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REMOVING HOLES IN TOPOLOGICAL SHAPE OPTIMIZATION
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Abstract. The gradient based topological optimization tools introduced during the last ten years
tend naturally to modify the topology of a domain by creating small holes inside the domain. Once
these holes have been created, they usually remain unchanged, at least during the topological phase
of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows
to decide whether an existing hole must be removed or not for improving the cost function. Then,
two numerical examples are presented: the first one compares topological optimization with standard
shape optimization, and the second one, issued from a lake oxygenation problem, illustrates the use of
the new asymptotic expansion.
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1. Introduction

Topological optimization is concerned with the variation of a cost function with respect to a topology mod-
ification of a domain. The most simple way of modifying the topology consists in creating a small hole in
the domain. Usually, the cost function involves the solution of a p.d.e. defined on this domain. In the case
of structural shape optimization, creating a hole means simply removing some material. In the case of fluid
dynamics where the domain represents the fluid, creating a hole means inserting a small obstacle. The situation
is similar in electromagnetism. The topological sensitivity tools which have been developed by several authors
[7, 8, 17, 28, 30, 33, 37, 38] allow to find the place where creating a small hole will bring the best improvement of
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the cost function. These tools are based on a gradient like expression of the form

j(Ωε) = j(Ω) + f(ε)δj(x) + o(f(ε)), (1)

f(ε) > 0 ∀ε > 0, lim
ε→0

f(ε) = 0.

Here Ω is an open and bounded subset of R
d, d = 2, 3, and, for ε > 0 and x ∈ Ω, Ωε = Ω\(x + εω) is the

subset obtained by removing the subset x + εω from Ω, where ω ⊂ R
d is a fixed open and bounded subset

containing the origin. Obviously, if we want to minimize j, the “best” place (in the sense of the steepest
descent) where to create an infinitesimal hole is there where δj(x) is the most negative. Starting with this
observation, topological optimization algorithms can then be constructed [13]. The main problem encountered
at this stage is that topological sensitivity only provides information on where to add holes, but not where to
remove already existing holes: once a hole has been introduced in the domain, it will remain there during all
forthcoming iterations. However, it may happen that after creation of other holes, removing this particular hole
would improve the cost function. Hence, there is a need for tools giving an estimate of j(Ω) when j(Ωε) is known.
An analogy with ordinary differential calculus for a function u is that instead of estimating u(ε) � u(0)+εu′(0),
we want to estimate u(0) � u(ε)− εu′(ε). Thus, the goal of this paper is to provide and estimate of the form

j(Ω) = j(Ωε)− g(x, ε) + o(f(ε))

where g(x, ε) is computed by solving a p.d.e. on the current domain Ωε, whereas δj(x) in (1) was computed
by solving a p.d.e. on the current domain Ω. Formula (1) gives us only the behaviour of g with respect to
ε but cannot be used to compute g. During the optimization process, the variations δj and g are computed
from available data associated to the current domain. A mathematical analysis is given in Section 3.1 for δj
and in Section 3.2 for g. Concerning the hole shape, the theoretical results presented in this paper are valid for
any bounded domain ω ⊂ IRd containing the origin and having a connected boundary ∂ω piecewise of class C1.
However, in order to get an explicit expression of the boundary integral equation, we will choose a simple
geometry: the unit ball.

Other methods like homogenization have been widely used for topological optimization, although they require
some penalization procedure in order to retrieve a “classical” domain; see for example [2, 3, 14] for a recent
review on shape optimization. Recently, a new method for modifying the topology has been introduced by
Allaire et al. [4], which consists in using a level set method. In contrast to the topological gradient approach
which naturally leads to the creation of new holes, the level set approach tends to suppress existing holes.
Consequently, the associated optimization algorithm starts with many holes which may gradually disappear (or
migrate) during iterations. The new method which is proposed in this paper is a first step towards a method
which can both create or suppress holes during the optimization process. The proposed approach is general and
can be easily adapted to other partial differential equations like for example elasticity or Helmholtz equations.

The formulation of the problem is presented in Section 2 for the case of Stokes equations with Dirichlet
boundary conditions. In Section 3, we first recall the results concerning the creation of a hole and then describe
our new result concerning the variation of the cost function when removing a hole. The obtained results are
valid for a large class of cost functions and are illustrated in Section 3.4 by two standard examples: the L2

and H1 distances to a target function. Finally, two numerical examples are presented in Section 4. The first
example is used to compare topological optimization with standard shape optimization. The second example
illustrates the use of the new topological asymptotic expansion in a shape optimization problem associated to
water eutrophication in a lake. The holes represent air injectors, the position of which must be determined in
order to maximize oxygenation of the lake. We will observe that holes are both created and suppressed during
the optimization process, and will compare the result with an algorithm where no suppression is allowed.
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Figure 1. The domain Ωε = Ω\ωε.

2. Formulation of the problem

2.1. Variation of the domain and of the associated p.d.e.

Let Ωε be a bounded domain of IRd, d = 2, 3, with smooth boundary Γε, obtained from creating a small
hole ωε in a fixed and connected domain Ω. The hole is of the form ωε = x0 + εω, where x0 ∈ Ω, ε > 0 and ω
is a given fixed open and bounded domain of IRd, containing the origin, whose boundary ∂ω is connected and
piecewise of class C1. It is supposed that ε ≤ ε0 with ε0 sufficiently small so that ωε ⊂ Ω for all ε ≤ ε0. The
boundary Γε satisfies Γε = Γ1 ∪ Γ2 ∪ ∂ωε with Γ1 ∩ ∂ωε = ∅ and Γ2 ∩ ∂ωε = ∅, where Γ1 and Γ2 are portions of
∂Ω having both a nonnegative Lebesgue measure and satisfy Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = ∅ (see Fig. 1).

We consider the Stokes equations describing an incompressible fluid flow in Ωε. We denote by (uε
D, pε

D) the
solution to the problem with a Dirichlet boundary condition on ∂ωε:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ν∆uε
D +∇pε

D = 0 in Ωε

div uε
D = 0 in Ωε

uε
D = ud on Γ1

ν∂nuε
D − pε

D n = g on Γ2

uε
D = 0 on ∂ωε,

(2)

where uε
D is the velocity, pε

D is the pressure, ν is the kinematic viscosity of the fluid, ud is a given velocity field
on Γ1, I is the d× d identity matrix, g is a given stress vector on Γ2, and n is the unit outward normal vector
along the boundary ∂Ω. For simplicity, no volume forces are considered. Note that for ε = 0, Ω0 = Ω and
(u0 , p0) is solution to ⎧⎪⎪⎨

⎪⎪⎩
−ν∆u0 +∇p0 = 0 in Ω,

div u0 = 0 in Ω,
u0 = ud on Γ1,

ν∂nu0 − p0 n = g on Γ2.

(3)

For all ε ≥ 0, we consider the following Hilbert spaces

Vε =
{
θ ∈ H1(Ωε)d, div θ = 0 in Ωε

}
,

V0
ε =

{
θ ∈ Vε, θ = 0 on ∂ωε and θ = 0 on Γ1

}
,
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the bilinear form
Aε : Vε × Vε −→ IR

(u , w) �−→ Aε(u , w) = ν

∫
Ωε

∇u∇w dx,

and the linear form
bε : Vε −→ IR

w �−→ bε(w) =
∫

Γ2

g · w ds.

We have V0
ε ⊂ Vε ⊂ H1(Ωε)d, Aε is a bilinear, symmetric, continuous and coercive form on Vε and bε is a linear

and continuous form on Vε.

