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Abstract. We consider the linearized elasticity system in a multidomain of R3. This multidomain is
the union of a horizontal plate with fixed cross section and small thickness €, and of a vertical beam
with fixed height and small cross section of radius 7. The lateral boundary of the plate and the top
of the beam are assumed to be clamped. When € and ¢ tend to zero simultaneously, with ¢ > &2,
we identify the limit problem. This limit problem involves six junction conditions.
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1. INTRODUCTION

Let w?® and w® (a for “above”, b for “below”) be two bounded regular domains in R2. In the whole paper,
the origin and axes are chosen so that:

/ x1 dxq dacgz/ acgdacldxgz/ r1xodridrs =0 and 0 € Wb (1.1)

Let € be a parameter taking values in a sequence of positive numbers converging to zero, and let 7 be another
positive parameter tending to zero with e. We introduce the thin multidomain Q° = Q2 JJ¢ [JQ', where
Q9% = 72w x (0,1) represents a vertical beam with fixed height and small cross section, 2% = w® x (—¢,0)
represents a horizontal plate with small thickness and fixed cross section, and J¢ = r*w® x {0} represents the
interface at the junction between the beam and the plate.
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In this thin multidomain, we consider the displacement UE, solution of the three-dimensional linearized
elasticity system:

U eY®and VU € Y,

/5 [Ase (UE),e(U)] d:c:/EFE.deJr/E[GE,e(U)] d“/asuweugba H°.U do, 2

where:
o Ve ={U¢c (HYO%))3 U=00nT% =r°w* x {1} and on £* = duw’ x (—¢,0)},
A, if x € QoF,
o A° = A%(x) =
keAY, if x € Qb
with k° a positive parameter depending on ¢ and A%, A® tensors with constant coefficients Afjkl and Ai-’jkl,
i,7,k,1 € {1,2,3}, satisfying the usual symmetry and coercivity conditions:

a _ Aa _ Aa b __Ab __Ab
Aijkl = Ajikl = Aijlk7 Aijkl = Ajikl = Aijlk?

30 >0, vE e RYP, [A%,€] > Cle?, [A%,¢] > Ol
where R3*3 denotes the set of symmetric 3 x 3-matrices, (4%€);; = >, A€k, the scalar product [, ] in R3x3
is defined by [n,&] = Zij ni;€;; and |.| is the associated norm; the euclidian scalar product in R? is denoted by
a dot;

1o, ou,
ceill)=3 (axj * 8xi)’

F© e (L2(9))?,

Ge ¢ (L2(Qe))3><37

He € (L3(3ee U TP | B%))3, where ¥ denotes the lateral boundary of the beam, T% and B’ are
respectively the top and the bottom of the plate:

Y = rfw® x (0,1), T% = (W’ \7r°w?) x {0}, B =w’ x {—¢}.

The constraint “U = 0” in the definition of Y¢ means that the multistructure is clamped on the top T of the
beam and on the lateral boundary 3% of the plate. The case k° tending to zero or infinity corresponds to very
different materials in % and Q% (note that breaking the symmetry between 2%¢ and *¢ by introducing the
coefficient k in front of A’ is not restrictive). In the right-hand side of (1.2), the second term is written in
divergence form like in [15,27,28]. It is well known that, by means of the Green formula, this second term can
contribute to the other ones, giving possibly less regular (not necessarily L?) volume and surface source terms.
For convenience of the reader, we have chosen to write the three integrals: one recovers the classical formulation
by setting G° = 0, but the simplest case corresponds to F© =0, H® =0 and G* # 0. This case was considered
in the short preliminary version [15].

Problem (1.2) admits a unique solution U~ (see e.g. [29]). The aim of this paper is to describe the limit
behaviour of the displacement UE, as € tends to zero. We prove that this behaviour depends on the limit of the
sequence ¢¢ defined by:
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When k&3 and (r€)? have same order (i.e. when ¢° tends to ¢ with 0 < ¢ < +00), the limit problem (obtained
after suitable rescaling) is a coupled problem between a two-dimensional plate and a one-dimensional beam,
with six junction conditions. If k°¢® > (r€)2, the multistructure has the limit behaviour of a thin rigid plate and
a thin elastic beam which are independent of each other, the beam being clamped at both ends; on the contrary,
if k%% < (r¥)?, the structure behaves as a thin rigid beam and a thin elastic plate which are independent of
each other, the plate being clamped on its contour and fixed vertically at the junction.

The reader is referred to [1,3,4,6-8,10-12,21-23,25-28, 30, 31] for the derivation of the equations of plates
and beams by asymptotic analysis. Junction problems are considered in [5,9,13,14,16-20]. The present work is
a natural follow up of [27,28], which deal with reduction of dimension for elastic thin cylinders, and of [13,14],
which deal with the diffusion equation in the thin multistructure considered in this paper. Our results were
announced in the short note [15].

2. THE RESULT

2.1. The rescaled problem

In the sequel, the indexes o and [ take values in the set {1,2}. Moreover, x = (2, x3) denotes the generic
point in R3.

Let Q¢ = w® x (0,1), Q° = w® x (=1,0), T® = w? x {1}, ¥% = w® x (0,1) and X* = dw® x (—1,0). The
asymptotic behaviour of U’ can be described by using a convenient rescaling (the reader is referred to Sect. 3.1
for details). This rescaling maps the space Y¢ onto the space Y¢ defined by:

Ve ={u=(u",ub) € (H'(Q)* x (H(2"))?, u* =0 on T% u’ =0 on X,
(2.1)

ul(z',0) = er<ul (r°2’,0) and ug(z’,0) = u§(r°2’,0), for a.e. 2’ € W} .

In particular, we denote by 7° = (7%, u%) the rescaling of the solution U’ of problem (1.2). We set

(T‘SL)Q@a[j (u®) rieeag(ua) eap(u®) §€a3 (u®)
eaE(ua) _ ’ eba(ub) — X : ) (22)
r—leeza(ua) ess(u®) g€3a(ub) 263 (u®)

Then w® is the unique solution of the following problem:

u® € Y° and Yue Y,

/Q[Aaeae(ﬂas)7eas(ua)] dz + qe/ [Abebe(alm),ebs(ub)] dz

Ob
(2.3)
= / f¥*utdx + / foe b da + / [g%%, e (u®)] dz + / (g%, e’ (u")] dz
a Qb a Qb
+ [ h*udo+ (hf’f.ublxgzo + hlf.ul"z3:71> da’,
a wh
where ¢° is defined by:
3
€
f=k—— 24
q (TE)Q) ( )

and where the source terms are suitable transforms of (F¢, G, H¢) (see Sect. 3.1).
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2.2. The setting of the limit problem

For the definition of the limit problem, we introduce the following functional spaces:

d ¢ dug
Ut = Ju® € (H2(0,1))* x HY(Q%),3¢* € H'(0,1),¢*(1) = 0,u§ = * — 41—t —wy—2 1,
d$3 dIg

Ve = {v“ € (HY(Q9))? x L2(0,1; H'(w®)), Je € HY(0,1),0% = —ca9,08 = cx,

/ vy (2, x3)dx’ =0, for a.e. z3 € (0, 1)},
e

(rrw§ — xowf)dz’ = 0, for a.e. x5 € (0, 1)}7

we = {ue € (L2(0, 1 H' ("))* x {O}’/wa Wt da! — /

wae

U = {ub € (H'(Q")* x H(w"), 3¢q € Hy(w"), ug = (o — w3 g;bs}

Vb{vbe(LQ(wb;Hl( 0)))% x {0}, /_O b (2, x3)dxs = 0, for a.e. 2’ Gw}

0

Wb = {wb € ({0})? x L*(w’; H'(-1,0)), /

wh(z', x3) das = 0, for a.e. x’ € wb} :
-1

Z0=U* x VE x W, ZP =Ub x VP x WP,
Without loss of generality, we assume that ¢° defined by (2.4) satisfies:
¢ —q, with 0<¢q< +oo. (2.5)
According to the value of ¢, the functional space for the limit problem is the following one:
Z={z=(2%2" = ((u* v w?), (ub,v*, w’)) € 2% x 2° u§(2’,0) = u§(0), for a.e. 2’ € W*},if 0 < ¢ < +o0,
Zoo = {2% = (u*, 0" w®) € Z% u§(2',0) =0, for a.e. 2’ € W'}, if g = 400,
Zy = {2° = (u®, 0%, wb) € 2°, u§(0) = 0}, if¢g=0.

Let us observe that U® (resp. U®) is a Bernoulli-Navier (resp. Kirchhoff-Love) space of displacements. Less
classical spaces are V¢, W, V' W? which are introduced in a way similar to [27,28] (see also App., Sect. 8.1).
As for the boundary conditions, some of them are due to the clamping. These are more or less standard ones:

du? oub
ud(l) = dix‘;‘(l) =¢(1) =0, u} =0 and % =0 on du’.

In contrast with the other requirements, the six conditions:

d a
ul (0) = %(0) =¢(0) = 0, u3(z’,0) = u5(0) (respectively u3(z’,0) = 0 or u(0) = 0),
3
which appear in the definition of the above spaces U®*, V* and Z (respectively Z,, or Zj), are specific to
the junction between the beam and the plate. Note also that, in view of the definition of &/, the condition
ul(2’,0) = u3(0) (respectively ug(2’,0) = 0) reduces to (*(0) = u}(0) (respectively ¢%(0) = 0).
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We finally introduce, for z¢ = (u%,v®, w®) in Z* and z* = (u®, v, w’) in Z°:
eap(w?) eaz(v?) €ap (Ub) €a3 (”b)
e’ (z") = , eb(2?) = . (2.6)
esa(v®)  esz(u®) e3a(v?)  esz(w?)

2.3. The main result

We describe the limit behaviour of problem (2.3), as e tends to zero. In the sequel, we assume that

[ — f% weakly in (L*(Q%))3, (2.7)

£ — f% weakly in (L?*(Q°))3, (2.8)

g% — g% weakly in (L%(Q%))3*3, (2.9)

g% — g° weakly in (L2(Q2°))3%3, (2.10)

h — h® weakly in (L*(X%))3, (2.11)

Rt — h% and A’ — A" weakly in (L*(w"))?, (2.12)

which is not restrictive, as proved in Remark 4 below.
Our main result is the following one:

€

Theorem 1. Assume that r_2 tends to 400 and that (2.5), (2.7) to (2.12) hold true. Then, with the notation
€
e, e’ defined in (2.2) and e?, e® defined in (2.6), one has:

(i) If 0 < q < +oo0, there exists Z = (2%,2°) = ((@*, 0%, @W?), (@, 7%, @")) € Z such that:
(@™, a*) — (@, @) weakly in (H'(Q%))® x (H(Q))3, (2.13)
(€7 (@™), e (@")) = (e"(2*),¢"(2")) weakly in (L*(2%))>** x (L*(Q"))**?, (2.14)
and Z is the unique solution of the following problem:

zeZand Vz € Z,

| e e de g [ (A, ) ds

Qb
(2.15)
= " fhau dx—l—/ﬂb fb.ubdx—l—/m[ga,ea(za)] dx—l—/ﬂb[gb,eb(zb)] dz

b b b b
+/ah“.uada+/wb (th.u gm0 T R |m3:71> da’.

