), Wk > 4 |
Jo o)l At = WO (G gy (T), Ve > 4,

Jo () et dt = s (W 4y (T)), Yk > 4,

where C' is a complex number with

R(C) = m% ((ws, (V=8 — B3t — VBotbs — Vosis) (1))

This trigonometric moment problem has a solution v € H_O((O T),R), as soon as the right hand side belongs
to 1? and T > 2/(3w) (see [30], Th. 1.2.18), which is the case when Uy € H(O)((O,l),(C). The assumption
T > 2/(3m) corresponds to

2
T> Eﬂ where D := hmmf(wJH wj)=A2— A = 32

j—+oo

and (wj)jen is the increasing sequence of the frequencies in the trigonometric moment problem (2.6).
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Remark 4. The minimal time for the controllability of the linear system (3, ,), with (62,603) € Int(D),
may not be 2/(3m). We conjecture that (Xg,,¢,) is controllable in any positive time 7" > 0. The proof of this
conjecture could rely on an Ingham inequality of the form : let T > 0, there exists C' > 0 such that, for every
N € N* and for every (a;)agji<n C C,

2
T

N
1
c Y |aj|2gﬁ/ 3 () dt

j=—N T lagijign

with
zj(t) == jPa;v/1 — Oy — Oze "N =AM 4 33p. /Pre =t A=At 4 3c/hze (M=)t 5 > 4
zj(t) == 2z—;(t),Vj < —4.
The validity of such an inequality is an open problem.
Remark 5. At this step, we can justify the non controllability of the linearized system around v1 — 6¢; + VO,
stated in Remark 3. Let ¥ be a solution of (X 0) with 0 < 6 < 1, with some v € H}((0,T),R) and such that

T(0) = 0. Let & := /1 — 0y — /B1py. Then
(W(T), &(T)) = 2/ = 0)(a2e1, m/o o(t) sin[(As — A1)f] dt € R,

This condition is not implied by ¥(T) € Ts(v/1 — 01 + vV0)o)(T)).
Proposition 2. Let T > 0 and (02,03) € Ini(D). The system (Xg, 0,) (resp. (2o,0)) is not controllable (resp.

controllable up to codimension one) in H(30)((0, 1),C) with control functions in H} N H*((0,T),R).

Proof. Let us assume that this is not the case for some (62,63) € D. Then, for every Vs € H(30)((0, 1),R), there

exists v € H_(} N H?2((0,T),R) which solves (2.3) for every k > 3. However, an integration by parts shows that,
for w € H'((0,7),R),

T .
/ w(t)etdt
0

Thus, there exists a constant C' = C() > 0 such that, for every U, € H(3O)((O7 1),R),

C
< g lvllm o -

C
(g 0] < 7

We get a contradiction by considering, for instance, the function ¥y € H(40)((07 1),C) with \11504) = f and

f € L?((0,1),C) is defined by

1
f=3" —=pu, where Q := {m*m e N*}. 0
ke \/E

3. THE NASH-MOSER THEOREM USED

In order to get local controllability for the nonlinear system (X) around /1 — 02 — 03101 + \/Ba1p2 + /03103,
we use a Nash-Moser theorem inspired from Hérmander’s one in [26]. The introduction of a projection P in this
statement introduces changes in the proof, so, we repeat it completely. Similar statements has already been
used in [8-10]. We refer to [2] for another presentation and other applications of this theorem, the authors also
explain how to detect the “Nash-Moser symptom”.
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We consider a family of Hilbert spaces (F,)qcj2,5) With continuous injections E, — E, of norm < 1 when
b > a. We suppose that we have linear operators Sp : Fo — FEg for # > 1. We also assume there exists a
constant K > 0 such that, for every a,b € [2,8] and for every u € E,,

I1Soulls < K||u||q when b < a, (3.1)
|lSoulls < K6°~%||u|, when b > a, (3.2)
|lu — Soulls < K6°~||u||, when b < a,
d
— Spul| < KO ul,. (3.4)
[,

We fix a sequence (6;);en of the form 6; := (j + 1)° where 0 < § and we set, for every j € N, A; := 0,41 — 0;.
For every u € F,, we have a decomposition

00
u = Z AjRju
7=0

with convergence in Fj, when b < a, moreover there exists a constant K’ such that, for every b € [2, 8],
[Rjulls < K677 ulla.

We also have the convexity of the norms: there exists a constant ¢ > 1 such that, for every a,b € [2, 8] with
a<b, A€ 0,1], and u € Ey,

[ull xa+-xp < ellullgully ™ (3.5)
We refer to [26] for the proof of the two previous properties.

We have another family (Fa)ae[Q’g] with the same properties as above, we use the same notations for the
smoothing operators. Moreover, we assume that the injection Fy, — F}, is compact when b > a.

Theorem 7. Let P be a continuous linear operator from Fy to Fy of norm < 1 for b = 2,...,8, such that
PSy = SeP for every 0. Let B be a real number such that

b < fB<6.
Let V' be a E4-neighborhood of zero and ® a map from V to Fy which is twice differentiable and satisfies
12" (u; v, w)ll6 < C Y (1 [fullm) [0]lm ]| (3.6)

where the sum is taken over the following values

3

\V) [« W~ \) 3
(=) [\V) —~ [\V)
—~
w
-
~

m
6
4
4
4

We assume that ® : Ex — Fy is continuous for every a € [2,8]. We assume that, for every v € V N Eg, ®'(v)
has a right inverse ¥ (v) : F; — Eg, that (v, g) — (v, g) is continuous from (V N Eg) X F7y — Eg and that there
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exists a constant C such that, for every (v,g) € (V N Eg) X Fr,
[ (v)gllz < Cll[Pglls + [[v]lallglls] (38)

[ (v)glls < ClIPgll7+ llvllallglz + llvlisllglls]- (3.9)
Then, there exists C > 0 and € > 0 such that for every f € Fg with ||f||g < €, there exists u € E4 such that
O(u) = @(0) + f and [lulla <C[Pfs-

The inequalities (3.8) and (3.9) are called “tame estimates”.

Proof. Let g € Fg. There exists a decomposition

o0
g=>_Ajg; with [lg;]» < K'||gllg05 ="~ Wb € [2,8]. (3.10)
j=0

Since PSy = Sy’P, we also have

(o]
Pg=Y_A;Pg; with |Pg;lls < K'|[Pgllat; "~ b e [2,8]. (3.11)
j=0

We claim that, when ||g||g is small enough, we can define a sequence (u;)jen with up = 0 and the recursive
formula

wipr = ug + Ay, = 19(v)g5, vj = Sesuye
We also claim that there exist constants Cy, Ca, C3, Cy such that, for every j € N*,

il < ChlIPgllp8 ™", Ya € {2,4,6}, (3.12)

lujlla < CallPglls and ||u;lle < Ca[|Pglls0] 7, (3.13)

lvlla < C3lPglls , llvjlla < Csl|Pgllsts "' va € {6,8}, (3.14)
J

luj — vjlla < CallPgllp6; "+, Va € {2,4,6}. (3.15)

More precisely, we prove by induction on k € N the following property
Pr: wuj is well defined for j =0,...,k + 1,
(3.12) is satisfied for j =0, ..., k,
(3.13), (3.14) and (3.15) are satisfied for j =0, ...,k + 1.

We introduce r > 0 such that, for every u € Ejy, ||u|lo < r implies u € V.

Property Py is obvious. Let £ € N*. We assume property Py_1 is satisfied. Let us prove Py.

The vector ug1 is well defined if and only if v, € V, which is true as soon as ||Pg||s < r/Cs thanks to (3.14)
with j = k.

Let us prove (3.12) for j = k. Using (3.8) and (3.10), we get

law]l2 < CK' [Pyl (1 + Csllglls) < 2CK'|[Pyllsby "
when ||g]|s < 1/C5. Using (3.9), (3.14), (3.10), we get

lirlle < CK'|Pyllal6y " + Csllgllsty " + Csllgllsby 07 "] < 3CK'|[Pgllsby”,
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when ||g||g < 1/Cs5. Then, the convexity of the norm (3.5) provides
liells < BCK'||Pgll a6y ",
kll4 X g8V,

Therefore, we have (3.12) for j = k, when ||g||g < 1/C3 for Cy = 3¢cCK’.

Let us prove (3.13) for j = k + 1. Thanks to (3.12), we have

k
lursilla < CLIPglls Y 256577 < CulPyllsS,
=0

where S := 3777 AJH?_[} is finite because $ > 5. Thanks to (3.12), we have

B

k
_ 0
lursille < CillPglls Y 8,657 < Cl||7’9||ﬁ7kjk'

7=0
Thus, we get (3.13) for j = k with

(5 := C] max {S, ﬁ} .

We get (3.14) for j = k + 1 thanks to (3.1) and (3.2), with C5 := KC3. We get (3.15) for j = k + 1 thanks
to (3.13) and (3.14) for @ = 6 and thanks to (3.3) and (3.13) for a € {2,4}, with Cy := max{Cs + Cs; KC>}.

Inequality (3.12) proves that (uy) converges in Ey toward
(o)
= ZAﬂlj, which satisfies ||ull4 < C2||Pyl|s.
§=0

The continuity of the map ® : E4 — Fy implies that ®(uy) converges to ®(u) in Fy.