2.1.1. Direct problem

Let Γε
1 = Γ1 ∪ ∂ωε. We denote by ûd the given boundary data on Γε

1:

ûd =
{

ud on Γ1,
0 on ∂ωε.

From the weak formulation of the problem (2), we deduce that uε
D ∈ Vε is solution to

{ Aε(uε
D , w) = bε(w), ∀w ∈ V0

ε ,
uε

D|Γε
1

= ûd.
(4)

2.2. Topological optimization problem

Consider now a cost function j(ε) of the form

j(ε) = Jε(uε
D), (5)

where Jε is defined on H1(Ωε)d and satisfies the following hypothesis.

Hypothesis 2.1. There exist a linear and continuous form Lε defined on Vε and a real number δJ (independent
of ε) such that

Jε(uε
N)− Jε(uε

D) = Lε(uε
N − uε

D) + f(ε)δJ + o(f(ε)), (6)

where uε
N ∈ Vε is the solution to the Stokes equations with a Neumann boundary condition on ∂ωε:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν∆uε
N +∇pε

N = 0 in Ωε

div uε
N = 0 in Ωε

uε
N = ud on Γ1

ν∂nuε
N − pε

N n = g on Γ2

ν∂nuε
N − pε

N n = 0 on ∂ωε,

(7)

the scalar function f is defined in IR+ by

f(ε) =
{

ε if d = 3,
−1/ log(ε) if d = 2.
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Remark 2.1. When the function Jε(u) is differentiable with respect to u, the form Lε coincides with its
derivative DJε(uε

D). The variation δJ is the leading term of the asymptotic expansion of Jε(uε
N ) − Jε(uε

D) −
Lε(uε

N − uε
D) with respect to ε. Some examples are given in Section 3.4 where the form Lε and the variation

δJ are computed explicitly.

Our aim is to derive an estimate of the cost function j when ε tends to zero.

2.2.1. Adjoint problem

We denote by vε
D the solution to the adjoint problem associated to (4), that is, vε

D ∈ V0
ε is the solution to

{
vε

D ∈ V0
ε ,

Aε(w , vε
D) = −Lε(w), ∀w ∈ V0

ε .
(8)

Moreover, due to Rham lemma [18] there exists qε
D ∈ L2

0(Ωε) such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ν∆vε
D +∇qε

D = −Lε in Ωε

div vε
D = 0 in Ωε

vε
D = 0 on Γ1

ν∂nvε
D − qε

D n = 0 on Γ2

vε
D = 0 on ∂ωε.

(9)

Note that for ε = 0, (v0 , q0) ∈ V0
0 × L2

0(Ω) is solution to⎧⎪⎪⎨
⎪⎪⎩
−ν∆v0 +∇q0 = −L0 in Ω

div v0 = 0 in Ω
v0 = 0 on Γ1

ν∂nv0 − q0 n = 0 on Γ2.

(10)

3. Variation of the cost function with respect to a topological perturbation

As mentioned earlier, the aim of this work is to build a new topological optimization algorithm providing
the possibility of creating or suppressing holes during the optimization process. Creation of holes with Dirichlet
boundary condition was considered in [22] for the Laplace equation, in [23] for Stokes equations and in [25] for
quasi-Stokes equations. For the sake of completeness, we recall in Section 3.1 the results concerning the case
where the asymptotic expression of j(ε) is obtained via computations done on the unperturbed domain Ω.

The main result of this paper is presented in Section 3.3. It concerns the variation of j(ε) with respect to the
suppression of an existing hole. Here, an asymptotic expression for j(0) is obtained via computations done on
the perturbed domain Ωε. In order to prove this result we give in Section 3.2 a topological sensitivity analysis for
the Stokes equations using Neumann boundary condition on the hole, which is also a new result. A topological
sensitivity analysis using Neumann boundary condition has already been obtained for the elasticity equations
in [17], for Helmholtz equations in [5] and for Maxwell equations in [29]. Here, rather than using a truncation
technique, we derive in Section 3.2 a simplified mathematical topological analysis for the Stokes equations.

The results obtained in the two Sections 3.1 and 3.3 will be the basis of a numerical optimization algorithm
described in Section 4 and will be used to determine the locations of the holes that will be inserted in or removed
from the domain. Finally, we discuss Hypothesis 2.1 in Section 3.4, and we compute the variation of the cost
function for two standards examples: the L2 and H1 distances to a given target function.



REMOVING HOLES IN TOPOLOGICAL SHAPE OPTIMIZATION 165

3.1. Creating a small hole using Dirichlet condition

The topological sensitivity analysis for the Stokes equations when creating a small hole inside the domain
with a Dirichlet boundary condition is considred in [23]. We recall here the main results of this case. We
distinguish the cases d = 2 and d = 3, this is due to the fact that the fundamental solutions to the Stokes
equations in IR2 and IR3 have an essentially different asymptotic behavior at infinity. It is proved in [23] that
f(ε) = ε if d = 3 and f(ε) = −1/ log(ε) if d = 2.

3.1.1. The three dimensional case

Theorem 3.1. If Hypothesis 2.1 holds, then the function j given in (5) has the following asymptotic expansion

j(ε) = j(0) + ε
[(
−

∫
∂ω

T (y) ds(y)
)
· v0(x0) + δJ

]
+ o(ε). (11)

The function T is a density associated to a single layer potential representation (see e.g. [16]), of an exterior
Stokes problem solution defined in IR3\ω. Then, T ∈ H−1/2(∂ω)d is solution to the following boundary integral
equation, for more detail one can see [23] or [25]

∫
∂ω

E(x− y)T (y) ds(y) = −u0(x0), ∀x ∈ ∂ω. (12)

The function v0 is the solution to the adjoint problem (10), and the function (E, P ) is the fundamental solution
to the Stokes equations in 3D

E(y) =
1

8πνr

(
I + ere

T
r

)
, P (y) =

y

4πr3
, (13)

with r = ||y||, er = y/r and eT
r is the transposed vector of er.

In the particular case where ω is the unit ball B(0, 1), we have

∫
∂ω

E(x− y) ds(y) =
2
3ν

I, ∀x ∈ ∂ω.

Hence, the density T is given explicitly

T (y) =
3ν

2
u0(x0), ∀y ∈ ∂ω.

Corollary 3.1. Let x0 ∈ Ω and ω = B(0, 1). Under the hypotheses of Theorem 3.1, we have

j(ε) = j(0) + ε
[
6πν u0(x0) · v0(x0) + δJ

]
+ o(ε). (14)

3.1.2. The two dimensional case

In this case the fundamental solution (E, P ) of the Stokes equations is given by

E(y) =
1

4πν

(
− log(r)I + ere

T
r

)
, P (y) =

y

2πr2
· (15)
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Theorem 3.2. Under the same hypotheses of Theorem 3.1, the function j has the following asymptotic expan-
sion

j(ε) = j(0)− 1/ log(ε)
[
4πν u0(x0) · v0(x0) + δJ

]
+ o(−1/ log(ε)). (16)

3.2. Creating a small hole using Neumann condition

We establish in this section an asymptotic expansion of the cost function j̃ associated to the Stokes equations
with a Neumann condition on the boundary of the hole. Here j̃ is defined by

j̃(ε) = Jε(uε
N) (17)

where uε
N is solution to (7).

From the weak formulation of (7) one can show that uε
N ∈ Vε is solution to{ Aε(uε

N , w) = bε(w), ∀w ∈ V0,ε
N

uε
N |Γ1

= ud,
(18)

where V0,ε
N =

{
θ ∈ Vε, θ|Γ1 = 0

}
.

Next, we suppose that Jε satisfies the following hypothesis.

