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LOCAL LIPSCHITZ CONTINUITY OF SOLUTIONS OF NON-LINEAR
ELLIPTIC DIFFERENTIAL-FUNCTIONAL EQUATIONS

Pierre Bousquet1

Abstract. The object of this paper is to prove existence and regularity results for non-linear elliptic
differential-functional equations of the form div a(∇u) + F [u](x) = 0, over the functions u ∈ W 1,1(Ω)
that assume given boundary values φ on ∂Ω. The vector field a : R

n → R
n satisfies an ellipticity

condition and for a fixed x, F [u](x) denotes a non-linear functional of u. In considering the same
problem, Hartman and Stampacchia [Acta Math. 115 (1966) 271–310] have obtained existence results
in the space of uniformly Lipschitz continuous functions when φ satisfies the classical bounded slope
condition. In a variational context, Clarke [Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (2005) 511–530]
has introduced a new type of hypothesis on the boundary condition φ : the lower (or upper) bounded
slope condition. This condition, which is less restrictive than the previous one, is satisfied if φ is the
restriction to ∂Ω of a convex function. We show that if a and F satisfy hypotheses similar to those of
Hartman and Stampacchia, the lower bounded slope condition implies the existence of solutions in the
space of locally Lipschitz continuous functions on Ω.
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1. Introduction

We study a Dirichlet boundary value problem associated with the following non-linear elliptic differential-
functional equation:

div [a(∇u)] + F [u] = 0. (1.1)

We seek solutions in the space of functions u ∈W 1,1(Ω) (where Ω is an open bounded convex set in R
n, n ≥ 2),

whose trace tr u on Γ := ∂Ω is equal to some function φ : Γ → R. For a fixed x ∈ Ω, F [u](x) is a non-linear
functional of u. For example, Hartman and Stampacchia consider the Euler equation of the variational problem

min

{∫
Ω

f(∇u) dx−
[∫

Ω

h(x, u) dx
]β

}
.
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1 Institut Camille Jordan, Université Claude Bernard, Lyon 1, France; bousquet@math.univ-lyon1.fr

c© EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.esaim-cocv.org or http://dx.doi.org/10.1051/cocv:2007035

http://www.edpsciences.org
http://www.esaim-cocv.org
http://dx.doi.org/10.1051/cocv:2007035


708 P. BOUSQUET

Then, aj(p) = fpj (p), F [u](x) = G[u]g(x, u) with

G[u] =
[∫

Ω

h(x, u(x))
]β−1

and g(x, u) = βhu(x, u).

We say that u ∈W 1,1(Ω) is a weak solution of (1.1) in W 1,1
φ (Ω) (the space of functions in W 1,1(Ω) whose trace

tr u is equal to the function φ) if a(∇u) ∈ L1
loc(Ω), F [u] ∈ L1

loc(Ω) and

(E)
∫

Ω

{〈a(∇u(x)),∇η(x)〉 − F [u](x)η(x)} dx = 0

for all continuously differentiable η with compact support in Ω; that is, η ∈ C1
c (Ω).

The problem (E) has been tackled by Hartman and Stampacchia, among many others, in [6], which will be
a recurrent reference throughout this paper. There, the authors show the existence of solutions to (E) in the
space Lip(Ω, φ) of uniformly Lipschitz continuous functions on Ω̄ whose trace on Γ is φ. Their proof is based
on two main tools. The first one is an abstract existence theorem in functional analysis. This theorem enables
them to assert for each K > 0, the existence of a solution uK to (E) in the space Lip(Ω, φ,K) of uniformly
Lipschitz continuous functions of Lipschitz rank no greater than K. The second tool of the proof is an a priori
bound on the Lipschitz rank of uK , independently of K. Then, Hartman and Stampacchia obtain the desired
solution u in the space Lip(Ω, φ) as a limit, as K → ∞, of the sequence (uK).