Let us study the limit of the sequence (®(uy))ken in a different way. We have

P(ujr1) — (uy) = Aj(e) + €] + g5)
where .
1
¢j = 7 (Dluy + Ajiy) — D(u) — &' (uy)Ajiy) = Aj/o (1= )" (uj + LAy iy, ;) dt,
j
1
ef = (9" (uy) — ' (vy))u; = /O ¢ (v + t(uj — vj);uj — v, 1),
Thanks to (3.6), we have
lejlle < C 220+ lugllm + Agllasllm) gl ]| o
< O[(1+ (Cr + Co)[Pyllst] ") CRIPglIZ0; > + 3(1 + (C1 + C2) | Pgll ) C2[ Pyl|Z05 "]
298—28

< Cl[Pyliso; ™,
SO A+ Nvjllm + llug = vjllm)llwg = gl me
< C[(L+ (C3 + Co)[[Pyllah] ") C1CulPgl136; 7> + 3(1 + (Cs + Cu)||Pgllp)C1Ca Pyl|305 ]

20920

< ClPgllz0; ™"

llef e
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Since 9 — 28 < —1, then > Aj(e} + €}) converges in Fg and

S A+ €| < ClPgl

Jj=0 6

The uniqueness of the limit of the sequence (®(uy))ren gives the following equality in Fy
P(u) =g+T(g)

where T'(g) € Fs and

IT(9)ll6 < ClIPgl3 (3.16)
Let 0 < p < min{1/(2C),r/Cs5,1/Cs} where C is given by (3.16). Let f € Fjs, be such that | f|lg < p/2.
Then the map O(g) := f — T(g) maps the ball B := {g € Fg;||gllsg < p} into itself. The Leray-Schauder
fixed point theorem justifies that © has a fix point ¢ € B. The equality ¢ = f + T'(g) and the choice of

p gives ||Pygllpg < 2||Pf|lg- The vector w built in the first part of this proof gives the solution and satisfies
lulla < 2C2[|P flls. U

Remark 6. The proof can be done thanks to the Banach fixed point theorem, instead of the Leray-Schauder
fixed point theorem, provided one add new assumptions (see next proposition). In this situation, one does not
need any longer the compactness of the injections F, — F;, for b > a. The interest of this approach is that it
provides the continuity of the local inverse f +— u of the map ®. This continuity is important for the use of the
intermediate values theorem in Section 5.3.

Theorem 8. Let us consider the same assumptions as in the previous theorem. We assume moreover that, for
every u,u € VN Fg,

197 (w5 v, w) = @ (@50, w) |6 < C Y (1+ [[u—llm) [[0]lms 0]l (3.17)
where the sum is taken over the values given in (3.7). We also assume that, for every v,0 € V N Eg,
[[(v) =¥ (@)]gll2 < Cllv = llallglls, (3.18)

[[(v) = (0)]glle < Clllv —vllallglliz + [lv = llsllglls]- (3.19)
Then, there exists C > 0, n > 0 and a continuous map

II: V — E; whereV:={f¢eFp;|fllzg<n}

f - u
such that, for every f € V,
O(I(f)) =2(0)+ f and [I(f)lla < CIPf]s. (3.20)
Proof. The map II is the composition of the two following maps

Fs — Fg — E,u
’ ’ (3.21)
f - g = u

where f = g+ T(g) and u is the limit built in the previous proof. First, we prove the continuity of the second
map g — u. Let g,§ € Fg and (u; ), (2;), (v5), (@;), (@;), (¥;) be the sequences built in the proof of Theorem 7.
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In the same way as we proved (3.12), (3.13), (3.14) (3.15) thanks to (3.8) and (3.9), we prove the existence of
C1,Cs,C5,Cy > 0 such that, for every j € N,

i — tjlla < Cillg — §lls65 7, Va € {2,4,6}, (3.22)

luj = ;|4 < Callg — Gllp and [lu; — iislle < Callg — §lls0] (3.23)

lv; = Billa < Csllg = Gl » lv; — Billa < Csllg — glls05 "+ Va € {6,8}, (3.24)
(uj —v;) = (@65 — 3j)lla < Callg — Glla85 "+ Va € {2,4,6}. (3.25)

In particular, we get
[u—dlls < Callg— gl

which gives the continuity of the second map of (3.21). Now, we prove the continuity of the first map f +— g
of (3.21). It is sufficient to prove that the map T : Fg — Fj is a contraction, indeed, the inequality

IT(9) = T(G)lls < dllg —dlls
with ¢ € (0,1) gives

lg — s < 751 = Fllo.
We have

oo
T(g ZAJ e — &)+ (ef —éf)].
7=0

Let us prove the existence of C5, Cg > 0 such that, for every j € N,

llej = &lle < Cs max{l|glls, I9lls}lg — 3lls,
g (3.26)

llef =€ lle < Co max{llglls, lglls}lg — glls:

which shows that 1" is a contraction of a small neighborhood of zero in Fjg. In order to prove the first bound
of (3.26), we use (3.17) and the decomposition

ej =& = A fo (L= 1)@ (uj + tA iy iy, thy) — B (i + A5 5, 05)] It +
A]' fO ]. — t q) (ﬁ] + tAjL.L]';L-L]' — L-L]',’l-l,j)dt +
g Jo (L= 0@ (i + 1A yitg3 ity — g ity — i) dt.
The second bound of (3.26) can be proved in the same way. We know that
ITL(f)lla < Ca||Pylls-

Thanks to (3.16), we have
1Pglls <IIPflls+IIPTglls <P flls + ClPylF
which gives (3.20). 0
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4. LOCAL CONTROLLABILITY AROUND +/1 — 0y — 03101 + /02105 + \/O513
WITH (65, 65) € INT(D)

The aim of this section is the proof of Theorem 5 by applying Theorem 7. In all this section, (62, 03) € Int(D)
is fixed and we use the notations (X,.¢) for (Xg,,¢,) and

Urep = /1= 0y — 0331 + /02t + /O30,

4.1. Context for the Nash-Moser theorem

We apply Theorem 7 to the map ® defined in Section 1.5.2, with T := 2/7, in a neighborhood of 1.7 (0),
with P = Id and with the spaces

Eq = [SN H)((0,1),C)] x Hg ((0,7),R), Va € {2,4,6,8},

Fo = [’5 N Hgo)((oa 1); (C)] X ['S N Hgo)((oa 1); R)]a Va € {27 3,4,5,0, 7};
where T := 2/m. We work on the manifold S instead of a whole space. It does not matter because, as in [9]
and [10], we can move the system to an hyperplane of L?((0,1),R) by studying
P = qgodor

where 7(¢o,u) = (p~'(¢o),u), ¢(vo,¥r) = (p(¥o),p(¢f)), and p is a suitable local diffeomorphism from a
neighborhood of {¢re¢(t);t € [0 2/7r)}, in the sphere S to an hyperplane H of L?((0,1),C), which does not
change too much the H*((0,1),C)-norm. For example, one can use the following one.

Proposition 3. Let (02, 03) € Int(D), € > 0 be small enough so that

(\/14279376)2(176)4(1“)2>o, (4.1)
(1—&)[(1 -0y —03)* — > —¢] >0, (4.2)

U:={Ye8&Ttel0,2/m),[[¢—thres()llL2(0,1),0) < €},
H = {¢ € L?((0,1),C); R < ¢, o4 >= 0}
and p : L?((0,1),C) — H be defined by

() = — R((, pa))pa + R((, 04)) (¥, ©1)¢1

The map p is a C* diffeomorphism from U to an open subset of H. Moreover, the norm of dp(1)) as a linear
operator from (Ts, ||| &= (0,1),c)) to (H,|l.lla(0,1),c)) is uniformly bounded on U, for every integer s € [2,9].

Proof. Let us introduce the orthogonal projection P : L?((0,1),C) — ((Ccpl + Re4)*. First, we prove that p is
injective on U. Let 1,9 € U be such that p(y) = (1/)) Then P(y)) = P(”l/)) and

L+ R )W e1) = (1+R (D, 00) ) (Y1) (4.3)

The equality ]2 = 9.2 gives

(R, 0a))? + 1) = (R (B 0a)) + [(Bo00)] (1)
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The relations (4.3) and (4.4) lead to

2

el (1R (o))" = (RO ) = (148 (Gga))” | (R () = Rtw. ).

We assume that ¢ # ¢. Then §R<1/~),<p4> # R, @4), otherwise (4.3) gives <1/~),<p1> = (¢, 1) thus v = 1.
Therefore, y := R(¢, 4) is a solution in [—e, €] of f(y) = 0 where

F@):=0+y)?0b+y) —a+b+y), a:=[e1)l, b:=R,pa).
The assumption (4.1) justifies that f(y) < 0 for every y € [—e, €], which is a contradiction.