Hypothesis 3.1. For all ε ≥ 0, there exist a linear form Lε
N on Vε and a real number δJN such that

Jε(uε
N )− J0(u0) = Lε

N(uε
N − u0) + εd δJN + o(εd). (19)

For more detail concerning this hypothesis one can see [5]. We denote by vε
N the solution to the associated

adjoint problem {
vε

N ∈ V0,ε
N ,

Aε(w , vε
N ) = −Lε

N(w), ∀w ∈ V0,ε
N .

(20)

Moreover, using Rham lemma [18] one can prove that there exists qε
N ∈ L2

0(Ωε) such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ν∆vε
N +∇qε

N = −Lε
N in Ωε

div vε
N = 0 in Ωε

vε
N = 0 on Γ1

ν∂nvε
N − qε

N n = 0 on Γ2

ν∂nvε
N − qε

N n = 0 on ∂ωε.

(21)

Our aim is to derive the behavior of j̃ with respect to ε.

From (17), we have
j̃(ε)− j̃(0) = Jε(uε

N)− J0(u0)
Using hypothesis 3.1, we obtain

j̃(ε)− j̃(0) = Lε
N(uε

N − u0) + εd δJN + o(εd).

Using (20), we derive
j̃(ε)− j̃(0) = Aε(u0 − uε

N , vε
N ) + εd δJN + o(εd).

In the following section, we give an estimate of the term Aε(u0 − uε
N , vε

N ). To this end, we need to complete
the hypothesis 3.1 by the following assumption.
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Hypothesis 3.2. There exist a function LN of regularity C0 ∩ H1 in a neighborhood of x0 such that for all
u ∈ H1(Ω) and all ε ≥ 0,

L0(u) = Lε
N (u|Ωε

) +
∫

ωε

LN u dx.

Note that using this hypothesis and equation (10) one can prove that (v0, q0) (weakly) satisfies the following
system: { −ν∆v0 +∇q0 = −LN in ωε

div v0 = 0 in ωε.
(22)

3.2.1. Preliminary estimates

From (3) and (7), we have

Aε(u0 − uε
N , vε

N ) = ν

∫
Ωε

∇(u0 − uε
N)∇vε

N dx =
∫

∂ωε

(ν∂nu0 − p0 n) · vε
N ds

=
∫

∂ωε

(ν∂nu0 − p0 n) · v0 ds +
∫

∂ωε

(ν∂nu0 − p0 n) · (vε
N − v0) ds. (23)

In the following, we give an estimate of each term. The following lemma gives an estimate for the first one.

Lemma 3.1. We have∫
∂ωε

(ν∂nu0 − p0 n) · v0 ds =
∫

∂ωε

(ν∂nv0 − q0 n)(x0) ·
(
u0 − u0(x0)

)
ds + ρ1(ε) + ρ2(ε), (24)

with ρ1(ε) =
∫

∂ωε

(
(ν∂nv0 − q0 n)− (ν∂nv0 − q0 n)(x0)

)
·
(
u0 − u0(x0)

)
ds,

ρ2(ε) = −
∫

ωε

LN

(
u0 − u0(x0)

)
dx.

Proof. Using Green formula, from (3) we have∫
∂ωε

(ν∂nu0 − p0 n) · v0 ds = ν

∫
ωε

∇u0∇v0 dx = ν

∫
ωε

∇
(
u0 − u0(x0)

)
∇v0 dx.

Using equation (22) we deduce

ν

∫
ωε

∇
(
u0 − u0(x0)

)
∇v0 dx =

∫
∂ωε

(ν∂nv0 − q0 n) ·
(
u0 − u0(x0)

)
ds−

∫
ωε

LN

(
u0 − u0(x0)

)
dx.

�

We now examine the second term of (23). Let wε = vε
N − v0 and ξε = qε

N − q0. Using Hypothesis 3.2, from (21)
we deduce that (wε , ξε) is solution to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν∆wε +∇ξε = 0 in Ωε

div wε = 0 in Ωε

wε = 0 on Γ1

ν∂nwε − ξε n = 0 on Γ2

ν∂nwε − ξε n = −(ν∂nv0 − q0 n) on ∂ωε.
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Due to the regularity of v0 and q0 one can approximate (wε , ξε) by (w̃ε , ξ̃ε) solution to the same system with
a constant right hand side ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν∆w̃ε +∇ξ̃ε = 0 in Ωε

div w̃ε = 0 in Ωε

w̃ε = 0 on Γ1

ν∂nw̃ε − ξ̃ε n = 0 on Γ2

ν∂nw̃ε − ξ̃ε n = −(ν∂nv0 − q0 n)(x0) on ∂ωε.

Let the change of variable

w̃(x) = 1/ε w̃ε(εx), ξ̃(x) = ξ̃ε(εx), ∀x ∈ IRd\ω.

It is easy to see that (w̃ , ξ̃) is a solution to⎧⎨
⎩
−ν∆w̃ +∇ξ̃ = 0 in IRd\ω

div w̃ = 0 in IRd\ω
ν∂nw̃ − ξ̃ n = −(ν∂nv0 − q0 n)(x0) on ∂ω.

The function w̃ is the leading term with respect to ε of the variation vε
N − v0. Using the regularity of v0 and q0

one can prove that vε
N (x) − v0(x) = εw̃(x/ε) + o(ε).

Using the simple layer potential [16], (w̃ , ξ̃) can be written as

w̃(y) =
∫

∂ω

E(y − x)η(x) ds(x), ξ̃(y) =
∫

∂ω

P (y − x) · η(x) ds(x), y ∈ IRd\ω (25)

where E, P is the fundamental solution of the Stokes equations (see (13) and (15)).
The function η ∈ H−1/2(∂ω)d is the solution to the boundary integral equation (see e.g. [16])

−η(y)
2

+
∫

∂ω

(
∇y(E(x− y)η(x))−P (x− y) · η(x)

)
· n(y) ds(x) = −(ν∂n(y)v

0− q0 n(y))(x0), ∀y ∈ ∂ω, (26)

subscript y in ∇y denoting a differentiation with respect to y.

Next, for all ϕ ∈ H1/2(∂ωε), such that
∫

∂ωε

ϕ · n ds = 0, we denote by (hϕ
ε , ξϕ

ε ) ∈ H1(ωε) × L2
0(ωε) the

solution to ⎧⎨
⎩
−ν∆hϕ

ε +∇ξϕ
ε = 0 in ωε

div hϕ
ε = 0 in ωε

hϕ
ε = ϕ on ∂ωε.

(27)

Denoting

ρ3(ε) =
∫

∂ωε

(
ν∂n(hwε

ε − hw̃ε
ε )− (ξwε

ε − ξw̃ε
ε ) n

)
· (u0(x)− u0(x0)) ds,

ρ4(ε) = −εd−1

∫
∂ω

η(y) ·
(
u0(x0 + εy)− u0(x0)−∇u0(x0)(εy)

)
ds(y).

We have the following result.

Lemma 3.2.∫
∂ωε

(ν∂nu0−p0 n)·wε ds = −εd∇u0(x0)
∫

∂ω

η(y)·y ds(y)−
∫

∂ωε

(ν∂nv0−q0 n)(x0)·
(
u0−u0(x0)

)
ds+ρ3(ε)+ρ4(ε).

(28)
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Proof. From (3), we have∫
∂ωε

(ν∂nu0 − p0 n) · wε ds = ν

∫
ωε

∇
(
u0(x)− u0(x0)

)
∇hwε

ε dx.