Moreover, if the convergences in (2.9), (2.10) are strong, then the convergences in (2.13) and (2.14) are strong.
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(il) If ¢ = +oo, there exists z¢ = (u®, v, W") € 24 such that:
T — " weakly in (H(Q))3, @ — 0 strongly in (H*(Q))3, (2.16)
e (T™°) — e(Z%) weakly in (L*(Q))3*3, (@) — 0 strongly in (L*(Q°))3*3, (2.17)
and Z% is the unique solution of the following problem:

Z¢ € Z5 and V2% € Zo,

(2.18)
/ [A%e®(Z%),e(2")] dx = fru d:ch/ [g%, e*(z")] d:ch/ h*.u? do.
a Qa a a
Moreover, if the convergence in (2.9) is strong, then:
T — a® strongly in (H'(Q%))3, (2.19)
e (T™) — e(2%) strongly in (L*(Q%))**3, /g e*(@") — 0 strongly in (L?(Q°))3*3. (2.20)
(iii) If ¢ = 0, there exists Z° = (W, °, @) € 2o such that:
¢ T — 0 strongly in (H'(Q))3, ¢° 7% — @° weakly in (H'(Q°))3, (2.21)
¢ e () — 0 strongly in (L*(Q2%))%*3, ¢%e’ (@) — e(2°) weakly in (L*(Q°))3*3, (2.22)
and Z° is the unique solution of the following problem:
b e Zy and Yz e 2,
(2.23)
/ [Abeb(Z), (D) dx = [ foauldx —|—/ (g%, e’ (z%)] dz —|—/ (hi.ubll, o+ h}l.ub‘z :71> dz’.
Qb Qb Qb wh 3 3
Moreover, if the convergence in (2.10) is strong, then:
¢ — @ strongly in (H'(QY))3, (2.24)
VE e (@) — 0 strongly in (L?(Q°))%*3, ¢%e’ (@) — e%(2b) strongly in (L?(Q°))3*3. (2.25)

&€

r

Remark 1. The condition that — tends to +oc is only used to prove that ug(z’,0) = u5(0) and ¢(0) = 0
€

(via a convenient Sobolev embedding theorem, as regards the second equality). We do not know if it is just a

technical condition or not. O

Remark 2. In the Appendix (Sect. 8.1) we prove that the functions 7 and @® (resp. ©° and @”) which appear
in the limit problem are the limits of suitable expressions of u% (resp. ’e). O
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2.4. Back to the problem in the thin multidomain

As far as the asymptotic behaviour of the “energy” of the solution of problem (1.2) in the thin multidomain
is concerned, we define the following renormalized energy by:

£ = (f)Q/E[AEe(UE),e(UE)] dz, (2.26)

7«6

where A° can be made explicit in terms of e, 7%, F¢, G, H¢ (see (3.2) in Sect. 3.1); we also have:

e = / [Aaeaa(aae)7 eaa(ﬂaes)] dz + qe/ [Abebe(ﬂbe), eba (ﬂba)] dx,
a Qb

and from Theorem 1 we deduce the following corollary:
154
Corollary 1. Assume that :;—2 tends to +o0o and that (2.5), (2.7) to (2.12) hold true.

(1) If 0 < ¢ < 400 and if the convergences in (2.9), (2.10) are strong, then:

g e = [ e @) dotg [ AR, ) o
Qa Qb

(ii) If ¢ = +oo and if the convergence in (2.9) is strong, then:
EF =& = / [A%e*(z?), e (z%)] d.
(iii) If ¢ = 0 and if the convergence in (2.10) is strong, then:
G°E®F — & = / [Abe(ZP), e (2%)] da.
Qb

Actually, the proof of Corollary 1 is part of proof of Theorem 1, since the strong convergences of ©* to u®
(resp. W* to @) and e (u%) to e?(Z%) (resp. €' (u") to e’(z%)) follow from the convergence of the energy £°.
The following interpretation is a direct consequence of the strong convergences of ¢ (7%) and e (7").

Interpretation. For example, let us consider the particular case of problem (1.2), for which G* =0, H® = 0,
k* =1and A* = Ab = A:

U e€Y® and VU €Y®,

/[Ae(UE),e(U)]dxz Fe.U dx,
£ Qa

and let us assume that ¢ = £3/2 and that:

1 1 1 1
5 SNy + 25 SIS IBeqaney + 25 S0 NP sy + =5 S IS By = 1. (2:27)
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This last condition is not restrictive, since it is just a matter of normalization. One can observe that, in this
case, the parameter A° introduced in (3.2), in Section 3.1, has value £73/2, Defining the rescaled force and the
rescaled solution by:

1 : 1
1 (z) = —3F§(E%x',x3), 9% (x) = = F5(e%a/,a3), forx € Q%
9 £2
be 1 €0 be 1 e (. b
fa (l‘): éFa(ﬂf,Eﬂ'lgg), 3 (l‘):—zF3(l‘,€£L'3), for z € 7,
€2 €2
—ae FTE 5 —ae l = 3, a
Uq (CL’):UQ(EQLL‘,LL‘:g), U3 (x):—§U3(€2x,x3), for z € Q2 ;
£2
—be 1 — / —be 1 = ’ b
Uy () = U (2 ex3), Uy (v) = < Uz(a,exs), forxeQ,
€2 €2
one can check that u® solves the rescaled problem:
u® € Y and Yu € Y°,
/ [Ae® (u®®), e (u*)] dz + / [Aebe (@), e (u)] dx = feude + £ ub da.
a Qb QU, Qb

Since, thanks to (2.27),

[oirepaee [ 1Ran =1
Qa Qb

it is not restrictive to assume that, for some subsequence of ¢, still denoted by &, and for some f¢ in L?(Q%)
and f*in L2(Q°):
f% = f%in L?(Q%) and f% — f¥in L2(QY).

Then, Theorem 1 asserts that:

"¢ — T strongly in (H'(Q%))? and @*° — @° strongly in (H'(Q))?, (2.28)
e (7)) — & strongly in (L*(Q2%))>*% and e (a") — @° strongly in (L?*(QP))3*3, (2.29)

where 8% = ¢%(2%), 2° = ¢%(2%) and Z = (2%, 2°) is the unique solution of the rescaled limit problem:

ze Zand Vz e Z,
(2.30)

/G[Aea(Ea),ea(za)] dx—i—/Qb[Aeb(Eb),eb(zb)] dz = fru® dx—l—/ﬂb flubda.

Qa

Coming back to the initial domain, we define E” and E” by:

/
—ae 3 _ T —be 5 _ T3
E =e2¢” <—6,:c3), for x € Q% E =¢2@ (:L'/,—), for = € Qb
r 5
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and we define the relative errors A%, AP and A® by:

/ e(T°) — E“ 2 dz / e(T°) — B2 da
A% — ae Abai Qbe

/ B2 da /|F”E|2dz
as Qbe

/ |e(U€)—FaE|2dac+/ e(T) ~ B2 da
AEI ag Qba .

/ |Fa8|2d:v+/ B P de
ae Qba

Assuming that € # 0 and € # 0, an easy computation gives that:

|eaa(Ua6) _éa|2 dz . /leeba(ﬂbe) _€b|2 dz
Abs = :
Y

|e?|? da |e’|? dz
Qe Qv

A% — Qa

Hence the strong convergences in (2.29) imply that A%, A and then A®, tend to zero with . These conver-

gences of the relative errors mean that the deformation of the original displacement is well described by E”
—=be

and F:

eU)~E" inQ® eU)~ E” in Q.

In the same spirit, from the solution zZ = (z%,2°) = (@, 7%, w?), (@’,7°, ")) of problem (2.30), we are going

to define U and U bs which are good approximates of the restrictions of U™ to Q% and Q0P respectively.
Actually, let us set:

~ — — — — 3_ 3—,
0% = ¢ + rETe + (7’5)2111“ — 7% + cag® + €3wa7

0" =T’ 4 e’ 4 2w,
! !
Uae __ ~ae x Uas _ %Aae x f Qe
() =0 | 5,23 ), 3°(x) =e205° | —, 23 ), or x € ,
£2

2 5. T3 2 EN T3
Ube (z) = e2ale (ac', —), UbE (x) = e2af° (ac', —), for x € Qb.
£ £

Assuming that (7%, %), (7°,@") have H' regularity, and since:
a 0 eq3(w®) cap(T’)  €a3(@’)
eae(aaa) — g LB , ebe(,&ba) _ éb +e ,
esp(W")  es3(v”) ess(W?) 0

it is clear that, as e tends to zero, e (4.%°) tends to €* strongly in (L?(Q%))3*? and that e (a%°) tends to &
strongly in (L2(92°))3*3 and then, from (2.29), that:

/ e (@ — a°°)[* da + / e (@ — )" da — 0.
a Qb
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As above, if 8 # 0 and €° # 0, we get that:

/ |6(U€ _ Uae)|2 dz / |ea€(ﬂa€ _ ﬁa8)|2 dz
Aae = i = Qe — 0,
[ Je@)P ds [ ety as
ag Qa

/ |6(U€ _ Ubs)|2 dz / |ebe(ﬂbe _ ﬁb€)|2 dx
Abe — Qbe — Qb N O7
[ e as [ e
Qba Qb
/ e(T° — 0°) 2 dar +/
Ae = Jo

" le(U" — U")|? dz

— 0.
| e ans [ @) as

At least formally, this means that:

U ~U%inQ%, U ~U"inQb. (2.31)

Let us prove that, from the equivalence (2.31), one can recover heuristically the conditions at the junction. As
a matter of fact, suppose we just know that:

a

_ _ _ - du{ dug
ws = (ws), W= (x3) - Zldx; (z3) — fﬂzdxi (z3),
7% = ¢(x3)z R, that is 79 = —¢(x3)ze and Ty = &(x3)z,
Wl =0,
by b o
=), W =Toe) - a o (),
«

=0, W
From the above expressions of u®, 7%, @w®, @’, 7", w’, we deduce that:

U%(c3 0, u3) = 0% (23) + e2¢(x3)2 R + w0 (z), for x € Q%

b
O = (22

o

(2.32)
r3—>(2') + €%, () 4 €2 - O) , forz € QP
0xq
. . s (= due das .
U?@%uxwze%Qﬁwg—xrﬁ%m>—uiﬁw@+e%ym+f?o),brxena
(2.33)
Ut (2 ews) = €2 (Wh(z) +e-0+ewh(x)), forx e QP

At least formally, from (2.31), (2.32) and (2.33), it follows that:

U, =0(1) in Q%, U, =O0(?) in Q",

Ugi

O(=?) in Q%, Uz =0(e?) in Q.
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We deduce from these estimates that the main observable displacement is the transversal displacement of the
beam. At the junction, the continuity of U © formally implies that, for 2’ € w®:

-
ouy;

7% (0) + £22(0)a/" + Wl (7, 0) ~ ¢ o

wlon
/N
2l
o <
—
[0
(V][]
R\
S~—
\
o

(e32',0) + % (c22,0) + &2 - 0) ,

C'(0) — a1 d;S (0) — x2

This gives formally:

N aa?
) =), 0 =0

which are the six conditions on the junction, a rigourous proof of which is given in Section 5. Moreover we get
at the junction the following estimates:

o

U, =0(3), Us=0(c?) on J°.