Now, we prove that, for every ¢ € U, dp(¢)) is an isomorphism from Ts(¢)) to H. Let ¢ € U and £ € H. For
h € L?((0,1),C), the statement (h € Tis®) and dp(y))h = &) is equivalent to Ph = P¢ and AX = b where

§R<1/1,801> %<1/1,801> §R<1/)7<P4>

A= 14+ R, p4) 0 (Y, 1)
0 1 +§R<¢a§04> %<1/)7<P1>
R(h, ¢1) —R(PE, Py)
X:=| Qe |, b= R, 1)
R(h, ps) (€, 1)

Thanks to (4.2), we have det(A) < 0. We conclude thanks to the inverse mapping theorem.
It is clear that ||dp(¥)||ms—ms < 1+ |l@1llas + ||pallms. Since ||PE|lgs < ||€]|g= and ||A7!]|| is uniformly
bounded with respect to v € U, then ||dp(v)) || gs— g+ also. O

For the construction of smoothing operators for the controls u € H_(}((O, T),R), we can use the same strategy
as in [9], Section 3.3, which is inspired from [24]. For smoothing operators on the wave functions, we propose

Sop = ié’ (g) (0, 0k) 0k

k=1

where s € C*°(R4,[0,1]), s=1on [0,1] and s = 0 on [2, +00]. The proof of (3.1), (3.2), (3.3), (3.4) is the same
as in [9], Section 3.3. Note that Sy preserves the hyperplane H of Proposition 3.

4.2. Bound on 9"
The aim of this section is the proof of the bound (3.6) on the map ® defined in Section 1.5.2.

Proposition 4. The map ® : Eg — Fg is twice differentiable and for every (vo,u) € Eg, (¢o,v), (S0, 1) € Es,
we have

" (0, u).((do, 1), (0, 1)) = (0, A(T))
where
i = =" + (i — du?)2?y,
w(ta O) = w(tv 1) =0,
7/}(0) = o,
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i6 = —¢" + (i — 4P)zE + (ju — Sup)z*p, ip = —¢" + (i — du?)a?¢ + (7 — Buv)z?p,
£(t,0) = &(t, 1) = 0, (t,0) = ¢(t, 1) =0,
£(0) = &, $(0) = ¢o,

ih = —h" + (4 — 4u®)z?h + (i — Sup)z?p + (v — Suv)x2E — dvpuaap,
§(t,0) =&(t,1) =0,
£(0) = &o-

For every r > 0 there exists a constant C(r) > 0 such that, for every (vo,u) € Es, (do,v), (fo, 1) € E¢ with
|(¥o,u)|la < r, we have

19" (40, w).((¢0, ), (€0, ) ls < C(r) D (L + 1l (o, @)l )l (G0, ) o [| (€0, 1) (4.5)

where the sum is taken over the values given in (3.7).

Proof. We only justify the bound (4.5). Thanks to Proposition 21, we have

()| s, < Clllf w2 (0,m),1

% y I fleoqo,my, ey + ||U||H3||f||L1((o,T),H(20) ].

2
(0)

where f = fi+ fa+ f3, f1 = (ft— 8up)x®¢, fo := (v — 8uv)z?€ and f3 := —4vua?y. Using Propositions 19-21,
we get

I f1llzro,7),m52) < Cllpll Az,
I filleoo,1y,m1) < Cllpll a2 Aa,
£l o,y m2y < Clllgell s Az + [l 2 Aa + 116l 112 A,
with
Ag = ¢ollmz + V]| a1 a2,
Ay = ||dollms + [Vl m2az + [V a,
Ag = |0l s + l|ull s |doll 2 + V|| mzaz + |v]| 2as + |v|| g as,

and a; := ||(vo,u)| g, for j = 2,4,6. We have

I f3llz1 (0,1, m2) < Cllpvl|prae < Cllpll g [V g1 az,
<

NN

Cllpvllcoas < Cllpl| a [Vl mr aa,

I f3llcoco, 1,14

I fsllwzr(om).m2) < Clllwvllgzaz + |pvl| aras + [|pv| L2a6]

<
< Clllpllm=llvlle + ullm vl m2)az + (|pll w2 l[v] mroas)- O

4.3. Controllability of the linearized system around (., u = 0) with tame estimates

The goal of this section is the proof of the following proposition, which corresponds to the bounds (3.8)
and (3.9) for v = 0. We introduce, for s > 0 the spaces

h*(N*,C) := {d = (di)ren- € *(N*,C); (k*di)pen- € I*(N*,C)}

equipped with the norm ||d

re v+ ,C) = [k*dkliz(ve )
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Proposition 5. Let T := 2/m.
Ts(tref(T)), there exists a trajectory (

moreover

K. BEAUCHARD

||UHH1((0 T),R) &

and

< Ol llag, (0.0).0)

HUHHg((o,T),]R)

0 and ¥(T) =

Cl ¢l 1z, (0,1).0)-

There exists a constant C > 0 such that, for every U; € H(70)((0, 1),C)n
U, v) of (Bre) with v € HJ((0,T),R), ¥(0) =

Uy,

Proof. Thanks to Section 2, it is sufficient to prove the existence of a constant C' > 0 such that, for every
d = (dg)ken € h*(N, C) there exists v € H3((0,T),R) with the following prescribed Fourier coefficients

J o) dt =0,
i to(t)dt =0,
Jo Bty dt = dy
S o(t)erQs =Mt dr = d
[ o(t)eiCs =t dt = dy
S () Or A At = gy, o), VE > 3,
foT b(t)e M At At = dy(j_o)4q, Yk 2 3,
Jo D) ORI At = dyy,_g) 10, VE > 3,
and which satisfies
[9l20,m)r) < Clldllizvey  and |9l m2(0,7).8) < Clldllna v c)-

A candidate is

(t) == {doe—i()q—)q)t T dye =Mt 4 oe—iha=A)t 4 io: [da(jp_gye i Pr—r)t
k=3
+ dagp_gypre Ot Ly oo emik=Aa)t] e, }(1 — cos(m2t)),
where “4 c.c.” means that we sum the complex conjugate number of the expression before. ([

Remark 7. In the same way as in Remark 4, the previous proposition probably holds for any 7" > 0.

4.4. Controllability of the linearized system around (¢, u), close to (¢yf,0) in E4, with
tame estimates

The aim of this section is the proof of the existence of a right inverse to the differential map d® (¢, u) when
(1o, u) is close enough to (¢ref(0),0) in Ey, which satisfies (3.8) and (3.9).

Let (0o, u) € Es, and 1 be the solution of the Cauchy problem

i = =" + (i — 4u?)(t)x*p,z € (0,1),t € (0,T),
tl)::Q
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The linearized system around (¢, u) is

( iU = — 0" 4 (0 — 4u?) ()22 + (0 — Suw)(t)x2Y, z € (0,1),t € (0,T),
U(t,0) = W(t, 1) =0.

Let us introduce the distances, for s = 2,4,6, 8,

05 := [[(0, u) = ($re (0), 0)]

E,-

We want to prove that, there exists a constant C' such that, when J4 is small enough, then, for every ¥; €

H(70)((07 1), C) there exists a trajectory (¥,v) of (£;) with ¥(0) = 0, ¥(T) = ¥y, v € H3((0,T),C),

vl a2 co,ryr) S Cl¥sllas,  and  |[ollmso,r)r) < CUYsllar + 8[|yl ms]-

In order to solve this problem, one transforms the controllability condition ¥(7') = ¥ into a moment problem
on the control v. For technical reasons explained in Remark 8, we don’t decompose the solution ¥ of (¥;) on
the fixed basis (¢k)ken~ as in Section 2 but on a moving basis.

For v € R, we introduce the operator A, defined by

D(A,) = H(QO)((O, 1),C), A,p:=—¢" +~yx3p.
Let (A, )ren+ be the non decreasing sequence of its eigenvalues (written as many times as their multiplicity)

and (g~ )ken+ associated eigenvectors, which form an orthonormal basis of L?((0,1),C). The maps v — Ak~
and v — ¢y, - are analytic, which gives a sense to the notations

d
Y and APk, .
k,v1 dy .

Let p := @ — 4u?. We consider the decomposition
(t) = Zyk (t)&k(t)
k=1
where

51 (t) = 1/)(15)7 gk(t) = Phou(t) — <<Pk,;¢(t)a7/f(t)>1/)(t)v when k > 27

W(t), 01, u(t
() = (0,60, mlt) = (V) Phutn) — S ((1), oy ey, When k> 2.

The partial differential equation satisfied by ¥ provides an ordinary differential equation for each components
yr(t), that can be solved. Then the equality W(T') = ¥y is equivalent to the equality My, ) (v) = d where

d = (di)kens Mipyuy(v) = (Mg u)(V)k)ken- and

T
Mgy (V)1 = —i/o (0 — 8uv) (z®, 1) dt,

Mo,y (0)k = fOT |:_Z(U — 8uv) <$2¢7 (Pk7lt> — & (v, (Pk7lt> + @ (<l1/7 dﬁ%}u>

—a <1/’7 %L>)] el Mendsdt . for every k > 2,



126 K. BEAUCHARD

where
<\Il(t)7 Qpl,u(t)>

= 00 orme)

and

dl = <\Ilfa Z/J(T» )

Vi T »
= (0] = S D). ) ) o 2o, for overy > 2.

In order to prove the surjectivity of My, ) when d4 is small, we use the surjectivity of My, ,(0),0) thanks to
the following proposition.