Using the fact that (hwε
ε , ξwε

ε ) is solution to⎧⎨
⎩
−ν∆hwε

ε +∇ξwε
ε = 0 in ωε

div hwε
ε = 0 in ωε

hwε
ε = wε on ∂ωε,

we obtain∫
∂ωε

(ν∂nu0 − p0 n) · wε ds =
∫

∂ωε

(
ν∂n(hwε

ε − hw̃ε
ε )− (ξwε

ε − ξw̃ε
ε ) n

)
·
(
u0(x) − u0(x0)

)
ds

+
∫

∂ωε

(
ν∂nhw̃ε

ε − ξw̃ε
ε n

)
·
(
u0(x) − u0(x0)

)
ds. (29)

Observe that (hw̃, ξw̃) is solution to

⎧⎨
⎩
−ν∆hw̃ +∇ξw̃ = 0 in ω

div hw̃ = 0 in ω
ν∂nhw̃ − ξw̃ n = −(ν∂nv0 − q0 n)(x0) on ∂ω,

and satisfies the relations

∀x ∈ ω, hw̃(x) = (1/ε)hw̃ε
ε (εx), and

(
ν∇hw̃. n(x) − ξw̃ n(x)

)
(x) =

(
ν∇hw̃ε

ε . n(εx)− ξw̃ε
ε n(εx)

)
(εx).

Taking into account that the density η is the stress tensor jump on ∂ω, we have

η(x) = −(ν∂nv0 − q0 n)(x0)− (ν∂nhw̃ − ξw̃ n), ∀x ∈ ω. (30)

Then, the second term of (29) can be expressed as∫
∂ωε

(
ν∂nhw̃ε

ε − ξw̃ε
ε n

)
·
(
u0(x)− u0(x0)

)
ds = −

∫
∂ωε

η(x/ε) ·
(
u0(x)− u0(x0)

)
ds(x)

−
∫

∂ωε

(ν∂nv0 − q0 n)(x0) ·
(
u0(x)− u0(x0)

)
ds(x)

= − εd

∫
∂ω

η(y) · ∇u0(x0) y ds(y) + ρ4(ε)

−
∫

∂ωε

(ν∂nv0 − q0 n)(x0) ·
(
u0(x)− u0(x0)

)
ds(x).

Finally, substituting the last equation in (29) and using Lemma 3.1, we obtain the wanted result. �

Proposition 3.1. The bilinear form Aε has the following expansion

Aε(u0 − uε
N , vε

N ) = −εd

∫
∂ω

η(y) · ∇u0(x0)y ds(y) +
∑

j=1,4

ρj(ε).
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3.2.2. Asymptotic expansion

The asymptotic expansion of j̃ for Stokes equations with Neumann condition on the boundary of the hole is
given for a large class of cost functions by the following theorem.

Theorem 3.3. Let j̃(ε) = Jε(uε
N ) a cost function satisfying the Hypothesis 3.1. Then, under the assump-

tions 3.2, the function j̃ has the following asymptotic expansion:

j̃(ε) = j̃(0) + εd

(
−

∫
∂ω

η(y) · ∇u0(x0)y ds(y) + δJN

)
+ o(εd). (31)

Proof. From Lemma 3.1, Lemma 3.2 and Proposition 3.1, it is sufficient to show that

ρj(ε) = o(εd), for all j = 1, . . . , 4.

Such estimates can be proved using a change of variable, a Taylor expansion around x0 and the regularity of u0,
p0, v0 and q0 near x0. For a similar technique, we refer to [5]. �

3.3. Variation of the cost function when removing a small hole

We are now in position to compute the variation of the cost function when removing a small hole ωε. The
main result is presented in Theorem 3.4. The principal term of the variation is described by an integral on the
boundary of the hole ωε. It has naturally the same behavior with respect to ε than the variation issued from
the creation of a hole. Using the same technique as in [22, 23, 25], one can prove that this term is of order ε in
the three dimensional case and of order −1/ log(ε) in the two dimensional case.

The expression in Theorem 3.4 involves the normal derivative of the Dirichlet adjoint solution vε
D (see Eq. (8))

and the solution uε
N to the Stokes problem with a Neumann boundary condition on ∂ωε (see Eq. (7)). The latter

was introduced as an auxiliary problem. Using Green’s formula, one can show that it is also possible to write
the same term by using the normal derivative of uε

D and the adjoint solution vε
N associated to the Neumann

Stokes problem.

Theorem 3.4. If Hypothesis 2.1 holds, then we have the following estimate:

j(0) = j(ε) +
∫

∂ωε

(ν∂nvε
D − qε

D n) · uε
N ds + f(ε)δJ + o(f(ε)). (32)

Proof. Using the asymptotic expansion of j̃ established in the previous section and the fact that εd = o(f(ε))
and j̃(0) = j(0) we derive a first estimate of the variation of j:

j(0)− j(ε) = j̃(ε)− j(ε) + o(f(ε)),
= Jε(uε

N )− Jε(uε
D) + o(f(ε)).

Due to Hypothesis 2.1, we have

j(0)− j(ε) = Lε(uε
N − uε

D) + f(ε)δJ + o(f(ε)). (33)

Using (9) and the fact that uε
D|∂ωε

= 0, we deduce

Lε(uε
N − uε

D) = ν

∫
Ωε

∇vε
D∇(uε

D − uε
N ) dx +

∫
∂ωε

(ν∂nvε
D − qε

D n) · uε
N ds. (34)
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Taking into account vε
D|Γ1

= 0 and vε
D|∂ωε

= 0, from (2), we have

ν

∫
Ωε

∇vε
D∇uε

D dx =
∫

Γ2

g · vε
D ds.

From (7), we obtain

ν

∫
Ωε

∇vε
D∇uε

N dx =
∫

Γ2

g · vε
D ds.

Then,

L(uε
D)(uε

N − uε
D) =

∫
∂ωε

(ν∂nvε
D − qε

D n) · uε
N ds. (35)

Hence, we derive

j(0)− j(ε) =
∫

∂ωε

(ν∂nvε
D − qε

D n) · uε
N ds + f(ε)δJ + o(f(ε)). (36)

�

3.4. Cost function examples

We now discuss Hypothesis 2.1, we present two standards examples of cost function satisfying this hypothesis
and we compute their variations δJ .

3.4.1. First example

Proposition 3.2. Consider the cost function

Jε(u) =
∫

Ωε

|u− U|2 dx, (37)

where U ∈ H1(Ω). Then, Hypothesis 2.1 holds with

Lε(w) = 2
∫

Ωε

(uε
D − U) · w dx, ∀w ∈ Vε, and δJ = 0.

Proof. We have

Jε(uε
N )− Jε(uε

D) =
∫

Ωε

|uε
N − U|2 dx−

∫
Ωε

|uε
D − U|2 dx,

= 2
∫

Ωε

(uε
D − U) · (uε

N − uε
D) dx + ‖uε

D − uε
N‖20,Ωε

. (38)

The triangular inequality yields

‖uε
D − uε

N‖0,Ωε
≤ ∥∥uε

D − u0
∥∥

0,Ωε
+

∥∥uε
N − u0

∥∥
0,Ωε

.

It is proved in [23] that ∥∥uε
D − u0

∥∥
0,Ωε

= O(f(ε)).
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By an adaptation of the technique described in [17] one can prove that∥∥uε
N − u0

∥∥
0,Ωε

= O(εd) = o(f(ε)).

Thus, we have

‖uε
D − uε

N‖20,Ωε
= o(f(ε)), (39)

and it follows from (38) and (39) that

Jε(uε
D)− Jε(uε

N ) = 2
∫

Ωε

(uε
D − U) · (uε

N − uε
D) dx + o(f(ε)).