We are mainly interested in the generalization of the second tool: the a priori bound on the Lipschitz rank.
In [6], it is based on a maximum principle on the gradient of the solutions, which can be stated as follows (see
Lem. 10.0 in [6]):

||∇u||L∞(Ω) ≤ sup
x∈Γ,y∈Ω

|u(x) − u(y)|
|x− y| + C, (1.2)

where C is a constant depending on the data of the problem.
This maximum principle had already appeared in a variational context (see [10]) to give a proof of the

Hilbert-Haar theorem. It is based on a device due to Rado which amounts to the comparison of a solution
u and a translated version of u, say uτ := u(· + τ) which is (nearly) a solution of the same equation but on
Ωτ := Ω − τ.

To estimate the right hand side of (1.2), Hartman and Stampacchia consider the barrier technique.This
technique has been widely used in the theory of elliptic pde’s (see [4]). In particular, Lieberman (see [7–9]) has
studied the relationship between the regularity of φ on Γ and the regularity of the solutions on Ω. Nevertheless,
he always posits assumptions on the upper growth of a, which is not the case in our main result.

In [6], different types of hypotheses on φ are considered.One of them requires that φ satisfy the bounded slope
condition (BSC). The BSC of rank Q is the assumption that, given any point γ ∈ Γ, there exist two affine
functions

y 	→ 〈ζ−γ , y − γ〉 + φ(γ), y 	→ 〈ζ+
γ , y − γ〉 + φ(γ)

agreeing with φ at γ, whose slopes satisfy |ζ−γ | ≤ Q, |ζ+
γ | ≤ Q, and such that

〈ζ−γ , γ′ − γ〉 + φ(γ) ≤ φ(γ′) ≤ 〈ζ+
γ , γ

′ − γ〉 + φ(γ), ∀γ′ ∈ Γ.

This condition forces φ to be affine on ‘flat parts’ of Γ. Moreover, if Ω is smooth, then it forces φ to be smooth
as well (see Hartman [5] for precise statements; see also [1]).

Recently, Clarke [3] has introduced a new hypothesis on φ, the lower bounded slope condition (LBSC) of
rank Q: given any point γ ∈ Γ, there exists an affine function

y 	→ 〈ζγ , y − γ〉 + φ(γ),
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with |ζγ | ≤ Q such that
〈ζγ , γ′ − γ〉 + φ(γ) ≤ φ(γ′), ∀γ′ ∈ Γ.

This requirement enlarges the class of boundary functions which it allows, compared to the BSC. It can be shown
in particular that φ : Γ → R satisfies the LBSC if and only if it is the restriction to Γ of a convex function.
When Ω is uniformly convex, φ satisfies the LBSC if and only if it is the restriction to Γ of a semiconvex function
(see [1] for details and further properties).

Clarke has shown in a variational context that the LBSC gives the local Lipschitz continuity of minimizers
(see [3], see also [2]). The proof rests on a modification of Rado’s device: The minimizer u is compared now to
a dilated version of u (and not to a translated one).

The goal of this paper is to adapt the ideas appearing in [3] and [2], used in a variational context, to our
present setting, so as to prove existence and local Lipschitz regularity of the solutions to the elliptic differential-
functional equations considered above, when the LBSC is satisfied (rather than the BSC). We remark that local
Lipschitzness is the crucial property to show further regularity results with the help of the De Giorgi’s theory,
when the data are regular enough (see [6], Sect. 14). In our context, however, we can only get local regularity;
that is, on any compact subsets of Ω.

The next section describes the hypotheses that we posit on the data, and the proof of our theorem is given
in Section 3. The final section discusses the issue of the continuity of the solution at the boundary.

2. The main result

Recall that Lip(Ω) denotes the set of uniformly Lipschitz continuous functions on Ω (or, equivalently, on Ω̄).
Let Lip(Ω, φ) be the set of functions u ∈ Lip(Ω) for which u = φ on Γ. For a given K, let Lip(Ω, φ,K) be the
set of functions u ∈ Lip(Ω, φ) of rank ≤ K (this set being empty if φ is not Lipschitz of rank at most K). We
now specify the hypotheses on the data of the problem (E). Recall that

(HΩ) Ω is an open bounded convex set in R
n, n ≥ 2.