Remark 3. We could go further and formally deduce for instance that:

—b _ 75 (! — a_ﬂg a_ﬂg
(,(0)=0, 75(2",0) = 92, (0) + 22 g (0).

. . . . . —=b
But these relations have no sense since the solutions are not sufficiently smooth. For instance ¢, only belongs

—b
to H(w?), and its value ,,(0) is not well defined. In contrast, the functions involved in the conditions at the
junction have a value in zero, since they belong to the functional space given by the limit problem. ([l

The remaining part of the paper is devoted to the proofs of Theorem 1 and Corollary 1.

3. THE DERIVATION OF THE RESCALED PROBLEM

Let us emphasize that we perform different scalings for the respective restrictions of U € Y€ to the respective
subdomains 0% and Q%, in order to get convenient transmission conditions for their transforms u® and u?. We
mean that, with the transmission conditions appearing in the definition (2.1) of }¢, namely:

ul(2',0) = erub (r°a’,0) and u§(2’,0) = u§(r°2’,0), for a.e.z’ € W (3.1)

we are able to derive the junction conditions for the limit problem. The derivation of the limit junction conditions
seems to be delicate otherwise. Moreover this is the scaling for which the coupling is maximum at the limit, at
least for the third component of the displacement.

3.1. The result of the scaling

In this subsection, we give the explicit expressions of the source terms and the solution of the rescaled
problem (2.3), as functions of the corresponding terms of the initial problem (1.2). An explanation is given in
Section 3.2.
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On the first hand, assuming that (F<,G®, H¢) # (0,0,0) (otherwise the problem is trivial), we define A° by:

e Z IFENZ2 ey + I1F5 112

2 2
1 e
||L2(Tb£ Bbe) + —= ( 5)2 ||H3€||%2(Tbau Bbe) = (F) .
Then we set:
fo(z) = ;FS(TEII,$3), $(x) = N F5(r°a’, x3), for z € 2,
be __\¢ e € () be _ye € € () b
« (1’)—)\ (TE)Q Fa(l‘,El'g), 3 (l‘)—)\ (TE)Q F3(l‘,€1’3), for z € Q2 )
g2
g% (x) = NG (r°a’,x3), forx € Q% g"(x) = \° (TE)QGE(LL‘/,ECL'g), for z € Q°,
ag 1> 1 (> g ../ ag 1> 1 £ e/ a
hos(z) = A O“E—)QHQ(T ' x3), h§(z)=A r_€H3(r x' x3), for z € ¥¢,
hhe (x) = b, (2") = 0, for 2’ € r*w?,
1
hie (2) = )\5# Hi(2',0), Al (af) =\° e H5(2',0), for 2’ € wb\ rw?®
1
hPe (a') =\ (ri)Q Hi(a',—¢), h*,(a') =X GE H5(2',—¢), fora’ € wb.

Note that hﬁf = 0 on r°w?, since there is no contribution of H¢ on J°.
On the other hand, for any U € Y¢, we define the rescaled function u = (u?,u®) by:

ul(z) = Nrf Uy (rfa’, z3), ul(x) = A Us(rfa’, x3), for x € Q%,

1
ul (r) = )\Eg Un(a' ex3), ub(z) = N Us(a',exs), for z € Q.

e
ZIIF 122 (o) G E)2||F§||ia<me>

3
+ 1G* ||(L2(Qa5))3><3 + = )2||G€|| L2(qve))3xs ) Z ||H€||L2(zas) + = ||H3||L2(zae)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Remark 4. Let us observe that the rescaled source terms are bounded, but not strongly converging to zero,

since, by definition of A° (see (3.2)) and by (3.3) to (3.5):

£ NEe2 @eyys + 1F*IEraioyye + 9% 102 (ayyoxs + 9% ELaanyyaxa

B Rz s + IR Bpaumys + IS [pagunnys = 1.
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3.2. The derivation of the scaling

Let us consider the possible scalings for the solution U and test function U. If, instead of a multidomain,
one considers a single thin cylinder, the natural scaling is (see [21,27,28]):

uo(z) = 15 Ups(ra’ z3), us(x) = Us(r®a’, xs), for z € Q°,
while for a single plate, the natural scaling is (see [5,7]):
U (2) = U (2, ex3), us(x) = e Us(a',ex3), for z € Q°.

For the multidomain made of the union of the beam and the plate, the idea is to consider different coefficients
of normalization, A% and A%, for Q% and Q% respectively, that is we set:

ul(x) = A°re Uy (rea’, xs), ul(x) = N\ Us(réa’, x3), for x € Q2
ub (z) = N2 Uy (', ex3), ub(r) = \ee Uz(2',ex3), for z € Q.
Then one has, with e, e defined in (2.2):

1 1
e e (u*)(z) for z € Q* and e(U)(z',ex3) = o

e(U)(rfa,xs) = ¥ (u*®)(z) for z € Q°,

and it is easy to check that the variational equality in (1.2) reads, once each integral is written on the corre-
sponding fixed domain:

(&fﬁ)g / A ), ()] o+ b /Q (A%< (@), e (u)] da

G (Z | rEaee s @ de a<r6>2F§<raxcx3>u§<x>dx>

<Z/ eFE (2 ex3)ul () do + Fg(ac',sxg)ug(ac)dx>

Ob

n (ZZ e e @l de+ 55 [ (65 ). () do (3.8)

(r°z’, x3)ul (z )da+/araHgf(rax',xg)ug(x)dU)

> [
/wb\maHE(x 0)ul (', 0) da’ +/ —HS(x 0)ul(z’,0) dz )

1 2
1 2

+ e Z/ HZ(:E',fE)U’;(:c’,fl)dx’Jr/ SHS (2, —e)ul(a, —1)da’ | .
A a=17w? wb €
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We decide to choose A% = )\’ so that the junction condition written for (u®,u’) reads: for almost every z’
in w®, one has:

)\aE )\ae
ul(z',0) = G rul (rfa’,0) = er®ul (r°2’,0) and wu§(2’,0) =

Wgug(rsx’, 0) = u§(r2’,0)

(see also the beginning of Sect. 3). Then, after dividing by (r€)?/(\%)2, writing A° instead of A%, for simplicity,
and defining the rescaled source terms by (3.3), (3.4), (3.5), the equality (3.8) is exactly the variational equality
in (2.3). Finally, we recall that the particular choice of A® given in (3.2) makes the source terms bounded, but
not strongly converging to zero (see also Rem. 4).

Remark 5. Since the left-hand side of (3.8) is another way of writing [,,. [Ae(T"), e(U)] dz, it follows that:

(;—)2 ( / A% (@), e (@) dz + ¢° /Q b[Abebf(ﬂbf),ebf(abf)] dx) = / [Ae(T"),e(T)]dz,  (3.9)

€

which gives the definition of the renormalized energy in (2.26). In [15], we took A = r, since the initial
problem (1.2) was supposed to be suitably normalized. -

4. THE A PRIORI ESTIMATES AND THE COMPACTNESS ARGUMENTS

4.1. A priori estimates

In the following, we denote by C' any positive constant which does not depend on ¢ and we write 2% (resp. €°)
for e (%) (resp. e (u")). Taking u = u° = (u,u"°) as test function in (2.3), we get:

/ [Aaéaa7éae] dz + qe/ [Abéb€7éb€] dz
a Qb

= [ feu“de+t [ frade+ /

[g9¢,e%] dx+/ [¢%¢, "] dz (4.1)
Qo Qb

Qb

a

+/ 1o 7% do + /b (hlf.ﬂl)‘33:0 —+ h,bf,ﬂb&3271) dz”.

a w

From Korn’s inequality, since 7 vanishes on 7% and @%° vanishes on X°, we get for ¢ < 1 and 7 < 1:
Hﬂas||(H1(Qa))3 < C||€(Uas)||(L2(Qa))3x3 < CHEGEH(L2(QG.))3XS,
||ﬂb5||(H1(Qb))3 < C||€(ﬂb5)||(L2(Qb))3><3 < C||Eb5||(L2(Qb))3x3,

and, by continuity of the trace mapping:

||ﬂa€||(L2(Ea))3 < CHHGEH(Hl(Qa)P,
—be —be <C —be
[T 2s=0ll (2o + 1T as=—1llz2@ry)z < ClT | (1 (av))s-

By using the above inequalities, the coercivity of A% and A” and the boundedness of the source terms (see (2.7)
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to (2.12) and Rem. 4), it follows from (4.1) that
CHEGEH(2L2(Qa))3x3 + Cq6||€b€”(2L2(Qb))3><3
< (1%l zz@ene + 19" Nza(@eyexe + 1% N wacmeye) 18]l 2@y
+ (1% 2 @eys + 9% Ml zz@ensxs + 105l z2weys + 12 I 2@weys) €7l 2 gaeyysxs
< C (8%l L2@eyysxs + 8% (z2(aeyyexs) -

e If ¢ is bounded from below by some positive constant, that is if ¢ defined in (2.5) is equal to some positive
number or to 400, it follows that €%° is bounded in (L?(22%))3*3 and € is bounded in (L?(92%))3*3. Then, from
Korn’s inequality, it results that @ is bounded in (H'(Q%))? and @ is bounded in (H'(92?))3. Moreover, in
the particular case where ¢ = +00, * tends to zero (strongly) in (L?(02°))3*? and 7% tends to zero (strongly)
in (HY(Q"))3.

e Otherwise, i.e. if ¢° tends to zero, we define u° by:

af = (ﬂaa,ﬂb6> _ qaﬂe _ qe (Uaa7abe). (42)
It is clear that u° solves:

uf € Y and Vu € Y°,

1
- [Aaeas(,aas),eae(ua)] dz +/ [Abebe(abe),ebs(ub)] dz
4 Jaa Qb

(4.3)
:/ fag.uadx—i—/ fba.ubdx—l—/ [g%%, e (u®)] dx—l—/ (g%, e’ (u")] dz
a Qb a

Ob

+/a R u® do + /wb (h’f.ublmzo + h"f.u"‘m:,l) dz’.