Proposition 6. Let M and M be continuous linear maps from HL((0,T),R) to h3(N*,C), from HZ((0,T),R)
to h®(N*,C) and from H3((0,T),R) to h"(N*,C). We assume that there exists a positive constant Cy, such that

M has a right inverse
M~':hT(N*,C) — H3((0,T),R)
which satisfies, for every d € h"(N*,C),

M (@)l < Colld]|r,

for every (E, F) € {(H_é, h3), (H_g, h3), (H_g, R7)}. We also assume that there exist Cy,C1,Co > 0, such that, for
every v € H2((0,7T),R),

[(M = M) ()3 @-,c) < Collv]l az((0,7).R):
[(M = M)()[rs v ) < Collvllmze0,1),) + Crllollma 0,7).R)
[(M = M)()[ln7 v 0y < Collvllazo,7),r) + Crllvll m20,7).8) + Collvll H2 ((0,7) R)-

We assume CoCo < 1. Then M has a right inverse
MY R (N, C) — HE((0,T),R),
which satisfies, for every d € h"(N,C),

MM D ao,mym) < X
MM DN a2 (0,m),) < XN dllns e ) + Yl dllns - c)s
MM DN 30,1y ,) < XNdllnm e ) + YNl dllns - ) + Zldllns ).

| n3 (= c)s

where
Co . CiC . cact C3Cs

1— CoCo’ (1 — CoCo)2’ (1— CoCo)® ' (1 — CoCo)?

Proof. Let d € h™(N*,C). We define by induction the sequence (w,)nen in H3((0,T),R) by

{ wo := M~(d),
Wyt 1= MM = M) (w,)]

The function w := >_°7 ;w, gives a suitable candidate for M~1(d). O
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Remark 8. If we had decomposed ¥ on the fixed basis (¢r), U(t) = Y2, yk(t)pr, we would have got

yk(T) = </O —i [p(t) (2®U(2), pr) + (0 — Suv)(t) (2*¥(t), on)] eikktdt) et

</ () (W (t), ox) e“”)
0 keN*

does not belong to h?(N*,C) when v is only in H_&((O, T),R). By decomposing ¥ on a moving basis, ¥(t) =
> net 26 () Pk, u(t), we make this term disappear, indeed

T
Al0) = ([ |60 8O 00 ) + ) (00, 2] i o | o M
0 ’ S )

and the sequence

and the new term belongs to h3(N*,C) when v is only H'((0,7),C). Since we want to use differences of
linear maps the type My, «) — M(yres(0),0) (each one corresponds to the control of a linearized system), as in
Proposition 6, we need to use linear maps with images in the same space. This is why we use the basis (& (t))
instead of (<pk u(t)): the condition Wy € Tis(¢)(T')) corresponds to (W(t),&1(t)) € iR.

In Section 4.4.2, we prove the following proposition

Proposition 7. There exists a constant C > 0 such that, when &4 is small enough, for every v € H_g((O, T),R),
we have
(M (o) = M, (0),0)) () I3 v ©) < Cal|v][

(M o,y = My,.;(0),0)) (v )||h°(N* c) < Cléal|v]| 2 + d6l|v| ],

1Mo,y = Mg, 0),0) (W)[n7 v,y < Cloal|vll s + dlv]l 2 + dsllvl[ 1]
For the proof of this proposition, we need few technical results stated in the next section.

4.4.1. Preliminaries

In this section, we use the bounds proved in Appendix A. The constants v* and C* are such that all the
propositions of Appendix A are true. Let T > 0. For pu € C°((0,7),(—v*,~v*)), w € L*((0,T),R) and
feC®(0,T], L*((0,1),R)), we consider the sequences

T
SO = (/ '(U(t) <f(t)7 Cpk,;t(t)> ei fo Ak'ﬂ(s)dsdt) 3
0

keN*

T
Sy = (/ w(t) <f(t), d(gﬁ] >eifot A’“v”<s>dsd7f> :
0 7 du keN-

Lemma 1. There exists v* > 0, C* > 0 such that, for every y1 € (—v*,v*), for every f € L?((0,1),R),

2
= d
k<f, “j’“’”] > <CIflis
k=1 v Y1
and for every f € H*> N H((0,1),R),
> k< 2a) > < ClIf 3.
k=1 Y1
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Proof. Thanks to (A.1), we have, for f € L%((0,1),R),

dsak,'y
(5L

where ay ; := kxy,; when k # j and ay r = 0. We check the existence of C' > 0 such that,

o0

o) 2 [eS)
Z :Z Zak,j <fa50j>
— k=1 |j=1

k=1

Vi e N* > lak,;| <C and Vk € N*, 2511 lag, ;] < C.
Thus, the Cauchy-Schwarz inequality justifies that,
V(zj)jen- € P(N*,C), 302, 13050, anjas)? < C? 302 |,

which gives the conclusion for 43 = 0. For 77 # 0, we conclude thanks to the result for 3 = 0 and (A.8). For
f € H*N H((0,1),C), we use integrations by parts and the equation (A.7). O

Proposition 8. Let T > 0. There exists C' > 0 such that, for every p € H*((0,T),R) with ||u|| gr(0,1),r) < 1,
e when w € L2((0,T),R) and f € C°([0,T], H*> N H}((0,1),R)), then So € h3(N*,C) and

[1S0llns v,y < Cllwl 2l fllcoo,17,82),
more precisely,
So= (I wd (AT, erbetar)
+ terms with an h3norm bounded by Cllpll e lwl z2 [ fll co o, 13y

e when w € H((0,T),R) and f € C*([0,T], H* N HL((0,1),R) then Sy € h5(N*,C) and
[1Sollns(v.cy < Clllwll gzl fllcogo,ry,m2) + w2l fllox o, a9
more precisely

T,. ; i
So= (= Jo @O 00) +w®(Frp))ear)
+ terms with an h®norm bounded by C||ul| g [|[w[l e[| fllcogo, 1, m2) + 1wl ez fll e oy, )] 5

e when p € H*((0,T),R), w € H3((0,T),R) and f € C3([0,T], H* N H3((0,1),R) then Sy € h"(N*,C)
and

[Sollnr(=.c) < Clllwllmz | fllcoqo,ry,mey + wll e [ fllorqo,ry,m3) + |l z2 | fllcoqo,1y,m2)]
+ llwllz2ll fll 2o, 11,83) }»
more precisely,

So = (‘% S @) (F(8), or) + 20 (), on) + w(E)(f, (pk»ei)\ktdt)

+ terms with an h"norm bounded by

keN*

Clllull z llwl z= 11 fllcoo,m,m3) + lwllza | fller o,y + Nwllz2 L f le2 0,11, 22)]
+ lull m2 lwll z | fllooqo. 1y, m2) }-
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Proposition 9. Let T > 0. There exists C' > 0 such that, for every p € H'((0,T),R) with ||p|l gr1(0,1),r) < 1,
e when w € L%((0,T),R) and f € C°([0,T), H>N H}((0,1),R)), then S; € h*(N*,C) and
[1S1 s v,y < Cllwll 2l fll oo, 17, 12)3
o when w € H}((0,T),R) and f € C([0,T], H> N H}((0,1),R) then Sy € h°(N*,C) and
151 11ns (v=.c) < Clllwlla | fllcoqo,m, 2y + [lwllz2 1l fller o, 11,1225

e when p € H?((0,T),R), w € H((0,T),R) and f € C3([0,T], H* N H3((0,1),R) then S; € h"(N*,C)
and

151lln7(@ve0) < Clllwllmz I f lleogo,m2) + lwllm | fllerqo,r.m2) + lwlizllflle2go,m1.52))-
In the end of this section, we justify the h3-bound on S; and all the bounds on Sy. The other bounds can be
proved in the same way.

Remark 9. Propositions 8 and 9 hold in any positive time T'. Thus, if the linearized system around (¢ref, w = 0)
is controllable in time T with the bounds (3.8) and (3.9) (corresponding to v = 0), then, the nonlinear system
is locally controllable in the same time T, whatever the value of T is.

Proof of the h3-bounds of Proposition 9. Thanks to Cauchy-Schwarz inequality and Lemma 1, we have
T T % de 2
ISults < [ oo a3 )#0 <f<t>, 2o >
0 0 =1 T Juw

Proof. of the h®-bounds of Proposition 8. First, we prove that, when f € C°([0,T],H') and u = 0 then
Sp € h1(N*,C). Indeed, we have

w(t) dt < CllwllZall FIIo o7, 12

O

T T T
So.k :/0 w(t)(g(t),cpk>e“ktdt+¥ ((1)’““/0 w(t)f(t,l)e“ktdwr/o w(t)f(t,o)e“ktdt),

™

where g(t,x) = f(t,x) — f(t,1)z — f(t,0)(1 — ). Since g € C°([0,T], Hi((0,1),C)), then, for every t,
({g(t), ¥r))ken+ belongs to h'(N*,C). When T € (2/m)N, we can conclude thanks to the Bessel Parseval
inequality in L2((0,7),C). When T ¢ (2/7)N, we use the following consequence of the Ingham inequality. [

Lemma 2. Let T > 0. There exists C > 0 such that, for every g € L*((0,T),C),

o 1/2 -
(Z |ck|2> < Cllgllz2(0,1m) where ¢y := / g(t)ertdt.
0

k=1

Proof of Lemma 2. We know that there exists a constant C' > 0 such that, for every N € N, and for every