(Hφ) φ satisfies the lower bounded slope condition of rank Q.

This implies that φ can be extended as a convex function on R
n, which will be done henceforth. Moreover, we

may assume that φ is globally Lipschitz of rank Q. As Ω is convex, it has a Lipschitz boundary, which justifies
the use of trace in the boundary condition: tru = φ.

We will assume that a = (a1, .., an) is continuous on R
n and satisfies

(Ha) 〈a(p) − a(q), p− q〉 ≥ µ0|p− q|2,

for some µ0 > 0. This implies (with q = 0) that for any ε > 0, there exists Nε ≥ 0 such that 〈a(p), p〉 ≥
(µ0 − ε)|p|2 −Nε.

The non-linear functional F satisfies the four hypotheses below (where u is any bounded and continuous
function on Ω):

(HF0) x ∈ Ω 	→ F [u](x) is well-defined and measurable,

(HF1) F [u](x) sgnu(x) ≤
m∑

i=1

ci||u||β(i)

Lα(i)(Ω)
|u(x)|γ(i)−1, x ∈ Ω a.e.

where ci ≥ 0, α(i) ≥ 1, β(i) ≥ 0, γ(i) ≥ 1 and α(i) ≤ 2∗, β(i) + γ(i) ≤ 2. (As usual, 1/2∗ = 1/2 − 1/n when
n > 2. If n = 2, 2∗ denotes any number larger than 4). We also assume that the coefficients ci in (HF1) satisfy

µ0 −
∑ ′ciΛ−2|Ω|1−2/σ+β(i)/α(i) > 0 (2.3)
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where
∑′ is the sum over the indices i for which β(i) + γ(i) = 2. Here,

σ := max
i=1,..,m

(α(i), 2) ≤ 2∗

and

Λ := inf
u∈W 1,2

0 (Ω)

||∇u||L2(Ω)

||u||Lσ(Ω)
·

Furthermore, we assume that for every number M > 0, there exists a number χ(M) such that

(HF2) |u(x)| ≤M on Ω ⇒ |F [u](x)| ≤ χ(M).

The last hypothesis on F is:

(HF3) If uh ∈ Lip(Ω, φ) for h = 1, 2, ... is a bounded sequence

in L∞(Ω) which converges to u uniformly on compact subsets

of Ω as h→ ∞, then F [uh](x) → F [u](x) a.e. on Ω.

These hypotheses are closely related to those of Hartman and Stampacchia [6]. They are satisfied by the example
given in the introduction.

We can pick some ε > 0 such that inequality (2.3) remains true when µ0 is replaced by µ := µ0 − ε > 0. With
that µ, (Ha) remains true and we have

〈a(p), p〉 ≥ µ|p|2 −N (2.4)

for some N > 0.
Under these hypotheses, we can state our theorem:

Theorem 2.1. Under hypotheses (HΩ), (Hφ), (Ha) and (HF0), (HF1), (HF2), (HF3), there exists a locally
Lipschitz u ∈W 1,2

φ (Ω) ∩ L∞(Ω) which satisfies (E) :

∫
Ω

{〈a(∇u(x)),∇η(x)〉 − F [u](x)η(x)} dx = 0 ∀η ∈ C1
c (Ω).

This theorem generalises Theorem 12.1 in the article of Hartman and Stampacchia [6], in the sense that the
bounded slope condition is reduced to the lower bounded slope condition. In contrast to [6], however, we do not
assert the global Lipschitzness of the solution. This explains why the hypotheses that we have made on a and
F are more restrictive than those appearing in [6]. In particular, a small dependence on the gradient is allowed
there in the hypothesis corresponding to (HF2).

In fact, it is not the case in our context that solutions are globally Lipschitz, as evidenced by the following
example (see [1, 3]):

Example 2.1. The set Ω is the open disc in R
2, φ(cos θ, sin θ) := −π2/6 + π/2θ− θ2/4, 0 ≤ θ < 2π, F = 0 and

a(p) = p. Then the solution of (E) is locally Lipschitz but not globally Lipschitz.