Taking u = @° as test function in (4.3), it is easy to prove (as we have done in the case ¢¢ > C' > 0) that
€% = e®(0%) = ¢°e% tends to zero in (L2(Q%))3*3, & = e (a"°) = ¢°€* is bounded in (L?(Q%))3*3,
% = ¢°u tends to zero in (H'(2%))3 and @’ = ¢°u" is bounded in (H(Q2%))3.

4.2. Compactness arguments

e If ¢° tends to ¢ with 0 < ¢ < 400, it results from the a priori estimates that there exist u = (H“,ﬂb) in

(H'(Q%))3 x (HY(Q))? and & = (€%,2%) in (L?(2%))3*3 x (L?(Q2%))3*3 such that:
7 = (%, u°) — 7= (T u°) weakly in (H*(Q%))® x (H(Q"))3, (4.4)
2 = (°¢,e") — & = (e%,e") weakly in (L?(Q%))**3 x (L*(QP))3*3. (4.5)
Clearly 7% = 0 on 7%, @’ = 0 on X° and &%, € are symmetric matrices. Moreover, from the boundedness of
e = (e%,2") and a classical semicontinuity argument, we get that 7® is a Bernoulli-Navier displacement and

@’ is a Kirchhoff-Love displacement:

ea3(@*) =0 and eq3(u”) =0, eag(ﬂb) =0 and egg(ﬂb) =0,
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which, combined with the constraints @ = 0 on 7%, @’ = 0 on XY, is equivalent to (see [20]):

d—a
a® € (HX(0,1))% x H'(Q%), w%(1) = —=2(1) =0,
d$3
— _ _ d—a d a
I e HY(0,1), C'1)=0, @l=0"—aod 5,002

e Ub.

Moreover one can prove as in [28] that there exist (7%,w*) and (9°, @) such that e* = e®(u?, %, w*) and
e’ = eb(u’, 1%, w") (see the definitions of e® and e’ in (2.6)) and such that:

v € (HY(Q%))? x L?(0,1; HY(w®)), 3Jee HY(0,1), ©¢1)=0, vy =—cxs, V§=Cmx,
/ v5(2,x3)da’ =0, for a.e. z3 € (0,1),

w € We, T e Vb, w € WP,

and suitable expressions of 7% (resp. ") tend to (¢, @*) (resp. (v°,w@")). For the convenience of the reader,
the proof of this fact is given in the Appendix (see Sect. 8.1). In particular, 7* defines some ¢ € H'(0,1) with
¢(1) = 0, which is actually the limit in L?(0,1) of ¢° given by

/ (z1use (2, x3) — woui® (2, z3)) da’
e

r‘f/ (23 + 23) da’
e

In conclusion we have proved (2.13), (2.14).
In the particular case ¢ = 400, we have already noticed (see the a priori estimates) that:

" — @’ = 0 strongly in (H'(2%))® and @ — &° = 0 strongly in (L?(Q°))3*3, (4.7)

that is we have proved (2.16), (2.17).
e If ¢° tends to zero, it results from the a priori estimates that:

¢° U — 0 strongly in (H'(Q%))3, ¢°u® — u’ weakly in (H'(Q?))3,
(4.8)
@78 — 0 strongly in (L?3(Q%))3*3,  ¢°e** — &® weakly in (L?(Q2°))3*3,

for some w® € U’ and some symmetric matrix € € (L?(Q°))3*3. Again (see the App., Sect. 8.1), there exists

(@°, @) in V* x WP, which are limits of suitable expressions of %’ and such that € = eb(@’, 7%, w’) = €*(z?).

In other words, we have proved (2.21), (2.22).
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5. THE LIMIT CONSTRAINTS THAT ARE DUE TO THE JUNCTION

As for the limit constraints, it remains to prove that
1) @& (0) =0,

2) wg (', 0) = w§(0), which is equivalent to ¢ (0) = @} (0) and du, (0) =0,
3) €(0) =0,

since the above three conditions give u% € (HZ(0,1))? and ¢ € H(0,1), so that u® € U* and v* € V*. These
limit constraints are derived below.

5.1. Proof of u%(0) =0
The fact that @%(0) = 0 results from the following easy lemma:

Lemma 1. Assume that {u®®}. is bounded in L?(w®). Then {r<u(r¢.)}. is bounded in L?*(w®), for every w®
such that r°w® C WP, for any e.

Proof. We have:
/ |T6uba(7“ax')|2 da’ :/ |ub6($l)|2dx' S/ |ub€(x/)|2dxl <C. 0
wae rewa wb
Application. If ¢ # 0, we write the junction condition for uf, as:
T (2',0) = er<u’ (rf2’,0), for a.e. 2’ € w®

The left-hand side tends to u%(z’,0) = u%(0) in L?*(w®). The right-hand side tends to zero in this space, by

«
Lemma 1, since @°°(., 0) is bounded in L?(w?), so that @%(0) = 0. If ¢ = 0, the same proof applies to 4° = ¢°T°.

5.2. Proof of ud(z',0) = u5(0)
This is a crucial part of this paper. It is derived from the following general lemma:

Lemma 2. Assume that ¢ and ¢ tend to zero, with 0 < &% < r°. Let u* € (HY(Q"))? be such that:
ub® =0 on X,

{eb®(u®)}. is bounded in (L?(Q°))>*3, (5.1)
with e defined in (2.2). Then, up to a subsequence:

ub® — u® weakly in (H*(QP))3, (5.2)

or some u® € U® (in particular u8 € HZ(wP)). Moreover uff(re.,0) tends to u(0) strongly in L?*(w®), for
3 0 3 3
every w® such that r*w® C wb, for any €.

Proof. The first part of the lemma is classical (see [5]). Let us prove the convergence of u$(r<.,0). We define
Ue:w’ — R by:

0 0 0 0 %
Us(a2') = k/ / / uf (2!, x3) deg dt dt’ = k/ / p(t,t')/ ul (2, 23) doz dt dt’, (5.3)
1)1 Jt<as<t —1J-1 t

with p(t,t") =1 if ¢t < ', 0 otherwise, and with &k chosen so that:

0 0
kllllp(t,t’)(t’ft) dtdt’ = 1. (5.4)
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Moreover we define € : Q° — R, E¢ and D¢ : w® — R by:

oubs  Qulr
e =9%e ube — o + 3
o o (1) Oxs  Oxa’

0 0 t’
E:(2) :k/ / p(t,t’)/ e, (¢!, xs) dag dt dt’, (5.6)

lﬁ@ﬂzk/j/jﬂﬂﬂlﬂ @;mm@th—k/(/ (6.8) (2 (e, o) — (1)) dedt. (5.7)

It is clear that:

(5.5)

VU® = E° — DF. (5.8)

Still denoting by C' various constants that do not depend on e, we have from Cauchy-Schwarz inequality:
|ES (x |2<C/ (z',23)|? ds,

which gives, by definition of €, and by (5.1):

1B L2 vy < Cllegllrzary = Clleas(u’®)| L2 aey < Ce. (5.9)
From (5.7), Cauchy-Schwarz inequality and the boundedness of u% in H}(Q"), we have:

D& () < C||UZE||H3(Qb) <C. (5.10)
From (5.8), we get the following decomposition:
Us =U° +U°,
with U¢, U* the respective solutions in Hg (w?) of:
—AU® = —divE® and —AU°=divD® inu?,

and from (5.9), (5.10):

||VUE||(L2(wb))2 < HEE”(L?(wb))? < CE, (511)
U — 0in H} (W), (5.12)
HUEHHz(wb) < CHle DEHLz(wb) < C. (513)

But, using (5.2) and (5.4), it is easy to prove that:
U® — ub = ub(z’) weakly in L?(w?),
which gives, by virtue of (5.12), (5.13):

Ue = U® — U® — uf weakly in H?(w").
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Then, as the embedding H?(w®) C CO(E) is compact, for w? bidimensional, we get that:
U — uf in CO(w?). (5.14)

This is enough to prove that u$(r<.,0) tends to u3(0) strongly in L?(w®).
Actually we have, for a.e. 2’ in w?,

uf (réa’, 0) — ug(0)

B . (5.15)
= [ug(r*a’,0) = US(r°a’)] + [U=(r°a’) — US(r°a’)] + [U°(ra’) — u(r*a’)] + [uf(r*a’) — u3(0)] .
We will show that each of the above brackets tends strongly to zero in L?(w?).
As for the first bracket, we have:
be E/O Us E/2d/7 1 be /0 Us/2d/ 516
[ WG 0) Ut P = g [l 0) - U @) (5.16)

But, by using (5.4):

_k// (t,t") /( c (2, 0)—1—/9536;::(% ys)dyg) dxg dt dt’
—u3$0+k:// tt//ma“

so that:
b / 0 auge /
UA) @ 0) < © [T )|
~1
which combined with (5.1) gives:
be |2
/ Jubf (2',0) — Us(2')*da’ < C US| qr < oet,
rewe Qb X3
Coming back to (5.16), it results that:
4

| e 0) - vt P’ < O

which tends to zero, since we have assumed that £2 < 7. Now we consider the second bracket in (5.15), that
is U¢(r°2’), and we are going to prove that its L?-norm tends to zero, again if €2 < . In fact, from Cauchy-

Schwarz inequality, the continuity of the embedding H}(w?) C L*(w®) (actually L4(w®), for every finite g, in
dimension 2) and from (5.11):

N 1 N 1 N 2 1
2 _ 2 4 1
/wa |U®(r°2)|? da’ = OE /rew |U®(2")]? da’ < ) (/rew |U* (2] dx') |rw?|2

2

€
<C—
=0

< C—||U€|\L4(wb) < C ||U8HH1(wb)

By virtue of (5.14), the third and the fourth brackets in (5.15) tend to zero in L*°(w®). This concludes the
proof of Lemma 2. O



438 A. GAUDIELLO ET AL.
Application: If ¢ # 0, we write the junction condition for u§ as:
s (',0) = ay (r°2’,0), for a.e. z' € W™

The left-hand side tends to w4 (z’,0) in L?(w?®) while the right-hand side tends to @5(0) in the same space by
Lemma 2. Tt follows that g (2, 0) = @4(0) for a.e. o’ in w®. If ¢ = 0 the same proof applies to 4° = ¢°u°.