(ar)1<k<n C C,
2

N N
E akefl)\kt < C E |ark;|2
k=1 L2(0,T) k=1

(see [25], Th. 4). Let us introduce the following closed subspace of L2((0,T),C), V := Span{e~*t k € N}. The
family (e=?) ey« is minimal in L2((0,T),C) because it satisfies an Ingham inequality (see [30], Lem. 1.2.7).
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Thus, there exists a biorthonormal family (z)ken~ C V (see [30], Th. 1.2.5): (et ;) = ;5. Let g €
L%*((0,T),C) and g; be the orthogonal projection in L2((0,T),C) of g on V, g1 = Y pe, ckzi. We have

oo
lexllz = sup{| Y exrl; a = (ar)ren € P(N,C), [lafie < 1}
k=1

= sup{| chak| N e N*, (ar)1<ken C C, Z |ak|2 1}

= k=1

N N
= sup{|/ g1(H)h(t)dt|; N € N*, h Zake*M’“t, (ar)1<hgn C (C,Z lan|? <1}

k=1 k=1

< Cllgrllze < Cllgllzz- O

Now, let f € C°([0,T], H* N H((0,1),C)). Let us consider the decomposition

T i [t ds
Sou = Jy wt) (52 = &) (Au F O prpp)elJo Merrdoat
1)\ [t ds
+ 5= fo Ay f(1), Sak,u(t) —pr — pt)pp he Jo A ds

()
+35 fo w(t)p()(Auw f(1), ¢ (et Jg et ds it
+ 5 foTw(t) (A F(1), )(elfot Meu(eyds _ gidit) g
+ 5y fo w(t) (A (L), or)e tdt

called
So = So,a + S0, + So,c + S0,d + So,e.
The first part of this proof justifies that

[50.ellns < CllwllL2[l.fllcoo,ry,m%)-
Thanks to (A.4) and the Cauchy-Schwarz inequality in L?((0,7),R), we get
[150,allne < Cllpll w2l A flleoo,ry,z2y < Cllullm [wl z2 | fllcoo,m1, m2)-
Thanks to (A.10), we get,
1So0,6llns < CllpllF llwllz2 A fllcoqory, ) < Cllul w21l flleogo,r, m2) -
In the same way and thanks to Lemma 1, we get
[150.cllns < Cllwpllz2|Aufllcoqo,rr.L2y < Cllulla 1wl fllcoqo,ry,52)-

Thanks to (A.12), we can write

' _ 1/ Cllulla
Aieyu(s)ds = Apt + 3 w(s)ds + ¢ (t) where |e(t)] < —z (4.6)
0 0
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Thus, we have the decomposition
T St ) . 1 [t
South = 3= [y W) (A £, o) (o Mrmrds — O[5 10)) gy
+ 5= o w(t) (e Jo #9s 1) (A, F(1), pr)ewtdt.
The bound (4.6) justifies that the h3-norm of the first term of this decomposition is bounded by

Cllpll g |wll 2| fllcojo,r, 2y Using the first par of this proof, we get the following bound for the h*-norm
of the second term of this decomposition

it [t (s)ds
Cllw(t)(1 — ¢'s Jo 1Y 1| A Fllcoo.ry,zry < Cllpall e lwl| 22 || £l copo.r, 219y -

Proof of the h®-bound of Proposition 8. Thanks to and integration by parts, we get

SOki fo z/\3 <Auf790k p,>eif0t/\k*“dt
7f0 z)\k — (/s r.u) et Jo Mt
*fo BV <f sﬁk#>eifot>\k,udt

*foTﬂ i <f7 dtpML>eif(f/\kv#dt.

Let us call this decomposition
So = So,a + So,pr + So,er + So,ar-
Using the following bound

i
k,p

AL
which is a consequence of (A.1) and (A.11), we get

<C
\F;

150,/ [[ns < Cllfnwll 2| A fllcoo. 11,22y < Cllpll lJwlla || fllooo,71, m52)-
Using Lemma 1, we get

S0, |ns < Cllpw| 2l fllcoqo,r),m2) < Cllull e llwll g || fll cogo,m, m2)-
We have

T 1 1 1 - i (T -
So=i [0 (5= = 30 ) o Wnfomad e den o [t et
0 A Ak Ak Ak Jo

Thanks to (A.4), the h°-norm of the first term in this sum is bounded by C||p|| g1 [|wl| g1 || fllco(o,r),m2)- The
decomposition of Sy in A3 gives

-1 [ ; .

So,pr = (m/ W (f, pr) e’)"“tdt> + terms with an h’norm < C||pl s ||wllm || f1lcoo,my, %) -

0
keN*

Doing the same thing on Sy ., we get

T

So,cr = (T/ w <f, gok,u> el A’Wdt) + terms with an h®norm < C||p|l g |wl|p2 || fllcro,ry, ey O

1 k 0
keN*
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Proof of the h”-bound of Proposition 8. First, one notice that Sy . and Sp 4 belong to h”. Indeed,

2
)\k b

A T s T
Soar = 35 [ ilfpnet e+ [
k J0

Al 4 Y 1. i [t
( - r) (A f et 1S Mt
0 k k,u
Using the Cauchy Schwarz inequality in L?((0,T), C), the orthonormality of the family (¢y,,,) and the inequality

N
X, )\2

Cllplla

which is a consequence of (A.3) and (A.11), we get the following bound for A™-norm of the second term in Sy 4/
Cllpll e | ol 2 | A f lcoo, 1y, m2) < Cllpllar lwl| gl fll oo,y m22) -
Thanks to (A.1) and the h*-bound on Sy, we get the following bound for the h”-norm of the first term in Sp o/

Cllgwl 2l flleoo.ry, ey < Clllla lwl | flloqo.ry,a9)-

We also have

T
SO P —— / ’ d@k ’Y:| eifot Ak’“dt +/ (L — 1 > ‘LL'U_) f, d90k77:| ezfof )\k’”dt.
() o \iAk Ak O

Thanks to (A.4) and Lemma 1, we get the following bound for the h”-bound of the second term in Sy 4

Cllpll ez lfewll 2 || fllcogo, .2y < Cllpllm lwl| gl £l oo, 12y

For the first term, applying the bound we know on the h°-norm of S;, we get the following bound

Clllpwl 2| fllcro, 2, m2) + NEwl [ fllcoo,77,22)]
Clllpll e llwll z  fller qo,ry, 2y + [l 2wz || fllooo,my, 2]
Now, we have to study Sp i and Sy in h". Using (A.12), we get

1 1 C 1
—_—— 2 + di (1) where |dg(p)| < %-

4.
e Mep 3M2 (47)

T

T
. 1 _ o
Sov =~ / W(f, prpi)etfo Mo dt + 2 J, pa(f, o pu)e’ Jo M dt
0

T
1 )
+ / dg (M)U} B\ (A;tf) @k,u)el I Mot (48)
0

k,p

Let us call this decomposition
Sop = So,r1+ S0,pr,2 + S0,p.3
Thanks to (4.7), we get
150,60 3lln7 < Cllpll g 1wl g 1 f Lo o,y 12) -
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Using the bound on the h3-norm of Sy, we get

150,67 2lln7 < Cllpabl| 21 fllcoqo,ry,m8) < Cllullarllwll a |fllcoqo,m, m3)-
Thanks to the decomposition of Sy in h°, we get
So,pr = fo W(f, o)+ w(f, or))etdt
+ terms with an h'norm < C||pl| g [[|wl| g2 || coo,ry,m2) + 1wl e | fllcro,77, m2)]-

Working in the same way on Sy ., we get

1

_— T . . .
S0 =37 /0 (i fron) + wlf, o) e et

+ terms with an A7 norm < CH/,[/HHl[Hw”Hl||f||c1([0’T]7H3) + ||w||L2||f||c2([0,T],H3)]- O

4.4.2. Study Of M(woyu) - M(wref(o)’o)

In order to prove Proposition 7, we cut [My, ) — Mpres(0),0)](v) in several pieces on which we prove the
bounds of Proposition 7 one by one. We introduce the sequences dM;(v) := (dM;(v)g)ren+, for j =1,2,3,4,5,

AM ()1 = fy 5((00,8) — (& rep, )
dM;(v)g == fOT B((220), pp et Jo Moo A5 (324 o o VePk) At for every k > 2

dMQ(v)l = fOT UU(<9921/%1/)> - <z2wrefawref>) dt

dMs(v)g, == fOT wo((z21, Pr ) € Jo Meutords — (22reg, i) €+) dt, for every k > 2
dM3(’U)1 = 0

dM3 k = fO ”(/} spk# 1f0 Ak, pu(s)ds *060<wref (pk> Z/\kt)dt,Vk’ >2
where

iWo = —UY + 02%ye s,

<\Il07901>
ap := —— and Wo(t,0) = Yy(t,1) =0,
0 <¢ref7(p1> \I/OE())) 0 O( )
0 =Y,
dM4(U)1 = 0,

AMy(v) = ) f <\1/ dﬁ—vw el Jo At At Wk > 2

dMs(v); =0,

dMs(v)g = [ o <w, “ifim o o Menodadt, Vi > 2.