Remark 2.1. There is another version of the theorem where the lower bounded slope condition is replaced by
an upper bounded slope condition.
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3. Proof of the theorem

Following the terminology of [6], by a K quasi solution of (1.1) will be meant a function u ∈ Lip(Ω, φ,K)
satisfying

∫
Ω

{〈a(∇u),∇(v − u)〉 − F [u](v − u)} ≥ 0, ∀v ∈ Lip(Ω, φ,K). (3.5)

We recall here some results of [6]. First, the following existence theorem holds (this is [6], Lem. 12.1).

Proposition 3.1. For every K > Q, there exists a K quasi solution to (3.5).

The following proposition (which is exactly Th. 8.1 in [6]) provides an a priori bound in L∞(Ω) for any K
quasi solution (K > Q).

Proposition 3.2. There exists a constant T (independent of K) such that if u is a K quasi solution of (3.5),
then

|u(x)| ≤ T, on Ω.

From this bound, we can infer easily an a priori bound in W 1,2(Ω):

Proposition 3.3. There exists a constant T ′ (independent of K > Q) such that if u is a K quasi solution
of (3.5), then

||u||W 1,2 ≤ T ′.

Proof. Since φ ∈ Lip(Ω, φ,K), we have

∫
Ω

〈a(∇uK),∇(uK − φ)〉 ≤
∫

Ω

F [uK ](uK − φ)

so that ∫
Ω

〈a(∇φ),∇(uK − φ)〉 + µ

∫
Ω

|∇(uK − φ)|2 ≤
∫

Ω

F [uK ](uK − φ).

Then (using the fact that ||uK − φ||L∞(Ω) ≤ T + ||φ||L∞(Ω)),

µ

∫
Ω

|∇(uK − φ)|2 ≤ ||a(∇φ)||L∞(Ω)

∫
Ω

|∇(uK − φ)| + χ(T )(T + ||φ||L∞(Ω))

where χ(T ) is given by (HF2). Writing that

||a(∇φ)||L∞(Ω)

∫
Ω

|∇(uK − φ)| ≤ ε

∫
Ω

|∇(uK − φ)|2 + ||a(∇φ)||2L∞(Ω)|Ω|/(4ε),

we see that ||∇(uK − φ)||L2(Ω) is bounded by a constant depending on ||a(∇φ)||L∞(Ω), µ, T, ||φ||L∞(Ω) and Ω.
Hence, (uK) is bounded in W 1,2(Ω). This completes the proof. �

The proof of Theorem 2.1 uses the well-known barrier technique:

Proposition 3.4. There exists Q̄ ≥ 0 such that for any γ ∈ Γ, there exists w : Ω̄ → R Lipschitz of rank Q̄
which satisfies

w(γ) = φ(γ), w(y) ≤ u(y) ∀y ∈ Ω,

for any K quasi solution u of (3.5) and any K > Q̄.
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Proof. We build the same barrier as in [2], Theorem 2.2. There is an element ζ with |ζ| ≤ Q in the subdifferential
of φ at γ:

φ(x) − φ(γ) ≥ 〈ζ, x − γ〉 ∀x ∈ R
n.

By (HF2) and Proposition 3.2, |F [u](x)| ≤ χ(T ) x ∈ Ω a.e., for any K quasi-solution u of (3.5). Fix any
R > (χ(T )+ 1) exp(diam Ω)/µ where µ is given by (2.4). Recall that (Ha) remains true when µ0 is replaced by
µ. Let ν be a unit outward normal vector to Ω̄ at γ and define

w(x) := φ(γ) + 〈ζ, x− γ〉 −R{1 − exp(〈x− γ, ν〉)}.

The function w agrees with φ at γ and is Lipschitz of rank

Q̄ := Q+R exp(diam Ω).