5.3. Proof of ¢(0) =0
This proof also is crucial.

Lemma 3. Assume that € and ¢ tend to zero, with 0 < e < r€. Let (u®,u") € (H*(Q%))? x (HY(Q))? be
such that:

s, =0, (5.17)

u?(x',0) = ertul®(r°a’,0), a.e.x’ € W?, (5.18)
{e®(u®)}. is bounded in (L*(2%))3*3, (5.19)
{ub®}, is bounded in H*(QP). (5.20)

Let & be defined by:

/ (x1u§® (2, 23) — zoui®(2', x3)) da’
(z3) = 2= : (5.21)

7’5/ (23 + 23) da’
wa/

Then c¢ tends to c in L%(0,1), where c belongs to H}(0,1).

Proof. For a = 1,2, we define 2% by
R R
Ty = —T2, Ty = T1,

and we set:
ag

u
v =t el = 2eaa(v™) = 2el5(u),

(this notation should not be confused with the notation €S, appearing in (5.5)),

1 1
me,=— [ viedd, pf=—[v¥ -2l -m],
lwa| Jpa T

with ¢ given by (5.21).
We begin by proving two a priori estimates. Due to (5.19), we have:

eIl L2(neyy2 < C (5.22)

As for p®, it follows from (1.1) that pS(.,z3) has mean-value zero on w?, for every z3 and, as eqag(p®) =
(1/r%)eqp(v®), we get from the Poincaré-Wirtinger inequality for elasticity:

2 e\ (12 C ag\ (|2 ae [, as\||2
o H(L2(Qa))2 < CZ lleas(p )HLz(Qa) = W Z lleas(v )HL2(Qa) = CZ Heaﬁ(u )HLz(m) )
af af ap

which gives, with (5.19):
0%l L2(qay)2 < C. (5.23)
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Now we prove that one can derive a single equation, of the form ¢ = K¢ — r*R®, from the system of two
equations ¢z + m¢ = v — r°p5. This is a cleaver argument appearing in [28], see also Section 8.1. Indeed
we get by differentiating the previous system with respect to xj:

I
x =ef —
dzs™*  dzs 0z, @ Ox3’

Va=1,2. (5.24)

After multiplying (5.24) by a test function ¢, € D(w®), summing over « and integrating over w®, we have:
mE

des R / d e / ag 3: /
ars /waza:goa:ca dx +; 425 /wagaadzc — wav3 div o dx
:/ Zeawadx'—rai/ Zpagoadx'.

wa — « dl’3 wa — «

We choose the test function ¢, so that:

(5.25)

/ > parlida’ =1, (5.26)
Wy

/ Yodr’ =0, Va=1,2, (5.27)
dive = 0. (5.28)
It is easy to check that such test function does exist: take e.g.
9¢ 0¢

1
— =_——r ith D(w® da’ = =
¥1 6.%2’ P2 6.%1’ w1 ¢ € (w )7 /wa(b xz 9

Now we set (this notation should not be confused with the notation E° appearing in (5.6)):

1
EE:/ €. pda’, Kaz—/ E¢(y3) dys, Rez/ p°.pda,
w® xs3 w®

where . denotes the scalar product in R?. Then (5.25) reads as:

e dK®  _dR°
dIg a d$3 d$3’

which gives by integration:
& =K°® —r°R°, (5.29)
since ¢*(1) = K°(1) = 0 and since also R°(1) = 0, because p*(1) = 0.
Now we pass to the limit in (5.29). Due to (5.22) and (5.23), E° and R® are bounded in L?(0,1). Moreover
it follows that K¢ is bounded in H!(0, 1), since by Poincaré inequality one has:

12

1
2
1K 20y < C / ar

1
das = C’/ |E?|? das < C.
T3 0

Then we deduce that there exists ¢ in H'(0, 1), with ¢(1) = 0, such that:
K¢ — ¢ weakly in H*(0,1), hence K¢ — ¢ strongly in C°(0, 1).

As ¢ R tends to zero strongly in L?(0, 1), it follows from (5.29) and the above that ¢® tends to ¢ strongly in
L%(0,1).
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It remains to prove that ¢ vanishes at the origin. For this, we notice that K¢(0) — ¢(0). But one has also
another expression for K¢. Actually, from (5.29), (5.26), (5.27) and by the definition of p%:

K€ = R + (€ :r‘f/ pa.godx'—i—ce/ ngaxfdx'—i—zmz/ Z(‘Do‘dwl
wa we a Wt
/ (r°p, + x4+ ms, ) pada’ = Z/ Vg $Pad

I
i\

that is:
1
-y / pads’ =Y / —ufpada,
(03 (03

and in particular, due to the boundary condition (5.18):

Hence, by using Holder inequality, the continuity of the embedding of Hz (w?) in L*(w?) (in dimension 2), the
continuity of the trace mapping from H*(Q°) to Hz (w”) and (5.20), we get:

K2(0)] < CEZ/ (0’ )]0’ = O Z/ (b (', 0)] da’
a Jw¢

reEwe

E U b= (' O)|4dx] |r€wa|%:CE(r6)_%Z[/ b= (2!, 0)[* da’

«
<C€ 7%ZHU})€ HL4(wb) <C€ 7%2 H2(Qb) —CE(TS)i%’
«

which tends to zero, since 0 < ¢2 < r¢. As we have proved that K¢(0) — ¢(0), we conclude that ¢(0) =0. O

6. THE USE OF CONVENIENT TEST FUNCTIONS

This is the third crucial part of the paper, at least in the case 0 < g < 4o00.

6.1. The case g = +©
Observe that Z,, = {2 € Z%,¢%(= (*(u®)) € H§(0,1)}. Let u® € U*, with ¢* € H}(0,1) and let (v, w®)
be such that:
v§ = —cwy and v§ = cxy with ¢ € H3(0,1), v§ € C1(Q9), U pam0 = 0,
(6.1)
w? € CHQe), w? =0, wi=0.

|I3:0

In other words, v® and w® satisfy all the conditions given in the definitions of V* and W%, but the integral ones;
moreover v§ and w? belong to the space R defined by:

— {0 € C'(@), vjuym0 = 0}. (6.2)
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Let u® = u®+ rfv® + (rf)2w?. Then it is easy to check that u = (u%,0) is in )°. Taking it as test function in
the variational equation of problem (1.2), we get:

/ [A%e e (u)]dx = / feudr + / [6%°, €% (u)] dx + / h?€.u do. (6.3)
a Qa a a
But we have, since eqag(u®) = eqs3(u®) = eqap(v®) = esz(w®) = 0:
eap(w®) eas(v?) 0 eas(w”)
eas(uae) — + 7.,6 ,
esa(v?)  ess(u®) esa(w®) esg3(v?)

so that e (u%) tends to e?(2%) = e*(u®, v, w*) (strongly) in (L?(2%))3*3. Moreover u®* tends to u® (strongly)
in (H*(Q%))? and we have seen in (4.5) that 2*¢ tends to e%(z%) weakly in (L?(02¢))3*3. By passing to the limit
in (6.3), using (2.7), (2.9), (2.11), it follows that:

/ A% (Z), e (e = | frutde / g% et (=")] do + / he.u® do, (6.4)

Qa

which is the variational equation of (2.18). It holds also true, by density and continuity, for every (v*, w®) such
that:

v¢ = —cx9 and v§ = czy with ¢ € H}(0,1), v$ € L?(0,1; H'(w?)),
wy, € L2(0,1; HY (w?)),  w§ =0,
i.e. for every (v, w®) satisfying the conditions given in the definitions of V* and W*, but the integral ones

(note that R defined in (6.2) is dense in L?(0,1; H'(w?®))). In particular (6.4) is also true for any 2% € Z...
This means that Z* solves the variational problem (2.18).

6.2. The case ¢ =0
We have seen that @€ = ¢°u° = ¢°(u®,u") solves (4.3) and that (see (4.8)) 4% = ¢°u* tends to ©* = 0 in

(H'(Q%))3, & = ¢°e® tends to € = e*(2°) weakly in (L?(Q°))?*3, for some 2’ in 2 (in particular @3(0) = 0).

Let B be some given small ball, with center zero, in w®. Let 2* = (ub, vb, wb) be such that:

ub e, (= ¢hu?) = uf=0in B,
vb e CY(QP), vb =0in Bx {0}, v}=0, (6.5)
wt =0, whell(Q), wh=0in B x {0}.
In other words, z® satisfies all the conditions given in the definition of Zy, except the integral ones; moreover
¢> and u§ vanish in B, v? and w§ belong to C}(Q) and vanish in B x {0}. Let u* = u® + ev® + (¢)2w®. Then

it is easy to check that u = (0,u%) is in V¢, for € small enough. Taking it as test function in the variational
equation of problem (1.2), we get:

/Qb [AbE%e ) b (ub®)] da = /Qb foube dr + /Qb (g%, et (u")] dx + /b (h{’f.ubligzo + hb_s.ubﬁg:_l) dz’.  (6.6)
But we have, since ea3(ub) = e33(u’) = es3(v®) = eqp(w®) = 0
eap(u’)  eaz(v’) eap(v’)  eas(w’)

ebe (ubE) _ te ,
e3a(v?)  esz(w?) €30 (w?) 0
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so that e (u’) tends to €®(z%) (strongly) in (L2(2°))3*3. Moreover u’¢ tends to u® (strongly) in (H*(Q2%))? and
we have seen that &% tends to e’(z%) weakly in (L?(Q%))3*3. By passing to the limit in (6.6),
using (2.8), (2.10), (2.12), it follows that:

/Qb [Abeb(Z), eb (b)) da = foub d:ch/b[gb,eb(zb)] d:ch/ (hﬁ_.ul"xgzo +hb_.ub|l,3=_1) da’, (6.7)

Qb Q wb

for every 2° = (ub,v®, w®) having the regularity (6.5).

But the following density results are proved in the Appendix (Sect. 8.2). First, from Lemma 5, any
¢® € H(w’) can be approximated (in the strong topology of H}(wP)) by a sequence (4" with ¢¥* = 0 in
a ball B of radius r" tending to zero. Moreover, from Lemma 6, any u$ € HZ(w®), with u4(0) = 0 can be
approximated (in the weak topology of HZ(w®)) by a sequence u4" that vanishes in B™. Finally, from Lemma 7,
any v (or w8) in L?(w’; H*(—1,0)) can be approximated (in the strong topology of L?(w’; H'(—1,0))) by a
sequence of functions v (or wf?) in C'(QP) that vanish in B" x {0}.