First, let us remark that, when d4 < 1 then (see App. B)

41l cojo,m,m2) < C,
[0l coo,r, 12, 1¥ | co o, 7,14y < C,
||7LHC“([0,T],H2)7 ||¢||CO([0,T],H4)7 ||1P||00([0,T],H6) < C(1+ d).
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Study of dM;. We have
[dMi(v)1] < Cllvlla [ = Yregllcoo,r),r2) < ]| -
Thanks to Proposition 8, we have, for k > 2,

AMih = 5 Jy 0(A [0 = rep)] s on) et

+ terms with an k3 norm bounded by
Clliula vl e 119l coro,7,13) < Coallv]l .
Applying again Proposition 8, we get
[dMilps < Clllvllm Y = Yregllcoo,m), 2y + dallv]lar < Coallv]| g
Thanks to Proposition 8, we have, for k > 2,
AMi(v)r = 7y o @22 (W = reg), or) + 0@ (W) — trep), or))ertdt
+ terms with an h® norm bounded by
Cllulla [[lvllazll¢llcogo.r) a3y + lolla [Yllcror),m2)] < Cloallvllgz + d6l|v] 1]
Applying again Proposition 8, we get
[dMillns < Clll6llL2 19 = tresllooqo.r,ms) + 8l 2ll — Wresllcoory,ms + dallv]l 2 + 86l|v] 1]
< Cloal|v]| a2 + d6|v]| £r1]-

We study dM; in A7 in the same way.
Study of dMs. For the study of dMs, we apply Proposition 8. We have

[dMallns < Clluv]l2(1 + [|¢ — Yrefllcoqo,r), a2)
< O]l 6,
[dMallps < Clllwvlla (1 + 19 = Yregllcoo.r),ms)) + [luv|lL2 (1 + [[¢ = Yregllcoo,r), m5))]
< Clllvll 264 + [|v]| z206],
ldMz|[nr < Cllluv|l g2 (1 + ([ — Yregllcogo,r),m3)) + l[wvll g (1 + 1Y — repllcoo, 17, m55))
+ [Juv]l L2 (L + 19 = Yrefllcoqo,ry,m7)) + el a2 lluv]| g (L + |9 — Pregllcogo. ), m2)]
< Cfllvl[a2ds + [[v]l m206 + [[v]| 2 ds]-

Study of dMs;. We detail the study of dMs5 in h?, the study in h® and A7 can be done in the same way. Using
the same arguments as for Sy in A%, and the bound

a2 < Cllolla,

we get

T

T . |
dM;s(v) = /0 (& — o) <332¢’ Sﬁk> eMtdt 4 /0 o <932(z/; — Pres), <,0k> IOV

+ terms with an h*norm bounded by Cév]| g1 .
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One can prove that

& — ollz < Coulloll
which, with Proposition 8, gives the conclusion.
Study of dM,. Thanks to Proposition 9, we have

[dM4(v)|[nz < Cllpllz 1Y coo,17,222)
[dMa(v)[[ns < Clllpllz2 1Y ]lcoqo,my,m2) + [l (¥ ][ 10,7, 22))
[dMa(v)llnm < Clllullms 1l coo,ry,m2) + el a2 1¥llergo,r.m2) + lull e ¥l o2 (o,71.72)
+ el w2l gl zr (1Y [l oo o, 79, 12))-
Using Appendix B, we get, when d4 < 1

H‘I’”CO(OT] H?) ||UHH17

0]l a2,

<C
1%l 1o, m),m2) < C
< Cfllvllgs + dellv]l ],

¥l 2 (jo,77, 12)

which gives the conclusion.
Study of dM5. Thanks to Proposition 9, we have

[dMs(0)|[ns < Cllipallz21¥llcogo,r,m2),

<
1dM5(0)[[ns < Clllaell ¥ llcoo,my, 2y + i 2l llor o,m,m2);
<

[dMs5(v)||n7 < Cll|pcl| gz 1Yl co o,y 22y + Ll g9l ero,,m2) + el L2 1Y) c2 0,1, 22)]-

Thanks to Appendix B, we have
el < Cllvllgr and  lallm < Cllv] g

Thus
A2 < Coallollmr,  Nhallm < Csllvllay, [laallm> < Closllvlla + vl m2],
which gives the conclusion.

5. LOCAL CONTROLLABILITY AROUND 1),

5.1. Local controllability up to codimension one around ;

Let us introduce the following closed subspace of L?((0,1),C),
V = Span{ipss k> 2}

and the orthogonal projection P : L?((0,1),C) — V. We admit the following result, that will be proved in
Section 6.

Theorem 9. Let T :=2/mw and € > 0. There exists C > 0, § > 0 and a continuous map
r: N x N — H(0,T),R)
(wO ’ wf) = U



136 K. BEAUCHARD
where
N = { € S NVHE((0,1),C); [[6 — o1+ (3},
N = { € VAH((0,1),C); [$llz> < 1 and ||9] o+ (5},
such, that, for every (1o, ¥7) € N x N

I (0, ¥1)llmz < ClIPYol s +e + 195 o]

and the trajectory of (X) with 1¥(0) = v and control u = T'(¢o, ’(Z}) satisfies PyY(T) = ’(Z}

Remark 10. This theorem probably holds with any 7" > 0. Indeed, the linearized system around (¢, u = 0) is
controllable in any positive time (see Th. 4) and the application of the Nash-Moser theorem does not introduce
a positive minimal time for the controllability that is not needed for the linearized system (see Rem. 9). The
only point which misses to get theorem with any 7" > 0 is the controllability of the linearized system around
(41,4 = 0) WITH the bounds (3.8) and (3.9) (corresponding to v = 0) in any time 7" > 0. Theses bounds are
easier to prove with T' = 2/7.

5.2. Second order term
The goal of this section is the proof of the following result.

Proposition 10. Let T := 2/x. There exist ve € H: N H3((0,T),R) and v+ € H3((0,T),R) such that the
solutions of the following systems

Wy = =W + b (H)a (1), i€y = =& + 0 ()22 Vs + [Pz — 03] (H) 21 (1),
‘Ili(t; O) = ‘Ili(ta 1) = 0) gi(ta O) = gi(ta 1) = 0)
\IJ:I:(O) = 07 f:l: (0) = 07

satisfy Ui (T) =0 and EL(T) = i1 (T).
Let us introduce the following subspace of L%((0,2/7),C)
X := Span{e'®+ M)t | e N¥Y,
We denote by X1 the orthogonal subspace to X in L%((0,2/7),C).

Proposition 11. Let T := 2/w. There exists v € "N HE((0,T),R) such that v € X+ and

/OT b(t) (22T (t), 1) et — (P01, 1) /OT v(t)?dt € (0,400) (resp. € (—o0,0)) (5.1)
where U is the solution of _
iU = =" + o(t)z? Y (),
U(t,0) = U(t,1) =0,
v(0) =0.
Remark 11. When © € X! the left hand side of (5.1) belongs to R. Indeed, we have

o] t
U(t) = yk(t)or where yi(t) = —i <$2<P17§0k>/ B(r)e’ MM eI
k=1 0
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thus

T o0

/ b(t) (2®U(t), 1) eMPdt = —i Z %01, o) fk(v)
0 k=1
where
T _ t _
fe(v) == / b(t)e'Pe—A1)t / o(7)e M AT rdt,
0 0
Thanks to an integration by parts, the assumption © € X'+ gives, for every k € N*, f;(v) € iR.
Proof. We consider the candidate
0(t) := cos (n17r2t) — cos (TLQ7T2t)

where n1,ne € N*, ny # ng and ny,ny ¢ {k? — 1;k € N*}. Then o € XJ-, and v(t fo 7)dr belongs to
H4N H((0,T),R). Explicit computations give fi(v) = 0 and, for k >

f) 1 1 . 1 . 1 . 1
v) = .
k U\ —my + k2 —1  mi+k2—1 g+ k2—1 ngtk2_1

Thus,
T _ T
/ o(t) (22T(t), 1) e idt — 4 (21, 1) / v(t)?dt = A(n1) + A(na)
0 0
where
Ay A (11 0 &
Ton2rs\3 0 272 ' P (k+13k-1230n+k2-1)(—n+k2-1)
With (n1,n2) = (1,2), we get A(n1), A(n2) < 0 and with (n1,n2) = (4,5), we get A(n1), A(nz) > 0. O

Proof of Proposition 10. Let v € H* N HZ((0,T),R) be such that

T _ T
/ o(t) (22T(t), 1) e idt — 4 (21, 1) / v(t)?dt = —1 (resp. + 1), (5.2)
0 0

such a v exists thanks to Proposition 11. The assumption © € X+ gives ¥(T) = 0. For v € H_Ol((O, T),R), we
have £(T) = Y pe | zk(T) ) where

T
ze(T) := 71‘/0 (0() (2T (t), i) + (7 — 40°)(t) (21, i) e~ A1) eMeidt e =T

Thus, the equality &(T) = i1 (T') (resp. £(T') = —iyp1(T)) is equivalent to (5.2) and for every k > 2

T T T
/ p(t)et PRty = 4/ V2 (t)etPe =AMt gy on o) / o(t) (2*U(t), or) el dt, (5.3)
0 0 0

(x201, or

There exists v € H_O3((0, T),R) with these prescribed Fourier coefficients if and only if the right hand side of (5.3)
belongs to h*(N*, C). This condition is satisfied when v € H* N H((0,T),R). O
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5.3. Proof of Theorem 6
In all this section T := 2/7, € € (0,1). Let p € R, vho, vy € H>*<((0,1),C). Let us consider, for ¢ € [0, T,

u(t) == /lplv + lolv

where v := vy, vi=vy if p 20, v:=wv_, v:=v_ if p <0 and vy, vy are defined in Proposition 10. Let
1 be the solution of () on [0,7] with control u and such that ¥(0) = 1. Since u € H3((0,T),R), we have
W(T) € H*((0,1), C).