Consequently, we have δJ = 0 and Lε(w) = 2
∫

ω

(uε
D−U)·w dx, ∀w ∈ Vε. �

3.4.2. Second example

Proposition 3.3. Consider the cost function

Jε(u) = ν

∫
Ωε

|∇u−∇U|2 dx, (40)

where U ∈ H1(Ω). Then, Hypothesis 2.1 holds with

Lε(w) = 2
∫

Ωε

∇(uε
D − U)∇w dx ∀w ∈ Vε,

δJ =

⎧⎪⎪⎨
⎪⎪⎩

(
−

∫
∂ω

T (y) ds(y)
)
· u0(x0) if d = 3,

4πν|u0(x0)|2 if d = 2.

For d = 3, if ω is the unit ball B(0, 1), we have

δJ = 6πν|u0(x0)|2.

Proof. From the definition (40) we derive

Jε(uε
N)− Jε(uε

D) = ν

∫
Ωε

|∇uε
N −∇U|2 dx− ν

∫
Ωε

|∇uε
D −∇U|2 dx

= 2ν

∫
Ωε

(∇uε
D −∇U)(∇uε

N −∇uε
D) dx + ν

∫
Ωε

|∇uε
D −∇uε

N |2 dx. (41)

To estimate the term
∫

Ωε

|∇uε
D − ∇uε

N |2 dx, we need to distinguish the 2D case from the 3D case. We only

discuss the 3D case, the approach for the 2D case being similar.
First, we consider the following decomposition:

ν

∫
Ωε

|∇uε
D −∇uε

N |2 dx = ν |uε
D − u0|21,Ωε

+ ν |uε
N − u0|21,Ωε

− 2ν

∫
Ωε

(∇uε
D −∇u0)(∇uε

N −∇u0) dx. (42)
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Next, we derive an asymptotic expansion with respect to ε for each term of the last equality.
• Estimate of the first term ν|uε

D − u0|21,Ωε
:

We split uε
D − u0 into u1

ε + u2
ε and their associated pressure pε

D − p0 into p1
ε + p2

ε such that

⎧⎪⎪⎨
⎪⎪⎩
−ν∆u1

ε +∇p1
ε = 0 in IR3\ωε

div u1
ε = 0 in IR3\ωε

u1
ε = 0 at ∞

u1
ε = −u0(x0) on ∂ωε,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ν∆u2
ε +∇p2

ε = 0 in Ωε

div u2
ε = 0 in Ωε

u2
ε = −u1

ε on Γ1

ν∂nu2
ε − p2

ε n = −(ν∂nu1
ε − p1

ε n) on Γ2

u2
ε = −u0 + u0(x0) on ∂ωε.

We consider the change of variable,

U(x) = u1
ε(εx), P (x) = εp1

ε(εx).

Then (U, P ) is the solution to the Stokes exterior problem

⎧⎪⎪⎨
⎪⎪⎩
−ν∆U +∇P = 0 in IR3\ω

div U = 0 in IR3\ω
U = 0 at ∞
U = −u0(x0) on ∂ω.

(43)

Using the potential simple layer [16], (U, P ) can be written as

U(y) =
∫

∂ω

E(y − x)T (x) ds(x), P (y) =
∫

∂ω

P (y − x).T (x) ds(x), ∀y ∈ IR3\ω.

From the previous decomposition, we have

ν
∣∣uε

D − u0
∣∣2
1,Ωε

= ν

∫
Ωε

∇u1
ε∇u1

ε dx + 2ν

∫
Ωε

∇u1
ε∇u2

ε dx + ν

∫
Ωε

∇u2
ε∇u2

ε dx. (44)

Due to Green Formula and the change of variable, from (43) we derive

ν

∫
Ωε

∇u1
ε∇u1

ε dx =
∫

∂ωε

(ν∂nu1
ε − p1

ε n) · u1
ε ds = −ε

∫
∂ω

(ν∂nU − P n) · u0(x0) ds.

By jump relation (see [16]), we have ν∂nU − P n(x) = T (x), ∀x ∈ ∂ω.
Then,

ν

∫
Ωε

∇u1
ε∇u1

ε dx = −ε
(∫

∂ω

T (x) ds
)
· u0(x0). (45)

To estimate the second and the third term of (44), we need the following lemma.

Lemma 3.3 ([17]). For φ ∈ H
1/2
V (∂ω)3; let z, s be the solution to the Stokes exterior problem

⎧⎪⎪⎨
⎪⎪⎩
−ν∆z +∇s = 0 in IR3\ω

div z = 0 in IR3\ω
z = 0 at infinity
z = φ on ∂ω.
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There exists a constant c > 0, independent of φ and ε, such that

‖z‖0,C(R/(2ε),R/ε) ≤ cε−1/2 ‖φ‖1/2,∂ω

|z|1,C(R/(2ε),R/ε) ≤ cε1/2 ‖φ‖1/2,∂ω .

with R > 0, such that ωε ⊂ B(0, R) and B(0, R) ⊂ Ω. �

Then due to this Lemma and a change of variable, we deduce that

∥∥u1
ε

∥∥
1,ΩR

≤ cε. (46)

By elliptic regularity and trace theorem, we have

∥∥u2
ε

∥∥
1,Ωε
≤ c

{∥∥u1
ε

∥∥
1/2,Γ1

+
∥∥ν∂nu1

ε − p1
ε n

∥∥
−1/2,Γ2

}
≤ c

∥∥u1
ε

∥∥
1,ΩR

. (47)

Finally, using Hölder’s inequality, from (45), (46) and (47) we obtain

ν
∣∣uε

D − u0
∣∣2
1,Ωε

= −ε
(∫

∂ω

T (x) ds
)
· u0(x0) + o(ε). (48)

• Estimate of the second term ν|uε
N − u0|21,Ωε

:
We split uε

N − u0 into w1
ε + w2

ε and their associated pressure pε
N − p0 into s1

ε + s2
ε such that

⎧⎪⎪⎨
⎪⎪⎩
−ν∆w1

ε +∇s1
ε = 0 in IR3\ωε

div w1
ε = 0 in IR3\ωε

w1
ε = 0 at ∞

ν∂nw1
ε − s1

ε n = −(ν∂nu0 − p0 n) on ∂ωε,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ν∆w2
ε +∇s2

ε = 0 in Ωε

div w2
ε = 0 in Ωε

w2
ε = −w1

ε on Γ1

ν∂nw2
ε − s2

ε n = −(ν∂nw1
ε − s1

ε n) on Γ2

ν∂nw2
ε − s2

ε n = 0 on ∂ωε.

We consider the change of variable,

Wε(x) = w1
ε(εx), Sε(x) = εs1

ε(εx).

Then (Wε, Sε) is the solution to the Stokes exterior problem

⎧⎪⎪⎨
⎪⎪⎩
−ν∆Wε +∇Sε = 0 in IR3\ω

div Wε = 0 in IR3\ω
Wε = 0 at ∞

ν∂nWε − Sε n = −ε(ν∂nu0 − p0 n) on ∂ω.

The same technique described in previous section can be adapted for the Neumann case. One can prove here
that

ν
∣∣uε

N − u0
∣∣2
1,Ωε

= o(ε). (49)

Fore a similar work, one can see [17] where some estimates are derived in the elasticity equations case.
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• Estimate of the third term ν

∫
Ωε

(∇uε
D −∇u0)(∇uε

N −∇u0) dx:

Using Hölder’s inequality, it follow from (48) and (49) that

ν

∫
Ωε

(∇uε
D −∇u0)(∇uε

N −∇u0) dx = o(ε). (50)

Finally from (41), (48), (49) and (50), we deduce the required result.