By continuity, it results that (6.7) holds true for any (u’, v®, w®) such that:

ub eUb, ub(0)=0,

2 € L2(wb HY(-1,0)), 5 =0,

wl =0, w§e L?wb HY(-1,0)),

(03

i.e. for every 2" satisfying the conditions given in the definition of Zy, but the integral ones. In particular (6.7)
is also true for any 2° € Z,. This means that Z° solves the variational problem (2.23).

6.3. The case 0 < g < +©

Let z = (2%, 2%) = ((u®, 0%, w®), (ub,v®, wb)) € (C1(Q29))? x (C*(QP))®. We assume that z satisfies all the
conditions required in the definition of Z, except the integral ones, and we assume that it is “more regular”. In
particular ug(z’,0) = u§(0), that is ¢(?(0) = u4(0). The precise requirements are given by:

u® €U, ud € C?0,1], (¢*ecCo,1],

vf = —cxo and v§ = cxy with ¢ €CH0,1], ¢(0) =c¢(1) =0, v§eC(Q), g =0 = 0,

wg S CI(WL U}g ‘13:0 = 0, ’U}g = 0,
uweU’, ¢t ect(wh)nHL(W), u}ell(wb)nHE(WP), (6.8)

vb e (CH(®))2 x {0}, vh =0 on X,

w® € ({0})2 x C*(®), wl=0 on XV,

u(0) = ¢(0).

We are going to define a convenient test function u® = (u%,u") in Y°.
e In Qb we choose:
u’ = u® + ev® 4 2wl (6.9)
As the couple u® = (u%,u") needs to satisfy the transmission conditions (3.1), i.e.:

ul(2',0) = er®ul (r°2’,0) and wd(z’,0) = u§(r°2’,0), for a.e. 2’ € W7,
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then, necessarily, u*¢(z’,0) is given by:
ugt (@', 0) = er® (¢ (ra’) + evg (r°a’, 0)),

(g’ 0) = ub(rea’) + e2wh(rea’, 0).
o In Q%N {x3 > r°}, we choose
u® = u® + v + (r°)*w”. (6.10)
e In QN {0 < zg < r°}, u® is obtained by linear interpolation between u¢(z’,0) and u® (2, 7°):

uaE(CL'/,IL'g) — ﬁ (ua(m/,re) +7”E’Ua(l‘/,7”s) + (7’6)211)0’(1‘/,7”8)) + (1 o x_j) uae(l,/’()%

re T

that is (see above):

uls (2 x3) = 73 (ul(r®) + vl (2, 1) + (r) 2wl (2', %)) + (1 - %) er® (¢S (r a’) + et (r°2/,0)),  (6.11)

TE

u§® (2, w3) = % (u§ (2", r%) + rvg(a’,r%)) + (1 - %) (ug( z') + e2wh (rea’ ,0)), (6.12)

for 0 < z3 < r€. Taking u® = (u®, ub®) as test function in the variational equation of problem (2.3), we get:

/ [Aaéas,ezm(uae)] dz + qs/ [Abébs,ebs(ubs)] dz
a Qb

:/ f“e.uaedx—i—/ fba.ubadx—l—/ [gag,eae(uag)]dx—i—/ [gbe,ebe(ube)]dx (6.13)
Qa Qv a Qb

—l—/ahaa.uaada—i—/ (hbE o+ A 1) da’.

Passing to the limit in the integral terms in QP is easy. As for the terms in QN {x3 > r°} and XN {x3 > r°}, we
have from Lebesgue’s theorem, with u® = u® +r°v% + (r¢)?w® and x° the characteristic function of {z3 > r°}:

x°e™ (u€) — e®(2*) strongly in (L?(2%))3*3,
XEUaE —oul Strongly in (LQ(QCI))37
XUy — 'y, strongly in (L2(5%))%,

so that, by virtue of (2.7), (2.9), (2.11), (4.5):

/ [Aaéaa — g, eaa(uae)] do — / £yt dy — / 1ot 4% do
Qan{zz>re} Qen{xz>re} Yen{zz>re}

— [A%e" — g%, e%(2%)] dx — frutdr — / h*u do.
Qa Qa a

For the terms in Q°N{0 < zg < r°} and 3*N{0 < x3 < r°}, it is clear, from (2.7), (2.11) and from the uniform
boundedness of u%¢, that:

/ feudr — / h*u* do — 0.
Qen{0<z3<re} Yen{0<z3<re}
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Hence it remains to show that:
/ [Aaéas _ gas’ eae(uas)] dx N 0'
Qen{0<z3<re}
But we have, from Cauchy-Schwarz inequality, (2.9) and (4.5):
/ 477 — g%, e92(u2%)] d < C [|e(u%)l| 12010 ms cre 3y
Qen{0<zz<re}

and it is enough to prove that:

e (u) || (L2(Qan{o<as<re}))sxs — 0. (6.14)

Then, by passing to the limit in (6.13), we get:

/ [A%e*(Z), e (z%)] dz + q/ [Abeb(ZP), (b)) dax = frutdx + flubdx
a . v . (6.15)

+/ [g%, e*(z")] d:c+/ [gb,eb(zb)] dm+/ h“.uadaJr/ (hi.u}"zzzo+h}i.ul"m3:71> dz’,
a Qb a wb

for any z having the regularity given in (6.8), and then, by a density argument given in Lemma 8 of the Ap-
pendix (Sect. 8.2), for any z satisfying all the requirements of Z, except the integral conditions. A fortiori, the
same variational equality holds true for any z in Z, that is (2¢,%°) solves (2.15).

1
Proof of (6.14). We will prove that the norms in L*({0 < 3 < 7°}) of the terms e3(u®), —zeaps(u’) and

()
Feag(uas) tend to zero.

e Term e33(u®). We easily get from (6.12) that:

ae auge 1(1/6 b et a/aEQbe/
ess(u) = s :T—E(u3(m,7’)7u3(r :c))+v3(:c,7")fr—€w3(rm,0). (6.16)

The norms in L%({0 < z3 < r¢}) of the two last terms in (6.16) tend to zero, since v$(z’,r¢) and w§(rz’,0)
are uniformly bounded:

/ [vg(x,7%)|* dz < Cr® — 0,
0<z3z<re

2

e2\? et €
— ) Juwi(rfa’,0)2Pde < C— < C—= — 0,
£ 3 15 15
O<zg<re \T r r

since, by assumption, 2 < r€. As for the first term in (6.16), it is uniformly bounded, because of the junction
condition:

— (u§(a’,r®) — ug(rsx’)) = 1 <u‘§(x’,0) —|—/ Ous (', t) dt — u§(0) —/ Vb (ta').a’ dt)
€ re 0 81'3 0

1 (" oug

e Jo Oxs

I
Wﬁ&_ﬁ/ vl (tz').x’ dt < C,
0

and hence, its norm in L2({0 < x3 < 7°}) tends to zero.
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1
o Term ——eqp(u*). From (6.11) we have:

(re)?

8“’(01(6 L3 aavgz /€ £1\2 awg /€ L3 £\2 é)gg e 81]}0)( e/
=2 ZZa 123

Bzs 1 (7“ axﬁ(x,rﬂ-(r) axﬁ(x,r) +( TE)E(T) 8zg(rx)+€azg(rx’o) ,

and hence, since eqg(v®) = 0:

rean(%) = Zeaput)w',1%) + (1= ) ¢ (eap(@)070) + eane)) 170, 0)),

(r)
which gives, from the regularity of w?, ¢* and v” (see (6.8)):
1
‘Wea[g(uae) < C + CE(l + 5) < C,

and hence, the norm in L2({0 < x3 < 7¢}) of this term tends to zero.
1
e Term —e,3(u®). From (6.11) we have:
T

VU 2 (s () +r (o 1) + (o 19)) — 2 (L0a) + (07, 0)
3

and, from (6.12):

ae a a b b
Oui” _ 3 <%(£L’I,7’E) + 7€ Ovs (:E',TE)> + (1 - E) e <%(r€m') +52%(r€x',0)> ,

Ory 7 \ Ozg 0xq ré 0xq 0xq
so that:
2 e 1 [oul® = Oug®
— = — & =T +To+T5+ T 6.17
—eas(u™) = (azg + o VT + T3+ Ty, (6.17)
with:

T3 = we (2, re),

w3 Ouy, , . z3 ol JOwl
T4—FE($7T)+(1—T—E)(E(T$)+E E(rm,O) :

We will show that the norm in L#({0 < 23 < r°}) of each term tends to zero.

o Term T;. As u%(0) = 0, we have:
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and, as eq3(u®) = 0:

oug  , o dug .. 3 " du? zs [T du? dul .
3 0z (@,7%) = —a3 dxs (rf) = re Jo dzs (£)dt+ e Jo dxs t) = dxs (r%) ) dt,
a

so that, since

oug , z3 ™ due xz [T [ dud dug
a(, e N=(1-== — — <
ug(r) + a3 Oxq, (@) ( re ) /o dxs (tdt+ ¢ Jo (d:c3 Chs dfﬂs ) = / / d:c3 Pdrd
1

and, from the regularity of u&:
1 ’!‘E t
<
(r*)? - () /0 /0

so that the norm in L2({0 < z3 < 7¢}) of T} tends to zero.

a 15 aug / £
(1) + ma e (o)

T3] =

o Term T5. We have:
1 a £ E £ £
T, = Fva(m’,r ) — - ((Z(r z') + et (r 2',0)).