Proposition 12. There exists a constant C such that, for every p € (—1,1), we have
[4(T) = (1 +ip)pr |l mo+e < Clllvbo — prllms+e + [p*?]. (5.4)

Proof. We have ¢(T) — (1 4+ ip)p1 = (¢ — Z)(T') where Z := 1 + ¥ + ¢ and

i = —0" + /| plozy, i€ = —&" + \/]ploa® Ty + |p| (i — 4v2) 224y,
\Il(ta 0) = \Il(ta 1) =0, f(t, 0) = f(t, 1) =0,
¥(0) =0, £(0) =0.

The function A := 1 — Z solves

{ iA = —A" 4 [0 4] A — /[ploa®E — |plia® (¥ + €) + 4[20p3/2vw + o202y + 4u2(¥ + ),
A(O) = 1o — 1.

We get (5.4) thanks to Propositions 20 and 21 in Appendix B and an interpolation inequality. O

Now, we use the local controllability up to codimension one around ;. Let § > 0 be as in Theorem 10. We

assuime

[0 = illas+e (g, 195 = @1l (6,

. 5 5 2/3
i=min{ ———, | — )
lolin e <3c)

1U(T) = prlls+e <6 and [|[Pesllgsre <6
so there exists u € HZ((T,2T),R) such that P(¥(2T)) = Pty and

Then, we have

ClIP(T) — 1)l as+e + Pyl ms+e]

lull z2((r2myR) <
< Colllo = prllas+e + 1pP7? + 15 — @1l s+]-

Moreover, we have
2T

WED) o) = 1+ip—i [ i 4?0 0(e) or)e ™

thus
IS(($(2T), 1)) — pl < ClH“HHé((TQT),]R)'
We define the map
Foo(=nm) — R
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Let 7 := min{n, m} and let us assume also that

-
_ S4e —_ seg—a
1o = eallese + iy = @allmese < g

then F(7) > 7/2 > 0 and F(—7) < —7/2 < 0 thus, F is surjective on a neighborhood of zero. This ends the
Proof of Theorem 6.

6. LOCAL CONTROLLABILITY UP TO CODIMENSION ONE AROUND 1/

6.1. Context for the Nash-Moser theorem
In this section, we prove Theorem 10 by applying Theorems 7 and 8 with the maps

®(to, u) := (o, PY(T)) and  P(o,vs) = (P, 1by),

for any v € L?, {Z)vf € V and the spaces
E. := [S N Hy((0,1),C)) x Hy*((0,7),R),

Fu =[S0 iy ((0,1),©)) x [BNV A H (0, 1), €]
where B := {¢ € L*((0,1),C); ||p|l> < 1}.

6.2. Controllability up to codimension one of the linearized system around (¢, u = 0) with

tame estimates
Proposition 13. Let T := 2/n. There exists C > 0 such that, for every U, € HZO)((O, 1),C) N Ts(p1), ‘1’vf €
H(70) NV NTs(p1), there exists a trajectory (¥,v) of (Xo,0) with ¥(0) = Ty, PY(T) = @;, v E H_g((O,T),R),
moreover

vl a2 0,m)r) < CNH(PYo, ¥p)llaraxms  and  [[vllgzo.r)r) < CIH(PYo, Yi)llg7 .

Proof. Thanks to Section 2, it is sufficient to prove the existence of a constant C' > 0 such that, for every
d = (di)k>2 € h*, there exists v € H3((0,T),R) with the following prescribed Fourier coefficients

Sy oyt =0,
S o(t)ef e A dt = dy,, Yk > 2
and which satisfies

[0lL2(o,my Ry < Clldlliz and  |[9]| gz ((0,7),r) < Clld]|na-

A suitable candidate is

v(t) == (i dpe 1 n—At 4 c.c.) (1 — cos(m?t)). O

k=2

Remark 12. This proposition probably holds with any 7" > 0.
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6.3. Controllability up to codimension one of the linearized system around (¢,u), close
to (¢1,0) in E,, with tame estimates

The aim of this section is the proof of the existence of a right inverse to the differential map d® (¢, u) when
(10, u) is close enough to (¢1(0),0) in E4, which satisfies (3.8) and (3.9).

Let (4o, u) € Eg, and ¢ be the solution of the Cauchy problem

i = =" + (4 — 4u?)(t)a?y,z € (0,1),t € (0,T),
w(ta O) = w(tv 1) = 07
$(0) = vo.

The linearized system around (v, u) is

( iU = U + (0 — 4u?) ()22 + (0 — 8uv)(t)x?y, x € (0,1),t € (0,T),
U(t,0) = W(t,1) = 0.

Again, we use the distances, for s = 2,4, 6, 8,

58 = H(woﬂb) - (()0170)|

E,-

We want to prove the following proposition.

Proposition 14. Let T := 2/n. There exists a constant C such that, when 64 is small enough, for every

Yo € H(70)((0, 1),C) N Ts(p1), for every \ilvf € H(70)((0, 1),C) NV, there exists a trajectory (¥,v) of (X;) with

U(0) = Uy, PU(T) = Uy, ve HI((0,T),C) and
9]l g2 o,y ,m) < CUPP0, © o)l s xars + 64l (To, W p) | pra s,

N _ (6.1)
ol ez 0.7)R) < CUPYo, W)l xmm + 08l (Po, W)l 125 x 13-

Note that it is sufficient to prove the following proposition.

Proposition 15. Let T := 2/w. There exists a constant C such that, for every \ilvf € HZO)((O, 1),C)NV, there
exists a trajectory (U, v) of (3;) with ¥(0) =0, PU(T) = ‘/I/‘;v, v e H3((0,T),C) and

1]l 3.0.79,8) < CI ¥l s,
0 ((0,7),R) (6.2)

vl a2 0,0)m) < CUIYsllE7 + 8[|V £l 3% 1]

Proof of Proposition 14 thanks to Proposition 15. We consider the decomposition ¥ = ¥y 4+ WUy where p :=
4 — 4u? and

iUy = —0Y 4 p(t)z? 0y, iUy = — WY + pu(t)x2 Wy + (0 — Suw)(t)z1h,

U(t,0)=W(t 1) =0, Us(t,0) = Ua(t, 1) =0,

U(0) = Uy, U5(0) = 0.
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There exist v € H3((0,T),R) such that PUs(T) = \i/\;c —PUy(T) and

ol omy < C||T; = PoaD)||

H3

lelomsr <€ [T - PO, + 6| 8 - Poa)

H3><H3:| '
In order to get the bounds (6.1), let us prove that

[PV (T)| o
[PV (T)| 7

Cll[P¥ollms + 6al| ol 113];
Cll[PYol| a7 + ]| ol z5]-

NN

We consider the decomposition
Uy (t) =Yoo ak(t)or,y,  where  xp(t) = (¥1(t), r u(e))-

We have

T
@) = Won) + [ i) {200, 2] el reaomar,
0 SO )

Thus, using Proposition 9, we get, when d4 is small enough,

IPUL(T) | s < C (S5, [Ban(T)[2)'? < ClIPYol s + 64]| ol s),
IPUL(T)|| < C (5%, i (T)2)? < CUIPYo | mr + 8l Wol s + 66/ Wl s + 5sl| Wol | 1rs).

We conclude thanks to the convexity of the norms. (I

Proof of Proposition 15. Thanks to the decomposition
U(t) =0ty yk(t) gk, where  yx(t) == (U(t), 9r,u(r))s

the equality P¥(T) = \i/\} is equivalent to M (v) = d where M(v) = (M (v)k)k>2, d = (di)k>2 and, for every
k> 2,

T
M(v)y, := / —i(0 — 8uw) (@®P(t), or uey ) + £1(t) { T(2), —d‘p’”] et fo My ds gy,
0 & L

dk = <\I/f,<pk> .
We conclude applying Proposition 6 exactly in the same way as in Section 4.4. (I
The assumptions of Theorem 8 can be checked in the same way.

7. REMARKS, CONJECTURES

7.1. Regularity

In Theorems 5 and 10, the assumption g, ¢ € H (‘E’OJ;E((O7 1), C) is only technical, one conjectures that these

local controllability results hold in
e H{,((0,1),C) with control functions in L?;
((0,1),C) with control functions in Hg;

* (50)
with control functions in etc.
((0,1),((3) ith 1 fi i i HOQ,

7
° H(O)
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7.2. Minimal time for controllability

For the compactness argument explained in Section 1.5.1, one need local controllability results around ;.. :=
V1 — 0y — 0311 ++/021p2 ++/0313 in time T such that ¢y (0) = e (T), for instance T = 2/ or 4/7. However,
the minimal time for local controllability is another interesting problem.

One conjectures that the local controllability around ¢,c¢, with (62, 6s) € Int(D), (i.e. Th. 5) holds in any
positive time T'. Indeed, the linearized system around (¥ref,u = 0) is probably controllable in any time T' > 0
(see Rem. 4). Thus, it is also probably controllable with the bounds (3.8) and (3.9) (corresponding to v = 0) in
any time T > 0. Moreover, the application of the Nash-Moser theorem does not introduce a positive minimal
time (see Rem. 9).

One conjectures that the local controllability up to codimension one around 7 (i.e. Th. 10) holds in any
time T > 0. Indeed, the linearized system around (i1,u = 0) is controllable up to codimension one in any
T > 0 (see Th. 4). Thus, Proposition 13 probably holds with any time T' > 0. Moreover, the application of the
Nash-Moser theorem does not introduce a positive minimal time (see Rem. 9).