Let K > Q̄ and u be a K quasi solution of (3.5). We have to show that the set

S := {x ∈ Ω : w(x) > u(x)}

has measure 0. The function M(x) := max[u(x), w(x)] is Lipschitz of rank K and its trace is φ (this follows
from the subgradient inequality for ζ and the fact that 〈x− γ, ν〉 ≤ 0 for x ∈ Ω).

As u is a K quasi solution of (3.5) (relative to M), we have∫
S

〈a(∇u),∇(u− w)〉 ≤
∫

S

F [u](u− w). (3.6)

Thanks to (Ha), we get ∫
S

〈a(∇w),∇(u − w)〉 ≤ χ(T )
∫

S

(w − u). (3.7)

Let us make the temporary assumption that a is C1. Then, a straightforward calculation yields

div [a(∇w)] = R exp(〈x− γ, ν〉)
∑
i,j

∂pjai(∇w)νiνj

≥ χ(T ) + 1,

in light of (Ha) and because of how R was chosen. Then, (3.7) implies:

χ(T )
∫

S

(w − u) ≥
∫

S

〈a(∇w),∇(u − w)〉

≥
∫

S

(w − u)div [a(∇w)]

≥ (χ(T ) + 1)
∫

S

(w − u).

This shows that S is of measure 0, since w − u > 0 on S.
In the general case in which a is not C1, we consider a sequence ak of C1 vector fields converging to a

uniformly on compact sets and satisfying (Ha). Then, for each k,∫
S

〈ak(∇w),∇(u − w)〉 ≥ (χ(T ) + 1)
∫

S

(w − u)

and the quantity
∫

S
〈ak(∇w),∇(u − w)〉 converges to

∫
S
〈a(∇w),∇(u − w)〉 as k goes to +∞. This shows that

the result is still true when a is merely assumed continuous. �
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We then proceed exactly as in [2]. Consider a K quasi solution u of (3.5). Let λ ∈ [1/2, 1), q > q̄ :=
Q̄diamΩ + ||φ||L∞(Ω) and z ∈ Γ. We will denote by

uλ(x) := λu((x − z)/λ+ z) − q(1 − λ) (3.8)
Ωλ := λ(Ω − z) + z. (3.9)

Then uλ belongs to the space Lip(Ωλ, φλ,K), where φλ(x) := λφ((x−z)/λ+z)− q(1−λ). We want to compare
uλ and u on Γλ := ∂Ωλ.

This is done by the following proposition, whose proof appears in [2]:

Proposition 3.5. We have uλ ≤ u on Γλ.

The next step of the proof is to show that the set

A := {y ∈ Ωλ : uλ(y) > u(y)}

has measure zero. Once again, the proof is very similar to that of [2]:
By definition of a K quasi solution, u ∈ Lip(Ω, φ,K) satisfies (3.5); that is,∫

Ω

〈a(∇u),∇(v − u)〉 − F [u](v − u) ≥ 0, ∀v ∈ Lip(Ω, φ,K).

We will denote F [u](x) by g(x) for all x ∈ Ω. Then, g ∈ L∞(Ω).
Let w(x) := min(u|Ωλ

, uλ) ∈ Lip(Ωλ, φλ,K) (thanks to Prop. 3.5).
Let wλ(x) := 1/λw(λ(x− z)+ z)+ q(1/λ− 1) ∈ Lip(Ω, φ,K). With v := wλ in (3.5), we get after an obvious

change of variables

0 ≤
∫

Ωλ

〈a(∇uλ(y)),∇w(y) −∇uλ(y)〉 − g

(
y − z

λ
+ z

)(w
λ

(y) − uλ

λ
(y)

)
dy

which implies

0 ≤
∫

A

〈a(∇uλ(y)),∇u(y) −∇uλ(y)〉 − 1
λ
g

(
y − z

λ
+ z

)
(u(y) − uλ(y)) dy.

Let W (x) := max(u|Ωλ
(x), uλ(x)) for x ∈ Ωλ and W (x) := u(x) for x ∈ Ω − Ωλ. Then W ∈ Lip(Ω, φ,K). With

v := W in (3.5), we get

0 ≤
∫

A

〈a(∇u),∇(uλ − u)〉 − g(y)(uλ − u).