In the particular case where ω is the unit ball B(0, 1), we have T (y) =
3ν

2
u0(x0), ∀y ∈ ∂ω.

Hence, δJ = 6πν|u0(x0)|2.

4. Numerical results

This section presents two numerical examples. The first one compares topological optimization with standard
shape optimization, whereas the second one illustrates the new topological asymptotic expansion.

4.1. Example 1: comparison between classical and topological gradient methods

The problem which is here considered consists in finding in the domain Ω the optimal location of a small
hole ωε in order to reach a given target flow Ug. The optimization problem that we consider can be formulated
as follows.

Optimization problem (P):

For a given ε > 0, find the position of ωε in Ω minimizing the cost function

J(uε, Ω\ωε) =
∫

Ω\ωε

|uε − Ug|2 dx, (51)

where (uε, pε) is solution to the Stokes equations in Ωε = Ω\ωε⎧⎪⎪⎨
⎪⎪⎩
−ν∆uε +∇pε = 0 in Ωε,

div uε = 0 in Ωε,
uε = ud on ∂Ω,
uε = uinj on ∂ωε,

(52)

and ud and uinj are given boundary data.

We will treat this problem using two different numerical approaches. The first approach is presented in
Section 4.1.1. It considers (P) as a classical shape optimization problem. The second approach is the topological
gradient method. It is presented in Section 4.1.2. For the numerical computation, we will use the following
data.

The given data: We consider a small circular hole ωε = X0 + εB(0, 1) with B(0, 1) is the unit ball and
ε = 0.02. The computational domain Ω is a square with edge length equal to one. On the top edge a
constant positive horizontal velocity is prescribed (ud = (0.1, 0)). The other edges are regarded as walls with
homogeneous Dirichlet boundary conditions. On the variable boundary ∂ωε a constant vertical velocity is
imposed (uinj = (0, 0.5)). The wanted flow Ug is chosen as the solution to system (52) with ωε centered at the
point X0 = (0.3, 0.4) (see Fig. 2).
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Figure 2. The wanted flow Ug.

A-MODULEFA-MODULEF
6.794E-18

0.0573
0.1146

0.1719
0.22926.794E-18

0.0573
0.1146

0.1719
0.2292

INRIA MO

ODULEF

INRIA MO

ODULEF

INRIA MO

ODULEF

INRIA MO

ODULEF

Figure 3. The cost function J to be minimized.

Using the previous data, we have computed the cost function J at each mesh node Xi:

J(Xi) =
∫

Ω\ωi
ε

|ui
ε − Ug|2 dx,

where ωi
ε = Xi +εB(0, 1) and ui

ε is the solution to (52) with ωε = ωi
ε. The obtained result is plotted in Figure 3.

One can see that J has several local minima (near the top and bottom edges) and of course a global minimum
at the point X = (0.3, 0.4).
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4.1.1. Shape optimization gradient method

The problem (P) can be viewed as a classical domain optimization problem where the unknown is the
position of ∂ωε, a part of the boundary of the computational domain Ωε. Domain optimization for the Stokes
equations were studied, for example, by Pironneau [31] who computed the shape of body with minimum drag.
Gunzburger and Kim [24] showed existence of an optimal shape for a minimum drag problem in a channel flow.
Simon et al. [6] proved differentiability of the drag with respect to domain variations in Navier-Stokes flow.
We also refer to [20, 21, 32] where derivatives (first, second and higher order) of a function with respect to the
variation of the domain are analyzed for different operators.

The modified flow domain Ωt
ε is of the form

Ωt
ε = Ω\ωt

ε, ωt
ε = (I + tV )(ωε),

with V ∈ W 1,∞(Ω, IR2) and t ∈ IR. It is supposed that V (x) = 0 for x ∈ ∂Ω. As we here consider only
translations of ωε, V (x) is constant on ∂ωε. Then, using the Lagrangian method, the first order derivative of J
with respect to the domain variation V is given by

DJ(uε, Ω0
ε)V = −

∫
∂ωε

∂uε

∂n
· ∂vε

∂n
V · n ds,

where uε is solution to (52) and vε is solution to the associated adjoint problem (for more details we refer to
[20, 35, 36]).

Obtained results: We have used a minimization algorithm based on the quasi-Newton method. Table 1
summarizes the results obtained by using six different initial positions Xk

0 , 1 ≤ k ≤ 6. We describe in this table,
for each case, the obtained position, the iterations and simulations number and the cost function values. One
can observe that the algorithm converges to the exact solution when the initial position X0 ∈ {X2

0 , X3
0 , X4

0}.
When X0 ∈ {X1

0 , X5
0 , X6

0}, it converges to a local minimum.
We present in Figure 4, for each initial position choice, the position obtained during the optimization process.

Figure 5 gives the values of the cost function in the three cases X0 ∈ {X2
0 , X3

0 , X4
0} where we have convergence

to the exact solution.

4.1.2. Topological optimization gradient method

The topological gradient method provides an asymptotic expansion of the cost function with respect to a
small topological perturbation of the domain. Taking into account that we consider here the Stokes equations
with non homogeneous boundary condition on ∂ωε (uε = uinj), we deduce from Theorem 3.2 and Proposition 3.2
the following expansion of the function j(ε) = J(uε, Ω\ωε):

j(ε) = j(0)− 1
log(ε)

[
4πν

(
u0(x)− uinj

) · v0(x)
]

+ o

( −1
log(ε)

)
,

where u0 and v0 are respectively solution to{ −ν∆u0 +∇p0 = 0 in Ω,
div u0 = 0 in Ω,

(53)

and { −ν∆v0 +∇q0 = −2
(
u0 − Ug

)
in Ω,

div v0 = 0 in Ω.
(54)
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Table 1. Obtained results for each initial position Xk
0 , k = 1, .., 6.

Initial position Obtained position Iterations and Initial value Final value
simulations number of J of J

X1
0 = (0.1, 0.8) converge to local minimum 3 iterations, 0.92968E–01 0.73337E–01

Y 1 = (0.02999, 0.97000) 14 simulations

X2
0 = (0.2, 0.7) converge to exact solution 10 iterations, 0.82249E–01 0.95734E–05

Y 2 = (0.29999, 0.40007) 19 simulations

X3
0 = (0.3, 0.1) converge to exact solution 5 iterations, 0.69252E–01 0.86717E–05

Y 3 = (0.29999, 0.40006) 14 simulations

X4
0 = (0.5, 0.6) converge to exact solution 9 iterations, 0.13931E+00 0.89545E–05

Y 4 = (0.30000, 0.40007) 15 simulations

X5
0 = (0.75, 0.4) converge to local minimum 4 iterations, 0.22156E+00 0.68282E–01

Y 5 = (0.32816, 0.02999) 46 simulations

X6
0 = (0.8, 0.6) converge to local minimum 3 iterations, 0.21347E+00 0.74261E–01

Y 6 = (0.97000, 0.97010) 43 simulations
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Figure 4. Positions obtained during optimization process for each initial position Xk
0 , k = 1, ..., 6.

We recall here the topological optimization algorithm introduced by Céa, Gioan and Michel [12] and presented
in the topological asymptotic context in [5, 13, 17, 22, 23, 25].
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Figure 5. Values of the cost function J .

Algorithm 1.

• Initialization: choose Ω0 and set k = 0.

• Repeat until target is reached:
– solve (53) and (54) in Ωk;
– compute the topological sensitivity δjk;
– set Ωk+1 = {x ∈ Ωk, δjk(x) ≥ ck} where ck is chosen in such a way that the cost function

decreases;
– k ←− k + 1.