But, as ¢(0) = 0:
1

C
T—E’Ug(x/,Ta) < 7"_5 |C(Ta)| < Ca

and the norm of this term in L?({0 < x3 < 7°}) tends to zero. On the other hand, as €2 < ¢ and as (¢ and

v? are uniformly bounded, due to the regularity conditions (6.8), we have:

%(CZ( ') + vl (r°2’, 0)) ‘<C’r€7

so that the norm of this term in L2({0 < z3 < r}) is bounded by Ce/+/r¢, which tends to zero by assumption.
Therefore the norm in L2({0 < 3 < 7¢}) of T, tends to zero.

o Terms T5 and T4. These terms are bounded, due to the regularity conditions (6.8), and therefore the
norms in L2({0 < x3 < r¢}) of those two terms tend to zero. O

7. PROOF OF STRONGER CONVERGENCES AND PROOF OF COROLLARY 1

Actually, the stronger convergences in Theorem 1 are deduced from Corollary 1. The proof is as follows.
Taking @° = (7%, u%) as test function in the variational equation of problem (2.3), we get

& :/ [Aaéae,éas]dl'+q€/ [Abébe,ébe]dl'
a Ob

:/ f“s.ﬂasd:ch/ fbe.ﬂbsd:nJr/ [g“e,éas]der/ (g%, 2" da (7.1)
a Ob a

Ob

— be —b b
+/ h“f.uafda+/b (nte it o + W,y ) da',
a w

We are going to pass to the limit in the right-hand side of the above equality.
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o If 0 < g < 400, we have, from the convergences already proved in Theorem 1 and from classical compactness

arguments,
(87, €") — (e, 8")  weakly in (L*(Q%))3*® x (L2(QP))3*3,
(@, %) — (@, w°) strongly in (L2(2%))3 x (L?(Q%))3,
U'ga — Uiga  strongly in (L2(%%))3,
ﬂbe‘xgzo — ﬂb|1-3=0 strongly in (LQ(wb))S,

ubﬁz o sy—_1 Strongly in (LQ(wb))3.

If (g°¢, g%°) tends to (g2, g*) strongly in (L2(2%))3*3 x (L?(Q%))3*3, it follows that:
& :/ fas.ﬂaEdI—f—/ fbs.ﬂbEdI—f—/ [gae7éas]d$+/ [gbs,ébs]dx
a Qb a Qb
—|—/a h% 7w do + /b (hbe w', o+ R, 1) da’
— [ fem® dx—i—/ feab dx—i—/ (9%, ] dx—i—/ [¢°, 2] dz
Qe Qb Qo Qb
+ [ hado + (hb a° +ht @ ) da’
@ : b +- Jr‘:Eg:O — ‘13:71
:/ [A%®, 2% dx + q/ [Abe, &) dx = &,
a Qb

which proves the first part of Corollary 1. Moreover, we get, from the convergence of £¢ to £ and from a classical

lower semicontinuity argument:

0 = liminf ( / [A%e% &%) dx — / (A% €% dx + ¢° / [Abeb 2] dx — ¢ / [Abe, 2 dac)
a a Qb Qb
> lim inf </ [A%e* e da f/ [A%e?,e?] dm) + liminf <q€/ [Abebe &%) dx — q/ [Abeb &b dm)
a a Qb Qb
= lim inf < / [A%e*¢ 2] dx — / [A%e®, 2] dz) + liminf ¢ < / [Abebe %] dx — / [Abe® 2 dz) >0,
a a Qb b

which gives, up to extraction of a new subsequence,

/ [Aa ac —as] dl’ N [Aaéavéa] dx’
a Qa

/ [Abébe’ébe] de — [Ab —b —b]
Qb Qb
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It follows that:

C |[e* _€a||%L2(Qa))3X3 < /a

and hence ¢ tends to

then, from Korn’s inequality, ¢ tends to u® strongly in (H!(Q%))3

A. GAUDIELLO ET AL.

[A%(e* — %), (e° — )] dx

_ / (497 59] dg + / (495, 2] dz / [A95% 2] dg — / [4°%°, 29 dgr — 0,

2% strongly in (L2(Q%))3*3. Therefore e(u®) tends to e(u®) strongly in (L?(2%))?*3 an
. By the same proof, € tends to " strongly

d

in (L2(Q%))%*3 and 7% tends to @’ strongly in (H'(€2?))3. In conclusion, we proved the stronger convergences
mentionned in Theorem 1 when 0 < ¢ < +oc.

e If ¢ = +00, we have seen that:

and, with appropriate changes in the above proof, we have, if g tend to g¢ strongly in (L?(02%))

& f“.ﬂ“d:ch/ [ga,éa]der/ h“.ﬂadaz/ (498", 2% dz = Exe,
Qa a a a

T — @’ = 0 strongly in (H'(Q%))?,

e — b = 0 strongly in (L?(02°))3*3,

0 = liminf </ [A%€es, e / (A%, €% dz + ¢° / [Abgbe, gt dm)
@ Qa Qb

> lim inf < / (A% &%)

o If ¢ = 0, we have, with u® = ¢°u®

86

/ [Aa ae —aa] dr — [Aaéa7éa] dz,
a Qa

qe/ [Abéba,ébe] dr — 0,

Qb

€% — e* strongly in (L2(02))3%3,
V@ee* — 0 strongly in (L2(029))3*3,

U — u® strongly in (H!(02%))3.

5 ESE.
, € = ¢°e":

[Aaéas,éae] dz +/ [Abélm’ébe] dz
Qb

/ faa.,aaa dx—i—/ fbe.’fbba dx—i—/ [gaa,éae] dx—i—/ [gbe,éba] dz
Qo Qb a Qb

+ . haa.daeda—i—/b (hbe o + Rt 71) da’,

/ [A%e?,e?] > + lim inf <qs/ [Abebe g€ dm) >0,
Qo Qb

(7.2)
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% — T* = 0 strongly in (H'(Q%))3,
€% — & = 0 strongly in (L*(0%))3*3,

and we have, if g*¢ tend to g strongly in (L2(02%))3%3:

& fb.ﬂbd:ch/ g%, 2] d:c+/ (hi.ﬂl"x3=0+hi.ﬂb|x3=_l) da’ :/ [Abeb, 2] dx = &,
Qb Qb wb Qb

0 = lim inf (i / [A2e9¢ &%) dx + / [Abebe &b¢) dx — / [Abeb €] d:c)
q6 a b Ob

1
> lim inf (- / [A2&ee, &9 dx) + lim inf ( / [Abebe &b da — / [Abe® dx) >0,
q° Jqa Qb Qb

/ [Abe e dz — [ [A%8, 2 da,
Qb Qb

1
— [A%e*, e dx — 0,
q- Jqa

¢°e’e = &b — & strongly in (L2(02P))3*3,

1
V@ 8% = —=¢ — 0 strongly in (L*(2°))3*3,

\/q_e

¢°u*® — w° strongly in (H'(QP))3.

8. APPENDIX

8.1. The definitions of (v, w®) and (v*,w’) as suitable limits

For the convenience of the reader, we give in this appendix a sketch of the proof of the following result,
mentionned in Section 4.2 (for thin cylinders, a complete proof is given in [28]). The case of plates is analogous
and simpler.

Lemma 4. (i) Let {u®}. be a sequence in (H'(Q%))? such that u® =0 on T% = w® x {1} and:
{e%(u®)}. is bounded in (L*(Q%))3*3. (8.1)
Let W*® be the space defined in Section 2.2 and let:
ve = {vo € (HY(Q)? x L2(0, 1 B (w?), Je€ HY(0,1), (1) =0, vf =—cas, of=ca,

/ v(x' x3)da’ =0,  for ae. m3€ (0, 1)}7

(note that V* satisfies the same requirements as V*, in Section 2.2, except ¢(0) = 0). Then there exists a pair
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(v, w*) € V& x W2 such that for all o, 5 = 1,2:

1 , .
r—eeag(us) — ea3(v®) weakly in L*(Q%), (8.2)

ﬁeag(ug) — eqp(w) weakly in L*(Q). (8.3)

Morever, denoting by (c,v$) the couple defining v* and setting:

/ (rrus (2, w3) — wou (2, x3)) da’
wa

(x3) = ) (8.4)
7“6/ (23 + 23) da’
usg 1 us 1 d
£ 3 3 / e /
_ %3 _ 24 — d 8.5
U3 re |wa| /w” re T+ |wa| gmo‘dms /wa Uq AT, ( )
we have:
& — ¢ strongly in L*(0,1), (8.6)
v§ — v§ weakly in H=(0,1; H (w*)). (8.7)
Finally, setting:
1 € (.
0 (ag) = —— [ Mal@hTa) 4 (8.8)
|w®| Joa e
and xf‘ = —Io, IQR = x1, we have:
ua 1 £ 3 a N a
e e (Falf + d) — w? weakly in L*(0,1; H (w®)). (8.9)

(ii) If {u®}. is a sequence in (H*(QY))3 such that u® =0 on X¥ = 0w’ x (—1,0) and:
{e%(u®)}. is bounded in (L*(Q))3*3, (8.10)
then there exists a pair (v°, w®) € V® x W such that for all o = 1,2:

1

geag(us) — eq3(v?) weakly in L*(QP), (8.11)
ie 3(u®) — ez3(w®) weakly in L*(QP) (8.12)
5033 33 Y . .
In addition, we have:
ug, O g
?a — U, —/ (?O‘ - ﬂz) dzs — v weakly in L?(w°; H'(~1,0)), fora=1,2, (8.13)
—1

with u¢ defined by:

e 31 Ju§
s, = —/0 gamz (2, s)ds.

Moreover:

0 e
- —/ s dzs — wh weakly in L?(w°; H'(—1,0)). (8.14)
1
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Proof of (i). We use the following decomposition and estimate, whose proof may be found for instance in [20,21]:
there exists a positive constant C' such that, for every u in L?(0,1; H'(w?®))?, there exist T and @ satisfying:

u=u++u,

/ Uo (7', 23) da’ =0, / (w102 (2, w3) — oy (2, w3)) dz’ = 0, (8.15)
w w

||EH(L2(O,1;H1(OJQ)))2 < CZ Heag(u)||L2(Qa). (8.16)
a,B
The function # is a rigid displacement:

(2, 23) = c(x3)xl + do(x3), (8.17)
1
with 2f* = —x5, ' = 2; (R for “rotation”). Applying (8.15) and (8.17) to u = — (u§,u$), we get:
776

1

T—auz =T, + 45, with 05, = ¢ (z3)x2 + &5 (23). (8.18)

One can check easily that the functions ¢ and df, are given in terms of u® by the formulae (8.4) and (8.8).
From (8.16), we obtain:
( : E)
e il
af TEU

wallz2(0,1:8 (wey) < C-

I | 205 ey < CY
a,f

12(00)

Setting wé, = wg,/r® and using (8.1), it follows that:

So, taking a subsequence of ¢, still denoted by the same letter, we may assume the existence of w% such that:
ws, — w? weakly in L?(0,1; H'(w)),Va = 1,2,
that is (8.9). Moreover it is clear that (w5, w§,0) and w® = (w§,ws,0) belong to W*. Since (8.18) implies that:

ﬁeaﬁw = eap(u),

we see that (8.3) is proved.