Summing these two last inequalities, we get

0 ≤
∫

A

〈−a(∇uλ) + a(∇u),∇(uλ − u)〉 +
(

1
λ
g(
y − z

λ
+ z) − g(y)

)
(uλ − u)

so that using (Ha),

µ

∫
A

|∇(uλ − u)|2 ≤
∫

A

(
1
λ
g

(
y − z

λ
+ z

)
− g(y))(uλ − u).

We proceed with the following lemma (the proof of which can be found in [2]; see the calculations following
inequality (6) there):

Lemma 3.1. Let u ∈ W 1,2(Ω), g ∈ L∞(Ω) and µ > 0. Assume that there exists q̄ such that for any q > q̄ and
λ ∈ [1/2, 1), we have

µ

∫
A

|∇(uλ − u)|2 ≤
∫

A

(
1
λ
g

(
y − z

λ
+ z

)
− g(y))(uλ − u),
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where uλ,Ωλ are defined as in (3.8), (3.9) and A = A(q) := {y ∈ Ωλ : uλ(y) > u(y)}. Then, there exists
q0 > q̄ such that A(q) has measure 0 for any q ≥ q0. The number q0 only depends on q̄, n, µ,Ω, ||g||L∞(Ω) but
not on u, λ ∈ [1/2, 1) nor on z ∈ Γ.

We infer from this lemma that there exists q0 > 0 such that

λu((x − z)/λ+ z) ≤ u(x) + q(1 − λ) ∀q ≥ q0. (3.10)

This implies that the Lipschitz rank of u can be bounded independently of K on any compact set of Ω, as shown
by the following lemma (for a proof of this one, see the final step of the proof of the main theorem in [2]):

Lemma 3.2. Let u ∈ L∞(Ω). Assume that there exists q0 > 0 such that for any λ ∈ [1/2, 1), z ∈ Γ, we have:

λu((y − z)/λ+ z) − q0(1 − λ) ≤ u(y),

a.e. y ∈ Ωλ := λ(Ω − z) + z. Then, u (admits a representative which) is locally Lipschitz on Ω and we have

|Du(x)| ≤ ||u||L∞(Ω) + q0

dΓ(x)
, x ∈ Ω a.e.,

where dΓ denotes the distance to Γ.

We may summarize the current state of the proof as follows: for each K > 0, there exists uK ∈ Lip(Ω, φ,K)
a K quasi solution of (3.5), such that ||uK ||L∞(Ω) ≤ T, ||uK ||W 1,2(Ω) ≤ T ′ and the Lipschitz rank of uK on any
compact subset Ω0 ⊂ Ω is bounded by

T + q0
d (Ω0,Γ)

where q0, T are independent of K and d (Ω0,Γ) denotes the distance between Ω0 and Γ. Let Ωj be an increasing
sequence of open subsets of Ω satisfying Ωj ⊂ Ω̄j ⊂ Ωj+1 and ∪j≥1Ωj = Ω. Let Kj be a common Lipschitz rank
for all the functions uK restricted to Ωj . Then, up to a subsequence, the functions uK converge uniformly on
every compact subset of Ω to a function u which is Lipschitz of rank Kj on Ωj . Moreover, we can suppose
that for every j,∇uK converges to ∇u in σ(L∞(Ωj), L1(Ωj)). Finally, we can also assume that (uK) converges
weakly to u in W 1,2(Ω). It remains to show that:

Proposition 3.6. The function u is a weak solution of (E) and u ∈ W 1,2
0 (Ω) + φ.

Proof. This second assertion is trivial in view of the weak convergence in W 1,2(Ω). Fix some η ∈ C∞
c (Ω). Let

L be a Lipschitz constant for η. Let ε > 0. We know that ||F [uK ]||L∞ ≤ χ(T ). Let j be big enough so that
supp η ⊂ Ωj . Let εj be such that

εj(L + 3Kj+1 + 1)sup|p|≤L+3Kj+1+1|a(p)| ≤ ε

and such that
εj(χ(T )(||η||L∞(Ω) + 2T )) < ε.