This algorithm can be used in shape optimization as well as for identification in inverse problems. The initial-
ization of the domain gives the possibility to impose the zone where one wants to create holes or insert some
obstacles.

Here we chose as initial guess the whole square Ω0 = Ω. Figure 6 shows the values of the topological
gradient δj computed on Ω:

δj(x) =
(
u0(x)− uinj

) · v0(x), ∀x ∈ Ω.

In the present example, we encounter the most favourable situation: the lowest value of the topological gradient
coincides with the exact position of the optimal hole centre X0 = (0.3, 0.4), and consequently the solution to
problem (P) is obtained at the first iteration of Algorithm 1.

4.1.3. Conclusion

• Initial guess: a first difference between the two approaches described in Sections 4.1.1 and 4.1.2 is the
initial guess. Unlike the classical shape optimization method (Sect. 4.1.1), the topological optimization method
(Sect. 4.1.2) needs no initial guess. This property brings an interesting advantage to the second approach:
it avoids the difficulties caused by the initial guess choice and its influence on the obtained results. Table 1
illustrates the dependence of the final result on the initial guess choice (see also Fig. 4).

• Iterations number: the second difference concerns the number of iterations. Table 1 gives the iterations
and simulations numbers required by the first approach to obtain a good approximation of the solution. In the
second approach, only one iteration was required. Of course, this is a particular example and we could not prove
a general result concerning convergence rate comparison. However, fast convergence has been often observed
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Figure 6. The topological gradient g.

in topological optimization and more particularly in topological identification of a finite number of holes; for
other such examples, we refer the reader to [13, 17, 23, 25].

• Computational domain: this is a technical point which concerns implementation difficulties. In the first
approach, the domain derivative and the associated systems (direct and adjoint problems) are computed in the
perturbed domain Ωε. In the second approach all computations are done in a fixed domain. It is well known
that working in a variable domain needs introducing elaborated tools in order to take into account the domain
shape and its deformations.

• Convergence: like all numerical approach, the topological gradient method has its own drawbacks. We
have no convergence result for the numerical algorithm. Theoretically, the natural optimality condition is

δj(x) ≥ 0, for all x ∈ Ω.

It coincides with the one obtained by Buttazzo and Dal Maso [10] for the Laplace equation using homogenization
theory. But this condition has limited numerical application. In practice, some stop criterion can be successfully
implemented, such as the material volume to be removed [13,17,22], the holes number to be inserted [25] or the
obstacles number to be detected [23].

4.2. Example 2: an improved version of topological gradient algorithm

In this section we propose an improved version of the topological gradient Algorithm 1 presented in Sec-
tion 4.1.2 (see also [5, 13, 17, 22, 23, 25]). The new Algorithm 2 is based on the result given in Sections 3.1 and
3.3. It gives the possibility to create or to suppress holes during the optimization process. The numerical appli-
cation that we consider is the water eutrophication problem [1], where several holes need to be inserted. In order
to emphasize the efficiency of the new algorithm, we have compared the results obtained by using Algorithm 2
to those obtained by using Algorithm 1. In the first part of this section we describe the eutrophication problem
and we introduce the mathematical model. Next, we present the three steps of the new algorithm. Numerical
results are presented at the end of this section.
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Figure 7. (a): Structure of a stratified lake; (b): average temperature curve during summer.

Eutrophication is a complex phenomena involving many physico-chemical parameters. Specifically in some
climatic areas, the thermic factors combined to the biological and to the biochemical ones are dominant in the
behavior of the aquatic ecosystems. Consequently, they generate important bio-climatology variations creating
in lakes an unsteady dynamic process that decreases progressively water quality. Practically, the eutrophication
in a water basin is characterized mainly by a poor dissolved oxygen concentration in water. Furthermore, this
phenomena is accompanied by a stratification process dividing the water volume, during a large period of the
year, into three distinct layers as depicted in Figure 7.

Three zones constitute this stratification:

(i) at the top, the epilimnion, a layer of around 7 m depth, well mixed by the effect of drafting wind and
consequently well aerated;

(ii) in the middle, the thermocline, a zone with a quick decrease of temperature (27 oC to 18 oC) and of
5 m depth. This area is weakly affected by the wind action and consequently a medium rate of oxygen
concentration is observed;

(iii) at the bottom, the hypolimnion, a deeper layer beyond 12 m, having a temperature varying from 18 oC
to 14 oC. This region is characterized by a low rate of oxygen and a high concentration of toxic gas
(H2S, ammoniac, carbonic gas, etc.)

The dynamic aeration process seems to be the most promising remedial technique to treat the water eutroph-
ication phenomena. This technique consists in inserting air by the means of injectors located at the bottom of
the lake in order to generate a vertical motion mixing up the water of the bottom with that in the top, thus
oxygenating the lower part by bringing it in contact with the surface air.

Theoretically, the bubble flow is a multi-phase flow where the presence of free interfaces raises difficulties in
the physical modelling as well as in the mathematical one. Hence, to obtain a physical and significant resolution
by numerical simulation of the air injection phenomena in an eutrophised lake, one should consider a two-phase
model: water-air bubble. This kind of modelling involves large systems of PDE’s and variables in a multi-scale
frame as well as closure conditions through turbulence model and phases interface interaction. Moreover, the
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Figure 8. The geometry of the lake.

Figure 9. The wanted flow Ug.

domain mesh size should be “small” in order to capture the significant variations of the spectrum. Therefore,
the issue of the computational cost should be also addressed.

For all these reasons, we consider here, as a first approximation, only the liquid phase, which is the dominant
one. The flow is described by a simplified model based on incompressible Stokes equations. The injected air is
taken into account through local boundary conditions for the velocity on the injectors holes. We aim to optimize
the injectors location in order to generate the best motion in the fluid with respect to the aeration purpose.
The main idea is to compute the asymptotic topological expansion with respect to the insertion of an injector.
In order to apply the theoretical previous results, each injector is modeled as a small hole ωε around a point x0,
having an injection velocity Uinj . The best locations and orientations are the ones for which the cost function
decrease most, i.e. the sensitivity is as negative as possible.

Let Ω be a two dimensional flow domain representing the eutrophized water basin. The boundary Γ of Ω
consists in two parts (see Fig. 8): Γ = Γw ∪ Γs where

• Γw is the bottom of the lake and/or eventually an open flow boundary (water entrance or exit),
• Γs is the surface in contact with the atmosphere.

We suppose that a “good” lake oxygenation can be described by a target velocity Ug. Then, the cost
function J which is here considered reads

J(u) =
∫

Ωm

|u− Ug|2 dx,

where Ωm ⊂ Ω is the measurement domain (the top layer, see Fig. 8). We aim to determine the optimal location
in Ωb (the bottom of the lake, see Fig. 8) of some injector holes ωk in order to minimize function J .
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Figure 10. The initial flow u0.

Recall that we consider Stokes equations with a non homogeneous boundary condition on ∂ωε (uε
D|∂ωε

=
Uinj). In this case, the topological sensitivity δj is given by

δj(x) =
(
u0(x)− Uinj

) · v0(x) ∀x ∈ Ω, (55)

where u0 and v0 are respectively solution to⎧⎪⎪⎨
⎪⎪⎩

ν∆u0 +∇p0 = 0 in Ω
divu0 = 0 in Ω

u0 = uw in Γs

u0 = 0 in Γw,

(56)

⎧⎪⎪⎨
⎪⎪⎩

ν∆v0 +∇q0 = −2
(
u0 − Ug

)
χΩm in Ω

divv0 = 0 in Ω
v0 = 0 in Γs

v0 = 0 in Γw.