We think the following assertions are equivalent

e there exists a positive minimal time for the local controllability around )1;
e there exists of a positive minimal time for the Proposition 11 to hold.

Some computations justify that the condition of Proposition 11 can be written

e8] T t
Zai()\k - \)3S (/ v(t)ei()‘l_)"“)t/ ’U(T)ei(/\k_/\l)Tdet> € (0,400)(resp. € (—00,0)). (7.1)
k=2 0

0

It is probably possible to move the second order term instantaneously in one of the two directions +it)(T),
which means realize € (0, 400) or € (—00,0) in (7.1) with arbitrarily small 7. Perhaps the motion in the other
direction needs a positive minimal time. A proof by contradiction could also be tried, as in [18].

The existence of a minimal time for moving from ¢; to o is also an open problem. The compactness
argument used to prove Theorem 1 does not give any clue.

The existence of a minimal time for particular motions on the nonlinear system could be studied directly, for
instance by adapting the proof of [17]. In the situation studied in [10], there exists a positive minimal time for
the local controllability around (¢1, s = 0,d = 0) which has been proved in [17]. This situation is quite different
because the linearized system around (¢1,s = 0,d = 0) misses an infinite number of directions.

7.3. Generalizations

The strategies of this papers can be generalized to Schrédinger equations of the form

i) = =" + u(t)a(x),x € (0,1).

If the function a has some parity property on the space interval (0, 1), then the return method can be used, as
in [9,10]. This method was introduced by Coron in [13] to solve a stabilization problem, it has also been used
for controllability problems by Coron in [14-16], by Coron et Fursikov in [19], by Fursikov et Yu. Imanuvilov
n [20], by Glass in [21-23], by Horsin in [27] and by Sontag in [36].

Acknowledgements. The author thanks Enrique Zuazua for having attracted her attention to this controllability problem
and Jean-Michel Coron for fruitful discussions and advice on this work.

APPENDIX A: STUDY OF ¢, AND )\,

In this appendix, we state some useful results on the eigenvalues Ay , and the orthonormal eigenfunctions ¢y, 4
of the operator
D(A,) == H2NH}((0,1),R), A,p:=¢" +~yx3p.
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When v = 0, we write Ay, ¢y instead of Mg o, ¢r,0, and we have
or(z) == 2sin(nrz), A, = (n7)2.
The functions v — ¢k~ and v — A 4 are analytic (see [29], Motzkin-Taussky theorem p. 85),
Oy = 06+ 705 7200 + 7200+ My = A+ AL+ 2D + 2D +

Proposition 16. For every k € N*, we have

dlz 90;1) + 1' Pk = >\k§0(1) )\Ecl)sok;
1 1
e (0) = ¢ (1) =0,
Jo er(@)¢} (9)dg = 0.
1 1 —1)Ftigkj .
)\Ec) = (IQQOk,SDk) = % - W, 901(9) = Z;il,j;ék Tk, iP5, Tk,j = WWJ # k. (A~1)
There exists a constant C > 0 such that, for every k € N*
o] < %
Proof. Using (A.1), we get
1/2
<1>‘ _ 8k J C
© = — T — - O
H kollpe 74 j=lz,j:;£k (k+7)8(k—7)8 k
Corollary 2. There exists v* > 0, C* > 0 such that, for every v1 € (—v*,7*), for every k € N*, we have
||80k,71 - (pk”HS((O,l),]R) < C*|71|k‘s_15 fO’I” every integers € [074]7 (AQ)
Ak = Akl < Clml- (A.3)
1 1 Clm|
_ < . A4
Men Ak k4 (A4)
Proposition 17. For every k € N*, we have
— Lo 220 = Mol a0l + 0P g,
2 2
20 (0) = ¢} ><1> =0,
1 2
Jy @en(@e? + ¢ o) (@)da =0,
2 2 2 (1)7 A 4 ; i
)\z(g) - < 2@1& ),@k> <Pz(g) = Z;; Yk, iPir Yk = —%H@,(CI)II%Q, Yk, = e AiJ>A L V) A K
(A.5)
There exists a constant C' > 0 such that, for every k € N*
C
], <%
C
] < o (A.6)
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Proof. Using (A.5), we get

1/2
0o o0 -2
2) Lol ¢ 1 J
H‘pk‘ g_Hwk‘ T Z 2 3Y) +Ck Z NSk _ )8
L "2 2k \ =, (k=) (k4 ) P CR M Uhl))
The explicit expression of gog) gives
k242 C
M| =Y | <
‘ g Z:(1<f+j)5(l<f*j)5 k?

J#k

1/2

C
<3

The quantities ¢y ~, Ar, are analytic functions of the parameter « in a neighborhood of zero, thus, we can

consider their derivatives with respect to v. We denote

&/ Pk,y }
d7] Y1

the j* derivative of the map v — ¢k, evaluated at the point v = ~v; and
1
Akyvps Ay

the second and third derivatives of the function v — Aj , evaluated at the point v = ;.

Corollary 3. For every v1 € R, we have

der,
:| + xQ@ka’Yl = )‘kf)’l d"y’y + )‘;f,’)’l Pk, -
1

1

A’Yl d(g:’)’

There ezists v* and C* > 0 such that, for every v1 € (—v*,v*), for every k € N*, we have

< C*|y1|k*™2 for every integer s € [0, 4],

d(pk,'y:| _ d@m}
Y1 0

dy dy H+((0,1),R
d(gkv')’:| g C*ks_l,
EREY Hs((0,1),R)
* 2
e <1>‘ < Ol
ngk’“ TN | oy ST K2
Clnl
|)\;€,’yl - )\;€| g k ?
7 - Chl
Mo == 3| <

Proof. Thanks to (A.6) and (A.1), we have

1 1 Clml?
M — S <
Akar = Ak = n (3 Q(kw)Q)‘ ST

which gives (A.12).

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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Proposition 18. There exists C* > 0 such that, for every k € N*,

ok

Thus, there exists v* > 0 such that, for every k € N*, we have

C*
< —.

k2

C*
X ﬁ

(A.13)

d2 Pk~ :|
df}/Q 1

L2
APPENDIX B: REGULARITY AND BOUNDS ON THE SOLUTIONS OF THE NONLINEAR SYSTEM

This section is dedicated to the statement of existence and regularity results together with bounds on the
solution of the Cauchy problem

il/}(ta 1') - 71/)//(1571‘) + [U - 4u2](t)fﬂ21/)(t793) + f(ta :L')a
P(t,0) =(t,1) =0, (B.1)
¥(0,2) = tho(z).

We use the spaces E,, a = 2,4, 6 defined in Section 3, and the group of isometries of L?((0,1),C) defined by

oo

—iXit
=Y (o pr)e” Moy
k=1

Proposition 19. Let T > 0, 9o € H(o)(( 1),C), p € L*((0,T),R) and f € L*((0,T), (0)((0 1),R)). There
exists a unique ¥ € C°([0,T], H(QO)((O 1),C)) which satisfies the following equality in H(O)((O 1),C) for every
t€0,T],

t
Y(t) =T (t)o +/O T(t — s)[=in(s)z*y(s) —if(s)|ds. (B.2)
Moreover, there exists a constant C > 0 such that

Hwnco([o,T, Hfo)) HWOHH(O) + ”fHLl((OaT), (o))] Cllllzr,

Proof. The existence come from a fixed point argument when ||| £1((0,7),r) is small enough. Otherwise, we use
a partition [0, 7] = UIl;, 1 < j < N such that ||p[|z1(;; g is small enough so that the previous result holds. The
bound relies on Gronwall’s Lemma. O

Applying recursively this result, we get the following propositions

Proposition 20. Let T > 0, ¢y € H(O)((O,l),(C), u € W21((0,7),R) and f € WH1((0,T), H(QO)((O,l),R)).
The solution v of (B.2), with p := 1 —4u?, belongs to C1([0,T], (0)) nco([o, 17, H(40)), it is a solution of (B.1)
in the sense of Definition 1. Moreover, for every r > 0, there exists a constant C(r) > 0 such that, for every

(o,u) € By with ||(Yo,u)||g, < r and for every f € Wl’l((O,T),HFO)), the quantities ||¥||cojo,1, HY,) and

Hz/}HCO([O,T],H(QO)) are bounded by
]
Proposition 21. Let T > 0, 1)y € H(O)((O, 1),C), u € W((0,T),R) be such that (i — 4u2)(0) = 0 and

C)lvollms, + fllwraom),

(0) (0))

J € WAL, T), Hig (0,1), R)) N C°((0, T], H((0, 1), R))). (5:3)
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The solution ¥ of (B.2), with u := u—4u? belongs to C2([0,T], H2,,)NC*([0,T], H*)NC([0,T), HS) If u(T) = 0

(0)

and f(T) € Hfo)((O,l),(C) then ¥(T) € H?O)((O,l),(C). Moreover, for every r > 0, there exists a constant
C(r) > 0 such that, for every (Yo,u) € Eg with |[(o,u)|p, < r and for every f with (B.3), the quantities
||¢HCO([0’T]7H6)7 HwHCU([O,T],H‘l) and HwHCO([O,T],Hz) are bounded by

(1]

O Iollze + lullze ol s, + 1 lwaa oy, ) + 1 Fleogoyamn + s | Fllos o2, )
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