It remains to prove the convergences involving v®. In Section 5.3, it is proved that there exists ¢ in H'(0,1),
¢(1) = 0 such that, for a subsequence of &, (8.6) holds true. As for the other convergences involving v%, we use
again the decomposition (8.18), from which we deduce the following equality:

2 _ou;, o def p oddi, 1 Oug

£
—ex3lu ) = €T J—
re () Oxs daxs *  dxs e O0x.’

Va=1,2. (8.19)

Now, setting

5
E_U’S 1
U3_ -

e |wel Joare

u—gdx'—i—Zx id‘s(ac )
3 ﬁdl‘3 8 3/
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equality (8.19) can be written as:

2 o det p oo Ovy | Oug,
C(u”) = dxs Ta O0x, Oxs

(8.20)

The following estimate is proved in [24]:

R u® u®
V5101501 wey) < C [ Y lleas(-2)llz2(0e) + > lleas(-2)lz200) |
af3 e’

so that, from (8.1), the sequence {v§}. is bounded in H~1(0,1; H!(w®)). Therefore there exists some v$ in
H=1(0,1; H'(w?)), with zero mean-value on w?, such that (8.7) holds true (for a subsequence). It follows also
from (8.1) that:

1
—ea3(uf) — T3 weakly in L?(Q%), (8.21)
776

(again for some subsequence and some 743 in L?(Q%)). Moreover, since w¢, is bounded in L?(0,1; H!(w?®)):

ma €
0w, _ - Ows,

aIL'3 " 8:493

— 0 in the sense of distributions. (8.22)

By passing to the limit in (8.20), using (8.6), (8.7), (8.21) and (8.22), we get:

de 0
oz = — g 4 L ya 8.23
Ta3 a2 T, + O VU3 ( )
which, using ¢ € H'(0,1), implies that:
0
—v§ € L*(Q). 8.24
g € 2(0) (8.21)

From (8.24) and from the fact that v§ belongs to H (0, 1; H(w®)) and has zero mean-value on w®, one deduces
that v§ belongs to L2(0,1; HY(w?)), so that v® = (c(z3)zZ, v$) € YV and satisfies (8.2).

«?

Proof of (ii). Now we prove the analogous of the previous properties in the framework of 3d-2d reduction of
dimension. This is much easier. Indeed, in order to prove (8.11) and (8.13), we consider the sequence {vS }.

defined by:
us, . O rug
v, = _sa —ag, — /_1 (—E"‘ — u‘;) dxs,

3 q € T3 1 5 €
i ( | i5sweas- [ _8“3@/,5)(15,&),
o €0z o € O0xa €

and

Then we have as above:

ove, 2
a o € 2
. ¢ 3(uf), (8.25)

which is bounded in L?(Q2), as a consequence of (8.10). As vZ, has mean-value zero with respect to x3, it is
bounded in L?(w’; H(—1,0)), so that (8.13) holds true, i.e.:

ve — v? weakly in L2 (wb; H(—1, 0))7 (8.26)

for some subsequence of e and for some v%, in L?(w?; H'(—1,0)).
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Setting v® = (v},v5,0), we get:

1o

€a3(Ub) = 58—%’

so that we derive (8.11) from (8.25) and (8.26).
Finally we prove (8.12) and (8.14), by introducing the sequence of functions w® defined by:

01
€ € €
= —uf — — S da.
w ug /_1 5 u3 das,
o T 2( b gl ; dw® 1 ey 12000
which is bounded in L?(w®; H*(—1,0)), since Do~ 263 (u®) is bounded in L?(Q2°), due to (8.10). So, extract-
T3

2
ing a subsequence, we can find w$ in L?(w’; H*(—1,0)), with mean-value zero in 3, such that (8.12) and (8.14)
hold true, which completes the proof of Lemma 4. ([l

8.2. The density arguments

In Section 6, we have mentionned four density arguments. These are stated in the following lemmata and
proved below. This is done for the sake of completeness, since Lemmata 7 and 8 are very classical, Lemma 5 is
classical and very similar to the density result proved in [13], while Lemma 6, though less classical, results from
Theorem 9.1.3 of [2].

Lemma 5. Let v € H}(w?), 0 € w® € R2. There exist a sequence of positive numbers ™, tending to zero, and
a sequence of functions v™ € Hg(w®) such that:

v"™ =0 in the ball B"™ of center 0 and radius ",
" — v in Hy (Wh).

Proof. Let V = {v € CY(w?), v = 0 on dw’}. As V is dense in H{(w?), we may restrict to v in V. Then the
proof goes as follows. For any integer n, we consider two balls B” and B'™ in w® C R?, with center 0 and
respective radii ™ and R", to be determined later on, and such that 0 < r™ < R™, R™ tends to zero as n tends
to infinity. We define v™ € Hg(w?) by:

v =01in B", v" =v inw®\ B'", v" = (1 — ¢")v in B\ B",
where ¢" is the solution of the capacity problem in B’ \ B™:
A¢™ =0in B™\ B", ¢"=1o0ndB", ¢"=0ondB".

It is clear that v™ € W1 (w®) N HE (w?) and v™ = 0 in B™. We are going to prove that, for convenient " and
R™ v" — v in H}(w?). Actually, as 0 < ¢" < 1, we have:
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||v"—v||§{&(wb) :/ |V (o™ — v)|? da’
B/W,

:/ |Vv|2dx'+/ \ |¢" Vv + vV " |? da’
n B/‘n. B'n.

< / |V’U|2 dz’ + 2/ |¢)nV’U|2 dxz’ + 2/ |’UV¢)"|2 dxz’
n B/n\Bn B/n\Bn
< 3/ |Vo|? da’ +2/ [vVe"|? da’
m B/n\Bn

SO PNl 2y [ 900

n R™\ ™
= 3RV + Aol (102 )
It is enough to take e.g. r™ = 1/n? and R™ = 1/n, in order to get v™ — v in H}(w®). O

Lemma 6. Let v € HZ(w?), 0 € w® C R?, v(0) = 0. There exist a sequence of positive numbers ", tending to
zero, and a sequence of functions v € HZ(w®) such that:

v™ =0 in the ball B" of center 0 and radius r™,

" — v weakly in HE(W).

Proof. e For any v € H2(w"), with v(0) = 0, there exists 7" € C%(w?) N HZ(w") such that 7" tends to v in
H?(w") and hence in C%(w?). In particular, 7(0) tends to v(0) = 0. Setting v™ = 7" — T"(0)¢, with ¢ € D(w)
and ¢(0) = 1, it is clear that v™ € C2(w?) N HZ(w?), v"(0) = 0 and that v" tends to v in H2(wP).

e In view of the result of the previous step, we may restrict to v in C2(w?) N HZ(w), v(0) = 0. Let v" = v¢™,
with ¢"(2') = ¢(n|2'|) and ¢ € C*(R),0< ¢ <1, ¢ =0 on (—0o0,1], $ =1 on [2,+00). Clearly v € H2(wb),
v™ = 0 in the ball of center 0 and radius 1/n and we have:

/ [v" —v|]?da’ < / |v|*dz’ — 0,
wb |a|< 2

that is v — v in L?(w”). Hence the lemma is proved, as soon as we have proved that v™ is bounded uniformly
in HZ(wP), i.e.:
9%

rads is bounded in L? (wb) . (8.27)
But we have:
P B v v oe o o
0ra0x3  O0x0013 0xo0xg Oro Oxg  Ox 0z

The second term is obviously bounded in L>(w®). Moreover, since:

oo™ Y. m Lo
or ng'(n|x'|) 7] and

2 /n
e =l T2+ o'l (72 - T2 ).

0zadzs ' [? la'] 2P
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it follows that:

a¢n 82¢n )
— | <C <C

00| =" |Ozadzg| ="

v dgn|? 0
/ Qv 907 da’ <C‘ ! / n?da’ =C H / dz’ = C,
wh 8xg8za axg Lojar<2 8zﬁ 1<|a'|<2
82¢n 2 A , , ,
" 5mnam; 2’ < [0l fee (2 cp<2 ’/;,<|a-/|<;f; Cn'da! = Cn?|[vlff o (1 (e,

But, for 1/n < |2/| < 2/n, |v(z’)] < Cla’| < C/n, since v is regular and v(0) = 0. It follows that:

2

62 n
¢ dz’ < C,
8xaaxﬁ
and finally, (8.27) holds true, which completes the proof of Lemma 6. O

Lemma 7. Let v € L?(w® H'(—1,0)), 0 € w® C R2. There exist a sequence of positive numbers r™, tending to
zero, and a sequence of functions v™ such that:

o™ e CHQY),
" =0 in B™ x {0}, B™ denoting the ball of center 0 and radius r™,
v — v in L2(wP HY(—1,0)).
Proof. By density of C1(QP) in L2(w’; H'(—1,0)), we may restrict to v € C*(Q). We consider a sequence r"
of positive numbers, converging to zero, and a sequence of functions ¢ : w® — R, of class C*°, with ¢" = 0 in

the ball B™ of center 0 and radius 7", ¢" = 1 outside the ball B'" of center 0 and radius 2r™, 0 < ¢" < 1 in
B\ B™. We set v = ¢™v. Then clearly v™ € C}(QP) and:

[ — / " —U|2dx+/
Qb

— [ P | (- 6ol do
Bnx(—1,0) (B'm\B")x(—1,0)

2

(" —wv)| dzx

O3

2 2
+/ v d:c+/ (1741)")ﬁ dx
Brx(—1,0) | 03 (B/™\B™)x (—1,0) Oz
P
< / o2 + ‘—“ dz,
B'mx(—1,0) Ox3
which tends to zero, as soon as r™ tends to zero. O

Lemma 8. Assume @tOGw Cc R2%. LetU—{uEHl(O 1), u(1) = 0}, U—{uGCl[O 1], (1) =0
V = H2(w"), V = CLw?)NHE(w?), W = {(u,v) € UxV, u(0) = v(0)} and W = {(u,v) € UxV, u(0) =
Then W is dense in W.
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Proof. 1t is clear that U is dense in U and that V is dense in V. Therefore, for any (u,v) € W, there exists

(@",

Let

7") € U x V such that:
u" — uin H'(0,1) and hence in C°[0, 1],
7" — v in H2(wP) and hence in C°(w?).
@t € C>[0,1] with ¢*(0) =1, ¢*(1) = 0, ¢? € D(w®) with ¢$(0) = 1 and let:

u =a" — (@ (0) - u(0))¢',

It is clear that u™ € U, v™ € V and u"(0) = u(0) = v(0) = v™(0), so that (u",v"™) € W. Moreover:

™ =" || 10,1y = [@"(0) — w(0)|[| 6| 11 (0,1) — O

and hence u™ tends to u in H'(0,1). Similarly v™ tends to v in H?(wb). O
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