(57)

Here uw is a given velocity (wind velocity) and χΩm is the characteristic function of the measurement domain.

Numerical implementation: We use a fixed triangular mesh. The topological gradient δj is computed at
each mesh node. The center x0 of the hole ωε = x0 + εω which will be created is deduced as the node where
δj is the most negative. The numerical algorithm is based on the result given in Sections 3.1 and 3.3. A new
optimization algorithm is proposed, giving the possibility to create or to suppress holes during the optimization
process. It proceeds by iterations. At the k−th iteration, δjk denotes the topological gradient and Ωk denotes
the current domain. We denote by xk

p, p = 1, 2, . . . , the local minimum of δjk. The set of holes which are
candidates to be inserted in Ωk is given by

hk =
{
ωε(x) = x + εω, x ∈ Ck

}
,

where Ck = {xk
p ∈ Ωk, 1 ≤ p ≤ nk} is the set of the negative local minimum of δjk in Ωk and nk is their

number (supposed to be finite, which is the case for the discrete problem). An alternative to this choice would
be to consider instead a set of the form Ck = {x ∈ Ωk, δjk(x) ≤ Lk} where the level Lk is such that mes(Ck)
is a given fraction of the total volume. The holes are ordered in such a way that δjk(xk

p) ≤ δjk(xk
p′ ) for all

1 ≤ p < p′ ≤ nk.

Let Hk be the set of Nk holes inserted during all previous iterations:

Hk =
{
ωε(yk

l ) = yk
l + εω, 1 ≤ l ≤ Nk

}
.
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The variation of the cost function with respect to suppression of hole yk
l + εω is denoted by gk

l = gk(yk
l ) and

the set {yk
l , 1 ≤ l ≤ Nk} is supposed to be arranged in such a way that gk

l ≤ gk
l′ if l < l

′
.

The proposed algorithm is based on three steps. The first step solves the partial differential equations (56)–
(57), computes the topological gradient and derives the set of holes which are candidate to be inserted.

The second step introduces the possibility of suppressing existing holes and inserting new ones. Consequently,
the cost function can be decreased without changing the number of holes. For this, the variation δjk

i of the cost
function when creating a new hole ωε(xk

i ) is compared to the variation gk
i of the cost function when removing

an existing hole ωε(yk
i ). In order to decrease the cost function, one suppresses ωε(yk

i ) and inserts ωε(xk
i ) only

when the variation δjk
i + gk

i is negative.

The last step inserts some new holes. The number of holes added at the k-th iteration is denoted mk.

Algorithm 2.

• Initialization: choose Ω0 = Ωb, and set k = 0.
• Repeat until δjk ≥ 0 in Ωk:

– Step 1: preparation phase
∗ solve (56) and (57) in Ωk;
∗ compute the topological sensitivity δjk;
∗ determine the set hk = {ωε(xk

p) = xk
p + εω, 1 ≤ p ≤ nk}.

– Step 2: exchange phase
∗ compute the variations {gk

l = gk(yk
l ), 1 ≤ l ≤ Nk};

∗ set q = 1;
∗ while the variation δjk(xk

q ) + gk(yk
q ) < 0:

· remove the hole ωε(yk
q ) = yk

q + εω and add the hole ωε(xk
q ) = xk

q + εω;
· increment q,

– Step 3: insertion phase
∗ creation of the holes {xk

q+i + εω, 1 ≤ i ≤ mk}, where q is the number of the holes changed
during the second step;
∗ set Ωk+1 = Ωk ∪

(
∪q

i=1 ωε(yk
i )

)
\
(
∪q+mk

l=1 ωε(xk
l )

)
where {ωε(yk

i ), 1 ≤ i ≤ q} are the holes
removed during the second step,

– increment k.

In the above algorithm, the systems (56) and (57) are discretized by a finite element method [9, 15]. The
computation of the approximate solution is achieved by Uzawa algorithm.

In the context of water eutrophication, each hole ωε(xi) = xi + εω is replaced by an injector located at the
point xi. A constant number of injectors were added at each iteration (one or five at each iteration).

In order to test the advantage of this approach, we have compared the results issued from this technique to
those obtained by using a classical version as described in [17, 22, 23, 25], that is, without the second step. The
obtained results are presented in Figures 11–16. Figure 11 describes the variation of the cost function during
the optimization process when adding one injector at each iteration. We compare the values of J obtained using
Algorithm 1 (dashed line) to those obtained using Algorithm 2 (continuous line). One can remark that the
value of J is smaller when using Algorithm 2, which can be interpreted by the good distribution of the obtained
injectors locations. Figure 12 illustrates the variation of the same function when adding five injectors at each
iteration. The injectors locations obtained during the optimization process are presented in Figure 13 when
adding one injector at each iteration and in Figure 14 when adding five injectors at each iteration. Both figures
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Figure 11. Variation of the cost function when adding one injector at each iteration; without
removing injectors (top), with removing (bottom).
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Figure 12. Variation of the cost function when adding five injectors at each iteration; without
removing injectors (top), with removing (bottom).

show the locations obtained when removing injectors (right) and those obtained without removing injectors
(left). Figure 15 presents the wanted velocity Ug and the obtained velocities in the measurement Ωm when the
optimization process is achieved. The given velocities are denoted as follow:

• u1 is the velocity obtained by using a classical algorithm (without removing phase) and adding one
injector at each iteration;
• u2 is the velocity obtained by using the new approach and adding one injector at each iteration;
• u3 is the velocity obtained by using a classical algorithm (without removing phase) and adding five

injectors at each iteration;
• u4 is the velocity obtained by using the new approach and adding five injector at each iteration.

To facilitate the comparison with the wanted velocity Ug, we illustrate in Figure 16 the isolines of ‖ui − Ug‖,
1 ≤ i ≤ 4. Isolines 1, 2, 3, and 4 correspond respectively to isovalues 0, 0.001, 0.01 and 0.1. In the two considered
cases (when adding one injector (Figs. 16a and 16b) or five injectors (Figs. 16c and 16d), one can observe that
the obtained velocities using Algorithm 2 are more close to the wanted velocity Ug than those obtained using
Algorithm 1. Such a comparison between the results computed with (Algorithm 2) and without (Algorithm 1)
removing injectors show clearly the important effect of the exchange step (second step).
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iteration 5.

iteration 10.

iteration 15.

iteration 20.

iteration 25.

iteration 30.

(a) Without removing injectors (Algorithm 1). (b) With removing injectors (Algorithm 2).

Figure 13. Injectors locations obtained during the optimization process by adding one injector
at each iteration.
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iteration 1.

iteration 2.

iteration 3.

iteration 4.

iteration 5.

iteration 6.

(a) Without removing injectors (Algorithm 1). (b) With removing injectors (Algorithm 2).

Figure 14. Injectors locations obtained during the optimization process by adding five injec-
tors at each iteration.
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The wanted velocity Ug in the measurement domain Ωm.

(a) The obtained velocity u1|Ωm (without removing, adding one injector at each iteration).

(b) The obtained velocity u2|Ωm (with removing, adding one injector at each iteration).

(c) The obtained velocity u3|Ωm (without removing, adding five injectors at each iteration).

(d) The obtained velocity u1|Ωm (with removing, adding five injectors at each iteration).

Figure 15. Velocities fields obtained in Ωm (measurement domain) at the end of the opti-
mization process.
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Figure 16. Iso-lignes of ‖ui − Ug‖, 1 ≤ i ≤ 4 (1 = isoline 0.0, 2 = isoline 0.001, 3 = isoline
0.01 and 4 = isoline 0.02).
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