Let Ω′
j be an open subset of Ω such that

Ω̄j ⊂ Ω′
j ⊂ Ω̄′

j ⊂ Ωj+1

and |Ω′
j/Ωj | < εj.

Let θj ∈ C∞
c (Ω′

j) such that θj ≡ 1 on Ωj and 0 ≤ θj ≤ 1.
Let

ψK(x) := uK(x) + η(x) + θj(x)(u(x) − uK(x)).
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For any K ≥ 0, ψK(x) = uK(x) on Ω/Ω′
j and ψK(x) = η(x) + u(x) on Ωj . A Lipschitz rank for ψK restricted

to Ω′
j is Sj := Kj+1 + L+ 2T ||∇θj||L∞(Ω′

j). Then, for any K ≥ Sj, ψK is K Lipschitz on Ω and we have:

∫
Ω

〈a(∇uK),∇(ψK − uK)〉 ≥
∫

Ω

F [uK ](x)(ψK − uK)(x) dx

which implies ∫
Ω′

j

〈a(∇ψK),∇(ψK − uK)〉 ≥
∫

Ω′
j

F [uK ](x)(ψK − uK)(x) dx.

Hence, ∫
Ωj

〈a(∇(η + u)),∇(η + u− uK)〉 ≥
∫

Ωj

F [uK ](x)(η + θj(u− uK))(x) dx − 2ε.

Passing to the limit when K → +∞ yields∫
Ωj

〈a(∇(η + u)),∇η〉 ≥
∫

Ωj

F [u](x)η(x) dx − 2ε.

(recall that ∇u → ∇uK in σ(L∞, L1) and F [uK ](x) → F [u](x) a.e. and is bounded independently of K.) In
the previous inequality, we can replace Ωj by Ω (since supp η ⊂ Ωj) and notice that ε is arbitrary. We have
then shown that ∫

Ω

〈a(∇(η + u)),∇η〉 ≥
∫

Ω

F [u](x)η(x) dx.

Replace now η by tη for any t ∈ R \ {0}, divide by t and let t→ 0. Then

∫
Ω

〈a(∇u),∇η〉 =
∫

Ω

F [u](x)η(x) dx.

This shows that u is a weak solution of (E) and completes the proof of the theorem. �

4. Continuity at the boundary

We know by example that in general, u fails to be globally Lipschitz. But there remains the question of
whether u is continuous at the boundary. Under merely the hypotheses of Theorem 2.1, it is an open problem.
However, the continuity on Ω̄ can be proved under additional hypotheses on Ω and/or on the integrability of u.

This conclusion is based on the following properties of u. First, there exists a function w̄ ∈ Lip (Ω, φ, Q̄) (for
some Q̄ > 0) such that w ≤ u on Ω. Indeed, if we denote by wγ the function built in Proposition 3.4, then the
function w̄ := inf

γ∈Γ
wγ belongs to Lip (Ω, φ, Q̄) and satisfies:

wγ ≤ uK , ∀K > Q̄.

So, the same inequality is satisfied by u instead of uK .
Secondly, inequality (3.10) easily implies

u(y) ≤ u(x) + (q0 + ||u||L∞(Ω))
|x− y|
|y − z|

whenever |y − x| < 1/2|y − z|, with z ∈ Γ such that y = (x− z)/λ+ z for some λ ∈ (1/2, 1).
The arguments of [3] (namely, the proofs of Ths. 2.2, 2.3 and 2.4) show the following:
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Theorem 4.1. If Γ is a polyhedron, then u is Hölder continuous on Ω̄ of order 1/(n + 2). If Γ is C1,1 and
u ∈W 1,p with p > (n+ 1)/2, then u satisfies on Ω̄ a Hölder condition of order

a :=
2p− n− 1
4p+ n− 3

·

Acknowledgements. The author thanks Francis Clarke for many helpful remarks.
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